From 6c0bbc933386fa2b00854fe9a5df1251a624ae7b Mon Sep 17 00:00:00 2001 From: Hans Verkuil Date: Tue, 4 Jun 2019 07:19:56 -0400 Subject: media: touchscreen/sur40: set device_caps in struct video_device Instead of filling in the struct v4l2_capability device_caps field, fill in the struct video_device device_caps field. That way the V4L2 core knows what the capabilities of the video device are. But this only really works if all drivers use this, so convert this touchscreen driver accordingly. Signed-off-by: Hans Verkuil Acked-by: Florian Echtler Acked-by: Dmitry Torokhov Signed-off-by: Mauro Carvalho Chehab --- drivers/input/touchscreen/sur40.c | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/touchscreen/sur40.c b/drivers/input/touchscreen/sur40.c index 8c8ac4dff0d5..00cb1ba2d364 100644 --- a/drivers/input/touchscreen/sur40.c +++ b/drivers/input/touchscreen/sur40.c @@ -929,10 +929,6 @@ static int sur40_vidioc_querycap(struct file *file, void *priv, strlcpy(cap->driver, DRIVER_SHORT, sizeof(cap->driver)); strlcpy(cap->card, DRIVER_LONG, sizeof(cap->card)); usb_make_path(sur40->usbdev, cap->bus_info, sizeof(cap->bus_info)); - cap->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_TOUCH | - V4L2_CAP_READWRITE | - V4L2_CAP_STREAMING; - cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; return 0; } @@ -1162,6 +1158,8 @@ static const struct video_device sur40_video_device = { .fops = &sur40_video_fops, .ioctl_ops = &sur40_video_ioctl_ops, .release = video_device_release_empty, + .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_TOUCH | + V4L2_CAP_READWRITE | V4L2_CAP_STREAMING, }; /* USB-specific object needed to register this driver with the USB subsystem. */ -- cgit v1.2.3-58-ga151 From 0b385a0c3bd3f6d1044728b732bfc7dfb01c9fb5 Mon Sep 17 00:00:00 2001 From: "Rafael J. Wysocki" Date: Tue, 18 Jun 2019 10:18:28 +0200 Subject: PM: suspend: Rename pm_suspend_via_s2idle() The name of pm_suspend_via_s2idle() is confusing, as it doesn't reflect the purpose of the function precisely enough and it is very similar to pm_suspend_via_firmware(), which has a different purpose, so rename it as pm_suspend_default_s2idle() and update its only caller, i8042_register_ports(), accordingly. Signed-off-by: Rafael J. Wysocki Acked-by: Dmitry Torokhov --- drivers/input/serio/i8042.c | 2 +- include/linux/suspend.h | 4 ++-- kernel/power/suspend.c | 6 +++--- 3 files changed, 6 insertions(+), 6 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/serio/i8042.c b/drivers/input/serio/i8042.c index 6462f1798fbb..8384abc41d7f 100644 --- a/drivers/input/serio/i8042.c +++ b/drivers/input/serio/i8042.c @@ -1410,7 +1410,7 @@ static void __init i8042_register_ports(void) * behavior on many platforms using suspend-to-RAM (ACPI S3) * by default. */ - if (pm_suspend_via_s2idle() && i == I8042_KBD_PORT_NO) + if (pm_suspend_default_s2idle() && i == I8042_KBD_PORT_NO) device_set_wakeup_enable(&serio->dev, true); } } diff --git a/include/linux/suspend.h b/include/linux/suspend.h index 05645f726815..d07ae7fb9315 100644 --- a/include/linux/suspend.h +++ b/include/linux/suspend.h @@ -282,7 +282,7 @@ static inline bool idle_should_enter_s2idle(void) return unlikely(s2idle_state == S2IDLE_STATE_ENTER); } -extern bool pm_suspend_via_s2idle(void); +extern bool pm_suspend_default_s2idle(void); extern void __init pm_states_init(void); extern void s2idle_set_ops(const struct platform_s2idle_ops *ops); extern void s2idle_wake(void); @@ -314,7 +314,7 @@ static inline void pm_set_suspend_via_firmware(void) {} static inline void pm_set_resume_via_firmware(void) {} static inline bool pm_suspend_via_firmware(void) { return false; } static inline bool pm_resume_via_firmware(void) { return false; } -static inline bool pm_suspend_via_s2idle(void) { return false; } +static inline bool pm_suspend_default_s2idle(void) { return false; } static inline void suspend_set_ops(const struct platform_suspend_ops *ops) {} static inline int pm_suspend(suspend_state_t state) { return -ENOSYS; } diff --git a/kernel/power/suspend.c b/kernel/power/suspend.c index 9505101ed2bc..8703b0ca4986 100644 --- a/kernel/power/suspend.c +++ b/kernel/power/suspend.c @@ -62,16 +62,16 @@ enum s2idle_states __read_mostly s2idle_state; static DEFINE_RAW_SPINLOCK(s2idle_lock); /** - * pm_suspend_via_s2idle - Check if suspend-to-idle is the default suspend. + * pm_suspend_default_s2idle - Check if suspend-to-idle is the default suspend. * * Return 'true' if suspend-to-idle has been selected as the default system * suspend method. */ -bool pm_suspend_via_s2idle(void) +bool pm_suspend_default_s2idle(void) { return mem_sleep_current == PM_SUSPEND_TO_IDLE; } -EXPORT_SYMBOL_GPL(pm_suspend_via_s2idle); +EXPORT_SYMBOL_GPL(pm_suspend_default_s2idle); void s2idle_set_ops(const struct platform_s2idle_ops *ops) { -- cgit v1.2.3-58-ga151 From d096aa3eb6045a6a475a0239f3471c59eedf3d61 Mon Sep 17 00:00:00 2001 From: Ting Shen Date: Fri, 14 Jun 2019 14:54:38 +0800 Subject: Input: cros_ec_keyb: mask out extra flags in event_type http://crosreview.com/1341159 added a EC_MKBP_HAS_MORE_EVENTS flag to the event_type field, the receiver side should mask out this extra bit when processing the event. Signed-off-by: Ting Shen Reviewed-by: Enrico Granata Acked-by: Dmitry Torokhov Reviewed-by: Benson Leung Signed-off-by: Enric Balletbo i Serra --- drivers/input/keyboard/cros_ec_keyb.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/cros_ec_keyb.c b/drivers/input/keyboard/cros_ec_keyb.c index d56001181598..38cb6d82d8fe 100644 --- a/drivers/input/keyboard/cros_ec_keyb.c +++ b/drivers/input/keyboard/cros_ec_keyb.c @@ -237,7 +237,7 @@ static int cros_ec_keyb_work(struct notifier_block *nb, if (queued_during_suspend && !device_may_wakeup(ckdev->dev)) return NOTIFY_OK; - switch (ckdev->ec->event_data.event_type) { + switch (ckdev->ec->event_data.event_type & EC_MKBP_EVENT_TYPE_MASK) { case EC_MKBP_EVENT_KEY_MATRIX: pm_wakeup_event(ckdev->dev, 0); -- cgit v1.2.3-58-ga151 From abbe3acd7d72ab4633ade6bd24e8306b67e0add3 Mon Sep 17 00:00:00 2001 From: Cole Rogers Date: Mon, 1 Jul 2019 00:47:48 -0700 Subject: Input: synaptics - enable SMBUS on T480 thinkpad trackpad Thinkpad t480 laptops had some touchpad features disabled, resulting in the loss of pinch to activities in GNOME, on wayland, and other touch gestures being slower. This patch adds the touchpad of the t480 to the smbus_pnp_ids whitelist to enable the extra features. In my testing this does not break suspend (on fedora, with wayland, and GNOME, using the rc-6 kernel), while also fixing the feature on a T480. Signed-off-by: Cole Rogers Acked-by: Benjamin Tissoires Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov --- drivers/input/mouse/synaptics.c | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/input') diff --git a/drivers/input/mouse/synaptics.c b/drivers/input/mouse/synaptics.c index 8e6077d8e434..68fd8232d44c 100644 --- a/drivers/input/mouse/synaptics.c +++ b/drivers/input/mouse/synaptics.c @@ -176,6 +176,7 @@ static const char * const smbus_pnp_ids[] = { "LEN0072", /* X1 Carbon Gen 5 (2017) - Elan/ALPS trackpoint */ "LEN0073", /* X1 Carbon G5 (Elantech) */ "LEN0092", /* X1 Carbon 6 */ + "LEN0093", /* T480 */ "LEN0096", /* X280 */ "LEN0097", /* X280 -> ALPS trackpoint */ "LEN200f", /* T450s */ -- cgit v1.2.3-58-ga151 From f0dd687815f9546860fc3ac4379d55da045942c9 Mon Sep 17 00:00:00 2001 From: Ian Ray Date: Thu, 4 Jul 2019 16:13:25 -0700 Subject: Input: atmel_mxt_ts - fix leak in mxt_update_cfg() Fix leak (whose magnitude is the configuration file size) when the CRCs match in mxt_update_cfg(). Signed-off-by: Ian Ray Signed-off-by: Dmitry Torokhov --- drivers/input/touchscreen/atmel_mxt_ts.