// SPDX-License-Identifier: GPL-2.0+ // // Freescale ALSA SoC Digital Audio Interface (SAI) driver. // // Copyright 2012-2015 Freescale Semiconductor, Inc. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsl_sai.h" #include "fsl_utils.h" #include "imx-pcm.h" #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\ FSL_SAI_CSR_FEIE) static const unsigned int fsl_sai_rates[] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, 352800, 384000, 705600, 768000, 1411200, 2822400, }; static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = { .count = ARRAY_SIZE(fsl_sai_rates), .list = fsl_sai_rates, }; /** * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream * * SAI supports synchronous mode using bit/frame clocks of either Transmitter's * or Receiver's for both streams. This function is used to check if clocks of * the stream's are synced by the opposite stream. * * @sai: SAI context * @dir: stream direction */ static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir) { int adir = (dir == TX) ? RX : TX; /* current dir in async mode while opposite dir in sync mode */ return !sai->synchronous[dir] && sai->synchronous[adir]; } static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk) { struct pinctrl_state *state = NULL; if (sai->is_pdm_mode) { /* DSD512@44.1kHz, DSD512@48kHz */ if (bclk >= 22579200) state = pinctrl_lookup_state(sai->pinctrl, "dsd512"); /* Get default DSD state */ if (IS_ERR_OR_NULL(state)) state = pinctrl_lookup_state(sai->pinctrl, "dsd"); } else { /* 706k32b2c, 768k32b2c, etc */ if (bclk >= 45158400) state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m"); } /* Get default state */ if (IS_ERR_OR_NULL(state)) state = pinctrl_lookup_state(sai->pinctrl, "default"); return state; } static irqreturn_t fsl_sai_isr(int irq, void *devid) { struct fsl_sai *sai = (struct fsl_sai *)devid; unsigned int ofs = sai->soc_data->reg_offset; struct device *dev = &sai->pdev->dev; u32 flags, xcsr, mask; irqreturn_t iret = IRQ_NONE; /* * Both IRQ status bits and IRQ mask bits are in the xCSR but * different shifts. And we here create a mask only for those * IRQs that we activated. */ mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT; /* Tx IRQ */ regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr); flags = xcsr & mask; if (flags) iret = IRQ_HANDLED; else goto irq_rx; if (flags & FSL_SAI_CSR_WSF) dev_dbg(dev, "isr: Start of Tx word detected\n"); if (flags & FSL_SAI_CSR_SEF) dev_dbg(dev, "isr: Tx Frame sync error detected\n"); if (flags & FSL_SAI_CSR_FEF) dev_dbg(dev, "isr: Transmit underrun detected\n"); if (flags & FSL_SAI_CSR_FWF) dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n"); if (flags & FSL_SAI_CSR_FRF) dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n"); flags &= FSL_SAI_CSR_xF_W_MASK; xcsr &= ~FSL_SAI_CSR_xF_MASK; if (flags) regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr); irq_rx: /* Rx IRQ */ regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr); flags = xcsr & mask; if (flags) iret = IRQ_HANDLED; else goto out; if (flags & FSL_SAI_CSR_WSF) dev_dbg(dev, "isr: Start of Rx word detected\n"); if (flags & FSL_SAI_CSR_SEF) dev_dbg(dev, "isr: Rx Frame sync error detected\n"); if (flags & FSL_SAI_CSR_FEF) dev_dbg(dev, "isr: Receive overflow detected\n"); if (flags & FSL_SAI_CSR_FWF) dev_dbg(dev, "isr: Enabled receive FIFO is full\n"); if (flags & FSL_SAI_CSR_FRF) dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n"); flags &= FSL_SAI_CSR_xF_W_MASK; xcsr &= ~FSL_SAI_CSR_xF_MASK; if (flags) regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr); out: return iret; } static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, u32 rx_mask, int slots, int slot_width) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); sai->slots = slots; sai->slot_width = slot_width; return 0; } static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); sai->bclk_ratio = ratio; return 0; } static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, bool tx) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); unsigned int ofs = sai->soc_data->reg_offset; u32 val_cr2 = 0; switch (clk_id) { case FSL_SAI_CLK_BUS: val_cr2 |= FSL_SAI_CR2_MSEL_BUS; break; case FSL_SAI_CLK_MAST1: val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1; break; case FSL_SAI_CLK_MAST2: val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2; break; case FSL_SAI_CLK_MAST3: val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3; break; default: return -EINVAL; } regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), FSL_SAI_CR2_MSEL_MASK, val_cr2); return 0; } static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); int ret; fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id], sai->pll8k_clk, sai->pll11k_clk, freq); ret = clk_set_rate(sai->mclk_clk[clk_id], freq); if (ret < 0) dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret); return ret; } static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); int ret; if (dir == SND_SOC_CLOCK_IN) return 0; if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) { if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) { dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id); return -EINVAL; } if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) { dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id); return -EINVAL; } if (sai->mclk_streams == 0) { ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq); if (ret < 0) return ret; } } ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true); if (ret) { dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret); return ret; } ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false); if (ret) dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret); return ret; } static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai, unsigned int fmt, bool tx) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); unsigned int ofs = sai->soc_data->reg_offset; u32 val_cr2 = 0, val_cr4 = 0; if (!sai->is_lsb_first) val_cr4 |= FSL_SAI_CR4_MF; sai->is_pdm_mode = false; sai->is_dsp_mode = false; /* DAI mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* * Frame low, 1clk before data, one word length for frame sync, * frame sync starts one serial clock cycle earlier, * that is, together with the last bit of the previous * data word. */ val_cr2 |= FSL_SAI_CR2_BCP; val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP; break; case SND_SOC_DAIFMT_LEFT_J: /* * Frame high, one word length for frame sync, * frame sync asserts with the first bit of the frame. */ val_cr2 |= FSL_SAI_CR2_BCP; break; case SND_SOC_DAIFMT_DSP_A: /* * Frame high, 1clk before data, one bit for frame sync, * frame sync starts one serial clock cycle earlier, * that is, together with the last bit of the previous * data word. */ val_cr2 |= FSL_SAI_CR2_BCP; val_cr4 |= FSL_SAI_CR4_FSE; sai->is_dsp_mode = true; break; case SND_SOC_DAIFMT_DSP_B: /* * Frame high, one bit for frame sync, * frame sync asserts with the first bit of the frame. */ val_cr2 |= FSL_SAI_CR2_BCP; sai->is_dsp_mode = true; break; case SND_SOC_DAIFMT_PDM: val_cr2 |= FSL_SAI_CR2_BCP; val_cr4 &= ~FSL_SAI_CR4_MF; sai->is_pdm_mode = true; break; case SND_SOC_DAIFMT_RIGHT_J: /* To be done */ default: return -EINVAL; } /* DAI clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_IF: /* Invert both clocks */ val_cr2 ^= FSL_SAI_CR2_BCP; val_cr4 ^= FSL_SAI_CR4_FSP; break; case SND_SOC_DAIFMT_IB_NF: /* Invert bit clock */ val_cr2 ^= FSL_SAI_CR2_BCP; break; case SND_SOC_DAIFMT_NB_IF: /* Invert frame clock */ val_cr4 ^= FSL_SAI_CR4_FSP; break; case SND_SOC_DAIFMT_NB_NF: /* Nothing to do for both normal cases */ break; default: return -EINVAL; } /* DAI clock provider masks */ switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BP_FP: val_cr2 |= FSL_SAI_CR2_BCD_MSTR; val_cr4 |= FSL_SAI_CR4_FSD_MSTR; sai->is_consumer_mode[tx] = false; break; case SND_SOC_DAIFMT_BC_FC: sai->is_consumer_mode[tx] = true; break; case SND_SOC_DAIFMT_BP_FC: val_cr2 |= FSL_SAI_CR2_BCD_MSTR; sai->is_consumer_mode[tx] = false; break; case SND_SOC_DAIFMT_BC_FP: val_cr4 |= FSL_SAI_CR4_FSD_MSTR; sai->is_consumer_mode[tx] = true; break; default: return -EINVAL; } regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2); regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4); return 0; } static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { int ret; ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true); if (ret) { dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret); return ret; } ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false); if (ret) dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret); return ret; } static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt) { return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true); } static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt) { return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false); } static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai); unsigned int reg, ofs = sai->soc_data->reg_offset; unsigned long clk_rate; u32 savediv = 0, ratio, bestdiff = freq; int adir = tx ? RX : TX; int dir = tx ? TX : RX; u32 id; bool support_1_1_ratio = sai->verid.version >= 0x0301; /* Don't apply to consumer mode */ if (sai->is_consumer_mode[tx]) return 0; /* * There is no point in polling MCLK0 if it is identical to MCLK1. * And given that MQS use case has to use MCLK1 though two clocks * are the same, we simply skip MCLK0 and start to find from MCLK1. */ id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0; for (; id < FSL_SAI_MCLK_MAX; id++) { int diff; clk_rate = clk_get_rate(sai->mclk_clk[id]); if (!clk_rate) continue; ratio = DIV_ROUND_CLOSEST(clk_rate, freq); if (!ratio || ratio > 512) continue; if (ratio == 1 && !support_1_1_ratio) continue; if ((ratio & 1) && ratio > 1) continue; diff = abs((long)clk_rate - ratio * freq); /* * Drop the source that can not be * divided into the required rate. */ if (diff != 0 && clk_rate / diff < 1000) continue; dev_dbg(dai->dev, "ratio %d for freq %dHz based on clock %ldHz\n", ratio, freq, clk_rate); if (diff < bestdiff) { savediv = ratio; sai->mclk_id[tx] = id; bestdiff = diff; } if (diff == 0) break; } if (savediv == 0) { dev_err(dai->dev, "failed to derive required %cx rate: %d\n", tx ? 