// SPDX-License-Identifier: GPL-2.0 //! Abstractions for the PCI bus. //! //! C header: [`include/linux/pci.h`](srctree/include/linux/pci.h) use crate::{ alloc::flags::*, bindings, container_of, device, device_id::RawDeviceId, devres::Devres, driver, error::{to_result, Result}, io::Io, str::CStr, types::{ARef, ForeignOwnable}, ThisModule, }; use core::ops::Deref; use kernel::prelude::*; /// An adapter for the registration of PCI drivers. pub struct Adapter(T); impl driver::RegistrationOps for Adapter { type RegType = bindings::pci_driver; fn register( pdrv: &mut Self::RegType, name: &'static CStr, module: &'static ThisModule, ) -> Result { pdrv.name = name.as_char_ptr(); pdrv.probe = Some(Self::probe_callback); pdrv.remove = Some(Self::remove_callback); pdrv.id_table = T::ID_TABLE.as_ptr(); // SAFETY: `pdrv` is guaranteed to be a valid `RegType`. to_result(unsafe { bindings::__pci_register_driver(pdrv as _, module.0, name.as_char_ptr()) }) } fn unregister(pdrv: &mut Self::RegType) { // SAFETY: `pdrv` is guaranteed to be a valid `RegType`. unsafe { bindings::pci_unregister_driver(pdrv) } } } impl Adapter { extern "C" fn probe_callback( pdev: *mut bindings::pci_dev, id: *const bindings::pci_device_id, ) -> core::ffi::c_int { // SAFETY: The PCI bus only ever calls the probe callback with a valid pointer to a // `struct pci_dev`. let dev = unsafe { device::Device::from_raw(&mut (*pdev).dev) }; // SAFETY: `dev` is guaranteed to be embedded in a valid `struct pci_dev` by the call // above. let mut pdev = unsafe { Device::from_dev(dev) }; // SAFETY: `DeviceId` is a `#[repr(transparent)` wrapper of `struct pci_device_id` and // does not add additional invariants, so it's safe to transmute. let id = unsafe { &*id.cast::() }; let info = T::ID_TABLE.info(id.index()); match T::probe(&mut pdev, id, info) { Ok(data) => { // Let the `struct pci_dev` own a reference of the driver's private data. // SAFETY: By the type invariant `pdev.as_raw` returns a valid pointer to a // `struct pci_dev`. unsafe { bindings::pci_set_drvdata(pdev.as_raw(), data.into_foreign() as _) }; } Err(err) => return Error::to_errno(err), } 0 } extern "C" fn remove_callback(pdev: *mut bindings::pci_dev) { // SAFETY: The PCI bus only ever calls the remove callback with a valid pointer to a // `struct pci_dev`. let ptr = unsafe { bindings::pci_get_drvdata(pdev) }; // SAFETY: `remove_callback` is only ever called after a successful call to // `probe_callback`, hence it's guaranteed that `ptr` points to a valid and initialized // `KBox` pointer created through `KBox::into_foreign`. let _ = unsafe { KBox::::from_foreign(ptr) }; } } /// Declares a kernel module that exposes a single PCI driver. /// /// # Example /// ///```ignore /// kernel::module_pci_driver! { /// type: MyDriver, /// name: "Module name", /// author: "Author name", /// description: "Description", /// license: "GPL v2", /// } ///``` #[macro_export] macro_rules! module_pci_driver { ($($f:tt)*) => { $crate::module_driver!(, $crate::pci::Adapter, { $($f)* }); }; } /// Abstraction for bindings::pci_device_id. #[repr(transparent)] #[derive(Clone, Copy)] pub struct DeviceId(bindings::pci_device_id); impl DeviceId { const PCI_ANY_ID: u32 = !0; /// PCI_DEVICE macro. pub const fn new(vendor: u32, device: u32) -> Self { Self(bindings::pci_device_id { vendor, device, subvendor: DeviceId::PCI_ANY_ID, subdevice: DeviceId::PCI_ANY_ID, class: 0, class_mask: 0, driver_data: 0, override_only: 0, }) } /// PCI_DEVICE_CLASS macro. pub const fn with_class(class: u32, class_mask: u32) -> Self { Self(bindings::pci_device_id { vendor: DeviceId::PCI_ANY_ID, device: DeviceId::PCI_ANY_ID, subvendor: DeviceId::PCI_ANY_ID, subdevice: DeviceId::PCI_ANY_ID, class, class_mask, driver_data: 0, override_only: 0, }) } } // Allow drivers R/O access to the fields of `pci_device_id`; should we prefer accessor functions // to void exposing C structure fields? impl Deref for DeviceId { type Target = bindings::pci_device_id; fn deref(&self) -> &Self::Target { &self.0 } } // SAFETY: // * `DeviceId` is a `#[repr(transparent)` wrapper of `pci_device_id` and does not add // additional invariants, so it's safe to transmute to `RawType`. // * `DRIVER_DATA_OFFSET` is the offset to the `driver_data` field. unsafe impl RawDeviceId for DeviceId { type RawType = bindings::pci_device_id; const DRIVER_DATA_OFFSET: usize = core::mem::offset_of!