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'drivers/input') diff --git a/drivers/input/touchscreen/atmel_mxt_ts.c b/drivers/input/touchscreen/atmel_mxt_ts.c index 5c63d25ce84e..8b536778f1d8 100644 --- a/drivers/input/touchscreen/atmel_mxt_ts.c +++ b/drivers/input/touchscreen/atmel_mxt_ts.c @@ -1526,7 +1526,8 @@ static int mxt_update_cfg(struct mxt_data *data, const struct firmware *fw) } else if (config_crc == data->config_crc) { dev_dbg(dev, "Config CRC 0x%06X: OK\n", data->config_crc); - return 0; + ret = 0; + goto release_raw; } else { dev_info(dev, "Config CRC 0x%06X: does not match file 0x%06X\n", data->config_crc, config_crc); -- cgit v1.2.3-58-ga151 From 3975b097e577bac77267ed8df0f525e3ad3499ec Mon Sep 17 00:00:00 2001 From: Kirill Smelkov Date: Wed, 19 Jun 2019 20:26:56 +0300 Subject: *: convert stream-like files -> stream_open, even if they use noop_llseek This patch continues 10dce8af3422 (fs: stream_open - opener for stream-like files so that read and write can run simultaneously without deadlock) and c5bf68fe0c86 (*: convert stream-like files from nonseekable_open -> stream_open) and teaches steam_open.cocci to consider files as being stream-like not only if they have .llseek=no_llseek, but also if they have .llseek=noop_llseek. This is safe to do: the comment about noop_llseek says This is an implementation of ->llseek useable for the rare special case when userspace expects the seek to succeed but the (device) file is actually not able to perform the seek. In this case you use noop_llseek() instead of falling back to the default implementation of ->llseek. and in general noop_llseek was massively added to drivers in 6038f373a3dc (llseek: automatically add .llseek fop) when changing default for NULL .llseek from NOP to no_llseek with the idea to avoid breaking compatibility, if maybe some user-space program was using lseek on a device without caring about the result, but caring if it was an error or not. Amended semantic patch produces two changes when applied tree-wide: drivers/hid/hid-sensor-custom.c:690:8-24: WARNING: hid_sensor_custom_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/input/mousedev.c:564:1-17: ERROR: mousedev_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. Cc: Julia Lawall Cc: Jan Blunck Cc: Arnd Bergmann Cc: Jiri Kosina Cc: Jonathan Cameron Cc: Srinivas Pandruvada Cc: Benjamin Tissoires Cc: Dmitry Torokhov Signed-off-by: Kirill Smelkov --- drivers/hid/hid-sensor-custom.c | 2 +- drivers/input/mousedev.c | 2 +- scripts/coccinelle/api/stream_open.cocci | 9 ++++++++- 3 files changed, 10 insertions(+), 3 deletions(-) (limited to 'drivers/input') diff --git a/drivers/hid/hid-sensor-custom.c b/drivers/hid/hid-sensor-custom.c index c60f82673cf2..fb827c295842 100644 --- a/drivers/hid/hid-sensor-custom.c +++ b/drivers/hid/hid-sensor-custom.c @@ -687,7 +687,7 @@ static int hid_sensor_custom_open(struct inode *inode, struct file *file) if (test_and_set_bit(0, &sensor_inst->misc_opened)) return -EBUSY; - return nonseekable_open(inode, file); + return stream_open(inode, file); } static __poll_t hid_sensor_custom_poll(struct file *file, diff --git a/drivers/input/mousedev.c b/drivers/input/mousedev.c index 3b73e0f17848..505c562a5daa 100644 --- a/drivers/input/mousedev.c +++ b/drivers/input/mousedev.c @@ -558,7 +558,7 @@ static int mousedev_open(struct inode *inode, struct file *file) goto err_free_client; file->private_data = client; - nonseekable_open(inode, file); + stream_open(inode, file); return 0; diff --git a/scripts/coccinelle/api/stream_open.cocci b/scripts/coccinelle/api/stream_open.cocci index 350145da7669..f00c05d207d9 100644 --- a/scripts/coccinelle/api/stream_open.cocci +++ b/scripts/coccinelle/api/stream_open.cocci @@ -134,6 +134,13 @@ identifier fops0.fops; .llseek = no_llseek, }; +@ has_noop_llseek @ +identifier fops0.fops; +@@ + struct file_operations fops = { + .llseek = noop_llseek, + }; + @ has_mmap @ identifier fops0.fops; identifier mmap_f; @@ -180,7 +187,7 @@ identifier splice_write_f; // // XXX for simplicity require no .{read/write}_iter and no .splice_{read/write} for now. // XXX maybe_steam.fops cannot be used in other rules - it gives "bad rule maybe_stream or bad variable fops". -@ maybe_stream depends on (!has_llseek || has_no_llseek) && !has_mmap && !has_copy_file_range && !has_remap_file_range && !has_read_iter && !has_write_iter && !has_splice_read && !has_splice_write @ +@ maybe_stream depends on (!has_llseek || has_no_llseek || has_noop_llseek) && !has_mmap && !has_copy_file_range && !has_remap_file_range && !has_read_iter && !has_write_iter && !has_splice_read && !has_splice_write @ identifier fops0.fops; @@ struct file_operations fops = { -- cgit v1.2.3-58-ga151 From dc7a12bdfccd94c31f79e294f16f7549bd411b49 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Sun, 14 Apr 2019 15:51:10 -0300 Subject: docs: arm: convert docs to ReST and rename to *.rst Converts ARM the text files to ReST, preparing them to be an architecture book. The conversion is actually: - add blank lines and identation in order to identify paragraphs; - fix tables markups; - add some lists markups; - mark literal blocks; - adjust title markups. At its new index.rst, let's add a :orphan: while this is not linked to the main index.rst file, in order to avoid build warnings. Signed-off-by: Mauro Carvalho Chehab Reviewed-by Corentin Labbe # For sun4i-ss --- Documentation/arm/Booting | 218 --------- Documentation/arm/IXP4xx | 172 ------- Documentation/arm/Interrupts | 167 ------- Documentation/arm/Marvell/README | 395 --------------- Documentation/arm/Microchip/README | 169 ------- Documentation/arm/Netwinder | 78 --- Documentation/arm/OMAP/DSS | 362 -------------- Documentation/arm/OMAP/README | 11 - Documentation/arm/OMAP/omap_pm | 154 ------ Documentation/arm/Porting | 135 ------ Documentation/arm/README | 204 -------- Documentation/arm/SA1100/ADSBitsy | 43 -- Documentation/arm/SA1100/Assabet | 300 ------------ Documentation/arm/SA1100/Brutus | 66 --- Documentation/arm/SA1100/CERF | 29 -- Documentation/arm/SA1100/FreeBird | 21 - Documentation/arm/SA1100/GraphicsClient | 98 ---- Documentation/arm/SA1100/GraphicsMaster | 53 -- Documentation/arm/SA1100/HUW_WEBPANEL | 17 - Documentation/arm/SA1100/Itsy | 39 -- Documentation/arm/SA1100/LART | 14 - Documentation/arm/SA1100/PLEB | 11 - Documentation/arm/SA1100/Pangolin | 23 - Documentation/arm/SA1100/Tifon | 7 - Documentation/arm/SA1100/Yopy | 2 - Documentation/arm/SA1100/empeg | 2 - Documentation/arm/SA1100/nanoEngine | 11 - Documentation/arm/SA1100/serial_UART | 47 -- Documentation/arm/SH-Mobile/.gitignore | 1 - Documentation/arm/SPEAr/overview.txt | 63 --- Documentation/arm/Samsung-S3C24XX/CPUfreq.txt | 75 --- Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt | 58 --- Documentation/arm/Samsung-S3C24XX/GPIO.txt | 171 ------- Documentation/arm/Samsung-S3C24XX/H1940.txt | 40 -- Documentation/arm/Samsung-S3C24XX/NAND.txt | 30 -- Documentation/arm/Samsung-S3C24XX/Overview.txt | 318 ------------ Documentation/arm/Samsung-S3C24XX/S3C2412.txt | 120 ----- Documentation/arm/Samsung-S3C24XX/S3C2413.txt | 21 - Documentation/arm/Samsung-S3C24XX/SMDK2440.txt | 56 --- Documentation/arm/Samsung-S3C24XX/Suspend.txt | 137 ------ Documentation/arm/Samsung-S3C24XX/USB-Host.txt | 93 ---- Documentation/arm/Samsung/Bootloader-interface.txt | 68 --- Documentation/arm/Samsung/GPIO.txt | 40 -- Documentation/arm/Samsung/Overview.txt | 86 ---- .../arm/Samsung/clksrc-change-registers.awk | 166 ------- Documentation/arm/Setup | 129 ----- Documentation/arm/VFP/release-notes.txt | 55 --- Documentation/arm/arm.rst | 214 +++++++++ Documentation/arm/booting.rst | 237 +++++++++ Documentation/arm/cluster-pm-race-avoidance.rst | 533 +++++++++++++++++++++ Documentation/arm/cluster-pm-race-avoidance.txt | 498 ------------------- Documentation/arm/firmware.rst | 72 +++ Documentation/arm/firmware.txt | 70 --- Documentation/arm/index.rst | 80 ++++ Documentation/arm/interrupts.rst | 169 +++++++ Documentation/arm/ixp4xx.rst | 173 +++++++ Documentation/arm/kernel_mode_neon.rst | 124 +++++ Documentation/arm/kernel_mode_neon.txt | 121 ----- Documentation/arm/kernel_user_helpers.rst | 268 +++++++++++ Documentation/arm/kernel_user_helpers.txt | 267 ----------- Documentation/arm/keystone/Overview.txt | 55 --- Documentation/arm/keystone/knav-qmss.rst | 60 +++ Documentation/arm/keystone/knav-qmss.txt | 56 --- Documentation/arm/keystone/overview.rst | 74 +++ Documentation/arm/marvel.rst | 488 +++++++++++++++++++ Documentation/arm/mem_alignment | 58 --- Documentation/arm/mem_alignment.rst | 63 +++ Documentation/arm/memory.rst | 93 ++++ Documentation/arm/memory.txt | 88 ---- Documentation/arm/microchip.rst | 204 ++++++++ Documentation/arm/netwinder.rst | 85 ++++ Documentation/arm/nwfpe/NOTES | 29 -- Documentation/arm/nwfpe/README | 70 --- Documentation/arm/nwfpe/README.FPE | 156 ------ Documentation/arm/nwfpe/TODO | 67 --- Documentation/arm/nwfpe/index.rst | 11 + Documentation/arm/nwfpe/netwinder-fpe.rst | 162 +++++++ Documentation/arm/nwfpe/notes.rst | 32 ++ Documentation/arm/nwfpe/nwfpe.rst | 74 +++ Documentation/arm/nwfpe/todo.rst | 72 +++ Documentation/arm/omap/dss.rst | 372 ++++++++++++++ Documentation/arm/omap/index.rst | 10 + Documentation/arm/omap/omap.rst | 18 + Documentation/arm/omap/omap_pm.rst | 165 +++++++ Documentation/arm/porting.rst | 137 ++++++ Documentation/arm/pxa/mfp.rst | 288 +++++++++++ Documentation/arm/pxa/mfp.txt | 286 ----------- Documentation/arm/sa1100/adsbitsy.rst | 51 ++ Documentation/arm/sa1100/assabet.rst | 301 ++++++++++++ Documentation/arm/sa1100/brutus.rst | 69 +++ Documentation/arm/sa1100/cerf.rst | 35 ++ Documentation/arm/sa1100/freebird.rst | 25 + Documentation/arm/sa1100/graphicsclient.rst | 102 ++++ Documentation/arm/sa1100/graphicsmaster.rst | 60 +++ Documentation/arm/sa1100/huw_webpanel.rst | 21 + Documentation/arm/sa1100/index.rst | 23 + Documentation/arm/sa1100/itsy.rst | 47 ++ Documentation/arm/sa1100/lart.rst | 15 + Documentation/arm/sa1100/nanoengine.rst | 11 + Documentation/arm/sa1100/pangolin.rst | 29 ++ Documentation/arm/sa1100/pleb.rst | 13 + Documentation/arm/sa1100/serial_uart.rst | 51 ++ Documentation/arm/sa1100/tifon.rst | 7 + Documentation/arm/sa1100/yopy.rst | 5 + Documentation/arm/samsung-s3c24xx/cpufreq.rst | 76 +++ Documentation/arm/samsung-s3c24xx/eb2410itx.rst | 59 +++ Documentation/arm/samsung-s3c24xx/gpio.rst | 172 +++++++ Documentation/arm/samsung-s3c24xx/h1940.rst | 41 ++ Documentation/arm/samsung-s3c24xx/index.rst | 18 + Documentation/arm/samsung-s3c24xx/nand.rst | 30 ++ Documentation/arm/samsung-s3c24xx/overview.rst | 319 ++++++++++++ Documentation/arm/samsung-s3c24xx/s3c2412.rst | 121 +++++ Documentation/arm/samsung-s3c24xx/s3c2413.rst | 22 + Documentation/arm/samsung-s3c24xx/smdk2440.rst | 57 +++ Documentation/arm/samsung-s3c24xx/suspend.rst | 137 ++++++ Documentation/arm/samsung-s3c24xx/usb-host.rst | 91 ++++ Documentation/arm/samsung/bootloader-interface.rst | 81 ++++ .../arm/samsung/clksrc-change-registers.awk | 166 +++++++ Documentation/arm/samsung/gpio.rst | 41 ++ Documentation/arm/samsung/index.rst | 10 + Documentation/arm/samsung/overview.rst | 89 ++++ Documentation/arm/setup.rst | 108 +++++ Documentation/arm/sh-mobile/.gitignore | 1 + Documentation/arm/spear/overview.rst | 65 +++ Documentation/arm/sti/overview.rst | 36 ++ Documentation/arm/sti/overview.txt | 33 -- Documentation/arm/sti/stih407-overview.rst | 19 + Documentation/arm/sti/stih407-overview.txt | 18 - Documentation/arm/sti/stih415-overview.rst | 14 + Documentation/arm/sti/stih415-overview.txt | 12 - Documentation/arm/sti/stih416-overview.rst | 13 + Documentation/arm/sti/stih416-overview.txt | 12 - Documentation/arm/sti/stih418-overview.rst | 21 + Documentation/arm/sti/stih418-overview.txt | 20 - Documentation/arm/stm32/overview.rst | 2 - Documentation/arm/stm32/stm32f429-overview.rst | 7 +- Documentation/arm/stm32/stm32f746-overview.rst | 7 +- Documentation/arm/stm32/stm32f769-overview.rst | 7 +- Documentation/arm/stm32/stm32h743-overview.rst | 7 +- Documentation/arm/stm32/stm32mp157-overview.rst | 3 +- Documentation/arm/sunxi.rst | 150 ++++++ Documentation/arm/sunxi/README | 102 ---- Documentation/arm/sunxi/clocks.rst | 57 +++ Documentation/arm/sunxi/clocks.txt | 56 --- Documentation/arm/swp_emulation | 27 -- Documentation/arm/swp_emulation.rst | 27 ++ Documentation/arm/tcm.rst | 161 +++++++ Documentation/arm/tcm.txt | 155 ------ Documentation/arm/uefi.rst | 67 +++ Documentation/arm/uefi.txt | 60 --- Documentation/arm/vfp/release-notes.rst | 57 +++ Documentation/arm/vlocks.rst | 212 ++++++++ Documentation/arm/vlocks.txt | 211 -------- Documentation/devicetree/bindings/arm/xen.txt | 2 +- Documentation/devicetree/booting-without-of.txt | 4 +- Documentation/index.rst | 1 + Documentation/translations/zh_CN/arm/Booting | 4 +- .../translations/zh_CN/arm/kernel_user_helpers.txt | 4 +- MAINTAINERS | 4 +- arch/arm/Kconfig | 2 +- arch/arm/common/mcpm_entry.c | 2 +- arch/arm/common/mcpm_head.S | 2 +- arch/arm/common/vlock.S | 2 +- arch/arm/include/asm/setup.h | 2 +- arch/arm/include/uapi/asm/setup.h | 2 +- arch/arm/kernel/entry-armv.S | 2 +- arch/arm/mach-exynos/common.h | 2 +- arch/arm/mach-ixp4xx/Kconfig | 14 +- arch/arm/mach-s3c24xx/pm.c | 2 +- arch/arm/mm/Kconfig | 4 +- arch/arm/plat-samsung/Kconfig | 6 +- arch/arm/tools/mach-types | 2 +- arch/arm64/Kconfig | 2 +- arch/arm64/kernel/kuser32.S | 2 +- arch/mips/bmips/setup.c | 2 +- drivers/crypto/sunxi-ss/sun4i-ss-cipher.c | 2 +- drivers/crypto/sunxi-ss/sun4i-ss-core.c | 2 +- drivers/crypto/sunxi-ss/sun4i-ss-hash.c | 2 +- drivers/crypto/sunxi-ss/sun4i-ss.h | 2 +- drivers/input/touchscreen/sun4i-ts.c | 2 +- drivers/tty/serial/Kconfig | 2 +- 181 files changed, 7731 insertions(+), 7166 deletions(-) delete mode 100644 Documentation/arm/Booting delete mode 100644 Documentation/arm/IXP4xx delete mode 100644 Documentation/arm/Interrupts delete mode 100644 Documentation/arm/Marvell/README delete mode 100644 Documentation/arm/Microchip/README delete mode 100644 Documentation/arm/Netwinder delete mode 100644 Documentation/arm/OMAP/DSS delete mode 100644 Documentation/arm/OMAP/README delete mode 100644 Documentation/arm/OMAP/omap_pm delete mode 100644 Documentation/arm/Porting delete mode 100644 Documentation/arm/README delete mode 100644 Documentation/arm/SA1100/ADSBitsy delete mode 100644 Documentation/arm/SA1100/Assabet delete mode 100644 Documentation/arm/SA1100/Brutus delete mode 100644 Documentation/arm/SA1100/CERF delete mode 100644 Documentation/arm/SA1100/FreeBird delete mode 100644 Documentation/arm/SA1100/GraphicsClient delete mode 100644 Documentation/arm/SA1100/GraphicsMaster delete mode 100644 Documentation/arm/SA1100/HUW_WEBPANEL delete mode 100644 Documentation/arm/SA1100/Itsy delete mode 100644 Documentation/arm/SA1100/LART delete mode 100644 Documentation/arm/SA1100/PLEB delete mode 100644 Documentation/arm/SA1100/Pangolin delete mode 100644 Documentation/arm/SA1100/Tifon delete mode 100644 Documentation/arm/SA1100/Yopy delete mode 100644 Documentation/arm/SA1100/empeg delete mode 100644 Documentation/arm/SA1100/nanoEngine delete mode 100644 Documentation/arm/SA1100/serial_UART delete mode 100644 Documentation/arm/SH-Mobile/.gitignore delete mode 100644 Documentation/arm/SPEAr/overview.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/CPUfreq.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/GPIO.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/H1940.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/NAND.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/Overview.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/S3C2412.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/S3C2413.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/SMDK2440.