summaryrefslogtreecommitdiff
path: root/rust/kernel/revocable.rs
blob: 9037d7e2fcbf246c07ac719719fdcbc8ae5bfc8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// SPDX-License-Identifier: GPL-2.0

//! Revocable objects.
//!
//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
//! of a [`RevocableGuard`] ensures that objects remain valid.

use crate::{
    bindings,
    init::{self, PinnedDrop},
    prelude::*,
    sync::rcu,
};
use core::{
    cell::UnsafeCell,
    marker::PhantomData,
    mem::MaybeUninit,
    ops::Deref,
    ptr::drop_in_place,
    sync::atomic::{fence, AtomicBool, AtomicU32, Ordering},
};

/// An object that can become inaccessible at runtime.
///
/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
///
/// # Examples
///
/// ```
/// # use kernel::revocable::Revocable;
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
///     let guard = v.try_access()?;
///     Some(guard.a + guard.b)
/// }
///
/// let v = Revocable::new(Example { a: 10, b: 20 });
/// assert_eq!(add_two(&v), Some(30));
/// v.revoke();
/// assert_eq!(add_two(&v), None);
/// ```
///
/// Sample example as above, but explicitly using the rcu read side lock.
///
/// ```
/// # use kernel::revocable::Revocable;
/// use kernel::sync::rcu;
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
///     let guard = rcu::read_lock();
///     let e = v.try_access_with_guard(&guard)?;
///     Some(e.a + e.b)
/// }
///
/// let v = Revocable::new(Example { a: 10, b: 20 });
/// assert_eq!(add_two(&v), Some(30));
/// v.revoke();
/// assert_eq!(add_two(&v), None);
/// ```
#[pin_data(PinnedDrop)]
pub struct Revocable<T> {
    is_available: AtomicBool,
    #[pin]
    data: MaybeUninit<UnsafeCell<T>>,
}

// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
// this isn't supported by the wrapped object.
unsafe impl<T: Send> Send for Revocable<T> {}

// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
// from the wrapped object as well because  of `Revocable::revoke`, which can trigger the `Drop`
// implementation of the wrapped object from an arbitrary thread.
unsafe impl<T: Sync + Send> Sync for Revocable<T> {}

#[pin_data]
struct A {
    #[pin]
    a: u64,
}

impl A {
    fn new(a: u64) -> impl PinInit<A> {
        pin_init!(Self { a })
    }
}

#[repr(transparent)]
struct B<T> {
    a: T,
}

fn init_b<T, E>(val: impl PinInit<T, E>) -> impl PinInit<B<T>, E> {
    unsafe { init::pin_init_from_closure(|slot| val.__pinned_init(slot as *mut T)) }
}

#[pin_data(PinnedDrop)]
struct C<T> {
    #[pin]
    b: B<T>,
}

impl<T> C<T> {
    fn new(a_init: impl PinInit<T>) -> impl PinInit<C<T>> {
        pin_init!( Self {
            b <- init_b(a_init),
        })
    }
}

#[pinned_drop]
impl<T> PinnedDrop for C<T> {
    fn drop(self: Pin<&mut Self>) {
        todo!()
    }
}

fn create_c() {
    let _c: Pin<Box<C<A>>> = Box::pin_init(C::new(A::new(5))).unwrap();
}

impl<T> Revocable<T> {
    /// Creates a new revocable instance of the given data.
    pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> {
        pin_init!(Self {
            is_available: AtomicBool::new(true),
            data <- unsafe { init::pin_init_from_closure(move |slot: *mut MaybeUninit<UnsafeCell<T>>| {
                unsafe { init::PinInit::<T, core::convert::Infallible>::__pinned_init(data, slot as *mut T)}?;
                Ok::<(), core::convert::Infallible>(())
            })},
        })
    }

    /// Tries to access the \[revocable\] wrapped object.
    ///
    /// Returns `None` if the object has been revoked and is therefore no longer accessible.
    ///
    /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
    /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
    /// because another CPU may be waiting to complete the revocation of this object.
    pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
        let guard = rcu::read_lock();
        if self.is_available.load(Ordering::Relaxed) {
            // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
            // valid because the RCU read side lock prevents it from being dropped.
            Some(unsafe { RevocableGuard::new(self.data.assume_init_ref().get(), guard) })
        } else {
            None
        }
    }

    /// Tries to access the \[revocable\] wrapped object.
    ///
    /// Returns `None` if the object has been revoked and is therefore no longer accessible.
    ///
    /// Returns a shared reference to the object otherwise; the object is guaranteed to
    /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
    /// allowed to sleep because another CPU may be waiting to complete the revocation of this
    /// object.
    pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
        if self.is_available.load(Ordering::Relaxed) {
            // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
            // valid because the RCU read side lock prevents it from being dropped.
            Some(unsafe { &*self.data.assume_init_ref().get() })
        } else {
            None
        }
    }

