1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices AD738x Simultaneous Sampling SAR ADCs
*
* Copyright 2017 Analog Devices Inc.
* Copyright 2024 BayLibre, SAS
*
* Datasheets of supported parts:
* ad7380/1 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7380-7381.pdf
* ad7383/4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-7384.pdf
* ad7380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7380-4.pdf
* ad7381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7381-4.pdf
* ad7383/4-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-4-ad7384-4.pdf
*/
#include <linux/align.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define MAX_NUM_CHANNELS 4
/* 2.5V internal reference voltage */
#define AD7380_INTERNAL_REF_MV 2500
/* reading and writing registers is more reliable at lower than max speed */
#define AD7380_REG_WR_SPEED_HZ 10000000
#define AD7380_REG_WR BIT(15)
#define AD7380_REG_REGADDR GENMASK(14, 12)
#define AD7380_REG_DATA GENMASK(11, 0)
#define AD7380_REG_ADDR_NOP 0x0
#define AD7380_REG_ADDR_CONFIG1 0x1
#define AD7380_REG_ADDR_CONFIG2 0x2
#define AD7380_REG_ADDR_ALERT 0x3
#define AD7380_REG_ADDR_ALERT_LOW_TH 0x4
#define AD7380_REG_ADDR_ALERT_HIGH_TH 0x5
#define AD7380_CONFIG1_OS_MODE BIT(9)
#define AD7380_CONFIG1_OSR GENMASK(8, 6)
#define AD7380_CONFIG1_CRC_W BIT(5)
#define AD7380_CONFIG1_CRC_R BIT(4)
#define AD7380_CONFIG1_ALERTEN BIT(3)
#define AD7380_CONFIG1_RES BIT(2)
#define AD7380_CONFIG1_REFSEL BIT(1)
#define AD7380_CONFIG1_PMODE BIT(0)
#define AD7380_CONFIG2_SDO2 GENMASK(9, 8)
#define AD7380_CONFIG2_SDO BIT(8)
#define AD7380_CONFIG2_RESET GENMASK(7, 0)
#define AD7380_CONFIG2_RESET_SOFT 0x3C
#define AD7380_CONFIG2_RESET_HARD 0xFF
#define AD7380_ALERT_LOW_TH GENMASK(11, 0)
#define AD7380_ALERT_HIGH_TH GENMASK(11, 0)
#define T_CONVERT_NS 190 /* conversion time */
#define T_CONVERT_0_NS 10 /* 1st conversion start time (oversampling) */
#define T_CONVERT_X_NS 500 /* xth conversion start time (oversampling) */
struct ad7380_timing_specs {
const unsigned int t_csh_ns; /* CS minimum high time */
};
struct ad7380_chip_info {
const char *name;
const struct iio_chan_spec *channels;
unsigned int num_channels;
const char * const *vcm_supplies;
unsigned int num_vcm_supplies;
const unsigned long *available_scan_masks;
const struct ad7380_timing_specs *timing_specs;
};
enum {
AD7380_SCAN_TYPE_NORMAL,
AD7380_SCAN_TYPE_RESOLUTION_BOOST,
};
/* Extended scan types for 14-bit chips. */
static const struct iio_scan_type ad7380_scan_type_14[] = {
[AD7380_SCAN_TYPE_NORMAL] = {
.sign = 's',
.realbits = 14,
.storagebits = 16,
.endianness = IIO_CPU
},
[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU
},
};
/* Extended scan types for 16-bit chips. */
static const struct iio_scan_type ad7380_scan_type_16[] = {
[AD7380_SCAN_TYPE_NORMAL] = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU
},
[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
.sign = 's',
.realbits = 18,
.storagebits = 32,
.endianness = IIO_CPU
},
};
#define AD7380_CHANNEL(index, bits, diff) { \
.type = IIO_VOLTAGE, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.indexed = 1, \
.differential = (diff), \
.channel = (diff) ? (2 * (index)) : (index), \
.channel2 = (diff) ? (2 * (index) + 1) : 0, \
.scan_index = (index), \
.has_ext_scan_type = 1, \
.ext_scan_type = ad7380_scan_type_##bits, \
.num_ext_scan_type = ARRAY_SIZE(ad7380_scan_type_##bits),\
}
#define DEFINE_AD7380_2_CHANNEL(name, bits, diff) \