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/Suspend.txt delete mode 100644 Documentation/arm/Samsung-S3C24XX/USB-Host.txt delete mode 100644 Documentation/arm/Samsung/Bootloader-interface.txt delete mode 100644 Documentation/arm/Samsung/GPIO.txt delete mode 100644 Documentation/arm/Samsung/Overview.txt delete mode 100755 Documentation/arm/Samsung/clksrc-change-registers.awk delete mode 100644 Documentation/arm/Setup delete mode 100644 Documentation/arm/VFP/release-notes.txt create mode 100644 Documentation/arm/arm.rst create mode 100644 Documentation/arm/booting.rst create mode 100644 Documentation/arm/cluster-pm-race-avoidance.rst delete mode 100644 Documentation/arm/cluster-pm-race-avoidance.txt create mode 100644 Documentation/arm/firmware.rst delete mode 100644 Documentation/arm/firmware.txt create mode 100644 Documentation/arm/index.rst create mode 100644 Documentation/arm/interrupts.rst create mode 100644 Documentation/arm/ixp4xx.rst create mode 100644 Documentation/arm/kernel_mode_neon.rst delete mode 100644 Documentation/arm/kernel_mode_neon.txt create mode 100644 Documentation/arm/kernel_user_helpers.rst delete mode 100644 Documentation/arm/kernel_user_helpers.txt delete mode 100644 Documentation/arm/keystone/Overview.txt create mode 100644 Documentation/arm/keystone/knav-qmss.rst delete mode 100644 Documentation/arm/keystone/knav-qmss.txt create mode 100644 Documentation/arm/keystone/overview.rst create mode 100644 Documentation/arm/marvel.rst delete mode 100644 Documentation/arm/mem_alignment create mode 100644 Documentation/arm/mem_alignment.rst create mode 100644 Documentation/arm/memory.rst delete mode 100644 Documentation/arm/memory.txt create mode 100644 Documentation/arm/microchip.rst create mode 100644 Documentation/arm/netwinder.rst delete mode 100644 Documentation/arm/nwfpe/NOTES delete mode 100644 Documentation/arm/nwfpe/README delete mode 100644 Documentation/arm/nwfpe/README.FPE delete mode 100644 Documentation/arm/nwfpe/TODO create mode 100644 Documentation/arm/nwfpe/index.rst create mode 100644 Documentation/arm/nwfpe/netwinder-fpe.rst create mode 100644 Documentation/arm/nwfpe/notes.rst create mode 100644 Documentation/arm/nwfpe/nwfpe.rst create mode 100644 Documentation/arm/nwfpe/todo.rst create mode 100644 Documentation/arm/omap/dss.rst create mode 100644 Documentation/arm/omap/index.rst create mode 100644 Documentation/arm/omap/omap.rst create mode 100644 Documentation/arm/omap/omap_pm.rst create mode 100644 Documentation/arm/porting.rst create mode 100644 Documentation/arm/pxa/mfp.rst delete mode 100644 Documentation/arm/pxa/mfp.txt create mode 100644 Documentation/arm/sa1100/adsbitsy.rst create mode 100644 Documentation/arm/sa1100/assabet.rst create mode 100644 Documentation/arm/sa1100/brutus.rst create mode 100644 Documentation/arm/sa1100/cerf.rst create mode 100644 Documentation/arm/sa1100/freebird.rst create mode 100644 Documentation/arm/sa1100/graphicsclient.rst create mode 100644 Documentation/arm/sa1100/graphicsmaster.rst create mode 100644 Documentation/arm/sa1100/huw_webpanel.rst create mode 100644 Documentation/arm/sa1100/index.rst create mode 100644 Documentation/arm/sa1100/itsy.rst create mode 100644 Documentation/arm/sa1100/lart.rst create mode 100644 Documentation/arm/sa1100/nanoengine.rst create mode 100644 Documentation/arm/sa1100/pangolin.rst create mode 100644 Documentation/arm/sa1100/pleb.rst create mode 100644 Documentation/arm/sa1100/serial_uart.rst create mode 100644 Documentation/arm/sa1100/tifon.rst create mode 100644 Documentation/arm/sa1100/yopy.rst create mode 100644 Documentation/arm/samsung-s3c24xx/cpufreq.rst create mode 100644 Documentation/arm/samsung-s3c24xx/eb2410itx.rst create mode 100644 Documentation/arm/samsung-s3c24xx/gpio.rst create mode 100644 Documentation/arm/samsung-s3c24xx/h1940.rst create mode 100644 Documentation/arm/samsung-s3c24xx/index.rst create mode 100644 Documentation/arm/samsung-s3c24xx/nand.rst create mode 100644 Documentation/arm/samsung-s3c24xx/overview.rst create mode 100644 Documentation/arm/samsung-s3c24xx/s3c2412.rst create mode 100644 Documentation/arm/samsung-s3c24xx/s3c2413.rst create mode 100644 Documentation/arm/samsung-s3c24xx/smdk2440.rst create mode 100644 Documentation/arm/samsung-s3c24xx/suspend.rst create mode 100644 Documentation/arm/samsung-s3c24xx/usb-host.rst create mode 100644 Documentation/arm/samsung/bootloader-interface.rst create mode 100755 Documentation/arm/samsung/clksrc-change-registers.awk create mode 100644 Documentation/arm/samsung/gpio.rst create mode 100644 Documentation/arm/samsung/index.rst create mode 100644 Documentation/arm/samsung/overview.rst create mode 100644 Documentation/arm/setup.rst create mode 100644 Documentation/arm/sh-mobile/.gitignore create mode 100644 Documentation/arm/spear/overview.rst create mode 100644 Documentation/arm/sti/overview.rst delete mode 100644 Documentation/arm/sti/overview.txt create mode 100644 Documentation/arm/sti/stih407-overview.rst delete mode 100644 Documentation/arm/sti/stih407-overview.txt create mode 100644 Documentation/arm/sti/stih415-overview.rst delete mode 100644 Documentation/arm/sti/stih415-overview.txt create mode 100644 Documentation/arm/sti/stih416-overview.rst delete mode 100644 Documentation/arm/sti/stih416-overview.txt create mode 100644 Documentation/arm/sti/stih418-overview.rst delete mode 100644 Documentation/arm/sti/stih418-overview.txt create mode 100644 Documentation/arm/sunxi.rst delete mode 100644 Documentation/arm/sunxi/README create mode 100644 Documentation/arm/sunxi/clocks.rst delete mode 100644 Documentation/arm/sunxi/clocks.txt delete mode 100644 Documentation/arm/swp_emulation create mode 100644 Documentation/arm/swp_emulation.rst create mode 100644 Documentation/arm/tcm.rst delete mode 100644 Documentation/arm/tcm.txt create mode 100644 Documentation/arm/uefi.rst delete mode 100644 Documentation/arm/uefi.txt create mode 100644 Documentation/arm/vfp/release-notes.rst create mode 100644 Documentation/arm/vlocks.rst delete mode 100644 Documentation/arm/vlocks.txt (limited to 'drivers/input') diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting deleted file mode 100644 index f1f965ce93d6..000000000000 --- a/Documentation/arm/Booting +++ /dev/null @@ -1,218 +0,0 @@ - Booting ARM Linux - ================= - -Author: Russell King -Date : 18 May 2002 - -The following documentation is relevant to 2.4.18-rmk6 and beyond. - -In order to boot ARM Linux, you require a boot loader, which is a small -program that runs before the main kernel. The boot loader is expected -to initialise various devices, and eventually call the Linux kernel, -passing information to the kernel. - -Essentially, the boot loader should provide (as a minimum) the -following: - -1. Setup and initialise the RAM. -2. Initialise one serial port. -3. Detect the machine type. -4. Setup the kernel tagged list. -5. Load initramfs. -6. Call the kernel image. - - -1. Setup and initialise RAM ---------------------------- - -Existing boot loaders: MANDATORY -New boot loaders: MANDATORY - -The boot loader is expected to find and initialise all RAM that the -kernel will use for volatile data storage in the system. It performs -this in a machine dependent manner. (It may use internal algorithms -to automatically locate and size all RAM, or it may use knowledge of -the RAM in the machine, or any other method the boot loader designer -sees fit.) - - -2. Initialise one serial port ------------------------------ - -Existing boot loaders: OPTIONAL, RECOMMENDED -New boot loaders: OPTIONAL, RECOMMENDED - -The boot loader should initialise and enable one serial port on the -target. This allows the kernel serial driver to automatically detect -which serial port it should use for the kernel console (generally -used for debugging purposes, or communication with the target.) - -As an alternative, the boot loader can pass the relevant 'console=' -option to the kernel via the tagged lists specifying the port, and -serial format options as described in - - Documentation/admin-guide/kernel-parameters.rst. - - -3. Detect the machine type --------------------------- - -Existing boot loaders: OPTIONAL -New boot loaders: MANDATORY except for DT-only platforms - -The boot loader should detect the