(bindings::pci_device_id, driver_data); fn index(&self) -> usize { self.driver_data as _ } } /// IdTable type for PCI pub type IdTable = &'static dyn kernel::device_id::IdTable; /// Create a PCI `IdTable` with its alias for modpost. #[macro_export] macro_rules! pci_device_table { ($table_name:ident, $module_table_name:ident, $id_info_type: ty, $table_data: expr) => { const $table_name: $crate::device_id::IdArray< $crate::pci::DeviceId, $id_info_type, { $table_data.len() }, > = $crate::device_id::IdArray::new($table_data); $crate::module_device_table!("pci", $module_table_name, $table_name); }; } /// The PCI driver trait. /// /// # Example /// ///``` /// # use kernel::{bindings, pci}; /// /// struct MyDriver; /// /// kernel::pci_device_table!( /// PCI_TABLE, /// MODULE_PCI_TABLE, /// ::IdInfo, /// [ /// (pci::DeviceId::new(bindings::PCI_VENDOR_ID_REDHAT, bindings::PCI_ANY_ID as u32), ()) /// ] /// ); /// /// impl pci::Driver for MyDriver { /// type IdInfo = (); /// const ID_TABLE: pci::IdTable = &PCI_TABLE; /// /// fn probe( /// _pdev: &mut pci::Device, /// _id: &pci::DeviceId, /// _id_info: &Self::IdInfo, /// ) -> Result>> { /// Err(ENODEV) /// } /// } ///``` /// Drivers must implement this trait in order to get a PCI driver registered. Please refer to the /// `Adapter` documentation for an example. pub trait Driver { /// The type holding information about each device id supported by the driver. /// /// TODO: Use associated_type_defaults once stabilized: /// /// type IdInfo: 'static = (); type IdInfo: 'static; /// The table of device ids supported by the driver. const ID_TABLE: IdTable; /// PCI driver probe. /// /// Called when a new platform device is added or discovered. /// Implementers should attempt to initialize the device here. fn probe(dev: &mut Device, id: &DeviceId, id_info: &Self::IdInfo) -> Result>>; } /// The PCI device representation. /// /// A PCI device is based on an always reference counted `device:Device` instance. Cloning a PCI /// device, hence, also increments the base device' reference count. /// /// # Invariants /// /// `Device` hold a valid reference of `ARef` whose underlying `struct device` is a /// member of a `struct pci_dev`. #[derive(Clone)] pub struct Device(ARef); /// A PCI BAR to perform I/O-Operations on. /// /// # Invariants /// /// `Bar` always holds an `Io` inststance that holds a valid pointer to the start of the I/O memory /// mapped PCI bar and its size. pub struct Bar { pdev: Device, io: Io, num: i32, } impl Bar { fn new(pdev: Device, num: u32, name: &CStr) -> Result { let len = pdev.resource_len(num)?; if len == 0 { return Err(ENOMEM); } // Convert to `i32`, since that's what all the C bindings use. let num = i32::try_from(num)?; // SAFETY: // `pdev` is valid by the invariants of `Device`. // `num` is checked for validity by a previous call to `Device::resource_len`. // `name` is always valid. let ret = unsafe { bindings::pci_request_region(pdev.as_raw(), num, name.as_char_ptr()) }; if ret != 0 { return Err(EBUSY); } // SAFETY: // `pdev` is valid by the invariants of `Device`. // `num` is checked for validity by a previous call to `Device::resource_len`. // `name` is always valid. let ioptr: usize = unsafe { bindings::pci_iomap(pdev.as_raw(), num, 0) } as usize; if ioptr == 