    /// Revokes access to and drops the wrapped object.
    ///
    /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`]. If
    /// there are concurrent users of the object (i.e., ones that called [`Revocable::try_access`]
    /// beforehand and still haven't dropped the returned guard), this function waits for the
    /// concurrent access to complete before dropping the wrapped object.
    pub fn revoke(&self) {
        if self
            .is_available
            .compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed)
            .is_ok()
        {
            // SAFETY: Just an FFI call, there are no further requirements.
            unsafe { bindings::synchronize_rcu() };

            // SAFETY: We know `self.data` is valid because only one CPU can succeed the
            // `compare_exchange` above that takes `is_available` from `true` to `false`.
            unsafe { drop_in_place(self.data.assume_init_ref().get()) };
        }
    }
}

#[pinned_drop]
impl<T> PinnedDrop for Revocable<T> {
    fn drop(self: Pin<&mut Self>) {
        // Drop only if the data hasn't been revoked yet (in which case it has already been
        // dropped).
        // SAFETY: We are not moving out of `p`, only dropping in place
        let p = unsafe { self.get_unchecked_mut() };
        if *p.is_available.get_mut() {
            // SAFETY: We know `self.data` is valid because no other CPU has changed
            // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
            // holds the only reference (mutable) to `self` now.
            unsafe { drop_in_place(p.data.assume_init_ref().get()) };
        }
    }
}

/// A guard that allows access to a revocable object and keeps it alive.
///
/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
/// holding the RCU read-side lock.
///
/// # Invariants
///
/// The RCU read-side lock is held while the guard is alive.
pub struct RevocableGuard<'a, T> {
    data_ref: *const T,
    _rcu_guard: rcu::Guard,
    _p: PhantomData<&'a ()>,
}

impl<T> RevocableGuard<'_, T> {
    fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
        Self {
            data_ref,
            _rcu_guard: rcu_guard,
            _p: PhantomData,
        }
    }
}

impl<T> Deref for RevocableGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
        // guaranteed to remain valid.
        unsafe { &*self.data_ref }
    }
}

/// An object that can become inaccessible at runtime.
///
/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
/// [`AsyncRevocableGuard`] are dropped), the wrapped object is also dropped.
///
/// Unlike [`Revocable`], [`AsyncRevocable`] does not wait for concurrent users of the wrapped
/// object to finish before [`AsyncRevocable::revoke`] completes -- thus the async qualifier. This
/// has the advantage of not requiring RCU locks or waits of any kind.
///
/// # Examples
///
/// ```
/// # use kernel::revocable::AsyncRevocable;
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// fn add_two(v: &AsyncRevocable<Example>) -> Option<u32> {
///     let guard = v.try_access()?;
///     Some(guard.a + guard.b)
/// }
///
/// let v = AsyncRevocable::new(Example { a: 10, b: 20 });
/// assert_eq!(add_two(&v), Some(30));
/// v.revoke();
/// assert_eq!(add_two(&v), None);
/// ```
///
/// Example where revocation happens while there is a user:
///
/// ```
/// # use kernel::revocable::AsyncRevocable;
/// use core::sync::atomic::{AtomicBool, Ordering};
///
/// struct Example {
///     a: u32,
///     b: u32,
/// }
///
/// static DROPPED: AtomicBool = AtomicBool::new(false);
///
/// impl Drop for Example {
///     fn drop(&mut self) {
///         DROPPED.store(true, Ordering::Relaxed);
///     }
/// }
///
/// fn add_two(v: &AsyncRevocable<Example>) -> Option<u32> {
///     let guard = v.try_access()?;
///     Some(guard.a + guard.b)
/// }
///
/// let v = AsyncRevocable::new(Example { a: 10, b: 20 });
/// assert_eq!(add_two(&v), Some(30));
///
/// let guard = v.try_access().unwrap();
/// assert!(!v.is_revoked());
/// assert!(!DROPPED.load(Ordering::Relaxed));
/// v.revoke();
/// assert!(!DROPPED.load(Ordering::Relaxed));
/// assert!(v.is_revoked());
/// assert!(v.try_access().is_none());
/// assert_eq!(guard.a + guard.b, 30);
/// drop(guard);
/// assert!(DROPPED.load(Ordering::Relaxed));
/// ```
pub struct AsyncRevocable<T> {
    usage_count: AtomicU32,
    data: MaybeUninit<UnsafeCell<T>>,
}

// SAFETY: `AsyncRevocable` is `Send` if the wrapped object is also `Send`. This is because while
// the functionality exposed by `AsyncRevocable` can be accessed from any thread/CPU, it is
// possible that this isn't supported by the wrapped object.
unsafe impl<T: Send> Send for AsyncRevocable<T> {}

