/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2007 Oracle. All rights reserved. */ #ifndef BTRFS_INODE_H #define BTRFS_INODE_H #include #include #include #include #include #include #include #include #include #include #include #include #include "block-rsv.h" #include "btrfs_inode.h" #include "extent_map.h" #include "extent_io.h" #include "extent-io-tree.h" #include "ordered-data.h" #include "delayed-inode.h" struct extent_state; struct posix_acl; struct iov_iter; struct writeback_control; struct btrfs_root; struct btrfs_fs_info; struct btrfs_trans_handle; /* * Since we search a directory based on f_pos (struct dir_context::pos) we have * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). */ #define BTRFS_DIR_START_INDEX 2 /* * ordered_data_close is set by truncate when a file that used * to have good data has been truncated to zero. When it is set * the btrfs file release call will add this inode to the * ordered operations list so that we make sure to flush out any * new data the application may have written before commit. */ enum { BTRFS_INODE_FLUSH_ON_CLOSE, BTRFS_INODE_DUMMY, BTRFS_INODE_IN_DEFRAG, BTRFS_INODE_HAS_ASYNC_EXTENT, /* * Always set under the VFS' inode lock, otherwise it can cause races * during fsync (we start as a fast fsync and then end up in a full * fsync racing with ordered extent completion). */ BTRFS_INODE_NEEDS_FULL_SYNC, BTRFS_INODE_COPY_EVERYTHING, BTRFS_INODE_HAS_PROPS, BTRFS_INODE_SNAPSHOT_FLUSH, /* * Set and used when logging an inode and it serves to signal that an * inode does not have xattrs, so subsequent fsyncs can avoid searching * for xattrs to log. This bit must be cleared whenever a xattr is added * to an inode. */ BTRFS_INODE_NO_XATTRS, /* * Set when we are in a context where we need to start a transaction and * have dirty pages with the respective file range locked. This is to * ensure that when reserving space for the transaction, if we are low * on available space and need to flush delalloc, we will not flush * delalloc for this inode, because that could result in a deadlock (on * the file range, inode's io_tree). */ BTRFS_INODE_NO_DELALLOC_FLUSH, /* * Set when we are working on enabling verity for a file. Computing and * writing the whole Merkle tree can take a while so we want to prevent * races where two separate tasks attempt to simultaneously start verity * on the same file. */ BTRFS_INODE_VERITY_IN_PROGRESS, /* Set when this inode is a free space inode. */ BTRFS_INODE_FREE_SPACE_INODE, /* Set when there are no capabilities in XATTs for the inode. */ BTRFS_INODE_NO_CAP_XATTR, /* * Set if an error happened when doing a COW write before submitting a * bio or during writeback. Used for both buffered writes and direct IO * writes. This is to signal a fast fsync that it has to wait for * ordered extents to complete and therefore not log extent maps that * point to unwritten extents (when an ordered extent completes and it * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its * range). */ BTRFS_INODE_COW_WRITE_ERROR, /* * Indicate this is a directory that points to a subvolume for which * there is no root reference item. That's a case like the following: * * $ btrfs subvolume create /mnt/parent * $ btrfs subvolume create /mnt/parent/child * $ btrfs subvolume snapshot /mnt/parent /mnt/snap * * If subvolume "parent" is root 256, subvolume "child" is root 257 and * snapshot "snap" is root 258, then there's no root reference item (key * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child" * associated to root 258 (the snapshot) - there's only for the root * of the "parent" subvolume (root 256). In the chunk root we have a * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a * (257 BTRFS_ROOT_BACKREF_KEY 258) key. * * So when opening the "child" dentry from the snapshot's directory, * we don't find a root ref item and we create a stub inode. This is * done at new_simple_dir(), called from btrfs_lookup_dentry(). */ BTRFS_INODE_ROOT_STUB, }; /* in memory btrfs inode */ struct btrfs_inode { /* which subvolume this inode belongs to */ struct btrfs_root *root; #if BITS_PER_LONG == 32 /* * The objectid of the corresponding BTRFS_INODE_ITEM_KEY. * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an * unsigned long and therefore 64 bits on such platforms. */ u64 objectid; #endif /* Cached value of inode property 'compression'. */ u8 prop_compress; /* * Force compression on the file using the defrag ioctl, could be * different from prop_compress and takes precedence if set. */ u8 defrag_compress; /* * Lock for