0 { // SAFETY: // `pdev` valid by the invariants of `Device`. // `num` is checked for validity by a previous call to `Device::resource_len`. unsafe { bindings::pci_release_region(pdev.as_raw(), num) }; return Err(ENOMEM); } // SAFETY: `ioptr` is guaranteed to be the start of a valid I/O mapped memory region of size // `len`. let io = match unsafe { Io::new(ioptr, len as usize) } { Ok(io) => io, Err(err) => { // SAFETY: // `pdev` is valid by the invariants of `Device`. // `ioptr` is guaranteed to be the start of a valid I/O mapped memory region. // `num` is checked for validity by a previous call to `Device::resource_len`. unsafe { Self::do_release(&pdev, ioptr, num) }; return Err(err); } }; Ok(Bar { pdev, io, num }) } /// # Safety /// /// `ioptr` must be a valid pointer to the memory mapped PCI bar number `num`. unsafe fn do_release(pdev: &Device, ioptr: usize, num: i32) { // SAFETY: // `pdev` is valid by the invariants of `Device`. // `ioptr` is valid by the safety requirements. // `num` is valid by the safety requirements. unsafe { bindings::pci_iounmap(pdev.as_raw(), ioptr as _); bindings::pci_release_region(pdev.as_raw(), num); } } fn release(&self) { // SAFETY: The safety requirements are guaranteed by the type invariant of `self.pdev`. unsafe { Self::do_release(&self.pdev, self.io.base_addr(), self.num) }; } } impl Bar { fn index_is_valid(index: u32) -> bool { // A `struct pci_dev` owns an array of resources with at most `PCI_NUM_RESOURCES` entries. index < bindings::PCI_NUM_RESOURCES } } impl Drop for Bar { fn drop(&mut self) { self.release(); } } impl Deref for Bar { type Target = Io; fn deref(&self) -> &Self::Target { &self.io } } impl Device { /// Create a PCI Device instance from an existing `device::Device`. /// /// # Safety /// /// `dev` must be an `ARef` whose underlying `bindings::device` is a member of /// a `bindings::pci_dev`. pub unsafe fn from_dev(dev: ARef) -> Self { Self(dev) } fn as_raw(&self) -> *mut bindings::pci_dev { // SAFETY: By the type invariant `self.0.as_raw` is a pointer to the `struct device` // embedded in `struct pci_dev`. unsafe { container_of!(self.0.as_raw(), bindings::pci_dev, dev) as _ } } /// Enable memory resources for this device. pub fn enable_device_mem(&self) -> Result { // SAFETY: `self.as_raw` is guaranteed to be a pointer to a valid `struct pci_dev`. let ret = unsafe { bindings::pci_enable_device_mem(self.as_raw()) }; if ret != 0 { Err(Error::from_errno(ret)) } else { Ok(()) } } /// Enable bus-mastering for this device. pub fn set_master(&self) { // SAFETY: `self.as_raw` is guaranteed to be a pointer to a valid `struct pci_dev`. unsafe { bindings::pci_set_master(self.as_raw()) }; } /// Returns the size of the given PCI bar resource. pub fn resource_len(&self, bar: u32) -> Result { if !Bar::index_is_valid(bar) { return Err(EINVAL); } // SAFETY: // - `bar` is a valid bar number, as guaranteed by the above call to `Bar::index_is_valid`, // - by its type invariant `self.as_raw` is always a valid pointer to a `struct pci_dev`. Ok(unsafe { bindings::pci_resource_len(self.as_raw(), bar.try_into()?) }) } /// Mapps an entire PCI-BAR after performing a region-request on it. I/O operation bound checks /// can be performed on compile time for offsets (plus the requested type size) < SIZE. pub fn iomap_region_sized( &self, bar: u32, name: &CStr, ) -> Result>> { let bar = Bar::::new(self.clone(), bar, name)?; let devres = Devres::new(self.as_ref(), bar, GFP_KERNEL)?; Ok(devres) } /// Mapps an entire PCI-BAR after performing a region-request on it. pub fn iomap_region(&self, bar: u32, name: &CStr) -> Result> { self.iomap_region_sized::<0>(bar, name) } /// Returns a new `ARef` of the base `device::Device`. pub fn as_dev(&self) -> ARef { self.0.clone() } } impl AsRef for Device { fn as_ref(&self) -> &device::Device { &self.0 } }