1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
#define USE_CLSR BIT(0)
#define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */
#define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
#define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
#define SPINOR_REG_CYPRESS_VREG 0x00800000
#define SPINOR_REG_CYPRESS_STR1 0x0
#define SPINOR_REG_CYPRESS_STR1V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
#define SPINOR_REG_CYPRESS_CFR1 0x2
#define SPINOR_REG_CYPRESS_CFR1V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR1)
#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */
#define SPINOR_REG_CYPRESS_CFR2 0x3
#define SPINOR_REG_CYPRESS_CFR2V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb
#define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7)
#define SPINOR_REG_CYPRESS_CFR3 0x4
#define SPINOR_REG_CYPRESS_CFR3V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR3)
#define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */
#define SPINOR_REG_CYPRESS_CFR5 0x6
#define SPINOR_REG_CYPRESS_CFR5V \
(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR5)
#define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6)
#define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1)
#define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0)
#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \
(SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \
SPINOR_REG_CYPRESS_CFR5_OPI)
#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6
#define SPINOR_OP_CYPRESS_RD_FAST 0xee
#define SPINOR_REG_CYPRESS_ARCFN 0x00000006
/* Cypress SPI NOR flash operations. */
#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \
SPI_MEM_OP_ADDR(naddr, addr, 0), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \
SPI_MEM_OP_ADDR(naddr, addr, 0), \
SPI_MEM_OP_DUMMY(ndummy, 0), \
SPI_MEM_OP_DATA_IN(1, buf, 0))
#define SPANSION_CLSR_OP \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
/**
* spansion_nor_clear_sr() - Clear the Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void spansion_nor_clear_sr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPANSION_CLSR_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing SR\n", ret);
}
static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, addr,
0, nor->bouncebuf);
int ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
spansion_nor_clear_sr(nor);
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !(nor->bouncebuf[0] & SR_WIP);
}
/**
* cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
* using Read Any Register command to see if the whole flash is ready for new
* commands and clear it if there are any errors.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
u64 addr;
int ret;
u8 i;
for (i = 0; i < params->n_dice; i++) {
addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
if (ret < 0)
return ret;
else if (ret == 0)
return 0;
}
return 1;
}
static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
/* Use 24 dummy cycles for memory array reads. */
*buf = SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR2V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
nor->read_dummy = 24;
/* Set the octal and DTR enable bits. */
buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR5V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
SNOR_PROTO_8_8_8_DTR);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
/*
* The register is 1-byte wide, but 1-byte transactions are not allowed
* in 8D-8D-8D mode. Since there is no register at the next location,
* just initialize the value to 0 and let the transaction go on.
*/
buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
buf[1] = 0;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
SPINOR_REG_CYPRESS_CFR5V, 2, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
{
struct spi_mem_op op;
u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
u8 cfr1v_written;
int ret;
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
return 0;
/* Update the Quad Enable bit. */
nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
op = (struct spi_mem_op)
CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
nor->bouncebuf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
cfr1v_written = nor->bouncebuf[0];
/* Read back and check it. */
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] != cfr1v_written) {
dev_err(nor->dev, "CFR1: Read back test failed\n");
return -EIO;
}
return 0;
}
/**
* cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
* register.
* @nor: pointer to a 'struct spi_nor'
*
* It is recommended to update volatile registers in the field application due
* to a risk of the non-volatile registers corruption by power interrupt. This
* function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
* bit in the CFR1 non-volatile in advance (typically by a Flash programmer
* before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
* also set during Flash power-up.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
u64 addr;
u8 i;
int ret;
if (!params->n_dice)
return cypress_nor_quad_enable_volatile_reg(nor,
SPINOR_REG_CYPRESS_CFR1V);
for (i = 0; i < params->n_dice; i++) {
addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
if (ret)
return ret;
}
return 0;
}
/**
* cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
* (3 or 4-byte) by querying status
* register 1 (SR1).
* @nor: pointer to a 'struct spi_nor'
* @addr_mode: ponter to a buffer where we return the determined
* address mode.
*
* This function tries to determine current address mode by comparing SR1 value
* from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
u8 *addr_mode)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
nor->bouncebuf);
bool is3byte, is4byte;
int ret;
ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
if (ret)
return ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
if (is3byte == is4byte)
return -EIO;
if (is3byte)
*addr_mode = 3;
else
*addr_mode = 4;
return 0;
}
/**
* cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
* current address mode.