counters and all fields used to determine if the inode is in * the log or not (last_trans, last_sub_trans, last_log_commit, * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes, * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to * update the VFS' inode number of bytes used. */ spinlock_t lock; /* the extent_tree has caches of all the extent mappings to disk */ struct extent_map_tree extent_tree; /* the io_tree does range state (DIRTY, LOCKED etc) */ struct extent_io_tree io_tree; /* * Keep track of where the inode has extent items mapped in order to * make sure the i_size adjustments are accurate. Not required when the * filesystem is NO_HOLES, the status can't be set while mounted as * it's a mkfs-time feature. */ struct extent_io_tree *file_extent_tree; /* held while logging the inode in tree-log.c */ struct mutex log_mutex; /* * Counters to keep track of the number of extent item's we may use due * to delalloc and such. outstanding_extents is the number of extent * items we think we'll end up using, and reserved_extents is the number * of extent items we've reserved metadata for. Protected by 'lock'. */ unsigned outstanding_extents; /* used to order data wrt metadata */ spinlock_t ordered_tree_lock; struct rb_root ordered_tree; struct rb_node *ordered_tree_last; /* list of all the delalloc inodes in the FS. There are times we need * to write all the delalloc pages to disk, and this list is used * to walk them all. */ struct list_head delalloc_inodes; unsigned long runtime_flags; /* full 64 bit generation number, struct vfs_inode doesn't have a big * enough field for this. */ u64 generation; /* * ID of the transaction handle that last modified this inode. * Protected by 'lock'. */ u64 last_trans; /* * ID of the transaction that last logged this inode. * Protected by 'lock'. */ u64 logged_trans; /* * Log transaction ID when this inode was last modified. * Protected by 'lock'. */ int last_sub_trans; /* A local copy of root's last_log_commit. Protected by 'lock'. */ int last_log_commit; union { /* * Total number of bytes pending delalloc, used by stat to * calculate the real block usage of the file. This is used * only for files. Protected by 'lock'. */ u64 delalloc_bytes; /* * The lowest possible index of the next dir index key which * points to an inode that needs to be logged. * This is used only for directories. * Use the helpers btrfs_get_first_dir_index_to_log() and * btrfs_set_first_dir_index_to_log() to access this field. */ u64 first_dir_index_to_log; }; union { /* * Total number of bytes pending delalloc that fall within a file * range that is either a hole or beyond EOF (and no prealloc extent * exists in the range). This is always <= delalloc_bytes and this * is used only for files. Protected by 'lock'. */ u64 new_delalloc_bytes; /* * The offset of the last dir index key that was logged. * This is used only for directories. */ u64 last_dir_index_offset; }; union { /* * Total number of bytes pending defrag, used by stat to check whether * it needs COW. Protected by 'lock'. * Used by inodes other than the data relocation inode. */ u64 defrag_bytes; /* * Logical address of the block group being relocated. * Used only by the data relocation inode. */ u64 reloc_block_group_start; }; /* * The size of the file stored in the metadata on disk. data=ordered * means the in-memory i_size might be larger than the size on disk * because not all the blocks are written yet. Protected by 'lock'. */ u64 disk_i_size; union { /* * If this is a directory then index_cnt is the counter for the * index number for new files that are created. For an empty * directory, this must be initialized to BTRFS_DIR_START_INDEX. */ u64 index_cnt; /* * If this is not a directory, this is the number of bytes * outstanding that are going to need csums. This is used in * ENOSPC accounting. Protected by 'lock'. */ u64 csum_bytes; }; /* Cache the directory index number to speed the dir/file remove */ u64 dir_index; /* the fsync log has some corner cases that mean we have to check * directories to see if any unlinks have been done before * the directory was logged. See tree-log.c for all the * details */ u64 last_unlink_trans; union { /* * The id/generation of the last transaction where this inode * was either the source or the destination of a clone/dedupe * operation. Used when logging an inode to know if there are * shared extents that need special care when logging checksum * items, to avoid duplicate checksum items in a log (which can * lead to a corruption where we end up with missing