// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com) * * Driver for the ARC EMAC 10100 (hardware revision 5) * * Contributors: * Amit Bhor * Sameer Dhavale * Vineet Gupta */ #include #include #include #include #include #include #include #include #include #include #include "emac.h" static void arc_emac_restart(struct net_device *ndev); /** * arc_emac_tx_avail - Return the number of available slots in the tx ring. * @priv: Pointer to ARC EMAC private data structure. * * returns: the number of slots available for transmission in tx the ring. */ static inline int arc_emac_tx_avail(struct arc_emac_priv *priv) { return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM; } /** * arc_emac_adjust_link - Adjust the PHY link duplex. * @ndev: Pointer to the net_device structure. * * This function is called to change the duplex setting after auto negotiation * is done by the PHY. */ static void arc_emac_adjust_link(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct phy_device *phy_dev = ndev->phydev; unsigned int reg, state_changed = 0; if (priv->link != phy_dev->link) { priv->link = phy_dev->link; state_changed = 1; } if (priv->speed != phy_dev->speed) { priv->speed = phy_dev->speed; state_changed = 1; if (priv->set_mac_speed) priv->set_mac_speed(priv, priv->speed); } if (priv->duplex != phy_dev->duplex) { reg = arc_reg_get(priv, R_CTRL); if (phy_dev->duplex == DUPLEX_FULL) reg |= ENFL_MASK; else reg &= ~ENFL_MASK; arc_reg_set(priv, R_CTRL, reg); priv->duplex = phy_dev->duplex; state_changed = 1; } if (state_changed) phy_print_status(phy_dev); } /** * arc_emac_get_drvinfo - Get EMAC driver information. * @ndev: Pointer to net_device structure. * @info: Pointer to ethtool_drvinfo structure. * * This implements ethtool command for getting the driver information. * Issue "ethtool -i ethX" under linux prompt to execute this function. */ static void arc_emac_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct arc_emac_priv *priv = netdev_priv(ndev); strscpy(info->driver, priv->drv_name, sizeof(info->driver)); } static const struct ethtool_ops arc_emac_ethtool_ops = { .get_drvinfo = arc_emac_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK) /** * arc_emac_tx_clean - clears processed by EMAC Tx BDs. * @ndev: Pointer to the network device. */ static void arc_emac_tx_clean(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct device *dev = ndev->dev.parent; unsigned int i; for (i = 0; i < TX_BD_NUM; i++) { unsigned int *txbd_dirty = &priv->txbd_dirty; struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty]; struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty]; struct sk_buff *skb = tx_buff->skb; unsigned int info = le32_to_cpu(txbd->info); if ((info & FOR_EMAC) || !txbd->data || !skb) break; if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) { stats->tx_errors++; stats->tx_dropped++; if (info & DEFR) stats->tx_carrier_errors++; if (info & LTCL) stats->collisions++; if (info & UFLO) stats->tx_fifo_errors++; } else if (likely(info & FIRST_OR_LAST_MASK)) { stats->tx_packets++; stats->tx_bytes += skb->len; } dma_unmap_single(dev, dma_unmap_addr(tx_buff, addr), dma_unmap_len(tx_buff, len), DMA_TO_DEVICE); /* return the sk_buff to system */ dev_consume_skb_irq(skb); txbd->data = 0; txbd->info = 0; tx_buff->skb = NULL; *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM; } /* Ensure that txbd_dirty is visible to tx() before checking * for queue stopped. */ smp_mb(); if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv)) netif_wake_queue(ndev); } /** * arc_emac_rx - processing of Rx packets. * @ndev: Pointer to the network device. * @budget: How many BDs to process on 1 call. * * returns: Number of processed BDs * * Iterate through Rx BDs and deliver received packages to upper layer. */ static int arc_emac_rx(struct net_device *ndev, int budget) { struct arc_emac_priv *priv = netdev_priv(ndev); struct device *dev = ndev->dev.parent; unsigned int work_done; for (work_done = 0; work_done < budget; work_done++) { unsigned int *last_rx_bd = &priv->last_rx_bd; struct net_device_stats *stats = &ndev->stats; struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; unsigned int pktlen, info = le32_to_cpu(rxbd->info); struct sk_buff *skb; dma_addr_t addr; if (unlikely((info & OWN_MASK) == FOR_EMAC)) break; /* Make a note that we saw a packet at this BD. * So next time, driver starts from this + 1 */ *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; if (unlikely((info & FIRST_OR_LAST_MASK) != FIRST_OR_LAST_MASK)) { /* We pre-allocate buffers of MTU size so incoming * packets won't be split/chained. */ if (net_ratelimit()) netdev_err(ndev, "incomplete packet received\n"); /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); stats->rx_errors++; stats->rx_length_errors++; continue; } /* Prepare the BD for next cycle. netif_receive_skb() * only if new skb was allocated and mapped to avoid holes * in the RX fifo. */ skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE); if (unlikely(!skb)) { if (net_ratelimit()) netdev_err(ndev, "cannot allocate skb\n"); /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); stats->rx_errors++; stats->rx_dropped++; continue; } addr = dma_map_single(dev, (void *)skb->data, EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, addr)) { if (net_ratelimit()) netdev_err(ndev, "cannot map dma buffer\n"); dev_kfree_skb(skb); /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); stats->rx_errors++; stats->rx_dropped++; continue; } /* unmap previosly mapped skb */ dma_unmap_single(dev, dma_unmap_addr(rx_buff, addr), dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE); pktlen = info & LEN_MASK; stats->rx_packets++; stats->rx_bytes += pktlen; skb_put(rx_buff->skb, pktlen); rx_buff->skb->dev = ndev; rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev); netif_receive_skb(rx_buff->skb); rx_buff->skb = skb; dma_unmap_addr_set(rx_buff, addr, addr); dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); rxbd->data = cpu_to_le32(addr); /* Make sure pointer to data buffer is set */ wmb(); /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); } return work_done; } /** * arc_emac_rx_miss_handle - handle R_MISS register * @ndev: Pointer to the net_device structure. */ static void arc_emac_rx_miss_handle(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; unsigned int miss; miss = arc_reg_get(priv, R_MISS); if (miss) { stats->rx_errors += miss; stats->rx_missed_errors += miss; priv->rx_missed_errors += miss; } } /** * arc_emac_rx_stall_check - check RX stall * @ndev: Pointer to the net_device structure. * @budget: How many BDs requested to process on 1 call. * @work_done: How many BDs processed * * Under certain conditions EMAC stop reception of incoming packets and * continuously increment R_MISS register instead of saving data into * provided buffer. This function detect that condition and restart * EMAC. */ static void arc_emac_rx_stall_check(struct net_device *ndev, int budget, unsigned int work_done) { struct arc_emac_priv *priv = netdev_priv(ndev); struct arc_emac_bd *rxbd; if (work_done) priv->rx_missed_errors = 0; if (priv->rx_missed_errors && budget) { rxbd = &priv->rxbd[priv->last_rx_bd]; if (le32_to_cpu(rxbd->info) & FOR_EMAC) { arc_emac_restart(ndev); priv->rx_missed_errors = 0; } } } /** * arc_emac_poll - NAPI poll handler. * @napi: Pointer to napi_struct structure. * @budget: How many BDs to process on 1 call. * * returns: Number of processed BDs */ static int arc_emac_poll(struct napi_struct *napi, int budget) { struct net_device *ndev = napi->dev; struct arc_emac_priv *priv = netdev_priv(ndev); unsigned int work_done; arc_emac_tx_clean(ndev); arc_emac_rx_miss_handle(ndev); work_done = arc_emac_rx(ndev, budget); if (work_done < budget) { napi_complete_done(napi, work_done); arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); } arc_emac_rx_stall_check(ndev, budget, work_done); return