static const struct iio_chan_spec name[] = { \
AD7380_CHANNEL(0, bits, diff), \
AD7380_CHANNEL(1, bits, diff), \
IIO_CHAN_SOFT_TIMESTAMP(2), \
}
#define DEFINE_AD7380_4_CHANNEL(name, bits, diff) \
static const struct iio_chan_spec name[] = { \
AD7380_CHANNEL(0, bits, diff), \
AD7380_CHANNEL(1, bits, diff), \
AD7380_CHANNEL(2, bits, diff), \
AD7380_CHANNEL(3, bits, diff), \
IIO_CHAN_SOFT_TIMESTAMP(4), \
}
/* fully differential */
DEFINE_AD7380_2_CHANNEL(ad7380_channels, 16, 1);
DEFINE_AD7380_2_CHANNEL(ad7381_channels, 14, 1);
DEFINE_AD7380_4_CHANNEL(ad7380_4_channels, 16, 1);
DEFINE_AD7380_4_CHANNEL(ad7381_4_channels, 14, 1);
/* pseudo differential */
DEFINE_AD7380_2_CHANNEL(ad7383_channels, 16, 0);
DEFINE_AD7380_2_CHANNEL(ad7384_channels, 14, 0);
DEFINE_AD7380_4_CHANNEL(ad7383_4_channels, 16, 0);
DEFINE_AD7380_4_CHANNEL(ad7384_4_channels, 14, 0);
static const char * const ad7380_2_channel_vcm_supplies[] = {
"aina", "ainb",
};
static const char * const ad7380_4_channel_vcm_supplies[] = {
"aina", "ainb", "ainc", "aind",
};
/* Since this is simultaneous sampling, we don't allow individual channels. */
static const unsigned long ad7380_2_channel_scan_masks[] = {
GENMASK(1, 0),
0
};
static const unsigned long ad7380_4_channel_scan_masks[] = {
GENMASK(3, 0),
0
};
static const struct ad7380_timing_specs ad7380_timing = {
.t_csh_ns = 10,
};
static const struct ad7380_timing_specs ad7380_4_timing = {
.t_csh_ns = 20,
};
/*
* Available oversampling ratios. The indices correspond with the bit value
* expected by the chip. The available ratios depend on the averaging mode,
* only normal averaging is supported for now.
*/
static const int ad7380_oversampling_ratios[] = {
1, 2, 4, 8, 16, 32,
};
static const struct ad7380_chip_info ad7380_chip_info = {
.name = "ad7380",
.channels = ad7380_channels,
.num_channels = ARRAY_SIZE(ad7380_channels),
.available_scan_masks = ad7380_2_channel_scan_masks,
.timing_specs = &ad7380_timing,
};
static const struct ad7380_chip_info ad7381_chip_info = {
.name = "ad7381",
.channels = ad7381_channels,
.num_channels = ARRAY_SIZE(ad7381_channels),
.available_scan_masks = ad7380_2_channel_scan_masks,
.timing_specs = &ad7380_timing,
};
static const struct ad7380_chip_info ad7383_chip_info = {
.name = "ad7383",
.channels = ad7383_channels,
.num_channels = ARRAY_SIZE(ad7383_channels),
.vcm_supplies = ad7380_2_channel_vcm_supplies,
.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
.available_scan_masks = ad7380_2_channel_scan_masks,
.timing_specs = &ad7380_timing,
};
static const struct ad7380_chip_info ad7384_chip_info = {
.name = "ad7384",
.channels = ad7384_channels,
.num_channels = ARRAY_SIZE(ad7384_channels),
.vcm_supplies = ad7380_2_channel_vcm_supplies,
.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
.available_scan_masks = ad7380_2_channel_scan_masks,
.timing_specs = &ad7380_timing,
};
static const struct ad7380_chip_info ad7380_4_chip_info = {
.name = "ad7380-4",
.channels = ad7380_4_channels,
.num_channels = ARRAY_SIZE(ad7380_4_channels),
.available_scan_masks = ad7380_4_channel_scan_masks,
.timing_specs = &ad7380_4_timing,
};
static const struct ad7380_chip_info ad7381_4_chip_info = {
.name = "ad7381-4",
.channels = ad7381_4_channels,
.num_channels = ARRAY_SIZE(ad7381_4_channels),
.available_scan_masks = ad7380_4_channel_scan_masks,
.timing_specs = &ad7380_4_timing,
};
static const struct ad7380_chip_info ad7383_4_chip_info = {
.name = "ad7383-4",
.channels = ad7383_4_channels,