machine type its running on by some -method. Whether this is a hard coded value or some algorithm that -looks at the connected hardware is beyond the scope of this document. -The boot loader must ultimately be able to provide a MACH_TYPE_xxx -value to the kernel. (see linux/arch/arm/tools/mach-types). This -should be passed to the kernel in register r1. - -For DT-only platforms, the machine type will be determined by device -tree. set the machine type to all ones (~0). This is not strictly -necessary, but assures that it will not match any existing types. - -4. Setup boot data ------------------- - -Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED -New boot loaders: MANDATORY - -The boot loader must provide either a tagged list or a dtb image for -passing configuration data to the kernel. The physical address of the -boot data is passed to the kernel in register r2. - -4a. Setup the kernel tagged list --------------------------------- - -The boot loader must create and initialise the kernel tagged list. -A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. -The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag -has the size field set to '2' (0x00000002). The ATAG_NONE must set -the size field to zero. - -Any number of tags can be placed in the list. It is undefined -whether a repeated tag appends to the information carried by the -previous tag, or whether it replaces the information in its -entirety; some tags behave as the former, others the latter. - -The boot loader must pass at a minimum the size and location of -the system memory, and root filesystem location. Therefore, the -minimum tagged list should look: - - +-----------+ -base -> | ATAG_CORE | | - +-----------+ | - | ATAG_MEM | | increasing address - +-----------+ | - | ATAG_NONE | | - +-----------+ v - -The tagged list should be stored in system RAM. - -The tagged list must be placed in a region of memory where neither -the kernel decompressor nor initrd 'bootp' program will overwrite -it. The recommended placement is in the first 16KiB of RAM. - -4b. Setup the device tree -------------------------- - -The boot loader must load a device tree image (dtb) into system ram -at a 64bit aligned address and initialize it with the boot data. The -dtb format is documented in Documentation/devicetree/booting-without-of.txt. -The kernel will look for the dtb magic value of 0xd00dfeed at the dtb -physical address to determine if a dtb has been passed instead of a -tagged list. - -The boot loader must pass at a minimum the size and location of the -system memory, and the root filesystem location. The dtb must be -placed in a region of memory where the kernel decompressor will not -overwrite it, while remaining within the region which will be covered -by the kernel's low-memory mapping. - -A safe location is just above the 128MiB boundary from start of RAM. - -5. Load initramfs. ------------------- - -Existing boot loaders: OPTIONAL -New boot loaders: OPTIONAL - -If an initramfs is in use then, as with the dtb, it must be placed in -a region of memory where the kernel decompressor will not overwrite it -while also with the region which will be covered by the kernel's -low-memory mapping. - -A safe location is just above the device tree blob which itself will -be loaded just above the 128MiB boundary from the start of RAM as -recommended above. - -6. Calling the kernel image ---------------------------- - -Existing boot loaders: MANDATORY -New boot loaders: MANDATORY - -There are two options for calling the kernel zImage. If the zImage -is stored in flash, and is linked correctly to be run from flash, -then it is legal for the boot loader to call the zImage in flash -directly. - -The zImage may also be placed in system RAM and called there. The -kernel should be placed in the first 128MiB of RAM. It is recommended -that it is loaded above 32MiB in order to avoid the need to relocate -prior to decompression, which will make the boot process slightly -faster. - -When booting a raw (non-zImage) kernel the constraints are tighter. -In this case the kernel must be loaded at an offset into system equal -to TEXT_OFFSET - PAGE_OFFSET. - -In any case, the following conditions must be met: - -- Quiesce all DMA capable devices so that memory does not get - corrupted by bogus network packets or disk data. This will save - you many hours of debug. - -- CPU register settings - r0 = 0, - r1 = machine type number discovered in (3) above. - r2 = physical address of tagged list in system RAM, or - physical address of device tree block (dtb) in system RAM - -- CPU mode - All forms of interrupts must be disabled (IRQs and FIQs) - - For CPUs which do not include the ARM virtualization extensions, the - CPU must be in SVC mode. (A special exception exists for Angel) - - CPUs which include support for the virtualization extensions can be - entered in HYP mode in order to enable the kernel to make full use of - these extensions. This is the recommended boot method for such CPUs, - unless the virtualisations are already in use by a pre-installed - hypervisor. - - If the kernel is not entered in HYP mode for any reason, it must be - entered in SVC mode. - -- Caches, MMUs - The MMU must be off. - Instruction cache may be on or off. - Data cache must be off. - - If the kernel is entered in HYP mode, the above requirements apply to - the HYP mode configuration in addition to the ordinary PL1 (privileged - kernel modes) configuration. In addition, all traps into the - hypervisor must be disabled, and PL1 access must be granted for all - peripherals and CPU resources for which this is architecturally - possible. Except for entering in HYP mode, the system configuration - should be such that a kernel which does not include support for the - virtualization extensions can boot correctly without extra help. - -- The boot loader is expected to call the kernel image by jumping - directly to the first instruction of the kernel image. - - On CPUs supporting the ARM instruction set, the entry must be - made in ARM state, even for a Thumb-2 kernel. - - On CPUs supporting only the Thumb instruction set such as - Cortex-M class CPUs, the entry must be made in Thumb state. diff --git a/Documentation/arm/IXP4xx b/Documentation/arm/IXP4xx deleted file mode 100644 index e48b74de6ac0..000000000000 --- a/Documentation/arm/IXP4xx +++ /dev/null @@ -1,172 +0,0 @@ - -------------------------------------------------------------------------- -Release Notes for Linux on Intel's IXP4xx Network Processor - -Maintained by Deepak Saxena -------------------------------------------------------------------------- - -1. Overview - -Intel's IXP4xx network processor is a highly integrated SOC that -is targeted for network applications, though it has become popular -in industrial control and other areas due to low cost and power -consumption. The IXP4xx family currently consists of several processors -that support different network offload functions such as encryption, -routing, firewalling, etc. The IXP46x family is an updated version which -supports faster speeds, new memory and flash configurations, and more -integration such as an on-chip I2C controller. - -For more information on the various versions of the CPU, see: - - http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm - -Intel also made the IXCP1100 CPU for sometime which is an IXP4xx -stripped of much of the network intelligence. - -2. Linux Support - -Linux currently supports the following features on the IXP4xx chips: - -- Dual serial ports -- PCI interface -- Flash access (MTD/JFFS) -- I2C through GPIO on IXP42x -- GPIO for input/output/interrupts - See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions. -- Timers (watchdog, OS) - -The following components of the chips are not supported by Linux and -require the use of Intel's proprietary CSR software: - -- USB device interface -- Network interfaces (HSS, Utopia, NPEs, etc) -- Network