#!/usr/bin/gawk -f # SPDX-License-Identifier: GPL-2.0 # verify_builtin_ranges.awk: Verify address range data for builtin modules # Written by Kris Van Hees # # Usage: verify_builtin_ranges.awk modules.builtin.ranges System.map \ # modules.builtin vmlinux.map vmlinux.o.map # # Return the module name(s) (if any) associated with the given object. # # If we have seen this object before, return information from the cache. # Otherwise, retrieve it from the corresponding .cmd file. # function get_module_info(fn, mod, obj, s) { if (fn in omod) return omod[fn]; if (match(fn, /\/[^/]+$/) == 0) return ""; obj = fn; mod = ""; fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd"; if (getline s 0) { mod = substr(s, RSTART + 16, RLENGTH - 16); gsub(/['"]/, "", mod); } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0) mod = substr(s, RSTART + 13, RLENGTH - 13); } else { print "ERROR: Failed to read: " fn "\n\n" \ " For kernels built with O=, cd to \n" \ " and execute this script as ./source/scripts/..." \ >"/dev/stderr"; close(fn); total = 0; exit(1); } close(fn); # A single module (common case) also reflects objects that are not part # of a module. Some of those objects have names that are also a module # name (e.g. core). We check the associated module file name, and if # they do not match, the object is not part of a module. if (mod !~ / /) { if (!(mod in mods)) mod = ""; } gsub(/([^/ ]*\/)+/, "", mod); gsub(/-/, "_", mod); # At this point, mod is a single (valid) module name, or a list of # module names (that do not need validation). omod[obj] = mod; return mod; } # Return a representative integer value for a given hexadecimal address. # # Since all kernel addresses fall within the same memory region, we can safely # strip off the first 6 hex digits before performing the hex-to-dec conversion, # thereby avoiding integer overflows. # function addr2val(val) { sub(/^0x/, "", val); if (length(val) == 16) val = substr(val, 5); return strtonum("0x" val); } # Determine the kernel build directory to use (default is .). # BEGIN { if (ARGC < 6) { print "Syntax: verify_builtin_ranges.awk \n" \ " \n" \ >"/dev/stderr"; total = 0; exit(1); } } # (1) Load the built-in module address range data. # ARGIND == 1 { ranges[FNR] = $0; rcnt++; next; } # (2) Annotate System.map symbols with module names. # ARGIND == 2 { addr = addr2val($1); name = $3; while (addr >= mod_eaddr) { if (sect_symb) { if (sect_symb != name) next; sect_base = addr - sect_off; if (dbg) printf "[%s] BASE (%s) %016x - %016x = %016x\n", sect_name, sect_symb, addr, sect_off, sect_base >"/dev/stderr"; sect_symb = 0; } if (++ridx > rcnt) break; $0 = ranges[ridx]; sub(/-/, " "); if ($4 != "=") { sub(/-/, " "); mod_saddr = strtonum("0x" $2) + sect_base; mod_eaddr = strtonum("0x" $3) + sect_base; $1 = $2 = $3 = ""; sub(/^ +/, ""); mod_name = $0; if (dbg) printf "[%s] %s from %016x to %016x\n", sect_name, mod_name, mod_saddr, mod_eaddr >"/dev/stderr"; } else { sect_name = $1; sect_off = strtonum("0x" $2); sect_symb = $5; } } idx = addr"-"name; if (addr >= mod_saddr && addr < mod_eaddr) sym2mod[idx] = mod_name; next; } # Once we are done annotating the System.map, we no longer need the ranges data. # FNR == 1 && ARGIND == 3 { delete ranges; } # (3) Build a lookup map of built-in module names. # # Lines from modules.builtin will be like: # kernel/crypto/lzo-rle.ko # and we record the object name "crypto/lzo-rle". # ARGIND == 3 { sub(/kernel\//, ""); # strip off "kernel/" prefix sub(/\.ko$/, ""); # strip off .ko suffix mods[$1] = 1; next; } # (4) Get a list of symbols (per object). # # Symbols by object are read from vmlinux.map, with fallback to vmlinux.o.map # if vmlinux is found to have inked in vmlinux.o. # # If we were able to get the data we need from vmlinux.map, there is no need to # process vmlinux.o.map. # FNR == 1 && ARGIND == 5 && total > 0 { if (dbg) printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr"; exit; } # First determine whether we are dealing with a GNU ld or LLVM lld linker map. # ARGIND >= 4 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" { map_is_lld = 1; next; } # (LLD) Convert a section record fronm lld format to ld format. # ARGIND >= 4 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ { $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2; } # (LLD) Convert an object record from lld format to ld format. # ARGIND >= 4 && map_is_lld && NF == 5 && $5 ~ /:\(/ { if (/\.a\(/ && !