work_done; } /** * arc_emac_intr - Global interrupt handler for EMAC. * @irq: irq number. * @dev_instance: device instance. * * returns: IRQ_HANDLED for all cases. * * ARC EMAC has only 1 interrupt line, and depending on bits raised in * STATUS register we may tell what is a reason for interrupt to fire. */ static irqreturn_t arc_emac_intr(int irq, void *dev_instance) { struct net_device *ndev = dev_instance; struct arc_emac_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; unsigned int status; status = arc_reg_get(priv, R_STATUS); status &= ~MDIO_MASK; /* Reset all flags except "MDIO complete" */ arc_reg_set(priv, R_STATUS, status); if (status & (RXINT_MASK | TXINT_MASK)) { if (likely(napi_schedule_prep(&priv->napi))) { arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); __napi_schedule(&priv->napi); } } if (status & ERR_MASK) { /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding * 8-bit error counter overrun. */ if (status & MSER_MASK) { stats->rx_missed_errors += 0x100; stats->rx_errors += 0x100; priv->rx_missed_errors += 0x100; napi_schedule(&priv->napi); } if (status & RXCR_MASK) { stats->rx_crc_errors += 0x100; stats->rx_errors += 0x100; } if (status & RXFR_MASK) { stats->rx_frame_errors += 0x100; stats->rx_errors += 0x100; } if (status & RXFL_MASK) { stats->rx_over_errors += 0x100; stats->rx_errors += 0x100; } } return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void arc_emac_poll_controller(struct net_device *dev) { disable_irq(dev->irq); arc_emac_intr(dev->irq, dev); enable_irq(dev->irq); } #endif /** * arc_emac_open - Open the network device. * @ndev: Pointer to the network device. * * returns: 0, on success or non-zero error value on failure. * * This function sets the MAC address, requests and enables an IRQ * for the EMAC device and starts the Tx queue. * It also connects to the phy device. */ static int arc_emac_open(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct phy_device *phy_dev = ndev->phydev; struct device *dev = ndev->dev.parent; int i; phy_dev->autoneg = AUTONEG_ENABLE; phy_dev->speed = 0; phy_dev->duplex = 0; linkmode_and(phy_dev->advertising, phy_dev->advertising, phy_dev->supported); priv->last_rx_bd = 0; /* Allocate and set buffers for Rx BD's */ for (i = 0; i < RX_BD_NUM; i++) { dma_addr_t addr; unsigned int *last_rx_bd = &priv->last_rx_bd; struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; rx_buff->skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE); if (unlikely(!rx_buff->skb)) return -ENOMEM; addr = dma_map_single(dev, (void *)rx_buff->skb->data, EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, addr)) { netdev_err(ndev, "cannot dma map\n"); dev_kfree_skb(rx_buff->skb); return -ENOMEM; } dma_unmap_addr_set(rx_buff, addr, addr); dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); rxbd->data = cpu_to_le32(addr); /* Make sure pointer to data buffer is set */ wmb(); /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; } priv->txbd_curr = 0; priv->txbd_dirty = 0; /* Clean Tx BD's */ memset(priv->txbd, 0, TX_RING_SZ); /* Initialize logical address filter */ arc_reg_set(priv, R_LAFL, 0); arc_reg_set(priv, R_LAFH, 0); /* Set BD ring pointers for device side */ arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma); arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma); /* Enable interrupts */ arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); /* Set CONTROL */ arc_reg_set(priv, R_CTRL, (RX_BD_NUM << 24) | /* RX BD table length */ (TX_BD_NUM << 16) | /* TX BD table length */ TXRN_MASK | RXRN_MASK); napi_enable(&priv->napi); /* Enable EMAC */ arc_reg_or(priv, R_CTRL, EN_MASK); phy_start(ndev->phydev); netif_start_queue(ndev); return 0; } /** * arc_emac_set_rx_mode - Change the receive filtering mode. * @ndev: Pointer to the network device. * * This function enables/disables promiscuous or all-multicast mode * and updates the multicast filtering list of the network device. */ static