'T' : 'R', freq); return -EINVAL; } dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n", sai->mclk_id[tx], savediv, bestdiff); /* * 1) For Asynchronous mode, we must set RCR2 register for capture, and * set TCR2 register for playback. * 2) For Tx sync with Rx clock, we must set RCR2 register for playback * and capture. * 3) For Rx sync with Tx clock, we must set TCR2 register for playback * and capture. * 4) For Tx and Rx are both Synchronous with another SAI, we just * ignore it. */ if (fsl_sai_dir_is_synced(sai, adir)) reg = FSL_SAI_xCR2(!tx, ofs); else if (!sai->synchronous[dir]) reg = FSL_SAI_xCR2(tx, ofs); else return 0; regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK, FSL_SAI_CR2_MSEL(sai->mclk_id[tx])); if (savediv == 1) { regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP, FSL_SAI_CR2_BYP); if (fsl_sai_dir_is_synced(sai, adir)) regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI); else regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs), FSL_SAI_CR2_BCI, 0); } else { regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP, savediv / 2 - 1); } return 0; } static int fsl_sai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); unsigned int ofs = sai->soc_data->reg_offset; bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; unsigned int channels = params_channels(params); struct snd_dmaengine_dai_dma_data *dma_params; struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg; u32 word_width = params_width(params); int trce_mask = 0, dl_cfg_idx = 0; int dl_cfg_cnt = sai->dl_cfg_cnt; u32 dl_type = FSL_SAI_DL_I2S; u32 val_cr4 = 0, val_cr5 = 0; u32 slots = (channels == 1) ? 2 : channels; u32 slot_width = word_width; int adir = tx ? RX : TX; u32 pins, bclk; u32 watermark; int ret, i; if (sai->slot_width) slot_width = sai->slot_width; if (sai->slots) slots = sai->slots; else if (sai->bclk_ratio) slots = sai->bclk_ratio / slot_width; pins = DIV_ROUND_UP(channels, slots); /* * PDM mode, channels are independent * each channels are on one dataline/FIFO. */ if (sai->is_pdm_mode) { pins = channels; dl_type = FSL_SAI_DL_PDM; } for (i = 0; i < dl_cfg_cnt; i++) { if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) { dl_cfg_idx = i; break; } } if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) { dev_err(cpu_dai->dev, "channel not supported\n"); return -EINVAL; } bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width); if (!IS_ERR_OR_NULL(sai->pinctrl)) { sai->pins_state = fsl_sai_get_pins_state(sai, bclk); if (!IS_ERR_OR_NULL(sai->pins_state)) { ret = pinctrl_select_state(sai->pinctrl, sai->pins_state); if (ret) { dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret); return ret; } } } if (!sai->is_consumer_mode[tx]) { ret = fsl_sai_set_bclk(cpu_dai, tx, bclk); if (ret) return ret; /* Do not enable the clock if it is already enabled */ if (!(sai->mclk_streams & BIT(substream->stream))) { ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]); if (ret) return ret; sai->mclk_streams |= BIT(substream->stream); } } if (!sai->is_dsp_mode && !sai->is_pdm_mode) val_cr4 |= FSL_SAI_CR4_SYWD(slot_width); val_cr5 |= FSL_SAI_CR5_WNW(slot_width); val_cr5 |= FSL_SAI_CR5_W0W(slot_width); if (sai->is_lsb_first || sai->is_pdm_mode) val_cr5 |= FSL_SAI_CR5_FBT(0); else val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1); val_cr4 |= FSL_SAI_CR4_FRSZ(slots); /* Set to output mode to avoid tri-stated data pins */ if (tx) val_cr4 |= FSL_SAI_CR4_CHMOD; /* * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4), * RCR5(TCR5) for playback(capture), or there will be sync error. */ if (!sai->is_consumer_mode[tx] && fsl_sai_dir_is_synced(sai, adir)) { regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs), FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK | FSL_SAI_CR4_CHMOD_MASK, val_cr4); regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs), FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK | FSL_SAI_CR5_FBT_MASK, val_cr5); } /* * Combine mode has limation: * - Can't used for singel dataline/FIFO case except the FIFO0 * - Can't used for multi dataline/FIFO case except the enabled FIFOs * are successive and start from FIFO0 * * So for common usage, all multi fifo case disable the combine mode. */ if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma) regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_FCOMB_MASK, 0); else regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT); dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx; dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) + dl_cfg[dl_cfg_idx].start_off[tx] * 0x4; if (sai->is_multi_fifo_dma) { sai->audio_config[tx].words_per_fifo = min(slots, channels); if (tx) { sai->audio_config[tx].n_fifos_dst = pins; sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx]; } else { sai->audio_config[tx].n_fifos_src = pins; sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx]; } dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins; dma_params->peripheral_config = &sai->audio_config[tx]; dma_params->peripheral_size = sizeof(sai->audio_config[tx]); watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) : (dma_params->maxburst - 1); regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs), FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), watermark); } /* Find a proper tcre setting */ for (i = 0; i < sai->soc_data->pins; i++) { trce_mask = (1 << (i + 1)) - 1; if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins) break; } regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs), FSL_SAI_CR3_TRCE_MASK, FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask))); /* * When the TERE and FSD_MSTR enabled before configuring the word width * There will be no frame sync clock issue, because word width impact * the generation of frame sync clock. * * TERE enabled earlier only for i.MX8MP case for the hardware limitation, * We need to disable FSD_MSTR before configuring word width, then enable * FSD_MSTR bit for this