// SPDX-License-Identifier: GPL-2.0 /* * f2fs sysfs interface * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * Copyright (c) 2017 Chao Yu */ #include #include #include #include #include #include "f2fs.h" #include "segment.h" #include "gc.h" #include static struct proc_dir_entry *f2fs_proc_root; /* Sysfs support for f2fs */ enum { GC_THREAD, /* struct f2fs_gc_thread */ SM_INFO, /* struct f2fs_sm_info */ DCC_INFO, /* struct discard_cmd_control */ NM_INFO, /* struct f2fs_nm_info */ F2FS_SBI, /* struct f2fs_sb_info */ #ifdef CONFIG_F2FS_STAT_FS STAT_INFO, /* struct f2fs_stat_info */ #endif #ifdef CONFIG_F2FS_FAULT_INJECTION FAULT_INFO_RATE, /* struct f2fs_fault_info */ FAULT_INFO_TYPE, /* struct f2fs_fault_info */ #endif RESERVED_BLOCKS, /* struct f2fs_sb_info */ }; struct f2fs_attr { struct attribute attr; ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, const char *, size_t); int struct_type; int offset; int id; }; static ssize_t f2fs_sbi_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf); static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) { if (struct_type == GC_THREAD) return (unsigned char *)sbi->gc_thread; else if (struct_type == SM_INFO) return (unsigned char *)SM_I(sbi); else if (struct_type == DCC_INFO) return (unsigned char *)SM_I(sbi)->dcc_info; else if (struct_type == NM_INFO) return (unsigned char *)NM_I(sbi); else if (struct_type == F2FS_SBI || struct_type == RESERVED_BLOCKS) return (unsigned char *)sbi; #ifdef CONFIG_F2FS_FAULT_INJECTION else if (struct_type == FAULT_INFO_RATE || struct_type == FAULT_INFO_TYPE) return (unsigned char *)&F2FS_OPTION(sbi).fault_info; #endif #ifdef CONFIG_F2FS_STAT_FS else if (struct_type == STAT_INFO) return (unsigned char *)F2FS_STAT(sbi); #endif return NULL; } static ssize_t dirty_segments_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)(dirty_segments(sbi))); } static ssize_t free_segments_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long)(free_segments(sbi))); } static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct super_block *sb = sbi->sb; if (!sb->s_bdev->bd_part) return sprintf(buf, "0\n"); return sprintf(buf, "%llu\n", (unsigned long long)(sbi->kbytes_written + BD_PART_WRITTEN(sbi))); } static ssize_t features_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct super_block *sb = sbi->sb; int len = 0; if (!sb->s_bdev->bd_part) return sprintf(buf, "0\n"); if (f2fs_sb_has_encrypt(sbi)) len += scnprintf(buf, PAGE_SIZE - len, "%s", "encryption"); if (f2fs_sb_has_blkzoned(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "blkzoned"); if (f2fs_sb_has_extra_attr(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "extra_attr"); if (f2fs_sb_has_project_quota(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "projquota"); if (f2fs_sb_has_inode_chksum(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "inode_checksum"); if (f2fs_sb_has_flexible_inline_xattr(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "flexible_inline_xattr"); if (f2fs_sb_has_quota_ino(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "quota_ino"); if (f2fs_sb_has_inode_crtime(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "inode_crtime"); if (f2fs_sb_has_lost_found(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "lost_found"); if (f2fs_sb_has_verity(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "verity"); if (f2fs_sb_has_sb_chksum(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "sb_checksum"); if (f2fs_sb_has_casefold(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "casefold"); if (f2fs_sb_has_compression(sbi)) len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "compression"); len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s", len ? ", " : "", "pin_file"); len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); return len; } static ssize_t current_reserved_blocks_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { return sprintf(buf, "%u\n", sbi->current_reserved_blocks); } static ssize_t unusable_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { block_t unusable; if (test_opt(sbi, DISABLE_CHECKPOINT)) unusable = sbi->unusable_block_count; else unusable = f2fs_get_unusable_blocks(sbi); return sprintf(buf, "%llu\n", (unsigned long long)unusable); } static ssize_t encoding_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { #ifdef CONFIG_UNICODE if (f2fs_sb_has_casefold(sbi)) return snprintf(buf, PAGE_SIZE, "%s (%d.%d.%d)\n", sbi->s_encoding->charset, (sbi->s_encoding->version >> 16) & 0xff, (sbi->s_encoding->version >> 8) & 0xff, sbi->s_encoding->version & 0xff); #endif return sprintf(buf, "(none)"); } static ssize_t mounted_time_sec_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { return sprintf(buf, "%llu", SIT_I(sbi)->mounted_time); } #ifdef CONFIG_F2FS_STAT_FS static ssize_t moved_blocks_foreground_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct f2fs_stat_info *si = F2FS_STAT(sbi); return sprintf(buf, "%llu\n", (unsigned long long)(si->tot_blks - (si->bg_data_blks + si->bg_node_blks))); } static ssize_t moved_blocks_background_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct f2fs_stat_info *si = F2FS_STAT(sbi); return sprintf(buf, "%llu\n", (unsigned long long)(si->bg_data_blks + si->bg_node_blks)); } static ssize_t avg_vblocks_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct f2fs_stat_info *si = F2FS_STAT(sbi); si->dirty_count = dirty_segments(sbi); f2fs_update_sit_info(sbi); return sprintf(buf, "%llu\n", (unsigned long long)(si->avg_vblocks)); } #endif static ssize_t f2fs_sbi_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { unsigned char *ptr = NULL; unsigned int *ui; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; if (!strcmp(a->attr.name, "extension_list")) { __u8 (*extlist)[F2FS_EXTENSION_LEN] = sbi->raw_super->extension_list; int cold_count = le32_to_cpu(sbi->raw_super->extension_count); int hot_count = sbi->raw_super->hot_ext_count; int len = 0, i; len += scnprintf(buf + len, PAGE_SIZE - len, "cold file extension:\n"); for (i = 0; i < cold_count; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%s\n", extlist[i]); len += scnprintf(buf + len, PAGE_SIZE - len, "hot file extension:\n"); for (i = cold_count; i < cold_count + hot_count; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%s\n", extlist[i]); return len; } ui = (unsigned int *)(ptr + a->offset); return sprintf(buf, "%u\n", *ui); } static ssize_t __sbi_store(struct f2fs_attr *a, struct f2fs_sb_info *sbi, const char *buf, size_t count) { unsigned char *ptr; unsigned long t; unsigned int *ui; ssize_t ret; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; if (!strcmp(a->attr.name, "extension_list")) { const char *name = strim((char *)buf); bool set = true, hot; if (!strncmp(name, "[h]", 3)) hot = true; else if (!strncmp(name, "[c]", 3)) hot = false; else return -EINVAL; name += 3; if (*name == '!') { name++; set = false; } if (strlen(name) >= F2FS_EXTENSION_LEN) return -EINVAL; down_write(&sbi->sb_lock); ret = f2fs_update_extension_list(sbi, name, hot, set); if (ret) goto out; ret = f2fs_commit_super(sbi, false); if (ret) f2fs_update_extension_list(sbi, name, hot, !set); out: up_write(&sbi->sb_lock); return ret ? ret : count; } ui = (unsigned int *)(ptr + a->offset); ret = kstrtoul(skip_spaces(buf), 0, &t); if (ret < 0) return ret; #ifdef CONFIG_F2FS_FAULT_INJECTION if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) return -EINVAL; if (a->struct_type == FAULT_INFO_RATE && t >= UINT_MAX) return -EINVAL; #endif if (a->struct_type == RESERVED_BLOCKS) { spin_lock(&sbi->stat_lock); if (t > (unsigned long)(sbi->user_block_count - F2FS_OPTION(sbi).root_reserved_blocks)) { spin_unlock(&sbi->stat_lock); return -EINVAL; } *ui = t; sbi->current_reserved_blocks = min(sbi->reserved_blocks, sbi->user_block_count - valid_user_blocks(sbi)); spin_unlock(&sbi->stat_lock); return count; } if (!strcmp(a->attr.name, "discard_granularity")) { if (t == 0 || t > MAX_PLIST_NUM) return -EINVAL; if (t == *ui) return count; *ui = t; return count; } if (!strcmp(a->attr.name, "migration_granularity")) { if (t == 0 || t > sbi->segs_per_sec) return -EINVAL; } if (!strcmp(a->attr.name, "trim_sections")) return -EINVAL; if (!strcmp(a->attr.name, "gc_urgent")) { if (t >= 1) { sbi->gc_mode = GC_URGENT; if (sbi->gc_thread) { sbi->gc_thread->gc_wake = 1; wake_up_interruptible_all( &sbi->gc_thread->gc_wait_queue_head); wake_up_discard_thread(sbi, true); } } else { sbi->gc_mode = GC_NORMAL; } return count; } if (!strcmp(a->attr.name, "gc_idle")) { if (t == GC_IDLE_CB) sbi->gc_mode = GC_IDLE_CB; else if (t == GC_IDLE_GREEDY) sbi->gc_mode = GC_IDLE_GREEDY; else sbi->gc_mode = GC_NORMAL; return count; } if (!strcmp(a->attr.name, "iostat_enable")) { sbi->iostat_enable = !!t; if (!sbi->iostat_enable) f2fs_reset_iostat(sbi); return count; } if (!strcmp(a->attr.name, "iostat_period_ms")) { if (t < MIN_IOSTAT_PERIOD_MS || t > MAX_IOSTAT_PERIOD_MS) return -EINVAL; spin_lock(&sbi->iostat_lock); sbi->iostat_period_ms = (unsigned int)t; spin_unlock(&sbi->iostat_lock); return count; } *ui = (unsigned int)t; return count; } static ssize_t f2fs_sbi_store(struct f2fs_attr *a, struct f2fs_sb_info *sbi, const char *buf, size_t count) { ssize_t ret; bool gc_entry = (!strcmp(a->attr.name, "gc_urgent") || a->struct_type == GC_THREAD); if (gc_entry) { if (!down_read_trylock(&sbi->sb->s_umount)) return -EAGAIN; } ret = __sbi_store(a, sbi, buf, count); if (gc_entry) up_read(&sbi->sb->s_umount); return ret; } static ssize_t f2fs_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->show ? a->show(a, sbi, buf) : 0; } static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->store ? a->store(a, sbi, buf, len) : 0; } static void f2fs_sb_release(struct kobject *kobj) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); complete(&sbi->s_kobj_unregister); } enum feat_id { FEAT_CRYPTO = 