summaryrefslogtreecommitdiff
path: root/drivers/net/phy/sfp-bus.c
blob: daac293e8edece7e594ca35582ff2483a817b6a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/export.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/phylink.h>
#include <linux/property.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>

#include "sfp.h"

/**
 * struct sfp_bus - internal representation of a sfp bus
 */
struct sfp_bus {
	/* private: */
	struct kref kref;
	struct list_head node;
	struct fwnode_handle *fwnode;

	const struct sfp_socket_ops *socket_ops;
	struct device *sfp_dev;
	struct sfp *sfp;
	const struct sfp_quirk *sfp_quirk;

	const struct sfp_upstream_ops *upstream_ops;
	void *upstream;
	struct phy_device *phydev;

	bool registered;
	bool started;
};

/**
 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @id: a pointer to the module's &struct sfp_eeprom_id
 * @support: optional pointer to an array of unsigned long for the
 *   ethtool support mask
 *
 * Parse the EEPROM identification given in @id, and return one of
 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
 * the connector type.
 *
 * If the port type is not known, returns %PORT_OTHER.
 */
int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
		   unsigned long *support)
{
	int port;

	/* port is the physical connector, set this from the connector field. */
	switch (id->base.connector) {
	case SFF8024_CONNECTOR_SC:
	case SFF8024_CONNECTOR_FIBERJACK:
	case SFF8024_CONNECTOR_LC:
	case SFF8024_CONNECTOR_MT_RJ:
	case SFF8024_CONNECTOR_MU:
	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
	case SFF8024_CONNECTOR_MPO_1X12:
	case SFF8024_CONNECTOR_MPO_2X16:
		port = PORT_FIBRE;
		break;

	case SFF8024_CONNECTOR_RJ45:
		port = PORT_TP;
		break;

	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
		port = PORT_DA;
		break;

	case SFF8024_CONNECTOR_UNSPEC:
		if (id->base.e1000_base_t) {
			port = PORT_TP;
			break;
		}
		fallthrough;
	case SFF8024_CONNECTOR_SG: /* guess */
	case SFF8024_CONNECTOR_HSSDC_II:
	case SFF8024_CONNECTOR_NOSEPARATE:
	case SFF8024_CONNECTOR_MXC_2X16:
		port = PORT_OTHER;
		break;
	default:
		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
			 id->base.connector);
		port = PORT_OTHER;
		break;
	}

	if (support) {
		switch (port) {
		case PORT_FIBRE:
			phylink_set(support, FIBRE);
			break;

		case PORT_TP:
			phylink_set(support, TP);
			break;
		}
	}

	return port;
}
EXPORT_SYMBOL_GPL(sfp_parse_port);

/**
 * sfp_may_have_phy() - indicate whether the module may have a PHY
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @id: a pointer to the module's &struct sfp_eeprom_id
 *
 * Parse the EEPROM identification given in @id, and return whether
 * this module may have a PHY.
 */
bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
{
	if (id->base.e1000_base_t)
		return true;

	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
		switch (id->base.extended_cc) {
		case SFF8024_ECC_10GBASE_T_SFI:
		case SFF8024_ECC_10GBASE_T_SR:
		case SFF8024_ECC_5GBASE_T:
		case SFF8024_ECC_2_5GBASE_T:
			return true;
		}
	}

	return false;
}
EXPORT_SYMBOL_GPL(sfp_may_have_phy);

/**
 * sfp_parse_support() - Parse the eeprom id for supported link modes
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @id: a pointer to the module's &struct sfp_eeprom_id
 * @support: pointer to an array of unsigned long for the ethtool support mask
 * @interfaces: pointer to an array of unsigned long for phy interface modes
 *		mask
 *
 * Parse the EEPROM identification information and derive the supported
 * ethtool link modes for the module.
 */
void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
		       unsigned long *support, unsigned long *interfaces)
{
	unsigned int br_min, br_nom, br_max;
	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };

	/* Decode the bitrate information to MBd */
	br_min = br_nom = br_max = 0;
	if (id->base.br_nominal) {
		if (id->base.br_nominal != 255) {
			br_nom = id->base.br_nominal * 100;
			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
		} else if (id->ext.br_max) {
			br_nom = 250 * id->ext.br_max;
			br_max = br_nom + br_nom * id->ext.br_min / 100;
			br_min = br_nom - br_nom * id->ext.br_min / 100;
		}

