summaryrefslogtreecommitdiff
path: root/rust/kernel/alloc/kvec.rs
blob: db58e764db4b13b4dc1dce74deca01bb0d4f69d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// SPDX-License-Identifier: GPL-2.0

//! Implementation of [`Vec`].

use super::{AllocError, Allocator, Flags};
use core::{
    fmt,
    marker::PhantomData,
    mem::{ManuallyDrop, MaybeUninit},
    ops::Deref,
    ops::DerefMut,
    ops::Index,
    ops::IndexMut,
    ptr,
    ptr::NonNull,
    slice,
    slice::SliceIndex,
};

/// Create a [`Vec`] containing the arguments.
///
/// # Examples
///
/// ```
/// let mut v = kernel::kvec![];
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(v, [1]);
///
/// let mut v = kernel::kvec![1; 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 1, 1, 4]);
///
/// let mut v = kernel::kvec![1, 2, 3]?;
/// v.push(4, GFP_KERNEL)?;
/// assert_eq!(v, [1, 2, 3, 4]);
///
/// # Ok::<(), Error>(())
/// ```
#[macro_export]
macro_rules! kvec {
    () => (
        {
            $crate::alloc::KVec::new()
        }
    );
    ($elem:expr; $n:expr) => (
        {
            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
        }
    );
    ($($x:expr),+ $(,)?) => (
        {
            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
                Err(e) => Err(e),
            }
        }
    );
}

/// The kernel's [`Vec`] type.
///
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`.
///
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
///
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
///
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
/// capacity of the vector (the number of elements that currently fit into the vector), it's length
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
/// to allocate (and free) the backing buffer.
///
/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
/// and manually modified.
///
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
/// are added to the vector.
///
/// # Invariants
///
/// The [`Vec`] backing buffer's pointer is always properly aligned and either points to memory
/// allocated with `A` or, for zero-sized types, is a dangling pointer.
///
/// The length of the vector always represents the exact number of elements stored in the vector.
///
/// The capacity of the vector always represents the absolute number of elements that can be stored
/// within the vector without re-allocation. However, it is legal for the backing buffer to be
/// larger than `size_of<T>` times the capacity.
///
/// The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer was
/// allocated with (and must be freed with).
pub struct Vec<T, A: Allocator> {
    ptr: NonNull<T>,
    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
    ///
    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
    /// elements we can still store without reallocating.
    ///
    /// # Invariants
    ///
    /// `cap` must be in the `0..=isize::MAX` range.
    cap: usize,
    len: usize,
    _p: PhantomData<A>,
}

/// Type alias for `Vec` with a `Kmalloc` allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;

/// Type alias for `Vec` with a `Vmalloc` allocator.
///
/// # Examples
///
/// ```
/// let mut v = VVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;

/// Type alias for `Vec` with a `KVmalloc` allocator.
///
/// # Examples
///
/// ```
/// let mut v = KVVec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// # Ok::<(), Error>(())
/// ```
pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;

// SAFETY: `Vec` is `Send` if `T` is `Send` because the data referenced by `self.ptr` is unaliased.
unsafe impl<T, A> Send for Vec<T, A>
where
    T: Send,
    A: Allocator,
{
}

// SAFETY: `Vec` is `Sync` if `T` is `Sync` because the data referenced by `self.ptr` is unaliased.
unsafe impl<T, A> Sync for Vec<T, A>
where
    T: Send,
    A: Allocator,
{
}

impl<T, A> Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    fn is_zst() -> bool {
        core::mem::size_of::<T>() == 0
    }

    /// Returns the number of elements that can be stored within the vector without allocating
    /// additional memory.
    pub fn capacity(&self) -> usize {
        if Self::is_zst() {
            usize::MAX
        } else {
            self.cap
        }
    }

    /// Returns the number of elements stored within the vector.
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Forcefully sets `self.len` to `new_len`.
    ///
    /// # Safety
    ///
    /// - `new_len` must be less than or equal to [`Self::capacity`].
    /// - If `new_len` is greater than `self.len`, all elements within the interval
    ///   [`self.len`,`new_len`] must be initialized.
    #[inline]
    pub unsafe fn set_len(&mut self, new_len: usize) {
        self.len = new_len;
    }

    /// Returns a slice of the entire vector.
    ///
    /// Equivalent to `&s[..]`.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self
    }

    /// Returns a mutable slice of the entire vector.
    ///
    /// Equivalent to `&mut s[..]`.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self
    }