0, FEAT_BLKZONED, FEAT_ATOMIC_WRITE, FEAT_EXTRA_ATTR, FEAT_PROJECT_QUOTA, FEAT_INODE_CHECKSUM, FEAT_FLEXIBLE_INLINE_XATTR, FEAT_QUOTA_INO, FEAT_INODE_CRTIME, FEAT_LOST_FOUND, FEAT_VERITY, FEAT_SB_CHECKSUM, FEAT_CASEFOLD, FEAT_COMPRESSION, }; static ssize_t f2fs_feature_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { switch (a->id) { case FEAT_CRYPTO: case FEAT_BLKZONED: case FEAT_ATOMIC_WRITE: case FEAT_EXTRA_ATTR: case FEAT_PROJECT_QUOTA: case FEAT_INODE_CHECKSUM: case FEAT_FLEXIBLE_INLINE_XATTR: case FEAT_QUOTA_INO: case FEAT_INODE_CRTIME: case FEAT_LOST_FOUND: case FEAT_VERITY: case FEAT_SB_CHECKSUM: case FEAT_CASEFOLD: case FEAT_COMPRESSION: return sprintf(buf, "supported\n"); } return 0; } #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ static struct f2fs_attr f2fs_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ .struct_type = _struct_type, \ .offset = _offset \ } #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ F2FS_ATTR_OFFSET(struct_type, name, 0644, \ f2fs_sbi_show, f2fs_sbi_store, \ offsetof(struct struct_name, elname)) #define F2FS_GENERAL_RO_ATTR(name) \ static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) #define F2FS_FEATURE_RO_ATTR(_name, _id) \ static struct f2fs_attr f2fs_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = 0444 }, \ .show = f2fs_feature_show, \ .id = _id, \ } #define F2FS_STAT_ATTR(_struct_type, _struct_name, _name, _elname) \ static struct f2fs_attr f2fs_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = 0444 }, \ .show = f2fs_sbi_show, \ .struct_type = _struct_type, \ .offset = offsetof(struct _struct_name, _elname), \ } F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_urgent_sleep_time, urgent_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_idle, gc_mode); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_urgent, gc_mode); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, main_blkaddr, main_blkaddr); F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards); F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, discard_granularity, discard_granularity); F2FS_RW_ATTR(RESERVED_BLOCKS, f2fs_sb_info, reserved_blocks, reserved_blocks); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_seq_blocks, min_seq_blocks); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_hot_blocks, min_hot_blocks); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ssr_sections, min_ssr_sections); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, migration_granularity, migration_granularity); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, discard_idle_interval, interval_time[DISCARD_TIME]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_idle_interval, interval_time[GC_TIME]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, umount_discard_timeout, interval_time[UMOUNT_DISCARD_TIMEOUT]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, iostat_enable, iostat_enable); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, iostat_period_ms, iostat_period_ms); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, readdir_ra, readdir_ra); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_pin_file_thresh, gc_pin_file_threshold); F2FS_RW_ATTR(F2FS_SBI, f2fs_super_block, extension_list, extension_list); #ifdef CONFIG_F2FS_FAULT_INJECTION F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); #endif