/* SPDX-License-Identifier: GPL-2.0+ */ /* * Task-based RCU implementations. * * Copyright (C) 2020 Paul E. McKenney */ //////////////////////////////////////////////////////////////////////// // // Generic data structures. struct rcu_tasks; typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); /** * Definition for a Tasks-RCU-like mechanism. * @cbs_head: Head of callback list. * @cbs_tail: Tail pointer for callback list. * @cbs_wq: Wait queue allowning new callback to get kthread's attention. * @cbs_lock: Lock protecting callback list. * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. * @gp_func: This flavor's grace-period-wait function. * @call_func: This flavor's call_rcu()-equivalent function. */ struct rcu_tasks { struct rcu_head *cbs_head; struct rcu_head **cbs_tail; struct wait_queue_head cbs_wq; raw_spinlock_t cbs_lock; struct task_struct *kthread_ptr; rcu_tasks_gp_func_t gp_func; call_rcu_func_t call_func; }; #define DEFINE_RCU_TASKS(name, gp, call) \ static struct rcu_tasks name = \ { \ .cbs_tail = &name.cbs_head, \ .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(name.cbs_wq), \ .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(name.cbs_lock), \ .gp_func = gp, \ .call_func = call, \ } /* Track exiting tasks in order to allow them to be waited for. */ DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; module_param(rcu_task_stall_timeout, int, 0644); //////////////////////////////////////////////////////////////////////// // // Generic code. // Enqueue a callback for the specified flavor of Tasks RCU. static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, struct rcu_tasks *rtp) { unsigned long flags; bool needwake; rhp->next = NULL; rhp->func = func; raw_spin_lock_irqsave(&rtp->cbs_lock, flags); needwake = !rtp->cbs_head; WRITE_ONCE(*rtp->cbs_tail, rhp); rtp->cbs_tail = &rhp->next; raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); /* We can't create the thread unless interrupts are enabled. */ if (needwake && READ_ONCE(rtp->kthread_ptr)) wake_up(&rtp->cbs_wq); } // Wait for a grace period for the specified flavor of Tasks RCU. static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) { /* Complain if the scheduler has not started. */ RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, "synchronize_rcu_tasks called too soon"); /* Wait for the grace period. */ wait_rcu_gp(rtp->call_func); } /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ static int __noreturn rcu_tasks_kthread(void *arg) { unsigned long flags; struct rcu_head *list; struct rcu_head *next; struct rcu_tasks *rtp = arg; /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ housekeeping_affine(current, HK_FLAG_RCU); WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! /* * Each pass through the following loop makes one check for * newly arrived callbacks, and, if there are some, waits for * one RCU-tasks grace period and then invokes the callbacks. * This loop is terminated by the system going down. ;-) */ for (;;) { /* Pick up any new callbacks. */ raw_spin_lock_irqsave(&rtp->cbs_lock, flags); list = rtp->cbs_head; rtp->cbs_head = NULL; rtp->cbs_tail = &rtp->cbs_head; raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); /* If there were none, wait a bit and start over. */ if (!list) { wait_event_interruptible(rtp->cbs_wq, READ_ONCE(rtp->cbs_head)); if (!rtp->cbs_head) { WARN_ON(signal_pending(current)); schedule_timeout_interruptible(HZ/10); } continue; } // Wait for one grace period. rtp->gp_func(rtp); /* Invoke the callbacks. */ while (list) { next = list->next; local_bh_disable(); list->func(list); local_bh_enable(); list = next; cond_resched(); } /* Paranoid sleep to keep this from entering a tight loop */ schedule_timeout_uninterruptible(HZ/10); } } /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */ static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) { struct task_struct *t; t = kthread_run(rcu_tasks_kthread, rtp, "rcu_tasks_kthread"); if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) return; smp_mb(); /* Ensure others see full kthread. */ } /* Do the srcu_read_lock() for the above synchronize_srcu(). */ void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) { preempt_disable(); current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); preempt_enable(); } /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) { preempt_disable(); __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); preempt_enable(); } #ifndef CONFIG_TINY_RCU /* * Print any non-default Tasks RCU settings. */ static void __init rcu_tasks_bootup_oddness(void) { #ifdef CONFIG_TASKS_RCU if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); else pr_info("\tTasks RCU enabled.\n"); #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RUDE_RCU pr_info("\tRude variant of Tasks RCU enabled.\n"); #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ } #endif /* #ifndef CONFIG_TINY_RCU */ #ifdef CONFIG_TASKS_RCU //////////////////////////////////////////////////////////////////////// // // Simple variant of RCU whose quiescent states are voluntary context // switch, cond_resched_rcu_qs(), user-space execution, and idle. // As such, grace periods can take one good long time. There are no // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() // because this implementation is intended to get the system into a safe // state for some of the manipulations involved in tracing and the like. // Finally, this implementation does not support high call_rcu_tasks() // rates from multiple CPUs. If this is required, per-CPU callback lists // will be needed. /* See if tasks are still holding out, complain if so. */ static void check_holdout_task(struct task_struct *t, bool needreport, bool *firstreport) { int cpu; if (!READ_ONCE(t->rcu_tasks_holdout) || t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || !READ_ONCE(t->on_rq) || (IS_ENABLED(CONFIG_NO_HZ_FULL) && !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { WRITE_ONCE(t->rcu_tasks_holdout, false); list_del_init(&t->rcu_tasks_holdout_list); put_task_struct(t); return; } rcu_request_urgent_qs_task(t); if (!needreport) return; if (*firstreport) { pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); *firstreport = false; } cpu = task_cpu(t); pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", t, ".I"[is_idle_task(t)], "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, t->rcu_tasks_idle_cpu, cpu); sched_show_task(t); } /* Wait for one RCU-tasks grace period. */ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) { struct task_struct *g, *t; unsigned long lastreport; LIST_HEAD(rcu_tasks_holdouts); int fract; /* * Wait for all pre-existing t->on_rq and t->nvcsw transitions * to complete. Invoking synchronize_rcu() suffices because all * these transitions occur with interrupts disabled. Without this * synchronize_rcu(), a read-side critical section that started * before the grace period might be incorrectly seen as having * started after the