// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /** * DOC: blk-crypto profiles * * 'struct blk_crypto_profile' contains all generic inline encryption-related * state for a particular inline encryption device. blk_crypto_profile serves * as the way that drivers for inline encryption hardware expose their crypto * capabilities and certain functions (e.g., functions to program and evict * keys) to upper layers. Device drivers that want to support inline encryption * construct a crypto profile, then associate it with the disk's request_queue. * * If the device has keyslots, then its blk_crypto_profile also handles managing * these keyslots in a device-independent way, using the driver-provided * functions to program and evict keys as needed. This includes keeping track * of which key and how many I/O requests are using each keyslot, getting * keyslots for I/O requests, and handling key eviction requests. * * For more information, see Documentation/block/inline-encryption.rst. */ #define pr_fmt(fmt) "blk-crypto: " fmt #include <linux/blk-crypto-profile.h> #include <linux/device.h> #include <linux/atomic.h> #include <linux/mutex.h> #include <linux/pm_runtime.h> #include <linux/wait.h> #include <linux/blkdev.h> #include <linux/blk-integrity.h> #include "blk-crypto-internal.h" struct blk_crypto_keyslot { atomic_t slot_refs; struct list_head idle_slot_node; struct hlist_node hash_node; const struct blk_crypto_key *key; struct blk_crypto_profile *profile; }; static inline void blk_crypto_hw_enter(struct blk_crypto_profile *profile) { /* * Calling into the driver requires profile->lock held and the device * resumed. But we must resume the device first, since that can acquire * and release profile->lock via blk_crypto_reprogram_all_keys(). */ if (profile->dev) pm_runtime_get_sync(profile->dev); down_write(&profile->lock); } static inline void blk_crypto_hw_exit(struct blk_crypto_profile *profile) { up_write(&profile->lock); if (profile->dev) pm_runtime_put_sync(profile->dev); } /** * blk_crypto_profile_init() - Initialize a blk_crypto_profile * @profile: the blk_crypto_profile to initialize * @num_slots: the number of keyslots * * Storage drivers must call this when starting to set up a blk_crypto_profile, * before filling in additional fields. * * Return: 0 on success, or else a negative error code. */ int blk_crypto_profile_init(struct blk_crypto_profile *profile, unsigned int num_slots) { unsigned int slot; unsigned int i; unsigned int slot_hashtable_size; memset(profile, 0, sizeof(*profile)); init_rwsem(&profile->lock); if (num_slots == 0) return 0; /* Initialize keyslot management data. */ profile->slots = kvcalloc(num_slots, sizeof(profile->slots[0]), GFP_KERNEL); if (!profile->slots) return -ENOMEM; profile->num_slots = num_slots; init_waitqueue_head(&profile->idle_slots_wait_queue); INIT_LIST_HEAD(&profile->idle_slots); for (slot = 0; slot < num_slots; slot++) { profile->slots[slot].profile = profile; list_add_tail(&profile->slots[slot].idle_slot_node, &profile->idle_slots); } spin_lock_init(&profile->idle_slots_lock); slot_hashtable_size = roundup_pow_of_two(num_slots); /* * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 * buckets. This only makes a difference when there is only 1 keyslot. */ if (slot_hashtable_size < 2) slot_hashtable_size = 2; profile->log_slot_ht_size = ilog2(slot_hashtable_size); profile->slot_hashtable = kvmalloc_array(slot_hashtable_size, sizeof(profile->slot_hashtable[0]), GFP_KERNEL); if (!profile->slot_hashtable) goto err_destroy; for (i = 0; i < slot_hashtable_size; i++) INIT_HLIST_HEAD(&profile->slot_hashtable[i]); return 0; err_destroy: blk_crypto_profile_destroy(profile); return -ENOMEM; } EXPORT_SYMBOL_GPL(blk_crypto_profile_init); static void blk_crypto_profile_destroy_callback(void *profile) { blk_crypto_profile_destroy(profile); } /** * devm_blk_crypto_profile_init() - Resource-managed blk_crypto_profile_init() * @dev: the device