		/* When using passive cables, in case neither BR,min nor BR,max
		 * are specified, set br_min to 0 as the nominal value is then
		 * used as the maximum.
		 */
		if (br_min == br_max && id->base.sfp_ct_passive)
			br_min = 0;
	}

	/* Set ethtool support from the compliance fields. */
	if (id->base.e10g_base_sr) {
		phylink_set(modes, 10000baseSR_Full);
		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
	}
	if (id->base.e10g_base_lr) {
		phylink_set(modes, 10000baseLR_Full);
		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
	}
	if (id->base.e10g_base_lrm) {
		phylink_set(modes, 10000baseLRM_Full);
		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
	}
	if (id->base.e10g_base_er) {
		phylink_set(modes, 10000baseER_Full);
		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
	}
	if (id->base.e1000_base_sx ||
	    id->base.e1000_base_lx ||
	    id->base.e1000_base_cx) {
		phylink_set(modes, 1000baseX_Full);
		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
	}
	if (id->base.e1000_base_t) {
		phylink_set(modes, 1000baseT_Half);
		phylink_set(modes, 1000baseT_Full);
		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
		__set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
	}

	/* 1000Base-PX or 1000Base-BX10 */
	if ((id->base.e_base_px || id->base.e_base_bx10) &&
	    br_min <= 1300 && br_max >= 1200) {
		phylink_set(modes, 1000baseX_Full);
		__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
	}

	/* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
	if (id->base.e100_base_fx || id->base.e100_base_lx) {
		phylink_set(modes, 100baseFX_Full);
		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
	}
	if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
		phylink_set(modes, 100baseFX_Full);
		__set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
	}

	/* For active or passive cables, select the link modes
	 * based on the bit rates and the cable compliance bytes.
	 */
	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
		/* This may look odd, but some manufacturers use 12000MBd */
		if (br_min <= 12000 && br_max >= 10300) {
			phylink_set(modes, 10000baseCR_Full);
			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
		}
		if (br_min <= 3200 && br_max >= 3100) {
			phylink_set(modes, 2500baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
		}
		if (br_min <= 1300 && br_max >= 1200) {
			phylink_set(modes, 1000baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
		}
	}
	if (id->base.sfp_ct_passive) {
		if (id->base.passive.sff8431_app_e) {
			phylink_set(modes, 10000baseCR_Full);
			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
		}
	}
	if (id->base.sfp_ct_active) {
		if (id->base.active.sff8431_app_e ||
		    id->base.active.sff8431_lim) {
			phylink_set(modes, 10000baseCR_Full);
			__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
		}
	}

	switch (id->base.extended_cc) {
	case SFF8024_ECC_UNSPEC:
		break;
	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
		phylink_set(modes, 100000baseSR4_Full);
		phylink_set(modes, 25000baseSR_Full);
		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
		break;
	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
		phylink_set(modes, 100000baseLR4_ER4_Full);
		break;
	case SFF8024_ECC_100GBASE_CR4:
		phylink_set(modes, 100000baseCR4_Full);
		fallthrough;
	case SFF8024_ECC_25GBASE_CR_S:
	case SFF8024_ECC_25GBASE_CR_N:
		phylink_set(modes, 25000baseCR_Full);
		__set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
		break;
	case SFF8024_ECC_10GBASE_T_SFI:
	case SFF8024_ECC_10GBASE_T_SR:
		phylink_set(modes, 10000baseT_Full);
		__set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
		break;
	case SFF8024_ECC_5GBASE_T:
		phylink_set(modes, 5000baseT_Full);
		__set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
		break;
	case SFF8024_ECC_2_5GBASE_T:
		phylink_set(modes, 2500baseT_Full);
		__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
		break;
	default:
		dev_warn(bus->sfp_dev,
			 "Unknown/unsupported extended compliance code: 0x%02x\n",
			 id->base.extended_cc);
		break;
	}

	/* For fibre channel SFP, derive possible BaseX modes */
	if (id->base.fc_speed_100 ||
	    id->base.fc_speed_200 ||
	    id->base.fc_speed_400) {
		if (id->base.br_nominal >= 31) {
			phylink_set(modes, 2500baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
		}
		if (id->base.br_nominal >= 12) {
			phylink_set(modes, 1000baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
		}
	}