offload functionality - -If you need to use any of the above, you need to download Intel's -software from: - - http://developer.intel.com/design/network/products/npfamily/ixp425.htm - -DO NOT POST QUESTIONS TO THE LINUX MAILING LISTS REGARDING THE PROPRIETARY -SOFTWARE. - -There are several websites that provide directions/pointers on using -Intel's software: - - http://sourceforge.net/projects/ixp4xx-osdg/ - Open Source Developer's Guide for using uClinux and the Intel libraries - -http://gatewaymaker.sourceforge.net/ - Simple one page summary of building a gateway using an IXP425 and Linux - -http://ixp425.sourceforge.net/ - ATM device driver for IXP425 that relies on Intel's libraries - -3. Known Issues/Limitations - -3a. Limited inbound PCI window - -The IXP4xx family allows for up to 256MB of memory but the PCI interface -can only expose 64MB of that memory to the PCI bus. This means that if -you are running with > 64MB, all PCI buffers outside of the accessible -range will be bounced using the routines in arch/arm/common/dmabounce.c. - -3b. Limited outbound PCI window - -IXP4xx provides two methods of accessing PCI memory space: - -1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB). - To access PCI via this space, we simply ioremap() the BAR - into the kernel and we can use the standard read[bwl]/write[bwl] - macros. This is the preffered method due to speed but it - limits the system to just 64MB of PCI memory. This can be - problamatic if using video cards and other memory-heavy devices. - -2) If > 64MB of memory space is required, the IXP4xx can be - configured to use indirect registers to access PCI This allows - for up to 128MB (0x48000000 to 0x4fffffff) of memory on the bus. - The disadvantage of this is that every PCI access requires - three local register accesses plus a spinlock, but in some - cases the performance hit is acceptable. In addition, you cannot - mmap() PCI devices in this case due to the indirect nature - of the PCI window. - -By default, the direct method is used for performance reasons. If -you need more PCI memory, enable the IXP4XX_INDIRECT_PCI config option. - -3c. GPIO as Interrupts - -Currently the code only handles level-sensitive GPIO interrupts - -4. Supported platforms - -ADI Engineering Coyote Gateway Reference Platform -http://www.adiengineering.com/productsCoyote.html - - The ADI Coyote platform is reference design for those building - small residential/office gateways. One NPE is connected to a 10/100 - interface, one to 4-port 10/100 switch, and the third to and ADSL - interface. In addition, it also supports to POTs interfaces connected - via SLICs. Note that those are not supported by Linux ATM. Finally, - the platform has two mini-PCI slots used for 802.11[bga] cards. - Finally, there is an IDE port hanging off the expansion bus. - -Gateworks Avila Network Platform -http://www.gateworks.com/support/overview.php - - The Avila platform is basically and IXDP425 with the 4 PCI slots - replaced with mini-PCI slots and a CF IDE interface hanging off - the expansion bus. - -Intel IXDP425 Development Platform -http://www.intel.com/design/network/products/npfamily/ixdpg425.htm - - This is Intel's standard reference platform for the IXDP425 and is - also known as the Richfield board. It contains 4 PCI slots, 16MB - of flash, two 10/100 ports and one ADSL port. - -Intel IXDP465 Development Platform -http://www.intel.com/design/network/products/npfamily/ixdp465.htm - - This is basically an IXDP425 with an IXP465 and 32M of flash instead - of just 16. - -Intel IXDPG425 Development Platform - - This is basically and ADI Coyote board with a NEC EHCI controller - added. One issue with this board is that the mini-PCI slots only - have the 3.3v line connected, so you can't use a PCI to mini-PCI - adapter with an E100 card. So to NFS root you need to use either - the CSR or a WiFi card and a ramdisk that BOOTPs and then does - a pivot_root to NFS. - -Motorola PrPMC1100 Processor Mezanine Card -http://www.fountainsys.com - - The PrPMC1100 is based on the IXCP1100 and is meant to plug into - and IXP2400/2800 system to act as the system controller. It simply - contains a CPU and 16MB of flash on the board and needs to be - plugged into a carrier board to function. Currently Linux only - supports the Motorola PrPMC carrier board for this platform. - -5. TODO LIST - -- Add support for Coyote IDE -- Add support for edge-based GPIO interrupts -- Add support for CF IDE on expansion bus - -6. Thanks - -The IXP4xx work has been funded by Intel Corp. and MontaVista Software, Inc. - -The following people have contributed patches/comments/etc: - -Lennerty Buytenhek -Lutz Jaenicke -Justin Mayfield -Robert E. Ranslam -[I know I've forgotten others, please email me to be added] - -------------------------------------------------------------------------- - -Last Update: 01/04/2005 diff --git a/Documentation/arm/Interrupts b/Documentation/arm/Interrupts deleted file mode 100644 index f09ab1b90ef1..000000000000 --- a/Documentation/arm/Interrupts +++ /dev/null @@ -1,167 +0,0 @@ -2.5.2-rmk5 ----------- - -This is the first kernel that contains a major shake up of some of the -major architecture-specific subsystems. - -Firstly, it contains some pretty major changes to the way we handle the -MMU TLB. Each MMU TLB variant is now handled completely separately - -we have TLB v3, TLB v4 (without write buffer), TLB v4 (with write buffer), -and finally TLB v4 (with write buffer, with I TLB invalidate entry). -There is more assembly code inside each of these functions, mainly to -allow more flexible TLB handling for the future. - -Secondly, the IRQ subsystem. - -The 2.5 kernels will be having major changes to the way IRQs are handled. -Unfortunately, this means that machine types that touch the irq_desc[] -array (basically all machine types) will break, and this means every -machine type that we currently have. - -Lets take an example. On the Assabet with Neponset, we have: - - GPIO25 IRR:2 - SA1100 ------------> Neponset -----------> SA1111 - IIR:1 - -----------> USAR - IIR:0 - -----------> SMC9196 - -The way stuff currently works, all SA1111 interrupts are mutually -exclusive of each other - if you're processing one interrupt from the -SA1111 and another comes in, you have to wait for that interrupt to -finish processing before you can service the new interrupt. Eg, an -IDE PIO-based interrupt on the SA1111 excludes all other SA1111 and -SMC9196 interrupts until it has finished transferring its multi-sector -data, which can be a long time. Note also that since we loop in the -SA1111 IRQ handler, SA1111 IRQs can hold off SMC9196 IRQs indefinitely. - - -The new approach brings several new ideas... - -We introduce the concept of a "parent" and a "child". For example, -to the Neponset handler, the "parent" is GPIO25, and the "children"d -are SA1111, SMC9196 and USAR. - -We also bring the idea of an IRQ "chip" (mainly to reduce the size of -the irqdesc array). This doesn't have to be a real "IC"; indeed the -SA11x0 IRQs are handled by two separate "chip" structures, one for -GPIO0-10, and another for all the rest. It is just a container for -the various operations (maybe this'll change to a better name). -This structure has the following operations: - -struct irqchip { - /* - * Acknowledge the IRQ. - * If this is a level-based IRQ, then it is expected to mask the IRQ - * as well. - */ - void (*ack)(unsigned int irq); - /* - * Mask the IRQ in hardware. - */ - void (*mask)(unsigned int irq); - /* - * Unmask the IRQ in hardware. - */ - void (*unmask)(unsigned int irq); - /* - * Re-run the IRQ - */ - void (*rerun)(unsigned int irq); - /* - * Set the type of the IRQ. - */ - int (*type)(unsigned int irq, unsigned int, type); -}; - -ack - required. May be the same function as mask for IRQs - handled by do_level_IRQ. -mask - required. -unmask - required. -rerun - optional. Not required if