* @nor: pointer to a 'struct spi_nor'
*
* Determine current address mode by reading SR1 with different methods, then
* query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
{
struct spi_mem_op op = {};
u8 addr_mode;
int ret;
/*
* Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
* that sets bit-1 in SR1.
*/
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
if (ret) {
ret = spi_nor_set_4byte_addr_mode(nor, true);
if (ret)
return ret;
return spi_nor_write_disable(nor);
}
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
/*
* Query CFR2V and make sure no contradiction between determined address
* mode and CFR2V[7].
*/
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
0, nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
if (addr_mode != 4)
return spi_nor_set_4byte_addr_mode(nor, true);
} else {
if (addr_mode != 3)
return spi_nor_set_4byte_addr_mode(nor, true);
}
nor->params->addr_nbytes = addr_mode;
nor->params->addr_mode_nbytes = addr_mode;
return 0;
}
static int cypress_nor_get_page_size_single_chip(struct spi_nor *nor)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
SPINOR_REG_CYPRESS_CFR3V, 0,
nor->bouncebuf);
int ret;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)
nor->params->page_size = 512;
else
nor->params->page_size = 256;
return 0;
}
static int cypress_nor_get_page_size_mcp(struct spi_nor *nor)
{
struct spi_mem_op op =
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
0, 0, nor->bouncebuf);
struct spi_nor_flash_parameter *params = nor->params;
int ret;
u8 i;
/*
* Use the minimum common page size configuration. Programming 256-byte
* under 512-byte page size configuration is safe.
*/
params->page_size = 256;
for (i = 0; i < params->n_dice; i++) {
op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
return 0;
}
params->page_size = 512;
return 0;
}
/**
* cypress_nor_get_page_size() - Get flash page size configuration.
* @nor: pointer to a 'struct spi_nor'
*
* The BFPT table advertises a 512B or 256B page size depending on part but the
* page size is actually configurable (with the default being 256B). Read from
* CFR3V[4] and set the correct size.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_get_page_size(struct spi_nor *nor)
{
if (nor->params->n_dice)
return cypress_nor_get_page_size_mcp(nor);
return cypress_nor_get_page_size_single_chip(nor);
}
static void cypress_nor_ecc_init(struct spi_nor *nor)
{
/*
* Programming is supported only in 16-byte ECC data unit granularity.
* Byte-programming, bit-walking, or multiple program operations to the
* same ECC data unit without an erase are not allowed.
*/
nor->params->writesize = 16;
nor->flags |= SNOR_F_ECC;
}
static int
s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
struct spi_mem_op op = {};
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
/* Read Architecture Configuration Register (ARCFN) */
op = (struct spi_mem_op)
CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
SPINOR_REG_CYPRESS_ARCFN, 1,
nor->bouncebuf);
ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* ARCFN value must be 0 if uniform sector is selected */
if (nor->bouncebuf[0])
return -ENODEV;
return cypress_nor_get_page_size(nor);
}
static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
/* PP_1_1_4_4B is supported but missing in 4BAIT. */
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4_4B,
SNOR_PROTO_1_1_4);
return 0;
}
static void s25fs256t_late_init(struct spi_nor *nor)
{
cypress_nor_ecc_init(nor);
}
static struct spi_nor_fixups s25fs256t_fixups = {
.post_bfpt = s25fs256t_post_bfpt_fixup,
.post_sfdp = s25fs256t_post_sfdp_fixup,
.late_init = s25fs256t_late_init,
};
static int
s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
/* Replace Quad Enable with volatile version */
nor->params->quad_enable = cypress_nor_quad_enable_volatile;
return 0;
}
static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
{
struct spi_nor_erase_type *erase_type =
nor->params->erase_map.erase_type;
unsigned int i;
/*
* In some parts, 3byte erase opcodes are advertised by 4BAIT.
* Convert them to 4byte erase opcodes.
*/
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
switch (erase_type[i].opcode) {
case SPINOR_OP_SE:
erase_type[i].opcode = SPINOR_OP_SE_4B;
break;
case SPINOR_OP_BE_4K:
erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
break;
default:
break;
}
}
/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
if (nor->params->size == SZ_256M)
nor->params->n_dice = 2;
return cypress_nor_get_page_size(nor);
}
static void s25hx_t_late_init(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
/* Fast Read 4B requires mode cycles */
params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
cypress_nor_ecc_init(nor);
/* Replace ready() with multi die version */
if (params->n_dice)
params->ready = cypress_nor_sr_ready_and_clear;
}
static struct spi_nor_fixups s25hx_t_fixups = {
.post_bfpt = s25hx_t_post_bfpt_fixup,
.post_sfdp = s25hx_t_post_sfdp_fixup,
.late_init = s25hx_t_late_init,
};
/**
* cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
* @nor: pointer to a 'struct spi_nor'
* @enable: whether to enable or disable Octal DTR
*
* This also sets the memory access latency cycles to 24 to allow the flash to
* run at up to 200MHz.