// SAFETY: `AsyncRevocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require
// `Send` from the wrapped object as well because  of `AsyncRevocable::revoke`, which can trigger
// the `Drop` implementation of the wrapped object from an arbitrary thread.
unsafe impl<T: Sync + Send> Sync for AsyncRevocable<T> {}

const REVOKED: u32 = 0x80000000;
const COUNT_MASK: u32 = !REVOKED;
const SATURATED_COUNT: u32 = REVOKED - 1;

impl<T> AsyncRevocable<T> {
    /// Creates a new asynchronously revocable instance of the given data.
    pub fn new(data: T) -> Self {
        Self {
            usage_count: AtomicU32::new(0),
            data: MaybeUninit::new(UnsafeCell::new(data)),
        }
    }

    /// Tries to access the \[revocable\] wrapped object.
    ///
    /// Returns `None` if the object has been revoked and is therefore no longer accessible.
    ///
    /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
    /// remain accessible while the guard is alive.
    pub fn try_access(&self) -> Option<AsyncRevocableGuard<'_, T>> {
        loop {
            let count = self.usage_count.load(Ordering::Relaxed);

            // Fail attempt to access if the object is already revoked.
            if count & REVOKED != 0 {
                return None;
            }

            // No need to increment if the count is saturated.
            if count == SATURATED_COUNT
                || self
                    .usage_count
                    .compare_exchange(count, count + 1, Ordering::Relaxed, Ordering::Relaxed)
                    .is_ok()
            {
                return Some(AsyncRevocableGuard { revocable: self });
            }
        }
    }

    /// Revokes access to the protected object.
    ///
    /// Returns `true` if access has been revoked, or `false` when the object has already been
    /// revoked by a previous call to [`AsyncRevocable::revoke`].
    ///
    /// This call is non-blocking, that is, no new users of the revocable object will be allowed,
    /// but potential current users are able to continue to use it and the thread won't wait for
    /// them to finish. In such cases, the object will be dropped when the last user completes.
    pub fn revoke(&self) -> bool {
        // Set the `REVOKED` bit.
        //
        // The acquire barrier matches up with the release when decrementing the usage count.
        let prev = self.usage_count.fetch_or(REVOKED, Ordering::Acquire);
        if prev & REVOKED != 0 {
            // Another thread already revoked this object.
            return false;
        }

        if prev == 0 {
            // SAFETY: This thread just revoked the object and the usage count is zero, so the
            // object is valid and there will be no future users.
            unsafe { drop_in_place(UnsafeCell::raw_get(self.data.as_ptr())) };
        }

        true
    }

    /// Returns whether access to the object has been revoked.
    pub fn is_revoked(&self) -> bool {
        self.usage_count.load(Ordering::Relaxed) & REVOKED != 0
    }
}

impl<T> Drop for AsyncRevocable<T> {
    fn drop(&mut self) {
        let count = *self.usage_count.get_mut();
        if count != REVOKED {
            // The object hasn't been dropped yet, so we do it now.

            // This matches with the release when decrementing the usage count.
            fence(Ordering::Acquire);

            // SAFETY: Since `count` is does not indicate a count of 0 and the REVOKED bit set, the
            // object is still valid.
            unsafe { drop_in_place(UnsafeCell::raw_get(self.data.as_ptr())) };
        }
    }
}

/// A guard that allows access to a revocable object and keeps it alive.
///
/// # Invariants
///
/// The owner owns an increment on the usage count (which may have saturated it), which keeps the
/// revocable object alive.
pub struct AsyncRevocableGuard<'a, T> {
    revocable: &'a AsyncRevocable<T>,
}

impl<T> Deref for AsyncRevocableGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: The type invariants guarantee that the caller owns an increment.
        unsafe { &*self.revocable.data.assume_init_ref().get() }
    }
}

impl<T> Drop for AsyncRevocableGuard<'_, T> {
    fn drop(&mut self) {
        loop {
            let count = self.revocable.usage_count.load(Ordering::Relaxed);
            let actual_count = count & COUNT_MASK;
            if actual_count == SATURATED_COUNT {
                // The count is saturated, so we won't decrement (nor do we drop the object).
                return;
            }

            if actual_count == 0 {
                // Trying to underflow the count.
                panic!("actual_count is zero");
            }

            // On success, we use release ordering, which matches with the acquire in one of the
            // places where we drop the object, namely: below, in `AsyncRevocable::revoke`, or in
            // `AsyncRevocable::drop`.
            if self
                .revocable
                .usage_count
                .compare_exchange(count, count - 1, Ordering::Release, Ordering::Relaxed)
                .is_ok()
            {
                if count == 1 | REVOKED {
                    // `count`  is now zero and it is revoked, so free it now.

                    // This matches with the release above (which may have happened in other
                    // threads concurrently).
                    fence(Ordering::Acquire);

                    // SAFETY: Since `count` was 1, the object is still alive.
                    unsafe { drop_in_place(UnsafeCell::raw_get(self.revocable.data.as_ptr())) };
                }

                return;
            }
        }
    }
}