    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
    /// dangling raw pointer.
    #[inline]
    pub fn as_mut_ptr(&self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
    /// pointer.
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        self.as_mut_ptr()
    }

    /// Returns `true` if the vector contains no elements, `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// assert!(v.is_empty());
    ///
    /// v.push(1, GFP_KERNEL);
    /// assert!(!v.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Creates a new, empty Vec<T, A>.
    ///
    /// This method does not allocate by itself.
    #[inline]
    pub const fn new() -> Self {
        Self {
            ptr: NonNull::dangling(),
            cap: 0,
            len: 0,
            _p: PhantomData::<A>,
        }
    }

    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
        // and valid, but uninitialized.
        unsafe {
            slice::from_raw_parts_mut(
                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
                self.capacity() - self.len,
            )
        }
    }

    /// Appends an element to the back of the [`Vec`] instance.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1]);
    ///
    /// v.push(2, GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 2]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
        Vec::reserve(self, 1, flags)?;
        let s = self.spare_capacity_mut();
        s[0].write(v);

        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
        // by 1. We also know that the new length is <= capacity because of the previous call to
        // `reserve` above.
        unsafe { self.set_len(self.len() + 1) };
        Ok(())
    }

    /// Creates a new [`Vec`] instance with at least the given capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
    ///
    /// assert!(v.capacity() >= 20);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
        let mut v = Vec::new();

        Self::reserve(&mut v, capacity, flags)?;

        Ok(v)
    }

    /// Pushes clones of the elements of slice into the [`Vec`] instance.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    ///
    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 20, 30, 40]);
    ///
    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
    /// # Ok::<(), Error>(())
    /// ```
    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
    where
        T: Clone,
    {
        self.reserve(other.len(), flags)?;
        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
            slot.write(item.clone());
        }

        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
        // the length by the same amount. We also know that the new length is <= capacity because
        // of the previous call to `reserve` above.
        unsafe { self.set_len(self.len() + other.len()) };
        Ok(())
    }

    /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`.
    ///
    /// # Safety
    ///
    /// If `T` is a ZST:
    ///
    /// - `ptr` must be a dangling pointer.
    /// - `capacity` must be zero.
    /// - `length` must be smaller than or equal to `usize::MAX`.
    ///
    /// Otherwise:
    ///
    /// - `ptr` must have been allocated with the allocator `A`.
    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
    /// - `ptr` must point to memory with a size of at least `size_of::<T>` times the `capacity`
    ///    bytes.
    /// - The allocated size in bytes must not be larger than `isize::MAX`.
    /// - `length` must be less than or equal to `capacity`.
    /// - The first `length` elements must be initialized values of type `T`.
    ///
    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
    /// `cap` and `len`.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = kernel::kvec![1, 2, 3]?;
    /// v.reserve(1, GFP_KERNEL)?;
    ///
    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
    ///
    /// // SAFETY: We've just reserved memory for another element.
    /// unsafe { ptr.add(len).write(4) };
    /// len += 1;
    ///
    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
    /// // from the exact same raw parts.
    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
    ///
    /// assert_eq!(v, [1, 2, 3, 4]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
        let cap = if Self::is_zst() { 0 } else { capacity };

        Self {
            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
            // memory allocation, allocated with `A`.
            ptr: unsafe { NonNull::new_unchecked(ptr) },
            cap,
            len: length,
            _p: PhantomData::<A>,
        }
    }

    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
    ///
    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
    /// elements and free the allocation, if any.
    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
        let me = ManuallyDrop::new(self);
        let len = me.len();
        let capacity = me.capacity();
        let ptr = me.as_mut_ptr();
        (ptr, len, capacity)
    }

    /// Ensures that the capacity exceeds the length by at least `additional`
    /// elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = KVec::new();
    /// v.push(1, GFP_KERNEL)?;
    ///
    /// v.reserve(10, GFP_KERNEL)?;
    /// let cap = v.capacity();
    /// assert!(cap >= 10);
    ///
    /// v.reserve(10, GFP_KERNEL)?;
    /// let new_cap = v.capacity();
    /// assert_eq!(new_cap, cap);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
        let len = self.len();
        let cap = self.capacity();

        if cap - len >= additional {
            return Ok(());
        }

        if Self::is_zst() {
            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
            return Err(AllocError);
        }

        // We know `cap` is <= `isize::MAX` because of it's type invariant. So the multiplication by
        // two won't overflow.
        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;