void arc_emac_set_rx_mode(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); if (ndev->flags & IFF_PROMISC) { arc_reg_or(priv, R_CTRL, PROM_MASK); } else { arc_reg_clr(priv, R_CTRL, PROM_MASK); if (ndev->flags & IFF_ALLMULTI) { arc_reg_set(priv, R_LAFL, ~0); arc_reg_set(priv, R_LAFH, ~0); } else if (ndev->flags & IFF_MULTICAST) { struct netdev_hw_addr *ha; unsigned int filter[2] = { 0, 0 }; int bit; netdev_for_each_mc_addr(ha, ndev) { bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26; filter[bit >> 5] |= 1 << (bit & 31); } arc_reg_set(priv, R_LAFL, filter[0]); arc_reg_set(priv, R_LAFH, filter[1]); } else { arc_reg_set(priv, R_LAFL, 0); arc_reg_set(priv, R_LAFH, 0); } } } /** * arc_free_tx_queue - free skb from tx queue * @ndev: Pointer to the network device. * * This function must be called while EMAC disable */ static void arc_free_tx_queue(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct device *dev = ndev->dev.parent; unsigned int i; for (i = 0; i < TX_BD_NUM; i++) { struct arc_emac_bd *txbd = &priv->txbd[i]; struct buffer_state *tx_buff = &priv->tx_buff[i]; if (tx_buff->skb) { dma_unmap_single(dev, dma_unmap_addr(tx_buff, addr), dma_unmap_len(tx_buff, len), DMA_TO_DEVICE); /* return the sk_buff to system */ dev_kfree_skb_irq(tx_buff->skb); } txbd->info = 0; txbd->data = 0; tx_buff->skb = NULL; } } /** * arc_free_rx_queue - free skb from rx queue * @ndev: Pointer to the network device. * * This function must be called while EMAC disable */ static void arc_free_rx_queue(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct device *dev = ndev->dev.parent; unsigned int i; for (i = 0; i < RX_BD_NUM; i++) { struct arc_emac_bd *rxbd = &priv->rxbd[i]; struct buffer_state *rx_buff = &priv->rx_buff[i]; if (rx_buff->skb) { dma_unmap_single(dev, dma_unmap_addr(rx_buff, addr), dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE); /* return the sk_buff to system */ dev_kfree_skb_irq(rx_buff->skb); } rxbd->info = 0; rxbd->data = 0; rx_buff->skb = NULL; } } /** * arc_emac_stop - Close the network device. * @ndev: Pointer to the network device. * * This function stops the Tx queue, disables interrupts and frees the IRQ for * the EMAC device. * It also disconnects the PHY device associated with the EMAC device. */ static int arc_emac_stop(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); napi_disable(&priv->napi); netif_stop_queue(ndev); phy_stop(ndev->phydev); /* Disable interrupts */ arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); /* Disable EMAC */ arc_reg_clr(priv, R_CTRL, EN_MASK); /* Return the sk_buff to system */ arc_free_tx_queue(ndev); arc_free_rx_queue(ndev); return 0; } /** * arc_emac_stats - Get system network statistics. * @ndev: Pointer to net_device structure. * * Returns the address of the device statistics structure. * Statistics are updated in interrupt handler. */ static struct net_device_stats *arc_emac_stats(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; unsigned long miss, rxerr; u8 rxcrc, rxfram, rxoflow; rxerr = arc_reg_get(priv, R_RXERR); miss = arc_reg_get(priv, R_MISS); rxcrc = rxerr; rxfram = rxerr >> 8; rxoflow = rxerr >> 16; stats->rx_errors += miss; stats->rx_errors += rxcrc + rxfram + rxoflow; stats->rx_over_errors += rxoflow; stats->rx_frame_errors += rxfram; stats->rx_crc_errors += rxcrc; stats->rx_missed_errors += miss; return stats; } /** * arc_emac_tx - Starts the data transmission. * @skb: sk_buff pointer that contains data to be Transmitted. * @ndev: Pointer to net_device structure. * * returns: NETDEV_TX_OK, on success * NETDEV_TX_BUSY, if any of the descriptors are not free. * * This function is invoked from upper layers to initiate transmission. */ static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); unsigned int len, *txbd_curr = &priv->txbd_curr; struct net_device_stats *stats = &ndev->stats; __le32 *info = &priv->txbd[*txbd_curr].info; struct device *dev = ndev->dev.parent; dma_addr_t