checksum * ranges after log replay). Protected by the VFS inode lock. * Used for regular files only. */ u64 last_reflink_trans; /* * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set), * the ID of that root. */ u64 ref_root_id; }; /* Backwards incompatible flags, lower half of inode_item::flags */ u32 flags; /* Read-only compatibility flags, upper half of inode_item::flags */ u32 ro_flags; struct btrfs_block_rsv block_rsv; struct btrfs_delayed_node *delayed_node; /* File creation time. */ u64 i_otime_sec; u32 i_otime_nsec; /* Hook into fs_info->delayed_iputs */ struct list_head delayed_iput; struct rw_semaphore i_mmap_lock; struct inode vfs_inode; }; static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode) { return READ_ONCE(inode->first_dir_index_to_log); } static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode, u64 index) { WRITE_ONCE(inode->first_dir_index_to_log, index); } static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) { return container_of(inode, struct btrfs_inode, vfs_inode); } static inline unsigned long btrfs_inode_hash(u64 objectid, const struct btrfs_root *root) { u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); #if BITS_PER_LONG == 32 h = (h >> 32) ^ (h & 0xffffffff); #endif return (unsigned long)h; } #if BITS_PER_LONG == 32 /* * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so * we use the inode's location objectid which is a u64 to avoid truncation. */ static inline u64 btrfs_ino(const struct btrfs_inode *inode) { u64 ino = inode->objectid; if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags)) ino = inode->vfs_inode.i_ino; return ino; } #else static inline u64 btrfs_ino(const struct btrfs_inode *inode) { return inode->vfs_inode.i_ino; } #endif static inline void btrfs_get_inode_key(const struct btrfs_inode *inode, struct btrfs_key *key) { key->objectid = btrfs_ino(inode); key->type = BTRFS_INODE_ITEM_KEY; key->offset = 0; } static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino) { #if BITS_PER_LONG == 32 inode->objectid = ino; #endif inode->vfs_inode.i_ino = ino; } static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) { i_size_write(&inode->vfs_inode, size); inode->disk_i_size = size; } static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) { return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); } static inline bool is_data_inode(struct inode *inode) { return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; } static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, int mod) { lockdep_assert_held(&inode->lock); inode->outstanding_extents += mod; if (btrfs_is_free_space_inode(inode)) return; trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), mod, inode->outstanding_extents); } /* * Called every time after doing a buffered, direct IO or memory mapped write. * * This is to ensure that if we write to a file that was previously fsynced in * the current transaction, then try to fsync it again in the same transaction, * we will know that there were changes in the file and that it needs to be * logged. */ static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) { spin_lock(&inode->lock); inode->last_sub_trans = inode->root->log_transid; spin_unlock(&inode->lock); } /* * Should be called while holding the inode's VFS lock in exclusive mode, or * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in * either shared or exclusive mode, or in a context where no one else can access * the inode concurrently (during inode creation or when loading an inode from * disk). */ static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) { set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); /* * The inode may have been part of a reflink operation in the last * transaction that modified it, and then a fsync has reset the * last_reflink_trans to avoid subsequent fsyncs in the same * transaction to do unnecessary work. So update last_reflink_trans * to the last_trans value (we have to be pessimistic and assume a * reflink happened). * * The ->last_trans is protected by the inode's spinlock and we can * have a concurrent ordered extent completion update it. Also set * last_reflink_trans to ->last_trans only if the former is less than * the later, because we can be called in a context where * last_reflink_trans was set to the current transaction generation * while ->last_trans was not yet updated in the current transaction, * and therefore has a lower value. */ spin_lock(&inode->lock); if (inode->last_reflink_trans < inode->last_trans) inode->last_reflink_trans = inode->last_trans; spin_unlock(&inode->lock); } static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) { bool ret = false; spin_lock(&inode->lock); if (inode->logged_trans == generation && inode->last_sub_trans <= inode->last_log_commit && inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root)) ret = true; spin_unlock(&inode->lock); return ret; } /* * Check if the inode has flags compatible with compression */ static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) { if (inode->flags & BTRFS_INODE_NODATACOW || inode->flags & BTRFS_INODE_NODATASUM) return false; return true; } /* Array of bytes with variable length, hexadecimal format 0x1234 */ #define CSUM_FMT "0x%*phN" #define CSUM_FMT_VALUE(size, bytes) size, bytes int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, u32 pgoff, u8 *csum, const u8 * const csum_expected); bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, u32 bio_offset, struct bio_vec *bv); noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, u64 *orig_start, u64 *orig_block_len, u64 *ram_bytes, bool nowait, bool strict); void btrfs_del_delalloc_inode(struct btrfs_inode *inode); struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, struct btrfs_inode *inode, const struct fscrypt_str *name); int btrfs_add_link(struct btrfs_trans_handle *trans, struct btrfs_inode *parent_inode, struct btrfs_inode *inode, const struct fscrypt_str *name, int add_backref, u64 index); int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry); int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, int front); int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, bool in_reclaim_context); int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, unsigned int extra_bits, struct extent_state **cached_state); struct btrfs_new_inode_args { /* Input */ struct inode *dir; struct dentry *dentry; struct inode *inode; bool orphan; bool subvol; /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ struct posix_acl *default_acl; struct posix_acl *acl; struct fscrypt_name fname; }; int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, unsigned int *trans_num_items); int btrfs_create_new_inode(struct btrfs_trans_handle *trans, struct btrfs_new_inode_args *args); void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, struct inode *dir); void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, u32 bits); void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, u32 bits); void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, struct extent_state *other); void btrfs_split_delalloc_extent(struct btrfs_inode *inode, struct extent_state *orig, u64 split); void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); void btrfs_evict_inode(struct inode *inode); struct inode *btrfs_alloc_inode(struct super_block *sb); void btrfs_destroy_inode(struct inode *inode); void btrfs_free_inode(struct inode *inode); int btrfs_drop_inode(struct inode *inode); int __init btrfs_init_cachep(void); void __cold btrfs_destroy_cachep(void); struct inode *btrfs_iget_path(struct super_block *s, u64 ino, struct btrfs_root *root, struct btrfs_path *path); struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, struct page *page, u64 start, u64 len); int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); int btrfs_orphan_cleanup(struct btrfs_root *root); int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); void btrfs_add_delayed_iput(struct btrfs_inode *inode); void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_prealloc_file_range_trans(struct inode *inode, struct btrfs_trans_handle *trans, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, struct writeback_control *wbc); int btrfs_writepage_cow_fixup(struct page *page); int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, int compress_type); int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 disk_io_size, struct page **pages); ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, struct btrfs_ioctl_encoded_io_args *encoded); ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, const struct btrfs_ioctl_encoded_io_args *encoded); ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino); extern const struct dentry_operations btrfs_dentry_operations; /* Inode locking type flags, by default the exclusive lock is taken. */ enum btrfs_ilock_type { ENUM_BIT(BTRFS_ILOCK_SHARED), ENUM_BIT(BTRFS_ILOCK_TRY), ENUM_BIT(BTRFS_ILOCK_MMAP), }; int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, const u64 del_bytes); void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); #endif