specific case. */ if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output && !sai->is_consumer_mode[tx]) regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_FSD_MSTR, 0); regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK | FSL_SAI_CR4_CHMOD_MASK, val_cr4); regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs), FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK | FSL_SAI_CR5_FBT_MASK, val_cr5); /* Enable FSD_MSTR after configuring word width */ if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output && !sai->is_consumer_mode[tx]) regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs), FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR); regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << min(channels, slots)) - 1)); return 0; } static int fsl_sai_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; unsigned int ofs = sai->soc_data->reg_offset; /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */ regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0); regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs), FSL_SAI_CR3_TRCE_MASK, 0); if (!sai->is_consumer_mode[tx] && sai->mclk_streams & BIT(substream->stream)) { clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]); sai->mclk_streams &= ~BIT(substream->stream); } return 0; } static void fsl_sai_config_disable(struct fsl_sai *sai, int dir) { unsigned int ofs = sai->soc_data->reg_offset; bool tx = dir == TX; u32 xcsr, count = 100, mask; if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output) mask = FSL_SAI_CSR_TERE; else mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE; regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), mask, 0); /* TERE will remain set till the end of current frame */ do { udelay(10); regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr); } while (--count && xcsr & FSL_SAI_CSR_TERE); regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_FR, FSL_SAI_CSR_FR); /* * For sai master mode, after several open/close sai, * there will be no frame clock, and can't recover * anymore. Add software reset to fix this issue. * This is a hardware bug, and will be fix in the * next sai version. */ if (!sai->is_consumer_mode[tx]) { /* Software Reset */ regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR); /* Clear SR bit to finish the reset */ regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0); } } static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); unsigned int ofs = sai->soc_data->reg_offset; bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; int adir = tx ? RX : TX; int dir = tx ? TX : RX; u32 xcsr; /* * Asynchronous mode: Clear SYNC for both Tx and Rx. * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx. * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx. */ regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC, sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0); regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC, sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0); /* * It is recommended that the transmitter is the last enabled * and the first disabled. */ switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE); regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); /* * Enable the opposite direction for synchronous mode * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx * * RM recommends to enable RE after TE for case 1 and to enable * TE after RE for case 2, but we here may not always guarantee * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables * TE after RE, which is against what RM recommends but should * be safe to do, judging by years of testing results. */ if (fsl_sai_dir_is_synced(sai, adir)) regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs), FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_FRDE, 0); regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_xIE_MASK, 0); /* Check if the opposite FRDE is also disabled */ regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr); /* * If opposite stream provides clocks for synchronous mode and * it is inactive, disable it before disabling the current one */ if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE)) fsl_sai_config_disable(sai, adir); /* * Disable current stream if either of: * 1. current stream doesn't provide clocks for synchronous mode * 2. current stream provides clocks for synchronous mode but no * more stream is active. */ if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE)) fsl_sai_config_disable(sai, dir); break; default: return -EINVAL; } return 0; } static int fsl_sai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; int ret; /* * EDMA controller needs period size to be a multiple of * tx/rx maxburst */ if (sai->soc_data->use_edma) snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, tx ? sai->dma_params_tx.maxburst : sai->dma_params_rx.maxburst); ret = snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints); return ret; } static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai) { struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev); unsigned int ofs = sai->soc_data->reg_offset; /* Software Reset for both Tx and Rx */ regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR); regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR); /* Clear SR bit to finish the reset */ regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0); regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0); regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs), FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst); regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs), FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth), sai->dma_params_rx.maxburst - 1); snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx, &sai->dma_params_rx); return 0; } static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = { .probe = fsl_sai_dai_probe, .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, .set_sysclk = fsl_sai_set_dai_sysclk, .set_fmt = fsl_sai_set_dai_fmt, .set_tdm_slot = fsl_sai_set_dai_tdm_slot, .hw_params = fsl_sai_hw_params, .hw_free = fsl_sai_hw_free, .trigger = fsl_sai_trigger, .startup = fsl_sai_startup, }; static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = { .probe = fsl_sai_dai_probe, .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, .set_sysclk = fsl_sai_set_dai_sysclk, .set_fmt = fsl_sai_set_dai_fmt_tx, .set_tdm_slot = fsl_sai_set_dai_tdm_slot, .hw_params = fsl_sai_hw_params, .hw_free = fsl_sai_hw_free, .trigger = fsl_sai_trigger, .startup = fsl_sai_startup, }; static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = { .probe = fsl_sai_dai_probe, .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio, .set_sysclk = fsl_sai_set_dai_sysclk, .set_fmt = fsl_sai_set_dai_fmt_rx, .set_tdm_slot = fsl_sai_set_dai_tdm_slot, .hw_params = fsl_sai_hw_params, .hw_free = fsl_sai_hw_free, .trigger = fsl_sai_trigger, .startup = fsl_sai_startup, }; static int fsl_sai_dai_resume(struct snd_soc_component *component) { struct fsl_sai *sai = snd_soc_component_get_drvdata(component); struct device *dev = &sai->pdev->dev; int ret; if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) { ret = pinctrl_select_state(sai->pinctrl, sai->pins_state); if (ret) { dev_err(dev, "failed to set proper pins state: %d\n", ret); return ret; } } return 0; } static struct snd_soc_dai_driver fsl_sai_dai_template[] = { { .name = "sai-tx-rx", .playback = { .stream_name = "CPU-Playback", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 2822400, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_SAI_FORMATS, }, .capture = { .stream_name = "CPU-Capture", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 2822400, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_SAI_FORMATS, }, .ops = &fsl_sai_pcm_dai_ops, }, { .name = "sai-tx", .playback = { .stream_name = "CPU-Playback", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 2822400, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_SAI_FORMATS, }, .ops = &fsl_sai_pcm_dai_tx_ops, }, { .name = "sai-rx", .capture = { .stream_name = "CPU-Capture", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 2822400, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_SAI_FORMATS, }, .ops = &fsl_sai_pcm_dai_rx_ops, }, }; static const struct snd_soc_component_driver fsl_component = { .name = "fsl-sai", .resume = fsl_sai_dai_resume, .legacy_dai_naming = 1, }; static struct reg_default fsl_sai_reg_defaults_ofs0[] = { {FSL_SAI_TCR1(0), 0}, {FSL_SAI_TCR2(0), 0}, {FSL_SAI_TCR3(0), 0}, {FSL_SAI_TCR4(0), 0}, {FSL_SAI_TCR5(0), 0}, {FSL_SAI_TDR0, 0}, {FSL_SAI_TDR1, 0}, {FSL_SAI_TDR2, 0}, {FSL_SAI_TDR3, 0}, {FSL_SAI_TDR4, 0}, {FSL_SAI_TDR5, 0}, {FSL_SAI_TDR6, 0}, {FSL_SAI_TDR7, 0}, {FSL_SAI_TMR, 0}, {FSL_SAI_RCR1(0), 0}, {FSL_SAI_RCR2(0), 0}, {FSL_SAI_RCR3(0), 0}, {FSL_SAI_RCR4(0), 0}, {FSL_SAI_RCR5(0), 0}, {FSL_SAI_RMR, 0}, }; static struct reg_default fsl_sai_reg_defaults_ofs8[] = { {FSL_SAI_TCR1(8), 0}, {FSL_SAI_TCR2(8), 0}, {FSL_SAI_TCR3(8), 0}, {FSL_SAI_TCR4(8), 0}, {FSL_SAI_TCR5(8), 0}, {FSL_SAI_TDR0, 0}, {FSL_SAI_TDR1, 0}, {FSL_SAI_TDR2, 0}, {FSL_SAI_TDR3, 0}, {FSL_SAI_TDR4, 0}, {FSL_SAI_TDR5, 0}, {FSL_SAI_TDR6, 0}, {FSL_SAI_TDR7, 0}, {FSL_SAI_TMR, 0}, {FSL_SAI_RCR1(8), 0}, {FSL_SAI_RCR2(8), 0}, {FSL_SAI_RCR3(8), 0}, {FSL_SAI_RCR4(8), 0}, {FSL_SAI_RCR5(8), 0}, {FSL_SAI_RMR, 0}, {FSL_SAI_MCTL, 0}, {FSL_SAI_MDIV, 0}, }; static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg) { struct fsl_sai *sai = dev_get_drvdata(dev); unsigned int ofs = sai->soc_data->reg_offset; if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs)) return true; if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs)) return true; switch (reg) { case FSL_SAI_TFR0: case FSL_SAI_TFR1: case FSL_SAI_TFR2: case FSL_SAI_TFR3: case FSL_SAI_TFR4: case FSL_SAI_TFR5: case FSL_SAI_TFR6: case FSL_SAI_TFR7: case FSL_SAI_TMR: case FSL_SAI_RDR0: case FSL_SAI_RDR1: case FSL_SAI_RDR2: case FSL_SAI_RDR3: case FSL_SAI_RDR4: case FSL_SAI_RDR5: case FSL_SAI_RDR6: case FSL_SAI_RDR7: case FSL_SAI_RFR0: case FSL_SAI_RFR1: case FSL_SAI_RFR2: case FSL_SAI_RFR3: case FSL_SAI_RFR4: case FSL_SAI_RFR5: case FSL_SAI_RFR6: case FSL_SAI_RFR7: case FSL_SAI_RMR: case FSL_SAI_MCTL: case FSL_SAI_MDIV: case FSL_SAI_VERID: case FSL_SAI_PARAM: case FSL_SAI_TTCTN: case FSL_SAI_RTCTN: case FSL_SAI_TTCTL: case FSL_SAI_TBCTN: case FSL_SAI_TTCAP: case FSL_SAI_RTCTL: case FSL_SAI_RBCTN: case FSL_SAI_RTCAP: return true; default: return false; } } static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg) { struct fsl_sai *sai = dev_get_drvdata(dev); unsigned int ofs = sai->soc_data->reg_offset; if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs)) return true; /* Set VERID and PARAM be volatile for reading value in probe */ if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM)) return true; switch (reg) { case FSL_SAI_TFR0: case FSL_SAI_TFR1: case FSL_SAI_TFR2: case FSL_SAI_TFR3: case FSL_SAI_TFR4: case FSL_SAI_TFR5: case FSL_SAI_TFR6: case FSL_SAI_TFR7: case FSL_SAI_RFR0: case FSL_SAI_RFR1: case FSL_SAI_RFR2: case FSL_SAI_RFR3: case FSL_SAI_RFR4: case FSL_SAI_RFR5: case FSL_SAI_RFR6: case FSL_SAI_RFR7: case FSL_SAI_RDR0: case FSL_SAI_RDR1: case FSL_SAI_RDR2: case FSL_SAI_RDR3: case FSL_SAI_RDR4: case FSL_SAI_RDR5: case FSL_SAI_RDR6: case FSL_SAI_RDR7: return true; default: return false; } } static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg) { struct fsl_sai *sai = dev_get_drvdata(dev); unsigned int ofs = sai->soc_data->reg_offset; if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs)) return true; if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs)) return true; switch (reg) { case FSL_SAI_TDR0: case FSL_SAI_TDR1: case FSL_SAI_TDR2: case FSL_SAI_TDR3: case FSL_SAI_TDR4: case FSL_SAI_TDR5: case FSL_SAI_TDR6: case FSL_SAI_TDR7: case FSL_SAI_TMR: case FSL_SAI_RMR: case FSL_SAI_MCTL: case FSL_SAI_MDIV: case FSL_SAI_TTCTL: case FSL_SAI_RTCTL: return true; default: return false; } } static struct regmap_config fsl_sai_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, .max_register = FSL_SAI_RMR, .reg_defaults = fsl_sai_reg_defaults_ofs0, .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0), .readable_reg = fsl_sai_readable_reg, .volatile_reg = fsl_sai_volatile_reg, .writeable_reg = fsl_sai_writeable_reg, .cache_type = REGCACHE_FLAT, }; static int fsl_sai_check_version(struct device *dev) { struct fsl_sai *sai = dev_get_drvdata(dev); unsigned char ofs = sai->soc_data->reg_offset; unsigned int val; int ret; if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID) return 0; ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val); if (ret < 0) return ret; dev_dbg(dev, "VERID: 0x%016X\n", val); sai->verid.version = val & (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK); sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT; sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK; ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val); if (ret < 0) return ret; dev_dbg(dev, "PARAM: 0x%016X\n", val); /* Max slots per frame, power of 2 */ sai->param.slot_num = 1 << ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT); /* Words per fifo, power of 2 */ sai->param.fifo_depth = 1 << ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT); /* Number of datalines implemented */ sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK; return 0; } /* * Calculate the offset between first two datalines, don't * different offset in one case. */ static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask) { int fbidx, nbidx, offset; fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1); offset = nbidx - fbidx - 1; return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset); } /* * read the fsl,dataline property from dts file. * It has 3 value for each configuration, first one means the type: * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is * dataline mask for 'tx'. for example * * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>, * * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled). * */ static int fsl_sai_read_dlcfg(struct fsl_sai *sai) { struct platform_device *pdev = sai->pdev; struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; int ret, elems, i, index, num_cfg; char *propname = "fsl,dataline"; struct fsl_sai_dl_cfg *cfg; unsigned long dl_mask; unsigned int soc_dl; u32 rx, tx, type; elems = of_property_count_u32_elems(np, propname); if (elems <= 0) { elems = 0; } else if (elems % 3) { dev_err(dev, "Number of elements must be divisible to 3.\n"); return -EINVAL; } num_cfg = elems / 3; /* Add one more for default value */ cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL); if (!cfg) return -ENOMEM; /* Consider default value "0 0xFF 0xFF" if property is missing */ soc_dl = BIT(sai->soc_data->pins) - 1; cfg[0].type = FSL_SAI_DL_DEFAULT; cfg[0].pins[0] = sai->soc_data->pins; cfg[0].mask[0] = soc_dl; cfg[0].start_off[0] = 0; cfg[0].next_off[0] = 0; cfg[0].pins[1] = sai->soc_data->pins; cfg[0].mask[1] = soc_dl; cfg[0].start_off[1] = 0; cfg[0].next_off[1] = 0; for (i = 1, index = 0; i < num_cfg + 1; i++) { /* * type of dataline * 0 means default mode * 1 means I2S mode * 2 means PDM mode */ ret = of_property_read_u32_index(np, propname, index++, &type); if (ret) return -EINVAL; ret = of_property_read_u32_index(np, propname, index++, &rx); if (ret) return -EINVAL; ret = of_property_read_u32_index(np, propname, index++, &tx); if (ret) return -EINVAL; if ((rx & ~soc_dl) || (tx & ~soc_dl)) { dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl); return -EINVAL; } rx = rx & soc_dl; tx = tx & soc_dl; cfg[i].type = type; cfg[i].pins[0] = hweight8(rx); cfg[i].mask[0] = rx; dl_mask = rx; cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx); cfg[i].pins[1] = hweight8(tx); cfg[i].mask[1] = tx; dl_mask = tx; cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM); cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx); } sai->dl_cfg = cfg; sai->dl_cfg_cnt = num_cfg + 1; return 0; } static int fsl_sai_runtime_suspend(struct device *dev); static int fsl_sai_runtime_resume(struct device *dev); static int fsl_sai_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct fsl_sai *sai; struct regmap *gpr; void __iomem *base; char tmp[8]; int irq, ret, i; int index; u32 dmas[4]; sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL); if (!sai) return -ENOMEM; sai->pdev = pdev; sai->soc_data = of_device_get_match_data(dev); sai->is_lsb_first = of_property_read_bool(np, "lsb-first"); base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res); if (IS_ERR(base)) return PTR_ERR(base); if (sai->soc_data->reg_offset == 8) { fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8; fsl_sai_regmap_config.max_register = FSL_SAI_MDIV; fsl_sai_regmap_config.