addr; if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; len = max_t(unsigned int, ETH_ZLEN, skb->len); if (unlikely(!arc_emac_tx_avail(priv))) { netif_stop_queue(ndev); netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n"); return NETDEV_TX_BUSY; } addr = dma_map_single(dev, (void *)skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, addr))) { stats->tx_dropped++; stats->tx_errors++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr); dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len); priv->txbd[*txbd_curr].data = cpu_to_le32(addr); /* Make sure pointer to data buffer is set */ wmb(); skb_tx_timestamp(skb); *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len); /* Make sure info word is set */ wmb(); priv->tx_buff[*txbd_curr].skb = skb; /* Increment index to point to the next BD */ *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM; /* Ensure that tx_clean() sees the new txbd_curr before * checking the queue status. This prevents an unneeded wake * of the queue in tx_clean(). */ smp_mb(); if (!arc_emac_tx_avail(priv)) { netif_stop_queue(ndev); /* Refresh tx_dirty */ smp_mb(); if (arc_emac_tx_avail(priv)) netif_start_queue(ndev); } arc_reg_set(priv, R_STATUS, TXPL_MASK); return NETDEV_TX_OK; } static void arc_emac_set_address_internal(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); unsigned int addr_low, addr_hi; addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]); addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]); arc_reg_set(priv, R_ADDRL, addr_low); arc_reg_set(priv, R_ADDRH, addr_hi); } /** * arc_emac_set_address - Set the MAC address for this device. * @ndev: Pointer to net_device structure. * @p: 6 byte Address to be written as MAC address. * * This function copies the HW address from the sockaddr structure to the * net_device structure and updates the address in HW. * * returns: -EBUSY if the net device is busy or 0 if the address is set * successfully. */ static int arc_emac_set_address(struct net_device *ndev, void *p) { struct sockaddr *addr = p; if (netif_running(ndev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(ndev, addr->sa_data); arc_emac_set_address_internal(ndev); return 0; } /** * arc_emac_restart - Restart EMAC * @ndev: Pointer to net_device structure. * * This function do hardware reset of EMAC in order to restore * network packets reception. */ static void arc_emac_restart(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; int i; if (net_ratelimit()) netdev_warn(ndev, "restarting stalled EMAC\n"); netif_stop_queue(ndev); /* Disable interrupts */ arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); /* Disable EMAC */ arc_reg_clr(priv, R_CTRL, EN_MASK); /* Return the sk_buff to system */ arc_free_tx_queue(ndev); /* Clean Tx BD's */ priv->txbd_curr = 0; priv->txbd_dirty = 0; memset(priv->txbd, 0, TX_RING_SZ); for (i = 0; i < RX_BD_NUM; i++) { struct arc_emac_bd *rxbd = &priv->rxbd[i]; unsigned int info = le32_to_cpu(rxbd->info); if (!(info & FOR_EMAC)) { stats->rx_errors++; stats->rx_dropped++; } /* Return ownership to EMAC */ rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); } priv->last_rx_bd = 0; /* Make sure info is visible to EMAC before enable */ wmb(); /* Enable interrupts */ arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); /* Enable EMAC */ arc_reg_or(priv, R_CTRL, EN_MASK); netif_start_queue(ndev); } static const struct net_device_ops arc_emac_netdev_ops = { .ndo_open = arc_emac_open, .ndo_stop = arc_emac_stop, .ndo_start_xmit = arc_emac_tx, .ndo_set_mac_address = arc_emac_set_address, .ndo_get_stats = arc_emac_stats, .ndo_set_rx_mode = arc_emac_set_rx_mode, .ndo_eth_ioctl = phy_do_ioctl_running, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = arc_emac_poll_controller, #endif }; int arc_emac_probe(struct net_device *ndev, int interface) { struct device *dev = ndev->dev.parent; struct resource res_regs; struct device_node *phy_node; struct phy_device *phydev = NULL; struct