diff options
author | Jakub Kicinski <kuba@kernel.org> | 2023-04-12 21:26:04 -0700 |
---|---|---|
committer | Jakub Kicinski <kuba@kernel.org> | 2023-04-14 18:56:12 -0700 |
commit | 8c48eea3adf3119e0a3fc57bd31f6966f26ee784 (patch) | |
tree | 6948aaafccb06960f52ca48a671375e9d21724b6 /net/core/page_pool.c | |
parent | b07a2d97ba5ef154fe736aa510e43a3299eee5f8 (diff) |
page_pool: allow caching from safely localized NAPI
Recent patches to mlx5 mentioned a regression when moving from
driver local page pool to only using the generic page pool code.
Page pool has two recycling paths (1) direct one, which runs in
safe NAPI context (basically consumer context, so producing
can be lockless); and (2) via a ptr_ring, which takes a spin
lock because the freeing can happen from any CPU; producer
and consumer may run concurrently.
Since the page pool code was added, Eric introduced a revised version
of deferred skb freeing. TCP skbs are now usually returned to the CPU
which allocated them, and freed in softirq context. This places the
freeing (producing of pages back to the pool) enticingly close to
the allocation (consumer).
If we can prove that we're freeing in the same softirq context in which
the consumer NAPI will run - lockless use of the cache is perfectly fine,
no need for the lock.
Let drivers link the page pool to a NAPI instance. If the NAPI instance
is scheduled on the same CPU on which we're freeing - place the pages
in the direct cache.
With that and patched bnxt (XDP enabled to engage the page pool, sigh,
bnxt really needs page pool work :() I see a 2.6% perf boost with
a TCP stream test (app on a different physical core than softirq).
The CPU use of relevant functions decreases as expected:
page_pool_refill_alloc_cache 1.17% -> 0%
_raw_spin_lock 2.41% -> 0.98%
Only consider lockless path to be safe when NAPI is scheduled
- in practice this should cover majority if not all of steady state
workloads. It's usually the NAPI kicking in that causes the skb flush.
The main case we'll miss out on is when application runs on the same
CPU as NAPI. In that case we don't use the deferred skb free path.
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Dragos Tatulea <dtatulea@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'net/core/page_pool.c')
-rw-r--r-- | net/core/page_pool.c | 15 |
1 files changed, 13 insertions, 2 deletions
diff --git a/net/core/page_pool.c b/net/core/page_pool.c index 193c18799865..2f6bf422ed30 100644 --- a/net/core/page_pool.c +++ b/net/core/page_pool.c @@ -19,6 +19,7 @@ #include <linux/mm.h> /* for put_page() */ #include <linux/poison.h> #include <linux/ethtool.h> +#include <linux/netdevice.h> #include <trace/events/page_pool.h> @@ -874,9 +875,11 @@ void page_pool_update_nid(struct page_pool *pool, int new_nid) } EXPORT_SYMBOL(page_pool_update_nid); -bool page_pool_return_skb_page(struct page *page) +bool page_pool_return_skb_page(struct page *page, bool napi_safe) { + struct napi_struct *napi; struct page_pool *pp; + bool allow_direct; page = compound_head(page); @@ -892,12 +895,20 @@ bool page_pool_return_skb_page(struct page *page) pp = page->pp; + /* Allow direct recycle if we have reasons to believe that we are + * in the same context as the consumer would run, so there's + * no possible race. + */ + napi = pp->p.napi; + allow_direct = napi_safe && napi && + READ_ONCE(napi->list_owner) == smp_processor_id(); + /* Driver set this to memory recycling info. Reset it on recycle. * This will *not* work for NIC using a split-page memory model. * The page will be returned to the pool here regardless of the * 'flipped' fragment being in use or not. */ - page_pool_put_full_page(pp, page, false); + page_pool_put_full_page(pp, page, allow_direct); return true; } |