F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, data_io_flag, data_io_flag); F2FS_GENERAL_RO_ATTR(dirty_segments); F2FS_GENERAL_RO_ATTR(free_segments); F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); F2FS_GENERAL_RO_ATTR(features); F2FS_GENERAL_RO_ATTR(current_reserved_blocks); F2FS_GENERAL_RO_ATTR(unusable); F2FS_GENERAL_RO_ATTR(encoding); F2FS_GENERAL_RO_ATTR(mounted_time_sec); #ifdef CONFIG_F2FS_STAT_FS F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, cp_foreground_calls, cp_count); F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, cp_background_calls, bg_cp_count); F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, gc_foreground_calls, call_count); F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, gc_background_calls, bg_gc); F2FS_GENERAL_RO_ATTR(moved_blocks_background); F2FS_GENERAL_RO_ATTR(moved_blocks_foreground); F2FS_GENERAL_RO_ATTR(avg_vblocks); #endif #ifdef CONFIG_FS_ENCRYPTION F2FS_FEATURE_RO_ATTR(encryption, FEAT_CRYPTO); #endif #ifdef CONFIG_BLK_DEV_ZONED F2FS_FEATURE_RO_ATTR(block_zoned, FEAT_BLKZONED); #endif F2FS_FEATURE_RO_ATTR(atomic_write, FEAT_ATOMIC_WRITE); F2FS_FEATURE_RO_ATTR(extra_attr, FEAT_EXTRA_ATTR); F2FS_FEATURE_RO_ATTR(project_quota, FEAT_PROJECT_QUOTA); F2FS_FEATURE_RO_ATTR(inode_checksum, FEAT_INODE_CHECKSUM); F2FS_FEATURE_RO_ATTR(flexible_inline_xattr, FEAT_FLEXIBLE_INLINE_XATTR); F2FS_FEATURE_RO_ATTR(quota_ino, FEAT_QUOTA_INO); F2FS_FEATURE_RO_ATTR(inode_crtime, FEAT_INODE_CRTIME); F2FS_FEATURE_RO_ATTR(lost_found, FEAT_LOST_FOUND); #ifdef CONFIG_FS_VERITY F2FS_FEATURE_RO_ATTR(verity, FEAT_VERITY); #endif F2FS_FEATURE_RO_ATTR(sb_checksum, FEAT_SB_CHECKSUM); F2FS_FEATURE_RO_ATTR(casefold, FEAT_CASEFOLD); #ifdef CONFIG_F2FS_FS_COMPRESSION F2FS_FEATURE_RO_ATTR(compression, FEAT_COMPRESSION); #endif #define ATTR_LIST(name) (&f2fs_attr_##name.attr) static struct attribute *f2fs_attrs[] = { ATTR_LIST(gc_urgent_sleep_time), ATTR_LIST(gc_min_sleep_time), ATTR_LIST(gc_max_sleep_time), ATTR_LIST(gc_no_gc_sleep_time), ATTR_LIST(gc_idle), ATTR_LIST(gc_urgent), ATTR_LIST(reclaim_segments), ATTR_LIST(main_blkaddr), ATTR_LIST(max_small_discards), ATTR_LIST(discard_granularity), ATTR_LIST(batched_trim_sections), ATTR_LIST(ipu_policy), ATTR_LIST(min_ipu_util), ATTR_LIST(min_fsync_blocks), ATTR_LIST(min_seq_blocks), ATTR_LIST(min_hot_blocks), ATTR_LIST(min_ssr_sections), ATTR_LIST(max_victim_search), ATTR_LIST(migration_granularity), ATTR_LIST(dir_level), ATTR_LIST(ram_thresh), ATTR_LIST(ra_nid_pages), ATTR_LIST(dirty_nats_ratio), ATTR_LIST(cp_interval), ATTR_LIST(idle_interval), ATTR_LIST(discard_idle_interval), ATTR_LIST(gc_idle_interval), ATTR_LIST(umount_discard_timeout), ATTR_LIST(iostat_enable), ATTR_LIST(iostat_period_ms), ATTR_LIST(readdir_ra), ATTR_LIST(gc_pin_file_thresh), ATTR_LIST(extension_list), #ifdef CONFIG_F2FS_FAULT_INJECTION ATTR_LIST(inject_rate), ATTR_LIST(inject_type), #endif ATTR_LIST(data_io_flag), ATTR_LIST(dirty_segments), ATTR_LIST(free_segments), ATTR_LIST(unusable), ATTR_LIST(lifetime_write_kbytes), ATTR_LIST(features), ATTR_LIST(reserved_blocks), ATTR_LIST(current_reserved_blocks), ATTR_LIST(encoding), ATTR_LIST(mounted_time_sec), #ifdef CONFIG_F2FS_STAT_FS ATTR_LIST(cp_foreground_calls), ATTR_LIST(cp_background_calls), ATTR_LIST(gc_foreground_calls), ATTR_LIST(gc_background_calls), ATTR_LIST(moved_blocks_foreground), ATTR_LIST(moved_blocks_background), ATTR_LIST(avg_vblocks), #endif