which owns the blk_crypto_profile * @profile: the blk_crypto_profile to initialize * @num_slots: the number of keyslots * * Like blk_crypto_profile_init(), but causes blk_crypto_profile_destroy() to be * called automatically on driver detach. * * Return: 0 on success, or else a negative error code. */ int devm_blk_crypto_profile_init(struct device *dev, struct blk_crypto_profile *profile, unsigned int num_slots) { int err = blk_crypto_profile_init(profile, num_slots); if (err) return err; return devm_add_action_or_reset(dev, blk_crypto_profile_destroy_callback, profile); } EXPORT_SYMBOL_GPL(devm_blk_crypto_profile_init); static inline struct hlist_head * blk_crypto_hash_bucket_for_key(struct blk_crypto_profile *profile, const struct blk_crypto_key *key) { return &profile->slot_hashtable[ hash_ptr(key, profile->log_slot_ht_size)]; } static void blk_crypto_remove_slot_from_lru_list(struct blk_crypto_keyslot *slot) { struct blk_crypto_profile *profile = slot->profile; unsigned long flags; spin_lock_irqsave(&profile->idle_slots_lock, flags); list_del(&slot->idle_slot_node); spin_unlock_irqrestore(&profile->idle_slots_lock, flags); } static struct blk_crypto_keyslot * blk_crypto_find_keyslot(struct blk_crypto_profile *profile, const struct blk_crypto_key *key) { const struct hlist_head *head = blk_crypto_hash_bucket_for_key(profile, key); struct blk_crypto_keyslot *slotp; hlist_for_each_entry(slotp, head, hash_node) { if (slotp->key == key) return slotp; } return NULL; } static struct blk_crypto_keyslot * blk_crypto_find_and_grab_keyslot(struct blk_crypto_profile *profile, const struct blk_crypto_key *key) { struct blk_crypto_keyslot *slot; slot = blk_crypto_find_keyslot(profile, key); if (!slot) return NULL; if (atomic_inc_return(&slot->slot_refs) == 1) { /* Took first reference to this slot; remove it from LRU list */ blk_crypto_remove_slot_from_lru_list(slot); } return slot; } /** * blk_crypto_keyslot_index() - Get the index of a keyslot * @slot: a keyslot that blk_crypto_get_keyslot() returned * * Return: the 0-based index of the keyslot within the device's keyslots. */ unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot) { return slot - slot->profile->slots; } EXPORT_SYMBOL_GPL(blk_crypto_keyslot_index); /** * blk_crypto_get_keyslot() - Get a keyslot for a key, if needed. * @profile: the crypto profile of the device the key will be used on * @key: the key that will be used * @slot_ptr: If a keyslot is allocated, an opaque pointer to the keyslot struct * will be stored here; otherwise NULL will be stored here. * * If the device has keyslots, this gets a keyslot that's been programmed with * the specified key. If the key is already in a slot, this reuses it; * otherwise this waits for a slot to become idle and programs the key into it. * * This must be paired with a call to blk_crypto_put_keyslot(). * * Context: Process context. Takes and releases profile->lock. * Return: BLK_STS_OK on success, meaning that either a keyslot was allocated or * one wasn't needed; or a blk_status_t error on failure. */ blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, struct blk_crypto_keyslot **slot_ptr) { struct blk_crypto_keyslot *slot; int slot_idx; int err; *slot_ptr = NULL; /* * If the device has no concept of "keyslots", then there is no need to * get one. */ if (profile->num_slots == 0) return BLK_STS_OK; down_read(&profile->lock); slot = blk_crypto_find_and_grab_keyslot(profile, key); up_read(&profile->lock); if (slot) goto success; for (;;) { blk_crypto_hw_enter(profile); slot = blk_crypto_find_and_grab_keyslot(profile, key); if (slot) { blk_crypto_hw_exit(profile); goto success; } /* * If we're here, that means there wasn't a slot that was * already programmed with the key. So try to program it. */ if (!list_empty(&profile->idle_slots)) break; blk_crypto_hw_exit(profile); wait_event(profile->idle_slots_wait_queue, !list_empty(&profile->idle_slots)); } slot = list_first_entry(&profile->idle_slots, struct blk_crypto_keyslot, idle_slot_node); slot_idx = blk_crypto_keyslot_index(slot); err = profile->ll_ops.keyslot_program(profile, key, slot_idx); if (err) { wake_up(&profile->idle_slots_wait_queue); blk_crypto_hw_exit(profile); return errno_to_blk_status(err); } /* Move this slot to the hash list for the new key. */ if (slot->key) hlist_del(&slot->hash_node); slot->key = key; hlist_add_head(&slot->hash_node, blk_crypto_hash_bucket_for_key(profile, key)); atomic_set(&slot->slot_refs, 1); blk_crypto_remove_slot_from_lru_list(slot); blk_crypto_hw_exit(profile); success: *slot_ptr = slot; return BLK_STS_OK; } /** * blk_crypto_put_keyslot() - Release a reference to a keyslot * @slot: The keyslot to release the reference of (may be NULL). * * Context: Any context. */ void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot) { struct blk_crypto_profile *profile; unsigned long flags; if (!slot) return; profile = slot->profile; if (atomic_dec_and_lock_irqsave(&slot->slot_refs, &profile->idle_slots_lock, flags)) { list_add_tail(&slot->idle_slot_node, &profile->idle_slots); spin_unlock_irqrestore(&profile->idle_slots_lock, flags); wake_up(&profile->idle_slots_wait_queue); } } /** * __blk_crypto_cfg_supported() - Check whether the given crypto profile * supports the given crypto configuration. * @profile: the crypto profile to check * @cfg: the crypto configuration to check for * * Return: %true if @profile supports the given @cfg. */ bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile, const struct blk_crypto_config *cfg) { if (!profile) return false; if (!(profile->modes_supported[cfg->crypto_mode] & cfg->data_unit_size)) return false; if (profile->max_dun_bytes_supported < cfg->dun_bytes) return false; return true; } /** * __blk_crypto_evict_key() - Evict a key from a device. * @profile: the crypto profile of the device * @key: the key to evict. It must not still be used in any I/O. * * If the device has keyslots, this finds the keyslot (if any) that contains the * specified key and calls the driver's keyslot_evict function to evict it. * * Otherwise, this just calls the driver's keyslot_evict function if it is * implemented, passing just the key (without any particular keyslot). This * allows layered devices to evict the key from their underlying devices. * * Context: Process context. Takes and releases profile->lock. * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY * if the keyslot is still in use, or another -errno value on other * error. */ int __blk_crypto_evict_key(struct blk_crypto_profile *profile, const struct blk_crypto_key *key) { struct blk_crypto_keyslot *slot; int err = 0; if (profile->num_slots == 0) { if (profile->ll_ops.keyslot_evict) { blk_crypto_hw_enter(profile); err = profile->ll_ops.keyslot_evict(profile, key, -1); blk_crypto_hw_exit(profile); return err; } return 0; } blk_crypto_hw_enter(profile); slot = blk_crypto_find_keyslot(profile, key); if (!slot) goto out_unlock; if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { err = -EBUSY; goto out_unlock; } err = profile->ll_ops.keyslot_evict(profile, key, blk_crypto_keyslot_index(slot)); if (err) goto out_unlock; hlist_del(&slot->hash_node); slot->key = NULL; err = 0; out_unlock: blk_crypto_hw_exit(profile); return err; } /** * blk_crypto_reprogram_all_keys() - Re-program all keyslots. * @profile: The crypto profile * * Re-program all keyslots that are supposed to have a key programmed. This is * intended only for use by drivers for hardware that loses its keys on reset. * * Context: Process context. Takes and releases profile->lock. */ void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile) { unsigned int slot; if (profile->num_slots == 0) return; /* This is for device initialization, so don't resume the device */ down_write(&profile->lock); for (slot = 0; slot < profile->num_slots; slot++) { const struct blk_crypto_key *key = profile->slots[slot].key; int err; if (!key) continue; err = profile->ll_ops.keyslot_program(profile, key, slot); WARN_ON(err); } up_write(&profile->lock); } EXPORT_SYMBOL_GPL(blk_crypto_reprogram_all_keys); void blk_crypto_profile_destroy(struct blk_crypto_profile *profile) { if (!profile) return; kvfree(profile->slot_hashtable); kvfree_sensitive(profile->slots, sizeof(profile->slots[0]) * profile->num_slots); memzero_explicit(profile, sizeof(*profile)); } EXPORT_SYMBOL_GPL(blk_crypto_profile_destroy); bool blk_crypto_register(struct blk_crypto_profile *profile, struct request_queue *q) { if (blk_integrity_queue_supports_integrity(q)) { pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); return false; } q->crypto_profile = profile; return true; } EXPORT_SYMBOL_GPL(blk_crypto_register); /** * blk_crypto_intersect_capabilities() - restrict supported crypto capabilities * by child device * @parent: the crypto profile for the parent device * @child: the crypto profile for the child device, or NULL * * This clears all crypto capabilities in @parent that aren't set in @child. If * @child is NULL, then this clears all parent capabilities. * * Only use this when setting up the crypto profile for a layered device, before * it's been exposed yet. */ void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent, const struct blk_crypto_profile *child) { if (child) { unsigned int i; parent->max_dun_bytes_supported = min(parent->max_dun_bytes_supported, child->max_dun_bytes_supported); for (i = 0; i < ARRAY_SIZE(child->modes_supported); i++) parent->modes_supported[i] &= child->modes_supported[i]; } else { parent->max_dun_bytes_supported = 0; memset(parent->modes_supported, 0, sizeof(parent->modes_supported)); } } EXPORT_SYMBOL_GPL(blk_crypto_intersect_capabilities); /** * blk_crypto_has_capabilities() - Check whether @target supports at least all * the crypto capabilities that @reference does. * @target: the target profile * @reference: the reference profile * * Return: %true if @target supports all the crypto capabilities of @reference. */ bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target, const struct blk_crypto_profile *reference) { int i; if (!reference) return true; if (!target) return false; for (i = 0; i < ARRAY_SIZE(target->modes_supported); i++) { if (reference->modes_supported[i] & ~target->modes_supported[i]) return false; } if (reference->max_dun_bytes_supported > target->max_dun_bytes_supported) return false; return true; } EXPORT_SYMBOL_GPL(blk_crypto_has_capabilities); /** * blk_crypto_update_capabilities() - Update the capabilities of a crypto * profile to match those of another crypto * profile. * @dst: The crypto profile whose capabilities to update. * @src: The crypto profile whose capabilities this function will update @dst's * capabilities to. * * Blk-crypto requires that crypto capabilities that were * advertised when a bio was created continue to be supported by the * device until that bio is ended. This is turn means that a device cannot * shrink its advertised crypto capabilities without any explicit * synchronization with upper layers. So if there's no such explicit * synchronization, @src must support all the crypto capabilities that * @dst does (i.e. we need blk_crypto_has_capabilities(@src, @dst)). * * Note also that as long as the crypto capabilities are being expanded, the * order of updates becoming visible is not important because it's alright * for blk-crypto to see stale values - they only cause blk-crypto to * believe that a crypto capability isn't supported when it actually is (which * might result in blk-crypto-fallback being used if available, or the bio being * failed). */ void blk_crypto_update_capabilities(struct blk_crypto_profile *dst, const struct blk_crypto_profile *src) { memcpy(dst->modes_supported, src->modes_supported, sizeof(dst->modes_supported)); dst->max_dun_bytes_supported = src->max_dun_bytes_supported; } EXPORT_SYMBOL_GPL(blk_crypto_update_capabilities);