	/* If we haven't discovered any modes that this module supports, try
	 * the bitrate to determine supported modes. Some BiDi modules (eg,
	 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
	 * wavelengths, so do not set any transceiver bits.
	 *
	 * Do the same for modules supporting 2500BASE-X. Note that some
	 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
	 * 2500BASE-X, so we allow some slack here.
	 */
	if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
		if (br_min <= 1300 && br_max >= 1200) {
			phylink_set(modes, 1000baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
		}
		if (br_min <= 3200 && br_max >= 2500) {
			phylink_set(modes, 2500baseX_Full);
			__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
		}
	}

	if (bus->sfp_quirk && bus->sfp_quirk->modes)
		bus->sfp_quirk->modes(id, modes, interfaces);

	linkmode_or(support, support, modes);

	phylink_set(support, Autoneg);
	phylink_set(support, Pause);
	phylink_set(support, Asym_Pause);
}
EXPORT_SYMBOL_GPL(sfp_parse_support);

/**
 * sfp_select_interface() - Select appropriate phy_interface_t mode
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @link_modes: ethtool link modes mask
 *
 * Derive the phy_interface_t mode for the SFP module from the link
 * modes mask.
 */
phy_interface_t sfp_select_interface(struct sfp_bus *bus,
				     unsigned long *link_modes)
{
	if (phylink_test(link_modes, 25000baseCR_Full) ||
	    phylink_test(link_modes, 25000baseKR_Full) ||
	    phylink_test(link_modes, 25000baseSR_Full))
		return PHY_INTERFACE_MODE_25GBASER;

	if (phylink_test(link_modes, 10000baseCR_Full) ||
	    phylink_test(link_modes, 10000baseSR_Full) ||
	    phylink_test(link_modes, 10000baseLR_Full) ||
	    phylink_test(link_modes, 10000baseLRM_Full) ||
	    phylink_test(link_modes, 10000baseER_Full) ||
	    phylink_test(link_modes, 10000baseT_Full))
		return PHY_INTERFACE_MODE_10GBASER;

	if (phylink_test(link_modes, 5000baseT_Full))
		return PHY_INTERFACE_MODE_5GBASER;

	if (phylink_test(link_modes, 2500baseX_Full))
		return PHY_INTERFACE_MODE_2500BASEX;

	if (phylink_test(link_modes, 1000baseT_Half) ||
	    phylink_test(link_modes, 1000baseT_Full))
		return PHY_INTERFACE_MODE_SGMII;

	if (phylink_test(link_modes, 1000baseX_Full))
		return PHY_INTERFACE_MODE_1000BASEX;

	if (phylink_test(link_modes, 100baseFX_Full))
		return PHY_INTERFACE_MODE_100BASEX;

	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");

	return PHY_INTERFACE_MODE_NA;
}
EXPORT_SYMBOL_GPL(sfp_select_interface);

static LIST_HEAD(sfp_buses);
static DEFINE_MUTEX(sfp_mutex);

static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
{
	return bus->registered ? bus->upstream_ops : NULL;
}

static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
{
	struct sfp_bus *sfp, *new, *found = NULL;

	new = kzalloc(sizeof(*new), GFP_KERNEL);

	mutex_lock(&sfp_mutex);

	list_for_each_entry(sfp, &sfp_buses, node) {
		if (sfp->fwnode == fwnode) {
			kref_get(&sfp->kref);
			found = sfp;
			break;
		}
	}

	if (!found && new) {
		kref_init(&new->kref);
		new->fwnode = fwnode;
		list_add(&new->node, &sfp_buses);
		found = new;
		new = NULL;
	}

	mutex_unlock(&sfp_mutex);

	kfree(new);

	return found;
}

static void sfp_bus_release(struct kref *kref)
{
	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);

	list_del(&bus->node);
	mutex_unlock(&sfp_mutex);
	kfree(bus);
}

/**
 * sfp_bus_put() - put a reference on the &struct sfp_bus
 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
 *
 * Put a reference on the &struct sfp_bus and free the underlying structure
 * if this was the last reference.
 */
void sfp_bus_put(struct sfp_bus *bus)
{
	if (bus)
		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
}
EXPORT_SYMBOL_GPL(sfp_bus_put);

static int sfp_register_bus(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = bus->upstream_ops;
	int ret;

	if (ops) {
		if (ops->link_down)
			ops->link_down(bus->upstream);
		if (ops->connect_phy && bus->phydev) {
			ret = ops->connect_phy(bus->upstream, bus->phydev);
			if (ret)
				return ret;
		}
	}
	bus->registered = true;
	bus->socket_ops->attach(bus->sfp);
	if (bus->started)
		bus->socket_ops->start(bus->sfp);
	bus->upstream_ops->attach(bus->upstream, bus);
	return 0;
}

static void sfp_unregister_bus(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = bus->upstream_ops;

	if (bus->registered) {
		bus->upstream_ops->detach(bus->upstream, bus);
		if (bus->started)
			bus->socket_ops->stop(bus->sfp);
		bus->socket_ops->detach(bus->sfp);
		if (bus->phydev && ops && ops->disconnect_phy)
			ops->disconnect_phy(bus->upstream);
	}
	bus->registered = false;
}

