1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
// SPDX-License-Identifier: GPL-2.0
//! Memory-mapped IO.
//!
//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
use crate::error::{code::EINVAL, Result};
use crate::{bindings, build_assert};
/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
///
/// The creator (usually a subsystem such as PCI) is responsible for creating the
/// mapping, performing an additional region request etc.
///
/// # Invariant
///
/// `addr` is the start and `maxsize` the length of valid I/O remapped memory region.
///
/// # Examples
///
/// ```
/// # use kernel::{bindings, io::Io};
/// # use core::ops::Deref;
///
/// // See also [`pci::Bar`] for a real example.
/// struct IoMem<const SIZE: usize>(Io<SIZE>);
///
/// impl<const SIZE: usize> IoMem<SIZE> {
/// fn new(paddr: usize) -> Result<Self>{
///
/// // SAFETY: assert safety for this example
/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE.try_into().unwrap()) };
/// if addr.is_null() {
/// return Err(ENOMEM);
/// }
///
/// // SAFETY: `addr` is guaranteed to be the start of a valid I/O mapped memory region of
/// // size `SIZE`.
/// let io = unsafe { Io::new(addr as _, SIZE)? };
///
/// Ok(IoMem(io))
/// }
/// }
///
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
/// fn drop(&mut self) {
/// // SAFETY: Safe as by the invariant of `Io`.
/// unsafe { bindings::iounmap(self.0.base_addr() as _); };
/// }
/// }
///
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
/// type Target = Io<SIZE>;
///
/// fn deref(&self) -> &Self::Target {
/// &self.0
/// }
/// }
///
/// let iomem = IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD).unwrap();
/// iomem.writel(0x42, 0x0);
/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
/// assert!(iomem.try_writel(0x42, 0x4).is_err());
/// ```
pub struct Io<const SIZE: usize = 0> {
addr: usize,
maxsize: usize,
}
macro_rules! define_read {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Read IO data from a given offset known at compile time.
///
/// Bound checks are performed on compile time, hence if the offset is not known at compile
/// time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, offset: usize) -> $type_name {
let addr = self.io_addr_assert::<$type_name>(offset);
unsafe { bindings::$name(addr as _) }
}
/// Read IO data from a given offset.
///
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
/// out of bounds.
$(#[$attr])*
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
let addr = self.io_addr::<$type_name>(offset)?;
Ok(unsafe { bindings::$name(addr as _) })
}
};
}
macro_rules! define_write {
($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
/// Write IO data from a given offset known at compile time.
///
/// Bound checks are performed on compile time, hence if the offset is not known at compile
/// time, the build will fail.
$(#[$attr])*
#[inline]
pub fn $name(&self, value: $type_name, offset: usize) {
let addr = self.io_addr_assert::<$type_name>(offset);
unsafe { bindings::$name(value, addr as _, ) }
}
/// Write IO data from a given offset.
///
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
/// out of bounds.
$(#[$attr])*
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
let addr = self.io_addr::<$type_name>(offset)?;
unsafe { bindings::$name(value, addr as _) }
Ok(())
}
};
}
impl<const SIZE: usize> Io<SIZE> {
///
///
/// # Safety
///
/// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
/// `maxsize`.
pub unsafe fn new(addr: usize, maxsize: usize) -> Result<Self> {
if maxsize < SIZE {
return Err(EINVAL);
}
Ok(Self { addr, maxsize })
}
/// Returns the base address of this mapping.
#[inline]
pub fn base_addr(&self) -> usize {
self.addr
}
/// Returns the size of this mapping.
#[inline]
pub fn maxsize(&self) -> usize {
self.maxsize
}
#[inline]
const fn offset_valid<U>(offset: usize, size: usize) -> bool {
let type_size = core::mem::size_of::<U>();
if let Some(end) = offset.checked_add(type_size) {
end <= size && offset % type_size == 0
} else {
false
}
}
#[inline]
fn io_addr<U>(&self, offset: usize) -> Result<usize> {
if !Self::offset_valid::<U>(offset, self.maxsize()) {
return Err(EINVAL);
}
// Probably no need to check, since the safety requirements of `Self::new` guarantee that
// this can't overflow.
self.base_addr().checked_add(offset).ok_or(EINVAL)
}
#[inline]
fn io_addr_assert<U>(&self, offset: usize) -> usize {
build_assert!(Self::offset_valid::<U>(offset, SIZE));
self.base_addr() + offset
}
define_read!(readb, try_readb, u8);
define_read!(readw, try_readw, u16);
define_read!(readl, try_readl, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq,
try_readq,
u64
);
define_read!(readb_relaxed, try_readb_relaxed, u8);
define_read!(readw_relaxed, try_readw_relaxed, u16);
define_read!(readl_relaxed, try_readl_relaxed, u32);
define_read!(
#[cfg(CONFIG_64BIT)]
readq_relaxed,
try_readq_relaxed,
u64
);
define_write!(writeb, try_writeb, u8);
define_write!(writew, try_writew, u16);
define_write!(writel, try_writel, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq,
try_writeq,
u64
);
define_write!(writeb_relaxed, try_writeb_relaxed, u8);
define_write!(writew_relaxed, try_writew_relaxed, u16);
define_write!(writel_relaxed, try_writel_relaxed, u32);
define_write!(
#[cfg(CONFIG_64BIT)]
writeq_relaxed,
try_writeq_relaxed,
u64
);
}
|