.num_channels = ARRAY_SIZE(ad7383_4_channels),
.vcm_supplies = ad7380_4_channel_vcm_supplies,
.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
.available_scan_masks = ad7380_4_channel_scan_masks,
.timing_specs = &ad7380_4_timing,
};
static const struct ad7380_chip_info ad7384_4_chip_info = {
.name = "ad7384-4",
.channels = ad7384_4_channels,
.num_channels = ARRAY_SIZE(ad7384_4_channels),
.vcm_supplies = ad7380_4_channel_vcm_supplies,
.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
.available_scan_masks = ad7380_4_channel_scan_masks,
.timing_specs = &ad7380_4_timing,
};
struct ad7380_state {
const struct ad7380_chip_info *chip_info;
struct spi_device *spi;
struct regmap *regmap;
unsigned int oversampling_ratio;
bool resolution_boost_enabled;
unsigned int vref_mv;
unsigned int vcm_mv[MAX_NUM_CHANNELS];
/* xfers, message an buffer for reading sample data */
struct spi_transfer xfer[2];
struct spi_message msg;
/*
* DMA (thus cache coherency maintenance) requires the transfer buffers
* to live in their own cache lines.
*
* Make the buffer large enough for MAX_NUM_CHANNELS 32-bit samples and
* one 64-bit aligned 64-bit timestamp.
*/
u8 scan_data[ALIGN(MAX_NUM_CHANNELS * sizeof(u32), sizeof(s64))
+ sizeof(s64)] __aligned(IIO_DMA_MINALIGN);
/* buffers for reading/writing registers */
u16 tx;
u16 rx;
};
static int ad7380_regmap_reg_write(void *context, unsigned int reg,
unsigned int val)
{
struct ad7380_state *st = context;
struct spi_transfer xfer = {
.speed_hz = AD7380_REG_WR_SPEED_HZ,
.bits_per_word = 16,
.len = 2,
.tx_buf = &st->tx,
};
st->tx = FIELD_PREP(AD7380_REG_WR, 1) |
FIELD_PREP(AD7380_REG_REGADDR, reg) |
FIELD_PREP(AD7380_REG_DATA, val);
return spi_sync_transfer(st->spi, &xfer, 1);
}
static int ad7380_regmap_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
struct ad7380_state *st = context;
struct spi_transfer xfers[] = {
{
.speed_hz = AD7380_REG_WR_SPEED_HZ,
.bits_per_word = 16,
.len = 2,
.tx_buf = &st->tx,
.cs_change = 1,
.cs_change_delay = {
.value = st->chip_info->timing_specs->t_csh_ns,
.unit = SPI_DELAY_UNIT_NSECS,
},
}, {
.speed_hz = AD7380_REG_WR_SPEED_HZ,
.bits_per_word = 16,
.len = 2,
.rx_buf = &st->rx,
},
};
int ret;
st->tx = FIELD_PREP(AD7380_REG_WR, 0) |
FIELD_PREP(AD7380_REG_REGADDR, reg) |
FIELD_PREP(AD7380_REG_DATA, 0);
ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
if (ret < 0)
return ret;
*val = FIELD_GET(AD7380_REG_DATA, st->rx);
return 0;
}
static const struct regmap_config ad7380_regmap_config = {
.reg_bits = 3,
.val_bits = 12,
.reg_read = ad7380_regmap_reg_read,
.reg_write = ad7380_regmap_reg_write,
.max_register = AD7380_REG_ADDR_ALERT_HIGH_TH,
.can_sleep = true,
};
static int ad7380_debugfs_reg_access(struct iio_dev *indio_dev, u32 reg,
u32 writeval, u32 *readval)
{
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
struct ad7380_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
else
return regmap_write(st->regmap, reg, writeval);
}
unreachable();
}
/**
* ad7380_update_xfers - update the SPI transfers base on the current scan type
* @st: device instance specific state
* @scan_type: current scan type
*/
static void ad7380_update_xfers(struct ad7380_state *st,
const struct iio_scan_type *scan_type)
{
/*
* First xfer only triggers conversion and has to be long enough for
* all conversions to complete, which can be multiple conversion in the
* case of oversampling. Technically T_CONVERT_X_NS is lower for some
* chips, but we use the maximum value for simplicity for now.