arc_emac_priv *priv; unsigned int id, clock_frequency, irq; int err; /* Get PHY from device tree */ phy_node = of_parse_phandle(dev->of_node, "phy", 0); if (!phy_node) { dev_err(dev, "failed to retrieve phy description from device tree\n"); return -ENODEV; } /* Get EMAC registers base address from device tree */ err = of_address_to_resource(dev->of_node, 0, &res_regs); if (err) { dev_err(dev, "failed to retrieve registers base from device tree\n"); err = -ENODEV; goto out_put_node; } /* Get IRQ from device tree */ irq = irq_of_parse_and_map(dev->of_node, 0); if (!irq) { dev_err(dev, "failed to retrieve value from device tree\n"); err = -ENODEV; goto out_put_node; } ndev->netdev_ops = &arc_emac_netdev_ops; ndev->ethtool_ops = &arc_emac_ethtool_ops; ndev->watchdog_timeo = TX_TIMEOUT; priv = netdev_priv(ndev); priv->dev = dev; priv->regs = devm_ioremap_resource(dev, &res_regs); if (IS_ERR(priv->regs)) { err = PTR_ERR(priv->regs); goto out_put_node; } dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs); if (priv->clk) { err = clk_prepare_enable(priv->clk); if (err) { dev_err(dev, "failed to enable clock\n"); goto out_put_node; } clock_frequency = clk_get_rate(priv->clk); } else { /* Get CPU clock frequency from device tree */ if (of_property_read_u32(dev->of_node, "clock-frequency", &clock_frequency)) { dev_err(dev, "failed to retrieve from device tree\n"); err = -EINVAL; goto out_put_node; } } id = arc_reg_get(priv, R_ID); /* Check for EMAC revision 5 or 7, magic number */ if (!(id == 0x0005fd02 || id == 0x0007fd02)) { dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id); err = -ENODEV; goto out_clken; } dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id); /* Set poll rate so that it polls every 1 ms */ arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000); ndev->irq = irq; dev_info(dev, "IRQ is %d\n", ndev->irq); /* Register interrupt handler for device */ err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0, ndev->name, ndev); if (err) { dev_err(dev, "could not allocate IRQ\n"); goto out_clken; } /* Get MAC address from device tree */ err = of_get_ethdev_address(dev->of_node, ndev); if (err) eth_hw_addr_random(ndev); arc_emac_set_address_internal(ndev); dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr); /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */ priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ, &priv->rxbd_dma, GFP_KERNEL); if (!priv->rxbd) { dev_err(dev, "failed to allocate data buffers\n"); err = -ENOMEM; goto out_clken; } priv->txbd = priv->rxbd + RX_BD_NUM; priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ; dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n", (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma); err = arc_mdio_probe(priv); if (err) { dev_err(dev, "failed to probe MII bus\n"); goto out_clken; } phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0, interface); if (!phydev) { dev_err(dev, "of_phy_connect() failed\n"); err = -ENODEV; goto out_mdio; } dev_info(dev, "connected to %s phy with id 0x%x\n", phydev->drv->name, phydev->phy_id); netif_napi_add_weight(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT); err = register_netdev(ndev); if (err) { dev_err(dev, "failed to register network device\n"); goto out_netif_api; } of_node_put(phy_node); return 0; out_netif_api: netif_napi_del(&priv->napi); phy_disconnect(phydev); out_mdio: arc_mdio_remove(priv); out_clken: if (priv->clk) clk_disable_unprepare(priv->clk); out_put_node: of_node_put(phy_node); return err; } EXPORT_SYMBOL_GPL(arc_emac_probe); void arc_emac_remove(struct net_device *ndev) { struct arc_emac_priv *priv = netdev_priv(ndev); phy_disconnect(ndev->phydev); arc_mdio_remove(priv); unregister_netdev(ndev); netif_napi_del(&priv->napi); if (!IS_ERR(priv->clk)) clk_disable_unprepare(priv->clk); } EXPORT_SYMBOL_GPL(arc_emac_remove); MODULE_AUTHOR("Alexey Brodkin "); MODULE_DESCRIPTION("ARC EMAC driver"); MODULE_LICENSE("GPL");