*
* Return: 0 on success, -errno otherwise.
*/
static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
{
return enable ? cypress_nor_octal_dtr_en(nor) :
cypress_nor_octal_dtr_dis(nor);
}
static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
{
/*
* On older versions of the flash the xSPI Profile 1.0 table has the
* 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
*/
if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
SPINOR_OP_CYPRESS_RD_FAST;
/* This flash is also missing the 4-byte Page Program opcode bit. */
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
/*
* The xSPI Profile 1.0 table advertises the number of additional
* address bytes needed for Read Status Register command as 0 but the
* actual value for that is 4.
*/
nor->params->rdsr_addr_nbytes = 4;
return cypress_nor_get_page_size(nor);
}
static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
int ret;
ret = cypress_nor_set_addr_mode_nbytes(nor);
if (ret)
return ret;
return 0;
}
static void s28hx_t_late_init(struct spi_nor *nor)
{
nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
cypress_nor_ecc_init(nor);
}
static const struct spi_nor_fixups s28hx_t_fixups = {
.post_sfdp = s28hx_t_post_sfdp_fixup,
.post_bfpt = s28hx_t_post_bfpt_fixup,
.late_init = s28hx_t_late_init,
};
static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
/*
* The S25FS-S chip family reports 512-byte pages in BFPT but
* in reality the write buffer still wraps at the safe default
* of 256 bytes. Overwrite the page size advertised by BFPT
* to get the writes working.
*/
nor->params->page_size = 256;
return 0;
}
static const struct spi_nor_fixups s25fs_s_nor_fixups = {
.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
};
static const struct flash_info spansion_nor_parts[] = {
/* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
FLAGS(SPI_NOR_HAS_LOCK)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
.fixups = &s25fs_s_nor_fixups, },
{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
.fixups = &s25fs_s_nor_fixups, },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256)
NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_CLSR)
},
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
{ "s25fs256t", INFO6(0x342b19, 0x0f0890, 0, 0)
PARSE_SFDP
.fixups = &s25fs256t_fixups },
{ "s25hl512t", INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hl02gt", INFO6(0x342a1c, 0x0f0090, 0, 0)
PARSE_SFDP
FLAGS(NO_CHIP_ERASE)
.fixups = &s25hx_t_fixups },
{ "s25hs512t", INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512)
PARSE_SFDP
MFR_FLAGS(USE_CLSR)
.fixups = &s25hx_t_fixups },
{ "s25hs02gt", INFO6(0x342b1c, 0x0f0090, 0, 0)
PARSE_SFDP
FLAGS(NO_CHIP_ERASE)
.fixups = &s25hx_t_fixups },
{ "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
FLAGS(SPI_NOR_NO_ERASE) },
{ "s28hl512t", INFO(0x345a1a, 0, 256 * 1024, 256)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hl01gt", INFO(0x345a1b, 0, 256 * 1024, 512)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
{ "s28hs01gt", INFO(0x345b1b, 0, 256 * 1024, 512)
PARSE_SFDP
.fixups = &s28hx_t_fixups,
},
};
/**
* spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
* flash is ready for new commands and clear it if there are any errors.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
spansion_nor_clear_sr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return !(nor->bouncebuf[0] & SR_WIP);
}
static void spansion_nor_late_init(struct spi_nor *nor)
{
if (nor->params->size > SZ_16M) {
nor->flags |= SNOR_F_4B_OPCODES;
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = nor->info->sector_size;
}
if (nor->info->mfr_flags & USE_CLSR)
nor->params->ready = spansion_nor_sr_ready_and_clear;
}
static const struct spi_nor_fixups spansion_nor_fixups = {
.late_init = spansion_nor_late_init,
};
const struct spi_nor_manufacturer spi_nor_spansion = {
.name = "spansion",
.parts = spansion_nor_parts,
.nparts = ARRAY_SIZE(spansion_nor_parts),
.fixups = &spansion_nor_fixups,
};
|