        // We need to make sure that `ptr` is either NULL or comes from a previous call to
        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
        // capacity to be zero if no memory has been allocated yet.
        let ptr = if cap == 0 {
            None
        } else {
            Some(self.ptr.cast())
        };

        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
        // `A::realloc`. We also verified that the type is not a ZST.
        let ptr = unsafe { A::realloc(ptr, layout, flags)? };

        self.ptr = ptr.cast();

        // INVARIANT: `Layout::array` fails if the resulting byte size is greater than `isize::MAX`.
        self.cap = new_cap;

        Ok(())
    }
}

impl<T: Clone, A: Allocator> Vec<T, A> {
    /// Extend the vector by `n` clones of value.
    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
        self.reserve(n, flags)?;

        let spare = self.spare_capacity_mut();

        for item in spare.iter_mut().take(n - 1) {
            item.write(value.clone());
        }

        // We can write the last element directly without cloning needlessly.
        spare[n - 1].write(value);

        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
        // exceeding the capacity of this `Vec`.
        unsafe { self.set_len(self.len() + n) };

        Ok(())
    }

    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
        let mut v = Self::with_capacity(n, flags)?;

        v.extend_with(n, value, flags)?;

        Ok(v)
    }
}

impl<T, A> Drop for Vec<T, A>
where
    A: Allocator,
{
    fn drop(&mut self) {
        // SAFETY: We need to drop the vector's elements in place, before we free the backing
        // memory.
        unsafe {
            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
                self.as_mut_ptr(),
                self.len,
            ))
        };

        // If `cap == 0` we never allocated any memory in the first place.
        if self.cap != 0 {
            // SAFETY: `self.ptr` was previously allocated with `A`.
            unsafe { A::free(self.ptr.cast()) };
        }
    }
}

impl<T> Default for KVec<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T, A> Deref for Vec<T, A>
where
    A: Allocator,
{
    type Target = [T];

    #[inline]
    fn deref(&self) -> &[T] {
        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
        // initialized elements of type `T`.
        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
    }
}

impl<T, A> DerefMut for Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
        // initialized elements of type `T`.
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
    }
}

impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}

impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
where
    A: Allocator,
{
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(&**self, index)
    }
}

impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
where
    A: Allocator,
{
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        IndexMut::index_mut(&mut **self, index)
    }
}

macro_rules! __impl_slice_eq {
    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
        where
            T: PartialEq<U>,
            $($ty: $bound)?
        {
            #[inline]
            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
        }
    }
}

__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }

impl<'a, T, A> IntoIterator for &'a Vec<T, A>
where
    A: Allocator,
{
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
where
    A: Allocator,
{
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// An `Iterator` implementation for `Vec<T,A>` that moves elements out of a vector.
///
/// This structure is created by the `Vec::into_iter` method on [`Vec`] (provided by the
/// [`IntoIterator`] trait).
///
/// # Examples
///
/// ```
/// let v = kernel::kvec![0, 1, 2]?;
/// let iter = v.into_iter();
///
/// # Ok::<(), Error>(())
/// ```
pub struct IntoIter<T, A: Allocator> {
    ptr: *mut T,
    buf: NonNull<T>,
    len: usize,
    cap: usize,
    _p: PhantomData<A>,
}

impl<T, A> IntoIter<T, A>
where
    A: Allocator,
{
    fn as_raw_mut_slice(&mut self) -> *mut [T] {
        ptr::slice_from_raw_parts_mut(self.ptr, self.len)
    }

    fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
        let me = ManuallyDrop::new(self);
        let ptr = me.ptr;
        let buf = me.buf;
        let len = me.len;
        let cap = me.cap;
        (ptr, buf, len, cap)
    }

    /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
    ///
    /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
    /// in the kernel, namely:
    ///
    /// - Rust's specialization feature is unstable. This prevents us to optimze for the special
    ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
    /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
    ///   doesn't require this type to be `'static`.
    /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
    ///   we can't properly handle allocation failures.
    /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
    ///   flags.
    ///
    /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
    /// `Vec` again.
    ///
    /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
    /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
    ///
    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2, 3]?;
    /// let mut it = v.into_iter();
    ///
    /// assert_eq!(it.next(), Some(1));
    ///
    /// let v = it.collect(GFP_KERNEL);
    /// assert_eq!(v, [2, 3]);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    pub fn collect(self, flags: Flags) -> Vec<T, A> {
        let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
        let has_advanced = ptr != buf.as_ptr();

        if has_advanced {
            // SAFETY: Copy the contents we have advanced to at the beginning of the buffer.
            // `ptr` is guaranteed to be between `buf` and `buf.add(cap)` and `ptr.add(len)` is
            // guaranteed to be smaller than `buf.add(cap)`.
            unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
            ptr = buf.as_ptr();
        }