grace period. * * This synchronize_rcu() also dispenses with the need for a * memory barrier on the first store to t->rcu_tasks_holdout, * as it forces the store to happen after the beginning of the * grace period. */ synchronize_rcu(); /* * There were callbacks, so we need to wait for an RCU-tasks * grace period. Start off by scanning the task list for tasks * that are not already voluntarily blocked. Mark these tasks * and make a list of them in rcu_tasks_holdouts. */ rcu_read_lock(); for_each_process_thread(g, t) { if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { get_task_struct(t); t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); WRITE_ONCE(t->rcu_tasks_holdout, true); list_add(&t->rcu_tasks_holdout_list, &rcu_tasks_holdouts); } } rcu_read_unlock(); /* * Wait for tasks that are in the process of exiting. This * does only part of the job, ensuring that all tasks that were * previously exiting reach the point where they have disabled * preemption, allowing the later synchronize_rcu() to finish * the job. */ synchronize_srcu(&tasks_rcu_exit_srcu); /* * Each pass through the following loop scans the list of holdout * tasks, removing any that are no longer holdouts. When the list * is empty, we are done. */ lastreport = jiffies; /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */ fract = 10; for (;;) { bool firstreport; bool needreport; int rtst; struct task_struct *t1; if (list_empty(&rcu_tasks_holdouts)) break; /* Slowly back off waiting for holdouts */ schedule_timeout_interruptible(HZ/fract); if (fract > 1) fract--; rtst = READ_ONCE(rcu_task_stall_timeout); needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); if (needreport) lastreport = jiffies; firstreport = true; WARN_ON(signal_pending(current)); list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, rcu_tasks_holdout_list) { check_holdout_task(t, needreport, &firstreport); cond_resched(); } } /* * Because ->on_rq and ->nvcsw are not guaranteed to have a full * memory barriers prior to them in the schedule() path, memory * reordering on other CPUs could cause their RCU-tasks read-side * critical sections to extend past the end of the grace period. * However, because these ->nvcsw updates are carried out with * interrupts disabled, we can use synchronize_rcu() to force the * needed ordering on all such CPUs. * * This synchronize_rcu() also confines all ->rcu_tasks_holdout * accesses to be within the grace period, avoiding the need for * memory barriers for ->rcu_tasks_holdout accesses. * * In addition, this synchronize_rcu() waits for exiting tasks * to complete their final preempt_disable() region of execution, * cleaning up after the synchronize_srcu() above. */ synchronize_rcu(); } void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks); /** * call_rcu_tasks() - Queue an RCU for invocation task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks() assumes * that the read-side critical sections end at a voluntary context * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, * or transition to usermode execution. As such, there are no read-side * primitives analogous to rcu_read_lock() and rcu_read_unlock() because * this primitive is intended to determine that all tasks have passed * through a safe state, not so much for data-strcuture synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks); } EXPORT_SYMBOL_GPL(call_rcu_tasks); /** * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. * * Control will return to the caller some time after a full rcu-tasks * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function * preambles and profiling hooks. The synchronize_rcu_tasks() function * is not (yet) intended for heavy use from multiple CPUs. * * See the description of synchronize_rcu() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_tasks(void) { synchronize_rcu_tasks_generic(&rcu_tasks); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); /** * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks(void) { /* There is only one callback queue, so this is easy. ;-) */ synchronize_rcu_tasks(); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks); static int __init rcu_spawn_tasks_kthread(void) { rcu_spawn_tasks_kthread_generic(&rcu_tasks); return 0; } core_initcall(rcu_spawn_tasks_kthread); #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RUDE_RCU //////////////////////////////////////////////////////////////////////// // // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of // passing an empty function to schedule_on_each_cpu(). This approach // provides an asynchronous call_rcu_tasks_rude() API and batching // of concurrent calls to the synchronous synchronize_rcu_rude() API. // This sends IPIs far and wide and induces otherwise unnecessary context // switches on all online CPUs, whether idle or not. // Empty function to allow workqueues to force a context switch. static void rcu_tasks_be_rude(struct work_struct *work) { } // Wait for one rude RCU-tasks grace period. static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) { schedule_on_each_cpu(rcu_tasks_be_rude); } void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude); /** * call_rcu_tasks_rude() - Queue a callback rude task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks_rude() * assumes that the read-side critical sections end at context switch, * cond_resched_rcu_qs(), or transition to usermode execution. As such, * there are no read-side primitives analogous to rcu_read_lock() and * rcu_read_unlock() because this primitive is intended to determine * that all tasks have passed through a safe state, not so much for * data-strcuture synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); } EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); /** * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period * * Control will return to the caller some time after a rude rcu-tasks * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, * anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function preambles * and profiling hooks. The synchronize_rcu_tasks_rude() function is not * (yet) intended for heavy use from multiple CPUs. * * See the description of synchronize_rcu() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_tasks_rude(void) { synchronize_rcu_tasks_generic(&rcu_tasks_rude); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); /** * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. * * Although the current implementation is guaranteed to wait, it is not * obligated to, for example, if there are no pending callbacks. */ void rcu_barrier_tasks_rude(void) { /* There is only one callback queue, so this is easy. ;-) */ synchronize_rcu_tasks_rude(); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); static int __init rcu_spawn_tasks_rude_kthread(void) { rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); return 0; } core_initcall(rcu_spawn_tasks_rude_kthread); #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */