// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_trace.h" #include "xfs_trans_priv.h" #include "xfs_buf_item.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_error.h" #include "xfs_rtbitmap.h" #include struct kmem_cache *xfs_ili_cache; /* inode log item */ static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_inode_log_item, ili_item); } static uint64_t xfs_inode_item_sort( struct xfs_log_item *lip) { return INODE_ITEM(lip)->ili_inode->i_ino; } #ifdef DEBUG_EXPENSIVE static void xfs_inode_item_precommit_check( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_dinode *dip; xfs_failaddr_t fa; dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS); if (!dip) { ASSERT(dip != NULL); return; } xfs_inode_to_disk(ip, dip, 0); xfs_dinode_calc_crc(mp, dip); fa = xfs_dinode_verify(mp, ip->i_ino, dip); if (fa) { xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, sizeof(*dip), fa); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); ASSERT(fa == NULL); } kfree(dip); } #else # define xfs_inode_item_precommit_check(ip) ((void)0) #endif /* * Prior to finally logging the inode, we have to ensure that all the * per-modification inode state changes are applied. This includes VFS inode * state updates, format conversions, verifier state synchronisation and * ensuring the inode buffer remains in memory whilst the inode is dirty. * * We have to be careful when we grab the inode cluster buffer due to lock * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) * require AGI -> inode cluster buffer lock order. The inode cluster buffer is * not locked until ->precommit, so it happens after everything else has been * modified. * * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because * it can be called on a inode (e.g. via bumplink/droplink) before we take the * AGF lock modifying directory blocks. * * Rather than force a complete rework of all the transactions to call * xfs_trans_log_inode() once and once only at the end of every transaction, we * move the pinning of the inode cluster buffer to a ->precommit operation. This * matches how the xfs_iunlink_item locks the inode cluster buffer, and it * ensures that the inode cluster buffer locking is always done last in a * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode * cluster buffer. * * If we return the inode number as the precommit sort key then we'll also * guarantee that the order all inode cluster buffer locking is the same all the * inodes and unlink items in the transaction. */ static int xfs_inode_item_precommit( struct xfs_trans *tp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct inode *inode = VFS_I(ip); unsigned int flags = iip->ili_dirty_flags; /* * Don't bother with i_lock for the I_DIRTY_TIME check here, as races * don't matter - we either will need an extra transaction in 24 hours * to log the timestamps, or will clear already cleared fields in the * worst case. */ if (inode->i_state & I_DIRTY_TIME) { spin_lock(&inode->i_lock); inode->i_state &= ~I_DIRTY_TIME; spin_unlock(&inode->i_lock); } /* * If we're updating the inode core or the timestamps and it's possible * to upgrade this inode to bigtime format, do so now. */ if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && xfs_has_bigtime(ip->i_mount) && !xfs_inode_has_bigtime(ip)) { ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; flags |= XFS_ILOG_CORE; } /* * Inode verifiers do not check that the extent size hint is an integer * multiple of the rt extent size on a directory with both rtinherit * and extszinherit flags set. If we're logging a directory that is * misconfigured in this way, clear the hint. */ if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | XFS_DIFLAG_EXTSZINHERIT); ip->i_extsize = 0; flags |= XFS_ILOG_CORE; } /* * Record the specific change for fdatasync optimisation. This allows * fdatasync to skip log forces for inodes that are only timestamp * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it * to XFS_ILOG_CORE so that the actual on-disk dirty tracking * (ili_fields) correctly tracks that the version has changed. */ spin_lock(&iip->ili_lock); iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); if (flags & XFS_ILOG_IVERSION) flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); if (!iip->ili_item.li_buf) { struct xfs_buf *bp; int error; /* * We hold the ILOCK here, so this inode is not going to be * flushed while we are here. Further, because there is no * buffer attached to the item, we know that there is no IO in * progress, so nothing will clear the ili_fields while we read * in the buffer. Hence we can safely drop the spin lock and * read the buffer knowing that the state will not change from * here. */ spin_unlock(&iip->ili_lock); error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); if (error) return error; /* * We need an explicit buffer reference for the log item but * don't want the buffer to remain attached to the transaction. * Hold the buffer but release the transaction reference once * we've attached the inode log item to the buffer log item * list. */ xfs_buf_hold(bp); spin_lock(&iip->ili_lock); iip->ili_item.li_buf = bp; bp->b_flags |= _XBF_INODES; list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); xfs_trans_brelse(tp, bp); } /* * Always OR in the bits from the ili_last_fields field. This is to * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines * in the eventual clearing of the ili_fields bits. See the big comment * in xfs_iflush() for an explanation of this coordination mechanism. */ iip->ili_fields |= (flags | iip->ili_last_fields); spin_unlock(&iip->ili_lock); xfs_inode_item_precommit_check(ip); /* * We are done with the log item transaction dirty state, so clear it so * that it doesn't pollute future transactions. */ iip->ili_dirty_flags = 0; return 0; } /* * The logged size of an inode fork is always the current size of the inode * fork. This means that when an inode fork is relogged, the size of the logged * region is determined by the current state, not the combination of the * previously logged state + the current state. This is different relogging * behaviour to most other log items which will retain the size of the * previously logged changes when smaller regions are relogged. * * Hence operations that remove data from the inode fork (e.g. shortform * dir/attr remove, extent form extent removal, etc), the size of the relogged * inode gets -smaller- rather than stays the same size as the previously logged * size and this can result in the committing transaction reducing the amount of * space being consumed by the CIL. */ STATIC void xfs_inode_item_data_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_df.if_nextents > 0 && ip->i_df.if_bytes > 0) { /* worst case, doesn't subtract delalloc extents */ *nbytes += xfs_inode_data_fork_size(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { *nbytes += ip->i_df.if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); *nvecs += 1; } break; case XFS_DINODE_FMT_DEV: break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_attr_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_af.if_format) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_af.if_nextents > 0 && ip->i_af.if_bytes > 0) { /* worst case, doesn't subtract unused space */ *nbytes += xfs_inode_attr_fork_size(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_af.if_broot_bytes > 0) { *nbytes += ip->i_af.if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_af.if_bytes > 0) { *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); *nvecs += 1; } break; default: ASSERT(0); break; } } /* * This returns the number of iovecs needed to log the given inode item. * * We need one iovec for the inode log format structure, one for the * inode core, and possibly one for the inode data/extents/b-tree root * and one for the inode attribute data/extents/b-tree root. */ STATIC void xfs_inode_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; *nvecs += 2; *nbytes += sizeof(struct xfs_inode_log_format) + xfs_log_dinode_size(ip->i_mount); xfs_inode_item_data_fork_size(iip, nvecs, nbytes); if (xfs_inode_has_attr_fork(ip)) xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); } STATIC void xfs_inode_item_format_data_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_df.if_nextents > 0 && ip->i_df.if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(&ip->i_df) > 0); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ASSERT(data_bytes <= ip->i_df.if_bytes); ilf->ilf_dsize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { ASSERT(ip->i_df.if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, ip->i_df.if_broot, ip->i_df.if_broot_bytes); ilf->ilf_dsize = ip->i_df.if_broot_bytes; ilf->ilf_size++; } else { ASSERT(!(iip->ili_fields & XFS_ILOG_DBROOT)); iip->ili_fields &= ~XFS_ILOG_DBROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { ASSERT(ip->i_df.if_data != NULL); ASSERT(ip->i_disk_size > 0); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, ip->i_df.if_data, ip->i_df.if_bytes); ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DDATA; } break; case XFS_DINODE_FMT_DEV: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); if (iip->ili_fields & XFS_ILOG_DEV) ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_format_attr_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_af.if_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_af.if_nextents > 0 && ip->i_af.if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(&ip->i_af) == ip->i_af.if_nextents); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ilf->ilf_asize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_AEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_af.if_broot_bytes > 0) { ASSERT(ip->i_af.if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, ip->i_af.if_broot, ip->i_af.if_broot_bytes); ilf->ilf_asize = ip->i_af.if_broot_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ABROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_af.if_bytes > 0) { ASSERT(ip->i_af.if_data != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, ip->i_af.if_data, ip->i_af.if_bytes); ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ADATA; } break; default: ASSERT(0); break; } } /* * Convert an incore timestamp to a log timestamp. Note that the log format * specifies host endian format! */ static inline xfs_log_timestamp_t xfs_inode_to_log_dinode_ts( struct xfs_inode *ip, const struct timespec64 tv) { struct xfs_log_legacy_timestamp *lits; xfs_log_timestamp_t its; if (xfs_inode_has_bigtime(ip)) return xfs_inode_encode_bigtime(tv); lits = (struct xfs_log_legacy_timestamp *)&its; lits->t_sec = tv.tv_sec; lits->t_nsec = tv.tv_nsec; return its; } /* * The legacy DMAPI fields are only present in the on-disk and in-log inodes, * but not in the in-memory one. But we are guaranteed to have an inode buffer * in memory when logging an inode, so we can just copy it from the on-disk * inode to the in-log inode here so that recovery of file system with these * fields set to non-zero values doesn't lose them. For all other cases we zero * the fields. */ static void xfs_copy_dm_fields_to_log_dinode( struct xfs_inode *ip, struct xfs_log_dinode *to) { struct xfs_dinode *dip; dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, ip->i_imap.im_boffset); if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); to->di_dmstate = be16_to_cpu(dip->di_dmstate); } else { to->di_dmevmask = 0; to->di_dmstate = 0; } } static inline void xfs_inode_to_log_dinode_iext_counters( struct xfs_inode *ip, struct xfs_log_dinode *to) { if (xfs_inode_has_large_extent_counts(ip)) { to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); to->di_nrext64_pad = 0; } else { to->di_nextents = xfs_ifork_nextents(&ip->i_df); to->di_anextents = xfs_ifork_nextents(&ip->i_af); } } static void xfs_inode_to_log_dinode( struct xfs_inode *ip, struct xfs_log_dinode *to, xfs_lsn_t lsn) { struct inode *inode = VFS_I(ip); to->di_magic = XFS_DINODE_MAGIC; to->di_format = xfs_ifork_format(&ip->i_df); to->di_uid = i_uid_read(inode); to->di_gid = i_gid_read(inode); to->di_projid_lo = ip->i_projid & 0xffff; to->di_projid_hi = ip->i_projid >> 16; memset(to->di_pad3, 0, sizeof(to->di_pad3)); to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); to->di_nlink = inode->i_nlink; to->di_gen = inode->i_generation; to->di_mode = inode->i_mode; to->di_size = ip->i_disk_size; to->di_nblocks = ip->i_nblocks; to->di_extsize = ip->i_extsize; to->di_forkoff = ip->i_forkoff; to->di_aformat = xfs_ifork_format(&ip->i_af); to->di_flags = ip->i_diflags; xfs_copy_dm_fields_to_log_dinode(ip, to); /* log a dummy value to ensure log structure is fully initialised */ to->di_next_unlinked = NULLAGINO; if (xfs_has_v3inodes(ip->i_mount)) { to->di_version = 3; to->di_changecount = inode_peek_iversion(inode); to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); to->di_flags2 = ip->i_diflags2; to->di_cowextsize = ip->i_cowextsize; to->di_ino = ip->i_ino; to->di_lsn = lsn; memset(to->di_pad2, 0, sizeof(to->di_pad2)); uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); to->di_v3_pad = 0; /* dummy value for initialisation */ to->di_crc = 0; } else { to->di_version = 2; to->di_flushiter = ip->i_flushiter; memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); } xfs_inode_to_log_dinode_iext_counters(ip, to); } /* * Format the inode core. Current timestamp data is only in the VFS inode * fields, so we need to grab them from there. Hence rather than just copying * the XFS inode core structure, format the fields directly into the iovec. */ static void xfs_inode_item_format_core( struct xfs_inode *ip, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_log_dinode *dic; dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); } /* * This is called to fill in the vector of log iovecs for the given inode * log item. It fills the first item with an inode log format structure, * the second with the on-disk inode structure, and a possible third and/or * fourth with the inode data/extents/b-tree root and inode attributes * data/extents/b-tree root. * * Note: Always use the 64 bit inode log format structure so we don't * leave an uninitialised hole in the format item on 64 bit systems. Log * recovery on 32 bit systems handles this just fine, so there's no reason * for not using an initialising the properly padded structure all the time. */ STATIC void xfs_inode_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_log_iovec *vecp = NULL; struct xfs_inode_log_format *ilf; ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); ilf->ilf_type = XFS_LI_INODE; ilf->ilf_ino = ip->i_ino; ilf->ilf_blkno = ip->i_imap.im_blkno; ilf->ilf_len = ip->i_imap.im_len; ilf->ilf_boffset = ip->i_imap.im_boffset; ilf->ilf_fields = XFS_ILOG_CORE; ilf->ilf_size = 2; /* format + core */ /* * make sure we don't leak uninitialised data into the log in the case * when we don't log every field in the inode. */ ilf->ilf_dsize = 0; ilf->ilf_asize = 0; ilf->ilf_pad = 0; memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); xlog_finish_iovec(lv, vecp, sizeof(*ilf)); xfs_inode_item_format_core(ip, lv, &vecp); xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); if (xfs_inode_has_attr_fork(ip)) { xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); } else { iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); } /* update the format with the exact fields we actually logged */ ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); } /* * This is called to pin the inode associated with the inode log * item in memory so it cannot be written out. */ STATIC void xfs_inode_item_pin( struct xfs_log_item *lip) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); ASSERT(lip->li_buf); trace_xfs_inode_pin(ip, _RET_IP_); atomic_inc(&ip->i_pincount); } /* * This is called to unpin the inode associated with the inode log * item which was previously pinned with a call to xfs_inode_item_pin(). * * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. * * Note that unpin can race with inode cluster buffer freeing marking the buffer * stale. In that case, flush completions are run from the buffer unpin call, * which may happen before the inode is unpinned. If we lose the race, there * will be no buffer attached to the log item, but the inode will be marked * XFS_ISTALE. */ STATIC void xfs_inode_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; trace_xfs_inode_unpin(ip, _RET_IP_); ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); } STATIC uint xfs_inode_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) __releases(&lip->li_ailp->ail_lock) __acquires(&lip->li_ailp->ail_lock) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_buf *bp = lip->li_buf; uint rval = XFS_ITEM_SUCCESS; int error; if (!bp || (ip->i_flags & XFS_ISTALE)) { /* * Inode item/buffer is being aborted due to cluster * buffer deletion. Trigger a log force to have that operation * completed and items removed from the AIL before the next push * attempt. */ return XFS_ITEM_PINNED; } if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) return XFS_ITEM_PINNED; if (xfs_iflags_test(ip, XFS_IFLUSHING)) return XFS_ITEM_FLUSHING; if (!xfs_buf_trylock(bp)) return XFS_ITEM_LOCKED; spin_unlock(&lip->li_ailp->ail_lock); /* * We need to hold a reference for flushing the cluster buffer as it may * fail the buffer without IO submission. In which case, we better get a * reference for that completion because otherwise we don't get a * reference for IO until we queue the buffer for delwri submission. */ xfs_buf_hold(bp); error = xfs_iflush_cluster(bp); if (!error) { if (!xfs_buf_delwri_queue(bp, buffer_list)) rval = XFS_ITEM_FLUSHING; xfs_buf_relse(bp); } else { /* * Release the buffer if we were unable to flush anything. On * any other error, the buffer has already been released. */ if (error == -EAGAIN) xfs_buf_relse(bp); rval = XFS_ITEM_LOCKED; } spin_lock(&lip->li_ailp->ail_lock); return rval; } /* * Unlock the inode associated with the inode log item. */ STATIC void xfs_inode_item_release( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; unsigned short lock_flags; ASSERT(ip->i_itemp != NULL); xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); lock_flags = iip->ili_lock_flags; iip->ili_lock_flags = 0; if (lock_flags) xfs_iunlock(ip, lock_flags); } /* * This is called to find out where the oldest active copy of the inode log * item in the on disk log resides now that the last log write of it completed * at the given lsn. Since we always re-log all dirty data in an inode, the * latest copy in the on disk log is the only one that matters. Therefore, * simply return the given lsn. * * If the inode has been marked stale because the cluster is being freed, we * don't want to (re-)insert this inode into the AIL. There is a race condition * where the cluster buffer may be unpinned before the inode is inserted into * the AIL during transaction committed processing. If the buffer is unpinned * before the inode item has been committed and inserted, then it is possible * for the buffer to be written and IO completes before the inode is inserted * into the AIL. In that case, we'd be inserting a clean, stale inode into the * AIL which will never get removed. It will, however, get reclaimed which * triggers an assert in xfs_inode_free() complaining about freein an inode * still in the AIL. * * To avoid this, just unpin the inode directly and return a LSN of -1 so the * transaction committed code knows that it does not need to do any further * processing on the item. */ STATIC xfs_lsn_t xfs_inode_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_iflags_test(ip, XFS_ISTALE)) { xfs_inode_item_unpin(lip, 0); return -1; } return lsn; } STATIC void xfs_inode_item_committing( struct xfs_log_item *lip, xfs_csn_t seq) { INODE_ITEM(lip)->ili_commit_seq = seq; return xfs_inode_item_release(lip); } static const struct xfs_item_ops xfs_inode_item_ops = { .iop_sort = xfs_inode_item_sort, .iop_precommit = xfs_inode_item_precommit, .iop_size = xfs_inode_item_size, .iop_format = xfs_inode_item_format, .iop_pin = xfs_inode_item_pin, .iop_unpin = xfs_inode_item_unpin, .iop_release = xfs_inode_item_release, .iop_committed = xfs_inode_item_committed, .iop_push = xfs_inode_item_push, .iop_committing = xfs_inode_item_committing, }; /* * Initialize the inode log item for a newly allocated (in-core) inode. */ void xfs_inode_item_init( struct xfs_inode *ip, struct xfs_mount *mp) { struct xfs_inode_log_item *iip; ASSERT(ip->i_itemp == NULL); iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, GFP_KERNEL | __GFP_NOFAIL); iip->ili_inode = ip; spin_lock_init(&iip->ili_lock); xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, &xfs_inode_item_ops); } /* * Free the inode log item and any memory hanging off of it. */ void xfs_inode_item_destroy( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; ASSERT(iip->ili_item.li_buf == NULL); ip->i_itemp = NULL; kvfree(iip->ili_item.li_lv_shadow); kmem_cache_free(xfs_ili_cache, iip); } /* * We only want to pull the item from the AIL if it is actually there * and its location in the log has not changed since we started the * flush. Thus, we only bother if the inode's lsn has not changed. */ static void xfs_iflush_ail_updates( struct xfs_ail *ailp, struct list_head *list) { struct xfs_log_item *lip; xfs_lsn_t tail_lsn = 0; /* this is an opencoded batch version of xfs_trans_ail_delete */ spin_lock(&ailp->ail_lock); list_for_each_entry(lip, list, li_bio_list) { xfs_lsn_t lsn; clear_bit(XFS_LI_FAILED, &lip->li_flags); if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) continue; /* * dgc: Not sure how this happens, but it happens very * occassionaly via generic/388. xfs_iflush_abort() also * silently handles this same "under writeback but not in AIL at * shutdown" condition via xfs_trans_ail_delete(). */ if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { ASSERT(xlog_is_shutdown(lip->li_log)); continue; } lsn = xfs_ail_delete_one(ailp, lip); if (!tail_lsn && lsn) tail_lsn = lsn; } xfs_ail_update_finish(ailp, tail_lsn); } /* * Walk the list of inodes that have completed their IOs. If they are clean * remove them from the list and dissociate them from the buffer. Buffers that * are still dirty remain linked to the buffer and on the list. Caller must * handle them appropriately. */ static void xfs_iflush_finish( struct xfs_buf *bp, struct list_head *list) { struct xfs_log_item *lip, *n; list_for_each_entry_safe(lip, n, list, li_bio_list) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); bool drop_buffer = false; spin_lock(&iip->ili_lock); /* * Remove the reference to the cluster buffer if the inode is * clean in memory and drop the buffer reference once we've * dropped the locks we hold. */ ASSERT(iip->ili_item.li_buf == bp); if (!iip->ili_fields) { iip->ili_item.li_buf = NULL; list_del_init(&lip->li_bio_list); drop_buffer = true; } iip->ili_last_fields = 0; iip->ili_flush_lsn = 0; spin_unlock(&iip->ili_lock); xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); if (drop_buffer) xfs_buf_rele(bp); } } /* * Inode buffer IO completion routine. It is responsible for removing inodes * attached to the buffer from the AIL if they have not been re-logged and * completing the inode flush. */ void xfs_buf_inode_iodone( struct xfs_buf *bp) { struct xfs_log_item *lip, *n; LIST_HEAD(flushed_inodes); LIST_HEAD(ail_updates); /* * Pull the attached inodes from the buffer one at a time and take the * appropriate action on them. */ list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { xfs_iflush_abort(iip->ili_inode); continue; } if (!iip->ili_last_fields) continue; /* Do an unlocked check for needing the AIL lock. */ if (iip->ili_flush_lsn == lip->li_lsn || test_bit(XFS_LI_FAILED, &lip->li_flags)) list_move_tail(&lip->li_bio_list, &ail_updates); else list_move_tail(&lip->li_bio_list, &flushed_inodes); } if (!list_empty(&ail_updates)) { xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); list_splice_tail(&ail_updates, &flushed_inodes); } xfs_iflush_finish(bp, &flushed_inodes); if (!list_empty(&flushed_inodes)) list_splice_tail(&flushed_inodes, &bp->b_li_list); } void xfs_buf_inode_io_fail( struct xfs_buf *bp) { struct xfs_log_item *lip; list_for_each_entry(lip, &bp->b_li_list, li_bio_list) set_bit(XFS_LI_FAILED, &lip->li_flags); } /* * Clear the inode logging fields so no more flushes are attempted. If we are * on a buffer list, it is now safe to remove it because the buffer is * guaranteed to be locked. The caller will drop the reference to the buffer * the log item held. */ static void xfs_iflush_abort_clean( struct xfs_inode_log_item *iip) { iip->ili_last_fields = 0; iip->ili_fields = 0; iip->ili_fsync_fields = 0; iip->ili_flush_lsn = 0; iip->ili_item.li_buf = NULL; list_del_init(&iip->ili_item.li_bio_list); } /* * Abort flushing the inode from a context holding the cluster buffer locked. * * This is the normal runtime method of aborting writeback of an inode that is * attached to a cluster buffer. It occurs when the inode and the backing * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster * flushing or buffer IO completion encounters a log shutdown situation. * * If we need to abort inode writeback and we don't already hold the buffer * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be * necessary in a shutdown situation. */ void xfs_iflush_abort( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_buf *bp; if (!iip) { /* clean inode, nothing to do */ xfs_iflags_clear(ip, XFS_IFLUSHING); return; } /* * Remove the inode item from the AIL before we clear its internal * state. Whilst the inode is in the AIL, it should have a valid buffer * pointer for push operations to access - it is only safe to remove the * inode from the buffer once it has been removed from the AIL. * * We also clear the failed bit before removing the item from the AIL * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer * references the inode item owns and needs to hold until we've fully * aborted the inode log item and detached it from the buffer. */ clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); xfs_trans_ail_delete(&iip->ili_item, 0); /* * Grab the inode buffer so can we release the reference the inode log * item holds on it. */ spin_lock(&iip->ili_lock); bp = iip->ili_item.li_buf; xfs_iflush_abort_clean(iip); spin_unlock(&iip->ili_lock); xfs_iflags_clear(ip, XFS_IFLUSHING); if (bp) xfs_buf_rele(bp); } /* * Abort an inode flush in the case of a shutdown filesystem. This can be called * from anywhere with just an inode reference and does not require holding the * inode cluster buffer locked. If the inode is attached to a cluster buffer, * it will grab and lock it safely, then abort the inode flush. */ void xfs_iflush_shutdown_abort( struct xfs_inode *ip) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_buf *bp; if (!iip) { /* clean inode, nothing to do */ xfs_iflags_clear(ip, XFS_IFLUSHING); return; } spin_lock(&iip->ili_lock); bp = iip->ili_item.li_buf; if (!bp) { spin_unlock(&iip->ili_lock); xfs_iflush_abort(ip); return; } /* * We have to take a reference to the buffer so that it doesn't get * freed when we drop the ili_lock and then wait to lock the buffer. * We'll clean up the extra reference after we pick up the ili_lock * again. */ xfs_buf_hold(bp); spin_unlock(&iip->ili_lock); xfs_buf_lock(bp); spin_lock(&iip->ili_lock); if (!iip->ili_item.li_buf) { /* * Raced with another removal, hold the only reference * to bp now. Inode should not be in the AIL now, so just clean * up and return; */ ASSERT(list_empty(&iip->ili_item.li_bio_list)); ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); xfs_iflush_abort_clean(iip); spin_unlock(&iip->ili_lock); xfs_iflags_clear(ip, XFS_IFLUSHING); xfs_buf_relse(bp); return; } /* * Got two references to bp. The first will get dropped by * xfs_iflush_abort() when the item is removed from the buffer list, but * we can't drop our reference until _abort() returns because we have to * unlock the buffer as well. Hence we abort and then unlock and release * our reference to the buffer. */ ASSERT(iip->ili_item.li_buf == bp); spin_unlock(&iip->ili_lock); xfs_iflush_abort(ip); xfs_buf_relse(bp); } /* * convert an xfs_inode_log_format struct from the old 32 bit version * (which can have different field alignments) to the native 64 bit version */ int xfs_inode_item_format_convert( struct xfs_log_iovec *buf, struct xfs_inode_log_format *in_f) { struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; if (buf->i_len != sizeof(*in_f32)) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } in_f->ilf_type = in_f32->ilf_type; in_f->ilf_size = in_f32->ilf_size; in_f->ilf_fields = in_f32->ilf_fields; in_f->ilf_asize = in_f32->ilf_asize; in_f->ilf_dsize = in_f32->ilf_dsize; in_f->ilf_ino = in_f32->ilf_ino; memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); in_f->ilf_blkno = in_f32->ilf_blkno; in_f->ilf_len = in_f32->ilf_len; in_f->ilf_boffset = in_f32->ilf_boffset; return 0; }