NULL, }; ATTRIBUTE_GROUPS(f2fs); static struct attribute *f2fs_feat_attrs[] = { #ifdef CONFIG_FS_ENCRYPTION ATTR_LIST(encryption), #endif #ifdef CONFIG_BLK_DEV_ZONED ATTR_LIST(block_zoned), #endif ATTR_LIST(atomic_write), ATTR_LIST(extra_attr), ATTR_LIST(project_quota), ATTR_LIST(inode_checksum), ATTR_LIST(flexible_inline_xattr), ATTR_LIST(quota_ino), ATTR_LIST(inode_crtime), ATTR_LIST(lost_found), #ifdef CONFIG_FS_VERITY ATTR_LIST(verity), #endif ATTR_LIST(sb_checksum), ATTR_LIST(casefold), #ifdef CONFIG_F2FS_FS_COMPRESSION ATTR_LIST(compression), #endif NULL, }; ATTRIBUTE_GROUPS(f2fs_feat); static const struct sysfs_ops f2fs_attr_ops = { .show = f2fs_attr_show, .store = f2fs_attr_store, }; static struct kobj_type f2fs_sb_ktype = { .default_groups = f2fs_groups, .sysfs_ops = &f2fs_attr_ops, .release = f2fs_sb_release, }; static struct kobj_type f2fs_ktype = { .sysfs_ops = &f2fs_attr_ops, }; static struct kset f2fs_kset = { .kobj = {.ktype = &f2fs_ktype}, }; static struct kobj_type f2fs_feat_ktype = { .default_groups = f2fs_feat_groups, .sysfs_ops = &f2fs_attr_ops, }; static struct kobject f2fs_feat = { .kset = &f2fs_kset, }; static int __maybe_unused segment_info_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main); int i; seq_puts(seq, "format: segment_type|valid_blocks\n" "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); for (i = 0; i < total_segs; i++) { struct seg_entry *se = get_seg_entry(sbi, i); if ((i % 10) == 0) seq_printf(seq, "%-10d", i); seq_printf(seq, "%d|%-3u", se->type, se->valid_blocks); if ((i % 10) == 9 || i == (total_segs - 1)) seq_putc(seq, '\n'); else seq_putc(seq, ' '); } return 0; } static int __maybe_unused segment_bits_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main); int i, j; seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); for (i = 0; i < total_segs; i++) { struct seg_entry *se = get_seg_entry(sbi, i); seq_printf(seq, "%-10d", i); seq_printf(seq, "%d|%-3u|", se->type, se->valid_blocks); for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) seq_printf(seq, " %.2x", se->cur_valid_map[j]); seq_putc(seq, '\n'); } return 0; } void f2fs_record_iostat(struct f2fs_sb_info *sbi) { unsigned long long iostat_diff[NR_IO_TYPE]; int i; if (time_is_after_jiffies(sbi->iostat_next_period)) return; /* Need double check under the lock */ spin_lock(&sbi->iostat_lock); if (time_is_after_jiffies(sbi->iostat_next_period)) { spin_unlock(&sbi->iostat_lock); return; } sbi->iostat_next_period = jiffies + msecs_to_jiffies(sbi->iostat_period_ms); for (i = 0; i < NR_IO_TYPE; i++) { iostat_diff[i] = sbi->rw_iostat[i] - sbi->prev_rw_iostat[i]; sbi->prev_rw_iostat[i] = sbi->rw_iostat[i]; } spin_unlock(&sbi->iostat_lock); trace_f2fs_iostat(sbi, iostat_diff); } static int __maybe_unused iostat_info_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); time64_t now = ktime_get_real_seconds(); if (!sbi->iostat_enable) return 0; seq_printf(seq, "time: %-16llu\n", now); /* print app write IOs */ seq_printf(seq, "app buffered: %-16llu\n", sbi->rw_iostat[APP_BUFFERED_IO]); seq_printf(seq, "app direct: %-16llu\n", sbi->rw_iostat[APP_DIRECT_IO]); seq_printf(seq, "app mapped: %-16llu\n", sbi->rw_iostat[APP_MAPPED_IO]); /* print fs write