*/
if (st->oversampling_ratio > 1)
st->xfer[0].delay.value = T_CONVERT_0_NS + T_CONVERT_X_NS *
(st->oversampling_ratio - 1);
else
st->xfer[0].delay.value = T_CONVERT_NS;
st->xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
/*
* Second xfer reads all channels. Data size depends on if resolution
* boost is enabled or not.
*/
st->xfer[1].bits_per_word = scan_type->realbits;
st->xfer[1].len = BITS_TO_BYTES(scan_type->storagebits) *
(st->chip_info->num_channels - 1);
}
static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
{
struct ad7380_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
/*
* Currently, we always read all channels at the same time. The scan_type
* is the same for all channels, so we just pass the first channel.
*/
scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
if (IS_ERR(scan_type))
return PTR_ERR(scan_type);
ad7380_update_xfers(st, scan_type);
return spi_optimize_message(st->spi, &st->msg);
}
static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
{
struct ad7380_state *st = iio_priv(indio_dev);
spi_unoptimize_message(&st->msg);
return 0;
}
static const struct iio_buffer_setup_ops ad7380_buffer_setup_ops = {
.preenable = ad7380_triggered_buffer_preenable,
.postdisable = ad7380_triggered_buffer_postdisable,
};
static irqreturn_t ad7380_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7380_state *st = iio_priv(indio_dev);
int ret;
ret = spi_sync(st->spi, &st->msg);
if (ret)
goto out;
iio_push_to_buffers_with_timestamp(indio_dev, &st->scan_data,
pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
const struct iio_scan_type *scan_type, int *val)
{
int ret;
ad7380_update_xfers(st, scan_type);
ret = spi_sync(st->spi, &st->msg);
if (ret < 0)
return ret;
if (scan_type->storagebits > 16)
*val = sign_extend32(*(u32 *)(st->scan_data + 4 * scan_index),
scan_type->realbits - 1);
else
*val = sign_extend32(*(u16 *)(st->scan_data + 2 * scan_index),
scan_type->realbits - 1);
return IIO_VAL_INT;
}
static int ad7380_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad7380_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
scan_type = iio_get_current_scan_type(indio_dev, chan);
if (IS_ERR(scan_type))
return PTR_ERR(scan_type);
switch (info) {
case IIO_CHAN_INFO_RAW:
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
return ad7380_read_direct(st, chan->scan_index,
scan_type, val);
}
unreachable();
case IIO_CHAN_INFO_SCALE:
/*
* According to the datasheet, the LSB size is:
* * (2 × VREF) / 2^N, for differential chips
* * VREF / 2^N, for pseudo-differential chips
* where N is the ADC resolution (i.e realbits)
*/
*val = st->vref_mv;
*val2 = scan_type->realbits - chan->differential;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_OFFSET:
/*
* According to IIO ABI, offset is applied before scale,
* so offset is: vcm_mv / scale
*/
*val = st->vcm_mv[chan->channel] * (1 << scan_type->realbits)
/ st->vref_mv;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = st->oversampling_ratio;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad7380_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = ad7380_oversampling_ratios;
*length = ARRAY_SIZE(ad7380_oversampling_ratios);
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
/**
* ad7380_osr_to_regval - convert ratio to OSR register value
* @ratio: ratio to check
*
* Check if ratio is present in the list of available ratios and return the
* corresponding value that needs to be written to the register to select that
* ratio.
*
* Returns: register value (0 to 7) or -EINVAL if there is not an exact match
*/
static int ad7380_osr_to_regval(int ratio)
{
int i;
for (i = 0; i < ARRAY_SIZE(ad7380_oversampling_ratios); i++) {
if (ratio == ad7380_oversampling_ratios[i])
return i;
}
return -EINVAL;
}
static int ad7380_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct ad7380_state *st = iio_priv(indio_dev);
int ret, osr, boost;
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
osr = ad7380_osr_to_regval(val);
if (osr < 0)
return osr;
/* always enable resolution boost when oversampling is enabled */
boost = osr > 0 ? 1 : 0;
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
ret = regmap_update_bits(st->regmap,
AD7380_REG_ADDR_CONFIG1,
AD7380_CONFIG1_OSR | AD7380_CONFIG1_RES,
FIELD_PREP(AD7380_CONFIG1_OSR, osr) |
FIELD_PREP(AD7380_CONFIG1_RES, boost));
if (ret)
return ret;
st->oversampling_ratio = val;
st->resolution_boost_enabled = boost;
/*
* Perform a soft reset. This will flush the oversampling
* block and FIFO but will maintain the content of the
* configurable registers.
*/
return regmap_update_bits(st->regmap,
AD7380_REG_ADDR_CONFIG2,
AD7380_CONFIG2_RESET,
FIELD_PREP(AD7380_CONFIG2_RESET,
AD7380_CONFIG2_RESET_SOFT));
}
unreachable();
default:
return -EINVAL;
}
}
static int ad7380_get_current_scan_type(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad7380_state *st = iio_priv(indio_dev);
return st->resolution_boost_enabled ? AD7380_SCAN_TYPE_RESOLUTION_BOOST
: AD7380_SCAN_TYPE_NORMAL;
}
static const struct iio_info ad7380_info = {
.read_raw = &ad7380_read_raw,
.read_avail = &ad7380_read_avail,
.write_raw = &ad7380_write_raw,
.get_current_scan_type = &ad7380_get_current_scan_type,
.debugfs_reg_access = &ad7380_debugfs_reg_access,
};
static int ad7380_init(struct ad7380_state *st, struct regulator *vref)
{
int ret;
/* perform hard reset */
ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
AD7380_CONFIG2_RESET,
FIELD_PREP(AD7380_CONFIG2_RESET,
AD7380_CONFIG2_RESET_HARD));
if (ret < 0)
return ret;
/* select internal or external reference voltage */
ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
AD7380_CONFIG1_REFSEL,
FIELD_PREP(AD7380_CONFIG1_REFSEL,
vref ? 1 : 0));
if (ret < 0)
return ret;
/* This is the default value after reset. */
st->oversampling_ratio = 1;
/* SPI 1-wire mode */
return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
AD7380_CONFIG2_SDO,
FIELD_PREP(AD7380_CONFIG2_SDO, 1));
}
static void ad7380_regulator_disable(void *p)
{
regulator_disable(p);
}
static int ad7380_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct ad7380_state *st;
struct regulator *vref;
int ret, i;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
st->chip_info = spi_get_device_match_data(spi);
if (!st->chip_info)
return dev_err_probe(&spi->dev, -EINVAL, "missing match data\n");
vref = devm_regulator_get_optional(&spi->dev, "refio");
if (IS_ERR(vref)) {
if (PTR_ERR(vref) != -ENODEV)
return dev_err_probe(&spi->dev, PTR_ERR(vref),
"Failed to get refio regulator\n");
vref = NULL;
}
/*
* If there is no REFIO supply, then it means that we are using
* the internal 2.5V reference, otherwise REFIO is reference voltage.