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs8); } sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config); if (IS_ERR(sai->regmap)) { dev_err(dev, "regmap init failed\n"); return PTR_ERR(sai->regmap); } sai->bus_clk = devm_clk_get(dev, "bus"); /* Compatible with old DTB cases */ if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER) sai->bus_clk = devm_clk_get(dev, "sai"); if (IS_ERR(sai->bus_clk)) { dev_err(dev, "failed to get bus clock: %ld\n", PTR_ERR(sai->bus_clk)); /* -EPROBE_DEFER */ return PTR_ERR(sai->bus_clk); } for (i = 1; i < FSL_SAI_MCLK_MAX; i++) { sprintf(tmp, "mclk%d", i); sai->mclk_clk[i] = devm_clk_get(dev, tmp); if (IS_ERR(sai->mclk_clk[i])) { dev_err(dev, "failed to get mclk%d clock: %ld\n", i, PTR_ERR(sai->mclk_clk[i])); sai->mclk_clk[i] = NULL; } } if (sai->soc_data->mclk0_is_mclk1) sai->mclk_clk[0] = sai->mclk_clk[1]; else sai->mclk_clk[0] = sai->bus_clk; fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk, &sai->pll11k_clk); /* Use Multi FIFO mode depending on the support from SDMA script */ ret = of_property_read_u32_array(np, "dmas", dmas, 4); if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI) sai->is_multi_fifo_dma = true; /* read dataline mask for rx and tx*/ ret = fsl_sai_read_dlcfg(sai); if (ret < 0) { dev_err(dev, "failed to read dlcfg %d\n", ret); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED, np->name, sai); if (ret) { dev_err(dev, "failed to claim irq %u\n", irq); return ret; } memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template, sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template)); /* Sync Tx with Rx as default by following old DT binding */ sai->synchronous[RX] = true; sai->synchronous[TX] = false; sai->cpu_dai_drv[0].symmetric_rate = 1; sai->cpu_dai_drv[0].symmetric_channels = 1; sai->cpu_dai_drv[0].symmetric_sample_bits = 1; if (of_property_read_bool(np, "fsl,sai-synchronous-rx") && of_property_read_bool(np, "fsl,sai-asynchronous")) { /* error out if both synchronous and asynchronous are present */ dev_err(dev, "invalid binding for synchronous mode\n"); return -EINVAL; } if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) { /* Sync Rx with Tx */ sai->synchronous[RX] = false; sai->synchronous[TX] = true; } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) { /* Discard all settings for asynchronous mode */ sai->synchronous[RX] = false; sai->synchronous[TX] = false; sai->cpu_dai_drv[0].symmetric_rate = 0; sai->cpu_dai_drv[0].symmetric_channels = 0; sai->cpu_dai_drv[0].symmetric_sample_bits = 0; } sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output"); if (sai->mclk_direction_output && of_device_is_compatible(np, "fsl,imx6ul-sai")) { gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr"); if (IS_ERR(gpr)) { dev_err(dev, "cannot find iomuxc registers\n"); return PTR_ERR(gpr); } index = of_alias_get_id(np, "sai"); if (index < 0) return index; regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index), MCLK_DIR(index)); } sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0; sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0; sai->dma_params_rx.maxburst = sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX; sai->dma_params_tx.maxburst = sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX; sai->pinctrl = devm_pinctrl_get(&pdev->dev); platform_set_drvdata(pdev, sai); pm_runtime_enable(dev); if (!pm_runtime_enabled(dev)) { ret = fsl_sai_runtime_resume(dev); if (ret) goto err_pm_disable; } ret = pm_runtime_resume_and_get(dev); if (ret < 0) goto err_pm_get_sync; /* Get sai version */ ret = fsl_sai_check_version(dev); if (ret < 0) dev_warn(dev, "Error reading SAI version: %d\n", ret); /* Select MCLK direction */ if (sai->mclk_direction_output && sai->soc_data->max_register >= FSL_SAI_MCTL) { regmap_update_bits(sai->regmap, FSL_SAI_MCTL, FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN); } ret = pm_runtime_put_sync(dev); if (ret < 0 && ret != -ENOSYS) goto err_pm_get_sync; /* * Register platform component before registering cpu dai for there * is not defer probe for platform component in snd_soc_add_pcm_runtime(). */ if (sai->soc_data->use_imx_pcm) { ret = imx_pcm_dma_init(pdev); if (ret) { dev_err_probe(dev, ret, "PCM DMA init failed\n"); if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA)) dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n"); goto err_pm_get_sync; } } else { ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0); if (ret) { dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n"); goto err_pm_get_sync; } } ret = devm_snd_soc_register_component(dev, &fsl_component, sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template)); if (ret) goto err_pm_get_sync; return ret; err_pm_get_sync: if (!pm_runtime_status_suspended(dev)) fsl_sai_runtime_suspend(dev); err_pm_disable: pm_runtime_disable(dev); return ret; } static void