/ vmlinux\.a\(/) next; gsub(/\)/, ""); sub(/:\(/, " "); sub(/ vmlinux\.a\(/, " "); $0 = " "$6 " 0x"$1 " 0x"$3 " " $5; } # (LLD) Convert a symbol record from lld format to ld format. # ARGIND >= 4 && map_is_lld && NF == 5 && $5 ~ /^[A-Za-z_][A-Za-z0-9_]*$/ { $0 = " 0x" $1 " " $5; } # (LLD) We do not need any other ldd linker map records. # ARGIND >= 4 && map_is_lld && /^[0-9a-f]{16} / { next; } # Handle section records with long section names (spilling onto a 2nd line). # ARGIND >= 4 && !map_is_lld && NF == 1 && /^[^ ]/ { s = $0; getline; $0 = s " " $0; } # Next section - previous one is done. # ARGIND >= 4 && /^[^ ]/ { sect = 0; } # Get the (top level) section name. # ARGIND >= 4 && /^\./ { # Explicitly ignore a few sections that are not relevant here. if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/) next; # Sections with a 0-address can be ignored as well (in vmlinux.map). if (ARGIND == 4 && $2 ~ /^0x0+$/) next; sect = $1; next; } # If we are not currently in a section we care about, ignore records. # !sect { next; } # Handle object records with long section names (spilling onto a 2nd line). # ARGIND >= 4 && /^ [^ \*]/ && NF == 1 { # If the section name is long, the remainder of the entry is found on # the next line. s = $0; getline; $0 = s " " $0; } # Objects linked in from static libraries are ignored. # If the object is vmlinux.o, we need to consult vmlinux.o.map for per-object # symbol information # ARGIND == 4 && /^ [^ ]/ && NF == 4 { if ($4 ~ /\.a\(/) next; idx = sect":"$1; if (!(idx in sect_addend)) { sect_addend[idx] = addr2val($2); if (dbg) printf "ADDEND %s = %016x\n", idx, sect_addend[idx] >"/dev/stderr"; } if ($4 == "vmlinux.o") { need_o_map = 1; next; } } # If data from vmlinux.o.map is needed, we only process section and object # records from vmlinux.map to determine which section we need to pay attention # to in vmlinux.o.map. So skip everything else from vmlinux.map. # ARGIND == 4 && need_o_map { next; } # Get module information for the current object. # ARGIND >= 4 && /^ [^ ]/ && NF == 4 { msect = $1; mod_name = get_module_info($4); mod_eaddr = addr2val($2) + addr2val($3); next; } # Process a symbol record. # # Evaluate the module information obtained from vmlinux.map (or vmlinux.o.map) # as follows: # - For all symbols in a given object: # - If the symbol is annotated with the same module name(s) that the object # belongs to, count it as a match. # - Otherwise: # - If the symbol is known to have duplicates of which at least one is # in a built-in module, disregard it. # - If the symbol us not annotated with any module name(s) AND the # object belongs to built-in modules, count it as missing. # - Otherwise, count it as a mismatch. # ARGIND >= 4 && /^ / && NF == 2 && $1 ~ /^0x/ { idx = sect":"msect; if (!(idx in sect_addend)) next; addr = addr2val($1); # Handle the rare but annoying case where a 0-size symbol is placed at # the byte *after* the module range. Based on vmlinux.map it will be # considered part of the current object, but it falls just beyond the # module address range. Unfortunately, its address could be at the # start of another built-in module, so the only safe thing to do is to # ignore it. if (mod_name && addr == mod_eaddr) next; # If we are processing vmlinux.o.map, we need to apply the base address # of the section to the relative address on the record. # if (ARGIND == 5) addr += sect_addend[idx]; idx = addr"-"$2; mod = ""; if (idx in sym2mod) { mod = sym2mod[idx]; if (sym2mod[idx] == mod_name) { mod_matches++; matches++; } else if (mod_name == "") { print $2 " in " mod " (should NOT be)"; mismatches++; } else { print $2 " in " mod " (should be " mod_name ")"; mismatches++; } } else if (mod_name != "") { print $2 " should be in " mod_name; missing++; } else matches++; total++; next; } # Issue the comparison report. # END { if (total) { printf "Verification of %s:\n", ARGV[1]; printf " Correct matches: %6d (%d%% of total)\n", matches, 100 * matches / total; printf " Module matches: %6d (%d%% of matches)\n", mod_matches, 100 * mod_matches / matches; printf " Mismatches: %6d (%d%% of total)\n", mismatches, 100 * mismatches / total; printf " Missing: %6d (%d%% of total)\n", missing, 100 * missing / total; if (mismatches || missing) exit(1); } }