/**
 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @modinfo: a &struct ethtool_modinfo
 *
 * Fill in the type and eeprom_len parameters in @modinfo for a module on
 * the sfp bus specified by @bus.
 *
 * Returns 0 on success or a negative errno number.
 */
int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
{
	return bus->socket_ops->module_info(bus->sfp, modinfo);
}
EXPORT_SYMBOL_GPL(sfp_get_module_info);

/**
 * sfp_get_module_eeprom() - Read the SFP module EEPROM
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @ee: a &struct ethtool_eeprom
 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
 *
 * Read the EEPROM as specified by the supplied @ee. See the documentation
 * for &struct ethtool_eeprom for the region to be read.
 *
 * Returns 0 on success or a negative errno number.
 */
int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
			  u8 *data)
{
	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
}
EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);

/**
 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 * @page: a &struct ethtool_module_eeprom
 * @extack: extack for reporting problems
 *
 * Read an EEPROM page as specified by the supplied @page. See the
 * documentation for &struct ethtool_module_eeprom for the page to be read.
 *
 * Returns 0 on success or a negative errno number. More error
 * information might be provided via extack
 */
int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
				  const struct ethtool_module_eeprom *page,
				  struct netlink_ext_ack *extack)
{
	return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
}
EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);

/**
 * sfp_upstream_start() - Inform the SFP that the network device is up
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 *
 * Inform the SFP socket that the network device is now up, so that the
 * module can be enabled by allowing TX_DISABLE to be deasserted. This
 * should be called from the network device driver's &struct net_device_ops
 * ndo_open() method.
 */
void sfp_upstream_start(struct sfp_bus *bus)
{
	if (bus->registered)
		bus->socket_ops->start(bus->sfp);
	bus->started = true;
}
EXPORT_SYMBOL_GPL(sfp_upstream_start);

/**
 * sfp_upstream_stop() - Inform the SFP that the network device is down
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 *
 * Inform the SFP socket that the network device is now up, so that the
 * module can be disabled by asserting TX_DISABLE, disabling the laser
 * in optical modules. This should be called from the network device
 * driver's &struct net_device_ops ndo_stop() method.
 */
void sfp_upstream_stop(struct sfp_bus *bus)
{
	if (bus->registered)
		bus->socket_ops->stop(bus->sfp);
	bus->started = false;
}
EXPORT_SYMBOL_GPL(sfp_upstream_stop);

static void sfp_upstream_clear(struct sfp_bus *bus)
{
	bus->upstream_ops = NULL;
	bus->upstream = NULL;
}

/**
 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
 * @fwnode: firmware node for the parent device (MAC or PHY)
 *
 * Parse the parent device's firmware node for a SFP bus, and locate
 * the sfp_bus structure, incrementing its reference count.  This must
 * be put via sfp_bus_put() when done.
 *
 * Returns:
 *	- on success, a pointer to the sfp_bus structure,
 *	- %NULL if no SFP is specified,
 *	- on failure, an error pointer value:
 *
 *	- corresponding to the errors detailed for
 *	  fwnode_property_get_reference_args().
 *	- %-ENOMEM if we failed to allocate the bus.
 *	- an error from the upstream's connect_phy() method.
 */
struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
{
	struct fwnode_reference_args ref;
	struct sfp_bus *bus;
	int ret;

	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
						 0, 0, &ref);
	if (ret == -ENOENT)
		return NULL;
	else if (ret < 0)
		return ERR_PTR(ret);

	if (!fwnode_device_is_available(ref.fwnode)) {
		fwnode_handle_put(ref.fwnode);
		return NULL;
	}

	bus = sfp_bus_get(ref.fwnode);
	fwnode_handle_put(ref.fwnode);
	if (!bus)
		return ERR_PTR(-ENOMEM);

	return bus;
}
EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);