IOs */ seq_printf(seq, "fs data: %-16llu\n", sbi->rw_iostat[FS_DATA_IO]); seq_printf(seq, "fs node: %-16llu\n", sbi->rw_iostat[FS_NODE_IO]); seq_printf(seq, "fs meta: %-16llu\n", sbi->rw_iostat[FS_META_IO]); seq_printf(seq, "fs gc data: %-16llu\n", sbi->rw_iostat[FS_GC_DATA_IO]); seq_printf(seq, "fs gc node: %-16llu\n", sbi->rw_iostat[FS_GC_NODE_IO]); seq_printf(seq, "fs cp data: %-16llu\n", sbi->rw_iostat[FS_CP_DATA_IO]); seq_printf(seq, "fs cp node: %-16llu\n", sbi->rw_iostat[FS_CP_NODE_IO]); seq_printf(seq, "fs cp meta: %-16llu\n", sbi->rw_iostat[FS_CP_META_IO]); /* print app read IOs */ seq_printf(seq, "app buffered: %-16llu\n", sbi->rw_iostat[APP_BUFFERED_READ_IO]); seq_printf(seq, "app direct: %-16llu\n", sbi->rw_iostat[APP_DIRECT_READ_IO]); seq_printf(seq, "app mapped: %-16llu\n", sbi->rw_iostat[APP_MAPPED_READ_IO]); /* print fs read IOs */ seq_printf(seq, "fs data: %-16llu\n", sbi->rw_iostat[FS_DATA_READ_IO]); seq_printf(seq, "fs node: %-16llu\n", sbi->rw_iostat[FS_NODE_READ_IO]); seq_printf(seq, "fs meta: %-16llu\n", sbi->rw_iostat[FS_META_READ_IO]); /* print other IOs */ seq_printf(seq, "fs discard: %-16llu\n", sbi->rw_iostat[FS_DISCARD]); return 0; } static int __maybe_unused victim_bits_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); int i; seq_puts(seq, "format: victim_secmap bitmaps\n"); for (i = 0; i < MAIN_SECS(sbi); i++) { if ((i % 10) == 0) seq_printf(seq, "%-10d", i); seq_printf(seq, "%d", test_bit(i, dirty_i->victim_secmap) ? 1 : 0); if ((i % 10) == 9 || i == (MAIN_SECS(sbi) - 1)) seq_putc(seq, '\n'); else seq_putc(seq, ' '); } return 0; } int __init f2fs_init_sysfs(void) { int ret; kobject_set_name(&f2fs_kset.kobj, "f2fs"); f2fs_kset.kobj.parent = fs_kobj; ret = kset_register(&f2fs_kset); if (ret) return ret; ret = kobject_init_and_add(&f2fs_feat, &f2fs_feat_ktype, NULL, "features"); if (ret) { kobject_put(&f2fs_feat); kset_unregister(&f2fs_kset); } else { f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); } return ret; } void f2fs_exit_sysfs(void) { kobject_put(&f2fs_feat); kset_unregister(&f2fs_kset); remove_proc_entry("fs/f2fs", NULL); f2fs_proc_root = NULL; } int f2fs_register_sysfs(struct f2fs_sb_info *sbi) { struct super_block *sb = sbi->sb; int err; sbi->s_kobj.kset = &f2fs_kset; init_completion(&sbi->s_kobj_unregister); err = kobject_init_and_add(&sbi->s_kobj, &f2fs_sb_ktype, NULL, "%s", sb->s_id); if (err) { kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); return err; } if (f2fs_proc_root) sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); if (sbi->s_proc) { proc_create_single_data("segment_info", S_IRUGO, sbi->s_proc, segment_info_seq_show, sb); proc_create_single_data("segment_bits", S_IRUGO, sbi->s_proc, segment_bits_seq_show, sb); proc_create_single_data("iostat_info", S_IRUGO, sbi->s_proc, iostat_info_seq_show, sb); proc_create_single_data("victim_bits", S_IRUGO, sbi->s_proc, victim_bits_seq_show, sb); } return 0; } void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi) { if (sbi->s_proc) { remove_proc_entry("iostat_info", sbi->s_proc); remove_proc_entry("segment_info", sbi->s_proc); remove_proc_entry("segment_bits", sbi->s_proc); remove_proc_entry("victim_bits", sbi->s_proc); remove_proc_entry(sbi->sb->s_id, f2fs_proc_root); } kobject_del(&sbi->s_kobj); kobject_put(&sbi->s_kobj); }