        // This can never fail, `len` is guaranteed to be smaller than `cap`.
        let layout = core::alloc::Layout::array::<T>(len).unwrap();

        // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
        // smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
        // it as it is.
        ptr = match unsafe { A::realloc(Some(buf.cast()), layout, flags) } {
            // If we fail to shrink, which likely can't even happen, continue with the existing
            // buffer.
            Err(_) => ptr,
            Ok(ptr) => {
                cap = len;
                ptr.as_ptr().cast()
            }
        };

        // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
        // the beginning of the buffer and `len` has been adjusted accordingly. `ptr` is guaranteed
        // to point to the start of the backing buffer. `cap` is either the original capacity or,
        // after shrinking the buffer, equal to `len`. `alloc` is guaranteed to be unchanged since
        // `into_iter` has been called on the original `Vec`.
        unsafe { Vec::from_raw_parts(ptr, len, cap) }
    }
}

impl<T, A> Iterator for IntoIter<T, A>
where
    A: Allocator,
{
    type Item = T;

    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2, 3]?;
    /// let mut it = v.into_iter();
    ///
    /// assert_eq!(it.next(), Some(1));
    /// assert_eq!(it.next(), Some(2));
    /// assert_eq!(it.next(), Some(3));
    /// assert_eq!(it.next(), None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    fn next(&mut self) -> Option<T> {
        if self.len == 0 {
            return None;
        }

        let ptr = self.ptr;
        if !Vec::<T, A>::is_zst() {
            // SAFETY: We can't overflow; `end` is guaranteed to mark the end of the buffer.
            unsafe { self.ptr = self.ptr.add(1) };
        } else {
            // For ZST `ptr` has to stay where it is to remain aligned, so we just reduce `self.len`
            // by 1.
        }
        self.len -= 1;

        // SAFETY: `ptr` is guaranteed to point at a valid element within the buffer.
        Some(unsafe { ptr.read() })
    }

    /// # Examples
    ///
    /// ```
    /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
    /// let mut iter = v.into_iter();
    /// let size = iter.size_hint().0;
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 1);
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 2);
    ///
    /// iter.next();
    /// assert_eq!(iter.size_hint().0, size - 3);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }
}

impl<T, A> Drop for IntoIter<T, A>
where
    A: Allocator,
{
    fn drop(&mut self) {
        // SAFETY: Drop the remaining vector's elements in place, before we free the backing
        // memory.
        unsafe { ptr::drop_in_place(self.as_raw_mut_slice()) };

        // If `cap == 0` we never allocated any memory in the first place.
        if self.cap != 0 {
            // SAFETY: `self.buf` was previously allocated with `A`.
            unsafe { A::free(self.buf.cast()) };
        }
    }
}

impl<T, A> IntoIterator for Vec<T, A>
where
    A: Allocator,
{
    type Item = T;
    type IntoIter = IntoIter<T, A>;

    /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
    /// vector (from start to end).
    ///
    /// # Examples
    ///
    /// ```
    /// let v = kernel::kvec![1, 2]?;
    /// let mut v_iter = v.into_iter();
    ///
    /// let first_element: Option<u32> = v_iter.next();
    ///
    /// assert_eq!(first_element, Some(1));
    /// assert_eq!(v_iter.next(), Some(2));
    /// assert_eq!(v_iter.next(), None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    ///
    /// ```
    /// let v = kernel::kvec![];
    /// let mut v_iter = v.into_iter();
    ///
    /// let first_element: Option<u32> = v_iter.next();
    ///
    /// assert_eq!(first_element, None);
    ///
    /// # Ok::<(), Error>(())
    /// ```
    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        let (ptr, len, cap) = self.into_raw_parts();

        IntoIter {
            ptr,
            // SAFETY: `ptr` is either a dangling pointer or a pointer to a valid memory
            // allocation, allocated with `A`.
            buf: unsafe { NonNull::new_unchecked(ptr) },
            len,
            cap,
            _p: PhantomData::<A>,
        }
    }
}