/* SPDX-License-Identifier: GPL-2.0 */ /* * fs/f2fs/node.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ /* start node id of a node block dedicated to the given node id */ #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) /* node block offset on the NAT area dedicated to the given start node id */ #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) /* # of pages to perform synchronous readahead before building free nids */ #define FREE_NID_PAGES 8 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ /* maximum readahead size for node during getting data blocks */ #define MAX_RA_NODE 128 /* control the memory footprint threshold (10MB per 1GB ram) */ #define DEF_RAM_THRESHOLD 1 /* control dirty nats ratio threshold (default: 10% over max nid count) */ #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 /* control total # of nats */ #define DEF_NAT_CACHE_THRESHOLD 100000 /* vector size for gang look-up from nat cache that consists of radix tree */ #define NATVEC_SIZE 64 #define SETVEC_SIZE 32 /* return value for read_node_page */ #define LOCKED_PAGE 1 /* For flag in struct node_info */ enum { IS_CHECKPOINTED, /* is it checkpointed before? */ HAS_FSYNCED_INODE, /* is the inode fsynced before? */ HAS_LAST_FSYNC, /* has the latest node fsync mark? */ IS_DIRTY, /* this nat entry is dirty? */ IS_PREALLOC, /* nat entry is preallocated */ }; /* * For node information */ struct node_info { nid_t nid; /* node id */ nid_t ino; /* inode number of the node's owner */ block_t blk_addr; /* block address of the node */ unsigned char version; /* version of the node */ unsigned char flag; /* for node information bits */ }; struct nat_entry { struct list_head list; /* for clean or dirty nat list */ struct node_info ni; /* in-memory node information */ }; #define nat_get_nid(nat) ((nat)->ni.nid) #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) #define nat_get_ino(nat) ((nat)->ni.ino) #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) #define nat_get_version(nat) ((nat)->ni.version) #define nat_set_version(nat, v) ((nat)->ni.version = (v)) #define inc_node_version(version) (++(version)) static inline void copy_node_info(struct node_info *dst, struct node_info *src) { dst->nid = src->nid; dst->ino = src->ino; dst->blk_addr = src->blk_addr; dst->version = src->version; /* should not copy flag here */ } static inline void set_nat_flag(struct nat_entry *ne, unsigned int type, bool set) { unsigned char mask = 0x01 << type; if (set) ne->ni.flag |= mask; else ne->ni.flag &= ~mask; } static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) { unsigned char mask = 0x01 << type; return ne->ni.flag & mask; } static inline void nat_reset_flag(struct nat_entry *ne) { /* these states can be set only after checkpoint was done */ set_nat_flag(ne, IS_CHECKPOINTED, true); set_nat_flag(ne, HAS_FSYNCED_INODE, false); set_nat_flag(ne, HAS_LAST_FSYNC, true); } static inline void node_info_from_raw_nat(struct node_info *ni, struct f2fs_nat_entry *raw_ne) { ni->ino = le32_to_cpu(raw_ne->ino); ni->blk_addr = le32_to_cpu(raw_ne->block_addr); ni->version = raw_ne->version; } static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, struct node_info *ni) { raw_ne->ino = cpu_to_le32(ni->ino); raw_ne->block_addr = cpu_to_le32(ni->blk_addr); raw_ne->version = ni->version; } static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) { return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * NM_I(sbi)->dirty_nats_ratio / 100; } static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) { return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; } static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi) { return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8; } enum mem_type { FREE_NIDS, /* indicates the free nid list */ NAT_ENTRIES, /* indicates the cached nat entry */ DIRTY_DENTS, /* indicates dirty dentry pages */ INO_ENTRIES, /* indicates inode entries */ EXTENT_CACHE, /* indicates extent cache */ INMEM_PAGES, /* indicates inmemory pages */ BASE_CHECK, /* check kernel status */ }; struct nat_entry_set { struct list_head set_list; /* link with other nat sets */ struct list_head entry_list; /* link with dirty nat entries */ nid_t set; /* set number*/ unsigned int entry_cnt; /* the # of nat entries in set */ }; struct free_nid { struct list_head list; /* for free node id list */ nid_t nid; /* node id */ int state; /* in use or not: FREE_NID or PREALLOC_NID */ }; static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *fnid; spin_lock(&nm_i->nid_list_lock); if (nm_i->nid_cnt[FREE_NID] <= 0) { spin_unlock(&nm_i->nid_list_lock); return; } fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); *nid = fnid->nid; spin_unlock(&nm_i->nid_list_lock); } /* * inline functions */ static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) { struct f2fs_nm_info *nm_i = NM_I(sbi); #ifdef CONFIG_F2FS_CHECK_FS if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, nm_i->bitmap_size)) f2fs_bug_on(sbi, 1); #endif memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); } static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) { struct f2fs_nm_info *nm_i = NM_I(sbi); pgoff_t block_off; pgoff_t block_addr; /* * block_off = segment_off * 512 + off_in_segment * OLD = (segment_off * 512) * 2 + off_in_segment * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment */ block_off = NAT_BLOCK_OFFSET(start); block_addr = (pgoff_t)(nm_i->nat_blkaddr + (block_off << 1) - (block_off & (sbi->blocks_per_seg - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; return block_addr; } static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, pgoff_t block_addr) { struct f2fs_nm_info *nm_i = NM_I(sbi); block_addr -= nm_i->nat_blkaddr; block_addr ^= 1 << sbi->log_blocks_per_seg; return block_addr + nm_i->nat_blkaddr; } static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) { unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); f2fs_change_bit(block_off, nm_i->nat_bitmap); #ifdef CONFIG_F2FS_CHECK_FS f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); #endif } static inline nid_t ino_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.ino); } static inline nid_t nid_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.nid); } static inline unsigned int ofs_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); unsigned flag = le32_to_cpu(rn->footer.flag); return flag >> OFFSET_BIT_SHIFT; } static inline __u64 cpver_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le64_to_cpu(rn->footer.cp_ver); } static inline block_t next_blkaddr_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.next_blkaddr); } static inline void fill_node_footer(struct page *page, nid_t nid, nid_t ino, unsigned int ofs, bool reset) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int old_flag = 0; if (reset) memset(rn, 0, sizeof(*rn)); else old_flag = le32_to_cpu(rn->footer.flag); rn->footer.nid = cpu_to_le32(nid); rn->footer.ino = cpu_to_le32(ino); /* should remain old flag bits such as COLD_BIT_SHIFT */ rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | (old_flag & OFFSET_BIT_MASK)); } static inline void copy_node_footer(struct page *dst, struct page *src) { struct f2fs_node *src_rn = F2FS_NODE(src); struct f2fs_node *dst_rn = F2FS_NODE(dst); memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); } static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); struct f2fs_node *rn = F2FS_NODE(page); __u64 cp_ver = cur_cp_version(ckpt); if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) cp_ver |= (cur_cp_crc(ckpt) << 32); rn->footer.cp_ver = cpu_to_le64(cp_ver); rn->footer.next_blkaddr = cpu_to_le32(blkaddr); } static inline bool is_recoverable_dnode(struct page *page) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); __u64 cp_ver = cur_cp_version(ckpt); /* Don't care crc part, if fsck.f2fs sets it. */ if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) return (cp_ver << 32) == (cpver_of_node(page) << 32); if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) cp_ver |= (cur_cp_crc(ckpt) << 32); return cp_ver == cpver_of_node(page); } /* * f2fs assigns the following node offsets described as (num). * N = NIDS_PER_BLOCK * * Inode block (0) * |- direct node (1) * |- direct node (2) * |- indirect node (3) * | `- direct node (4 => 4 + N - 1) * |- indirect node (4 + N) * | `- direct node (5 + N => 5 + 2N - 1) * `- double indirect node (5 + 2N) * `- indirect node (6 + 2N) * `- direct node * ...... * `- indirect node ((6 + 2N) + x(N + 1)) * `- direct node * ...... * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) * `- direct node */ static inline bool IS_DNODE(struct page *node_page) { unsigned int ofs = ofs_of_node(node_page); if (f2fs_has_xattr_block(ofs)) return true; if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || ofs == 5 + 2 * NIDS_PER_BLOCK) return false; if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { ofs -= 6 + 2 * NIDS_PER_BLOCK; if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) return false; } return true; } static inline int set_nid(struct page *p, int off, nid_t nid, bool i) { struct f2fs_node *rn = F2FS_NODE(p); f2fs_wait_on_page_writeback(p, NODE, true, true); if (i) rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); else rn->in.nid[off] = cpu_to_le32(nid); return set_page_dirty(p); } static inline nid_t get_nid(struct page *p, int off, bool i) { struct f2fs_node *rn = F2FS_NODE(p); if (i) return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); return le32_to_cpu(rn->in.nid[off]); } /* * Coldness identification: * - Mark cold files in f2fs_inode_info * - Mark cold node blocks in their node footer * - Mark cold data pages in page cache */ static inline int is_cold_data(struct page *page) { return PageChecked(page); } static inline void set_cold_data(struct page *page) { SetPageChecked(page); } static inline void clear_cold_data(struct page *page) { ClearPageChecked(page); } static inline int is_node(struct page *page, int type) { struct f2fs_node *rn = F2FS_NODE(page); return le32_to_cpu(rn->footer.flag) & (1 << type); } #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) static inline int is_inline_node(struct page *page) { return PageChecked(page); } static inline void set_inline_node(struct page *page) { SetPageChecked(page); } static inline void clear_inline_node(struct page *page) { ClearPageChecked(page); } static inline void set_cold_node(struct page *page, bool is_dir) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int flag = le32_to_cpu(rn->footer.flag); if (is_dir) flag &= ~(0x1 << COLD_BIT_SHIFT); else flag |= (0x1 << COLD_BIT_SHIFT); rn->footer.flag = cpu_to_le32(flag); } static inline void set_mark(struct page *page, int mark, int type) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int flag = le32_to_cpu(rn->footer.flag); if (mark) flag |= (0x1 << type); else flag &= ~(0x1 << type); rn->footer.flag = cpu_to_le32(flag); #ifdef CONFIG_F2FS_CHECK_FS f2fs_inode_chksum_set(F2FS_P_SB(page), page); #endif } #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)