diff options
author | Jakub Kicinski <kuba@kernel.org> | 2024-07-11 12:57:57 -0700 |
---|---|---|
committer | Jakub Kicinski <kuba@kernel.org> | 2024-07-11 12:58:13 -0700 |
commit | 7c8267275de6989a9b682a07d75e89395457ee01 (patch) | |
tree | db28c44520d9f786a4142871b42eb80f0d205ddd /kernel | |
parent | a6a9fcb10836105e525ccb8bc1a6af4b20a113be (diff) | |
parent | 51df8e0cbaefd432f7029dde94e6c7e4e5b19465 (diff) |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.
Conflicts:
net/sched/act_ct.c
26488172b029 ("net/sched: Fix UAF when resolving a clash")
3abbd7ed8b76 ("act_ct: prepare for stolen verdict coming from conntrack and nat engine")
No adjacent changes.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/bpf/helpers.c | 99 |
1 files changed, 82 insertions, 17 deletions
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index 5241ba671c5a..b5f0adae8293 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -1084,7 +1084,10 @@ struct bpf_async_cb { struct bpf_prog *prog; void __rcu *callback_fn; void *value; - struct rcu_head rcu; + union { + struct rcu_head rcu; + struct work_struct delete_work; + }; u64 flags; }; @@ -1107,6 +1110,7 @@ struct bpf_async_cb { struct bpf_hrtimer { struct bpf_async_cb cb; struct hrtimer timer; + atomic_t cancelling; }; struct bpf_work { @@ -1219,6 +1223,21 @@ static void bpf_wq_delete_work(struct work_struct *work) kfree_rcu(w, cb.rcu); } +static void bpf_timer_delete_work(struct work_struct *work) +{ + struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); + + /* Cancel the timer and wait for callback to complete if it was running. + * If hrtimer_cancel() can be safely called it's safe to call + * kfree_rcu(t) right after for both preallocated and non-preallocated + * maps. The async->cb = NULL was already done and no code path can see + * address 't' anymore. Timer if armed for existing bpf_hrtimer before + * bpf_timer_cancel_and_free will have been cancelled. + */ + hrtimer_cancel(&t->timer); + kfree_rcu(t, cb.rcu); +} + static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, enum bpf_async_type type) { @@ -1262,6 +1281,8 @@ static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u clockid = flags & (MAX_CLOCKS - 1); t = (struct bpf_hrtimer *)cb; + atomic_set(&t->cancelling, 0); + INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; cb->value = (void *)async - map->record->timer_off; @@ -1440,7 +1461,8 @@ static void drop_prog_refcnt(struct bpf_async_cb *async) BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) { - struct bpf_hrtimer *t; + struct bpf_hrtimer *t, *cur_t; + bool inc = false; int ret = 0; if (in_nmi()) @@ -1452,14 +1474,41 @@ BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) ret = -EINVAL; goto out; } - if (this_cpu_read(hrtimer_running) == t) { + + cur_t = this_cpu_read(hrtimer_running); + if (cur_t == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock - * since it waits for callback_fn to finish + * since it waits for callback_fn to finish. */ ret = -EDEADLK; goto out; } + + /* Only account in-flight cancellations when invoked from a timer + * callback, since we want to avoid waiting only if other _callbacks_ + * are waiting on us, to avoid introducing lockups. Non-callback paths + * are ok, since nobody would synchronously wait for their completion. + */ + if (!cur_t) + goto drop; + atomic_inc(&t->cancelling); + /* Need full barrier after relaxed atomic_inc */ + smp_mb__after_atomic(); + inc = true; + if (atomic_read(&cur_t->cancelling)) { + /* We're cancelling timer t, while some other timer callback is + * attempting to cancel us. In such a case, it might be possible + * that timer t belongs to the other callback, or some other + * callback waiting upon it (creating transitive dependencies + * upon us), and we will enter a deadlock if we continue + * cancelling and waiting for it synchronously, since it might + * do the same. Bail! + */ + ret = -EDEADLK; + goto out; + } +drop: drop_prog_refcnt(&t->cb); out: __bpf_spin_unlock_irqrestore(&timer->lock); @@ -1467,6 +1516,8 @@ out: * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); + if (inc) + atomic_dec(&t->cancelling); rcu_read_unlock(); return ret; } @@ -1512,25 +1563,39 @@ void bpf_timer_cancel_and_free(void *val) if (!t) return; - /* Cancel the timer and wait for callback to complete if it was running. - * If hrtimer_cancel() can be safely called it's safe to call kfree(t) - * right after for both preallocated and non-preallocated maps. - * The async->cb = NULL was already done and no code path can - * see address 't' anymore. - * - * Check that bpf_map_delete/update_elem() wasn't called from timer - * callback_fn. In such case don't call hrtimer_cancel() (since it will - * deadlock) and don't call hrtimer_try_to_cancel() (since it will just - * return -1). Though callback_fn is still running on this cpu it's + /* We check that bpf_map_delete/update_elem() was called from timer + * callback_fn. In such case we don't call hrtimer_cancel() (since it + * will deadlock) and don't call hrtimer_try_to_cancel() (since it will + * just return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since async->cb = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. + * + * However, it is possible the timer callback_fn calling us armed the + * timer _before_ calling us, such that failing to cancel it here will + * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. + * Therefore, we _need_ to cancel any outstanding timers before we do + * kfree_rcu, even though no more timers can be armed. + * + * Moreover, we need to schedule work even if timer does not belong to + * the calling callback_fn, as on two different CPUs, we can end up in a + * situation where both sides run in parallel, try to cancel one + * another, and we end up waiting on both sides in hrtimer_cancel + * without making forward progress, since timer1 depends on time2 + * callback to finish, and vice versa. + * + * CPU 1 (timer1_cb) CPU 2 (timer2_cb) + * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) + * + * To avoid these issues, punt to workqueue context when we are in a + * timer callback. */ - if (this_cpu_read(hrtimer_running) != t) - hrtimer_cancel(&t->timer); - kfree_rcu(t, cb.rcu); + if (this_cpu_read(hrtimer_running)) + queue_work(system_unbound_wq, &t->cb.delete_work); + else + bpf_timer_delete_work(&t->cb.delete_work); } /* This function is called by map_delete/update_elem for individual element and |