/**
 * sfp_bus_add_upstream() - parse and register the neighbouring device
 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
 * @upstream: the upstream private data
 * @ops: the upstream's &struct sfp_upstream_ops
 *
 * Add upstream driver for the SFP bus, and if the bus is complete, register
 * the SFP bus using sfp_register_upstream().  This takes a reference on the
 * bus, so it is safe to put the bus after this call.
 *
 * Returns:
 *	- on success, a pointer to the sfp_bus structure,
 *	- %NULL if no SFP is specified,
 *	- on failure, an error pointer value:
 *
 *	- corresponding to the errors detailed for
 *	  fwnode_property_get_reference_args().
 *	- %-ENOMEM if we failed to allocate the bus.
 *	- an error from the upstream's connect_phy() method.
 */
int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
			 const struct sfp_upstream_ops *ops)
{
	int ret;

	/* If no bus, return success */
	if (!bus)
		return 0;

	rtnl_lock();
	kref_get(&bus->kref);
	bus->upstream_ops = ops;
	bus->upstream = upstream;

	if (bus->sfp) {
		ret = sfp_register_bus(bus);
		if (ret)
			sfp_upstream_clear(bus);
	} else {
		ret = 0;
	}
	rtnl_unlock();

	if (ret)
		sfp_bus_put(bus);

	return ret;
}
EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);

/**
 * sfp_bus_del_upstream() - Delete a sfp bus
 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
 *
 * Delete a previously registered upstream connection for the SFP
 * module. @bus should have been added by sfp_bus_add_upstream().
 */
void sfp_bus_del_upstream(struct sfp_bus *bus)
{
	if (bus) {
		rtnl_lock();
		if (bus->sfp)
			sfp_unregister_bus(bus);
		sfp_upstream_clear(bus);
		rtnl_unlock();

		sfp_bus_put(bus);
	}
}
EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);

/* Socket driver entry points */
int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
	int ret = 0;

	if (ops && ops->connect_phy)
		ret = ops->connect_phy(bus->upstream, phydev);

	if (ret == 0)
		bus->phydev = phydev;

	return ret;
}
EXPORT_SYMBOL_GPL(sfp_add_phy);

void sfp_remove_phy(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);

	if (ops && ops->disconnect_phy)
		ops->disconnect_phy(bus->upstream);
	bus->phydev = NULL;
}
EXPORT_SYMBOL_GPL(sfp_remove_phy);

void sfp_link_up(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);

	if (ops && ops->link_up)
		ops->link_up(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_up);

void sfp_link_down(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);

	if (ops && ops->link_down)
		ops->link_down(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_down);

int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
		      const struct sfp_quirk *quirk)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
	int ret = 0;

	bus->sfp_quirk = quirk;

	if (ops && ops->module_insert)
		ret = ops->module_insert(bus->upstream, id);

	return ret;
}
EXPORT_SYMBOL_GPL(sfp_module_insert);

void sfp_module_remove(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);

	if (ops && ops->module_remove)
		ops->module_remove(bus->upstream);

	bus->sfp_quirk = NULL;
}
EXPORT_SYMBOL_GPL(sfp_module_remove);

int sfp_module_start(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
	int ret = 0;

	if (ops && ops->module_start)
		ret = ops->module_start(bus->upstream);

	return ret;
}
EXPORT_SYMBOL_GPL(sfp_module_start);

void sfp_module_stop(struct sfp_bus *bus)
{
	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);

	if (ops && ops->module_stop)
		ops->module_stop(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_module_stop);

static void sfp_socket_clear(struct sfp_bus *bus)
{
	bus->sfp_dev = NULL;
	bus->sfp = NULL;
	bus->socket_ops = NULL;
}

struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
				    const struct sfp_socket_ops *ops)
{
	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
	int ret = 0;

	if (bus) {
		rtnl_lock();
		bus->sfp_dev = dev;
		bus->sfp = sfp;
		bus->socket_ops = ops;

		if (bus->upstream_ops) {
			ret = sfp_register_bus(bus);
			if (ret)
				sfp_socket_clear(bus);
		}
		rtnl_unlock();
	}

	if (ret) {
		sfp_bus_put(bus);
		bus = NULL;
	}

	return bus;
}
EXPORT_SYMBOL_GPL(sfp_register_socket);

void sfp_unregister_socket(struct sfp_bus *bus)
{
	rtnl_lock();
	if (bus->upstream_ops)
		sfp_unregister_bus(bus);
	sfp_socket_clear(bus);
	rtnl_unlock();

	sfp_bus_put(bus);
}
EXPORT_SYMBOL_GPL(sfp_unregister_socket);