fsl_sai_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) fsl_sai_runtime_suspend(&pdev->dev); } static const struct fsl_sai_soc_data fsl_sai_vf610_data = { .use_imx_pcm = false, .use_edma = false, .fifo_depth = 32, .pins = 1, .reg_offset = 0, .mclk0_is_mclk1 = false, .flags = 0, .max_register = FSL_SAI_RMR, }; static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 32, .pins = 1, .reg_offset = 0, .mclk0_is_mclk1 = true, .flags = 0, .max_register = FSL_SAI_RMR, }; static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 16, .pins = 2, .reg_offset = 8, .mclk0_is_mclk1 = false, .flags = PMQOS_CPU_LATENCY, .max_register = FSL_SAI_RMR, }; static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 128, .pins = 8, .reg_offset = 8, .mclk0_is_mclk1 = false, .flags = 0, .max_register = FSL_SAI_RMR, }; static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = { .use_imx_pcm = true, .use_edma = true, .fifo_depth = 64, .pins = 4, .reg_offset = 0, .mclk0_is_mclk1 = false, .flags = 0, .max_register = FSL_SAI_RMR, }; static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 128, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 8, .flags = 0, .max_register = FSL_SAI_MCTL, }; static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 128, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 8, .flags = 0, .max_register = FSL_SAI_MDIV, }; static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = { .use_imx_pcm = true, .use_edma = false, .fifo_depth = 128, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 8, .flags = 0, .max_register = FSL_SAI_MDIV, .mclk_with_tere = true, }; static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = { .use_imx_pcm = true, .use_edma = true, .fifo_depth = 16, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 4, .flags = PMQOS_CPU_LATENCY, .max_register = FSL_SAI_RTCAP, }; static const struct fsl_sai_soc_data fsl_sai_imx93_data = { .use_imx_pcm = true, .use_edma = true, .fifo_depth = 128, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 4, .flags = 0, .max_register = FSL_SAI_MCTL, .max_burst = {8, 8}, }; static const struct fsl_sai_soc_data fsl_sai_imx95_data = { .use_imx_pcm = true, .use_edma = true, .fifo_depth = 128, .reg_offset = 8, .mclk0_is_mclk1 = false, .pins = 8, .flags = 0, .max_register = FSL_SAI_MCTL, .max_burst = {8, 8}, }; static const struct of_device_id fsl_sai_ids[] = { { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data }, { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data }, { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data }, { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data }, { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data }, { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data }, { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data }, { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data }, { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data }, { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data }, { .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data }, { .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_sai_ids); static int fsl_sai_runtime_suspend(struct device *dev) { struct fsl_sai *sai = dev_get_drvdata(dev); if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]); if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]); clk_disable_unprepare(sai->bus_clk); if (sai->soc_data->flags & PMQOS_CPU_LATENCY) cpu_latency_qos_remove_request(&sai->pm_qos_req); regcache_cache_only(sai->regmap, true); return 0; } static int fsl_sai_runtime_resume(struct device *dev) { struct fsl_sai *sai = dev_get_drvdata(dev); unsigned int ofs = sai->soc_data->reg_offset; int ret; ret = clk_prepare_enable(sai->bus_clk); if (ret) { dev_err(dev, "failed to enable bus clock: %d\n", ret); return ret; } if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) { ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]); if (ret) goto disable_bus_clk; } if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) { ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]); if (ret) goto disable_tx_clk; } if (sai->soc_data->flags & PMQOS_CPU_LATENCY) cpu_latency_qos_add_request(&sai->pm_qos_req, 0); regcache_cache_only(sai->regmap, false); regcache_mark_dirty(sai->regmap); regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR); regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR); usleep_range(1000, 2000); regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0); regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0); ret = regcache_sync(sai->regmap); if (ret) goto disable_rx_clk; if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output) regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE); return 0; disable_rx_clk: if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]); disable_tx_clk: if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]); disable_bus_clk: clk_disable_unprepare(sai->bus_clk); return ret; } static const struct dev_pm_ops fsl_sai_pm_ops = { SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend, fsl_sai_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver fsl_sai_driver = { .probe = fsl_sai_probe, .remove = fsl_sai_remove, .driver = { .name = "fsl-sai", .pm = &fsl_sai_pm_ops, .of_match_table = fsl_sai_ids, }, }; module_platform_driver(fsl_sai_driver); MODULE_DESCRIPTION("Freescale Soc SAI Interface"); MODULE_AUTHOR("Xiubo Li, "); MODULE_ALIAS("platform:fsl-sai"); MODULE_LICENSE("GPL");