*/
if (vref) {
ret = regulator_enable(vref);
if (ret)
return ret;
ret = devm_add_action_or_reset(&spi->dev,
ad7380_regulator_disable, vref);
if (ret)
return ret;
ret = regulator_get_voltage(vref);
if (ret < 0)
return ret;
st->vref_mv = ret / 1000;
} else {
st->vref_mv = AD7380_INTERNAL_REF_MV;
}
if (st->chip_info->num_vcm_supplies > ARRAY_SIZE(st->vcm_mv))
return dev_err_probe(&spi->dev, -EINVAL,
"invalid number of VCM supplies\n");
/*
* pseudo-differential chips have common mode supplies for the negative
* input pin.
*/
for (i = 0; i < st->chip_info->num_vcm_supplies; i++) {
struct regulator *vcm;
vcm = devm_regulator_get(&spi->dev,
st->chip_info->vcm_supplies[i]);
if (IS_ERR(vcm))
return dev_err_probe(&spi->dev, PTR_ERR(vcm),
"Failed to get %s regulator\n",
st->chip_info->vcm_supplies[i]);
ret = regulator_enable(vcm);
if (ret)
return ret;
ret = devm_add_action_or_reset(&spi->dev,
ad7380_regulator_disable, vcm);
if (ret)
return ret;
ret = regulator_get_voltage(vcm);
if (ret < 0)
return ret;
st->vcm_mv[i] = ret / 1000;
}
st->regmap = devm_regmap_init(&spi->dev, NULL, st, &ad7380_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(&spi->dev, PTR_ERR(st->regmap),
"failed to allocate register map\n");
/*
* Setting up a low latency read for getting sample data. Used for both
* direct read an triggered buffer. Additional fields will be set up in
* ad7380_update_xfers() based on the current state of the driver at the
* time of the read.
*/
/* toggle CS (no data xfer) to trigger a conversion */
st->xfer[0].cs_change = 1;
st->xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
st->xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
/* then do a second xfer to read the data */
st->xfer[1].rx_buf = st->scan_data;
spi_message_init_with_transfers(&st->msg, st->xfer, ARRAY_SIZE(st->xfer));
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
indio_dev->name = st->chip_info->name;
indio_dev->info = &ad7380_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->available_scan_masks = st->chip_info->available_scan_masks;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
iio_pollfunc_store_time,
ad7380_trigger_handler,
&ad7380_buffer_setup_ops);
if (ret)
return ret;
ret = ad7380_init(st, vref);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id ad7380_of_match_table[] = {
{ .compatible = "adi,ad7380", .data = &ad7380_chip_info },
{ .compatible = "adi,ad7381", .data = &ad7381_chip_info },
{ .compatible = "adi,ad7383", .data = &ad7383_chip_info },
{ .compatible = "adi,ad7384", .data = &ad7384_chip_info },
{ .compatible = "adi,ad7380-4", .data = &ad7380_4_chip_info },
{ .compatible = "adi,ad7381-4", .data = &ad7381_4_chip_info },
{ .compatible = "adi,ad7383-4", .data = &ad7383_4_chip_info },
{ .compatible = "adi,ad7384-4", .data = &ad7384_4_chip_info },
{ }
};
static const struct spi_device_id ad7380_id_table[] = {
{ "ad7380", (kernel_ulong_t)&ad7380_chip_info },
{ "ad7381", (kernel_ulong_t)&ad7381_chip_info },
{ "ad7383", (kernel_ulong_t)&ad7383_chip_info },
{ "ad7384", (kernel_ulong_t)&ad7384_chip_info },
{ "ad7380-4", (kernel_ulong_t)&ad7380_4_chip_info },
{ "ad7381-4", (kernel_ulong_t)&ad7381_4_chip_info },
{ "ad7383-4", (kernel_ulong_t)&ad7383_4_chip_info },
{ "ad7384-4", (kernel_ulong_t)&ad7384_4_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad7380_id_table);
static struct spi_driver ad7380_driver = {
.driver = {
.name = "ad7380",
.of_match_table = ad7380_of_match_table,
},
.probe = ad7380_probe,
.id_table = ad7380_id_table,
};
module_spi_driver(ad7380_driver);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD738x ADC driver");
MODULE_LICENSE("GPL");
|