you're using do_level_IRQ for all - IRQs that use this 'irqchip'. Generally expected to re-trigger - the hardware IRQ if possible. If not, may call the handler - directly. -type - optional. If you don't support changing the type of an IRQ, - it should be null so people can detect if they are unable to - set the IRQ type. - -For each IRQ, we keep the following information: - - - "disable" depth (number of disable_irq()s without enable_irq()s) - - flags indicating what we can do with this IRQ (valid, probe, - noautounmask) as before - - status of the IRQ (probing, enable, etc) - - chip - - per-IRQ handler - - irqaction structure list - -The handler can be one of the 3 standard handlers - "level", "edge" and -"simple", or your own specific handler if you need to do something special. - -The "level" handler is what we currently have - its pretty simple. -"edge" knows about the brokenness of such IRQ implementations - that you -need to leave the hardware IRQ enabled while processing it, and queueing -further IRQ events should the IRQ happen again while processing. The -"simple" handler is very basic, and does not perform any hardware -manipulation, nor state tracking. This is useful for things like the -SMC9196 and USAR above. - -So, what's changed? - -1. Machine implementations must not write to the irqdesc array. - -2. New functions to manipulate the irqdesc array. The first 4 are expected - to be useful only to machine specific code. The last is recommended to - only be used by machine specific code, but may be used in drivers if - absolutely necessary. - - set_irq_chip(irq,chip) - - Set the mask/unmask methods for handling this IRQ - - set_irq_handler(irq,handler) - - Set the handler for this IRQ (level, edge, simple) - - set_irq_chained_handler(irq,handler) - - Set a "chained" handler for this IRQ - automatically - enables this IRQ (eg, Neponset and SA1111 handlers). - - set_irq_flags(irq,flags) - - Set the valid/probe/noautoenable flags. - - set_irq_type(irq,type) - - Set active the IRQ edge(s)/level. This replaces the - SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge() - function. Type should be one of IRQ_TYPE_xxx defined in - - -3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type. - -4. Direct access to SA1111 INTPOL is deprecated. Use set_irq_type instead. - -5. A handler is expected to perform any necessary acknowledgement of the - parent IRQ via the correct chip specific function. For instance, if - the SA1111 is directly connected to a SA1110 GPIO, then you should - acknowledge the SA1110 IRQ each time you re-read the SA1111 IRQ status. - -6. For any child which doesn't have its own IRQ enable/disable controls - (eg, SMC9196), the handler must mask or acknowledge the parent IRQ - while the child handler is called, and the child handler should be the - "simple" handler (not "edge" nor "level"). After the handler completes, - the parent IRQ should be unmasked, and the status of all children must - be re-checked for pending events. (see the Neponset IRQ handler for - details). - -7. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h - -Please note that this will not solve all problems - some of them are -hardware based. Mixing level-based and edge-based IRQs on the same -parent signal (eg neponset) is one such area where a software based -solution can't provide the full answer to low IRQ latency. - diff --git a/Documentation/arm/Marvell/README b/Documentation/arm/Marvell/README deleted file mode 100644 index 56ada27c53be..000000000000 --- a/Documentation/arm/Marvell/README +++ /dev/null @@ -1,395 +0,0 @@ -ARM Marvell SoCs -================ - -This document lists all the ARM Marvell SoCs that are currently -supported in mainline by the Linux kernel. As the Marvell families of -SoCs are large and complex, it is hard to understand where the support -for a particular SoC is available in the Linux kernel. This document -tries to help in understanding where those SoCs are supported, and to -match them with their corresponding public datasheet, when available. - -Orion family ------------- - - Flavors: - 88F5082 - 88F5181 - 88F5181L - 88F5182 - Datasheet : http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf - Programmer's User Guide : http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf - User Manual : http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf - 88F5281 - Datasheet : http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf - 88F6183 - Core: Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 compatible - Linux kernel mach directory: arch/arm/mach-orion5x - Linux kernel plat directory: arch/arm/plat-orion - -Kirkwood family ---------------- - - Flavors: - 88F6282 a.k.a Armada 300 - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf - 88F6283 a.k.a Armada 310 - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf - 88F6190 - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf - 88F6192 - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf - 88F6182 - 88F6180 - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf - 88F6281 - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf - Homepage: http://www.marvell.com/embedded-processors/kirkwood/ - Core: Feroceon 88fr131 ARMv5 compatible - Linux kernel mach directory: arch/arm/mach-mvebu - Linux kernel plat directory: none - -Discovery family ----------------- - - Flavors: - MV78100 - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf - MV78200 - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf - MV76100 - Not supported by the Linux kernel. - - Core: Feroceon 88fr571-vd ARMv5 compatible - - Linux kernel mach directory: arch/arm/mach-mv78xx0 - Linux kernel plat directory: arch/arm/plat-orion - -EBU Armada family ------------------ - - Armada 370 Flavors: - 88F6710 - 88F6707 - 88F6W11 - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf - Hardware Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf - Functional Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf - Core: Sheeva ARMv7 compatible PJ4B - - Armada 375 Flavors: - 88F6720 - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf - Core: ARM Cortex-A9 - - Armada 38x Flavors: - 88F6810 Armada 380 - 88F6820 Armada 385 - 88F6828 Armada 388 - Product infos: http://www.marvell.com/embedded-processors/armada-38x/ - Functional Spec: https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/ - Core: ARM Cortex-A9 - - Armada 39x Flavors: - 88F6920 Armada 390 - 88F6928 Armada 398 - Product infos: http://www.marvell.com/embedded-processors/armada-39x/ - Core: ARM Cortex-A9 - - Armada XP Flavors: - MV78230 - MV78260 - MV78460 - NOTE: not to be confused with the non-SMP 78xx0 SoCs - Product Brief: http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf - Functional Spec: http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf - Hardware Specs: - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF - Core: Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP - - Linux kernel mach directory: arch/arm/mach-mvebu - Linux kernel plat directory: none - -EBU Armada family ARMv8 ------------------------ - - Armada 3710/3720 Flavors: - 88F3710 - 88F3720 - Core: ARM Cortex A53 (ARMv8) - - Homepage: http://www.marvell.com/embedded-processors/armada-3700/ - Product Brief: http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf - Device tree files: arch/arm64/boot/dts/marvell/armada-37* - - Armada 7K Flavors: - 88F7020 (AP806 Dual + one CP110) - 88F7040 (AP806 Quad + one CP110) - Core: ARM Cortex A72 - - Homepage: http://www.marvell.com/embedded-processors/armada-70xx/ - Product Brief: http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf - http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf - Device tree files: arch/arm64/boot/dts/marvell/armada-70* - - Armada 8K Flavors: - 88F8020 (AP806 Dual + two CP110) - 88F8040 (AP806 Quad + two CP110) - Core: ARM Cortex A72 - - Homepage: http://www.marvell.com/embedded-processors/armada-80xx/ - Product Brief: http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf - http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf - Device tree files: arch/arm64/boot/dts/marvell/armada-80* - -Avanta family -------------- - - Flavors: - 88F6510 - 88F6530P - 88F6550 - 88F6560 - Homepage : http://www.marvell.com/broadband/ - Product Brief: http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf - No public datasheet available. - - Core: ARMv5 compatible - - Linux kernel mach directory: no code in mainline yet, planned for the future - Linux kernel plat directory: no code in mainline yet, planned for the future - -Storage family --------------- - - Armada SP: - 88RC1580 - Product infos: http://www.marvell.com/storage/armada-sp/ - Core: Sheeva ARMv7 comatible Quad-core PJ4C - (not supported in upstream Linux kernel) - -Dove family (application processor) ------------------------------------ - - Flavors: - 88AP510 a.k.a Armada 510 - Product Brief : http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf - Hardware Spec : http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf - Functional Spec : http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf - Homepage: http://www.marvell.com/application-processors/armada-500/ - Core: ARMv7 compatible - - Directory: arch/arm/mach-mvebu (DT enabled platforms) - arch/arm/mach-dove (non-DT enabled platforms) - -PXA 2xx/3xx/93x/95x family --------------------------- - - Flavors: - PXA21x, PXA25x, PXA26x - Application processor only - Core: ARMv5 XScale1 core - PXA270, PXA271, PXA272 - Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf - Specification : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf - Specification update : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf - Application processor only - Core: ARMv5 XScale2 core - PXA300, PXA310, PXA320 - PXA 300 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf - PXA 310 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf - PXA 320 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip - Specifications : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf - Specification Update : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip - Reference Manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf - Application processor only - Core: ARMv5 XScale3 core - PXA930, PXA935 - Application processor with Communication processor - Core: ARMv5 XScale3 core - PXA955 - Application processor with Communication processor - Core: ARMv7 compatible Sheeva PJ4 core - - Comments: - - * This line of SoCs originates from the XScale family developed by - Intel and acquired by Marvell in ~2006. The PXA21x, PXA25x, - PXA26x, PXA27x, PXA3xx and PXA93x were developed by Intel, while - the later PXA95x were developed by Marvell. - - * Due to their XScale origin, these SoCs have virtually nothing in - common with the other (Kirkwood, Dove, etc.) families of Marvell - SoCs, except with the MMP/MMP2 family of SoCs. - - Linux kernel mach directory: arch/arm/mach-pxa - Linux kernel plat directory: arch/arm/plat-pxa - -MMP/MMP2/MMP3 family (communication processor) ------------------------------------------ - - Flavors: - PXA168, a.k.a Armada 168 - Homepage : http://www.marvell.com/application-processors/armada-100/armada-168.jsp - Product brief : http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf - Hardware manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf - Software manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf - Specification update : http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf - Boot ROM manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf - App node package : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf - Application processor only - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk) - PXA910/PXA920 - Homepage : http://www.marvell.com/communication-processors/pxa910/ - Product Brief : http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf - Application processor with Communication processor - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk) - PXA688, a.k.a. MMP2, a.k.a Armada 610 - Product Brief : http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf - Application processor only - Core: ARMv7 compatible Sheeva PJ4 88sv581x core - PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream) - Product Brief : http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf - Application processor only - Core: Dual-core ARMv7 compatible Sheeva PJ4C core - PXA960/PXA968/PXA978 (Linux support not upstream) - Application processor with Communication Processor - Core: ARMv7 compatible Sheeva PJ4 core - PXA986/PXA988 (Linux support not upstream) - Application processor with Communication Processor - Core: Dual-core ARMv7 compatible Sheeva PJ4B-MP core - PXA1088/PXA1920 (Linux support not upstream) - Application processor with Communication Processor - Core: quad-core ARMv7 Cortex-A7 - PXA1908/PXA1928/PXA1936 - Application processor with Communication Processor - Core: multi-core ARMv8 Cortex-A53 - - Comments: - - * This line of SoCs originates from the XScale family developed by - Intel and acquired by Marvell in ~2006. All the processors of - this MMP/MMP2 family were developed by Marvell. - - * Due to their XScale origin, these SoCs have virtually nothing in - common with the other (Kirkwood, Dove, etc.) families of Marvell - SoCs, except with the PXA family of SoCs listed above. - - Linux kernel mach directory: arch/arm/mach-mmp - Linux kernel plat directory: arch/arm/plat-pxa - -Berlin family (Multimedia Solutions) -------------------------------------- - - Flavors: - 88DE3010, Armada 1000 (no Linux support) - Core: Marvell PJ1 (ARMv5TE), Dual-core - Product Brief: http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf - 88DE3005, Armada 1500 Mini - Design name: BG2CD - Core: ARM Cortex-A9, PL310 L2CC - 88DE3006, Armada 1500 Mini Plus - Design name: BG2CDP - Core: Dual Core ARM Cortex-A7 - 88DE3100, Armada 1500 - Design name: BG2 - Core: Marvell PJ4B-MP (ARMv7), Tauros3 L2CC - 88DE3114, Armada 1500 Pro - Design name: BG2Q - Core: Quad Core ARM Cortex-A9, PL310 L2CC - 88DE3214, Armada 1500 Pro 4K - Design name: BG3 - Core: ARM Cortex-A15, CA15 integrated L2CC - 88DE3218, ARMADA 1500 Ultra - Core: ARM Cortex-A53 - - Homepage: https://www.synaptics.com/products/multimedia-solutions - Directory: arch/arm/mach-berlin - - Comments: - - * This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs - with Synopsys DesignWare (IRQ, GPIO, Timers, ...) and PXA IP (SDHCI, USB, ETH, ...). - - * The Berlin family was acquired by Synaptics from Marvell in 2017. - -CPU Cores ---------- - -The XScale cores were designed by Intel, and shipped by Marvell in the older -PXA processors. Feroceon is a Marvell designed core that developed in-house, -and that evolved into Sheeva. The XScale and Feroceon cores were phased out -over time and replaced with Sheeva cores in later products, which subsequently -got replaced with licensed ARM Cortex-A cores. - - XScale 1 - CPUID 0x69052xxx - ARMv5, iWMMXt - XScale 2 - CPUID 0x69054xxx - ARMv5, iWMMXt - XScale 3 - CPUID 0x69056xxx or 0x69056xxx - ARMv5, iWMMXt - Feroceon-1850 88fr331 "Mohawk" - CPUID 0x5615331x or 0x41xx926x - ARMv5TE, single issue - Feroceon-2850 88fr531-vd "Jolteon" - CPUID 0x5605531x or 0x41xx926x - ARMv5TE, VFP, dual-issue - Feroceon 88fr571-vd "Jolteon" - CPUID 0x5615571x - ARMv5TE, VFP, dual-issue - Feroceon 88fr131 "Mohawk-D" - CPUID 0x5625131x - ARMv5TE, single-issue in-order - Sheeva PJ1 88sv331 "Mohawk" - CPUID 0x561584xx - ARMv5, single-issue iWMMXt v2 - Sheeva PJ4 88sv581x "Flareon" - CPUID 0x560f581x - ARMv7, idivt, optional iWMMXt v2 - Sheeva PJ4B 88sv581x - CPUID 0x561f581x - ARMv7, idivt, optional iWMMXt v2 - Sheeva PJ4B-MP / PJ4C - CPUID 0x562f584x - ARMv7, idivt/idiva, LPAE, optional iWMMXt v2 and/or NEON - -Long-term plans ---------------- - - * Unify the mach-dove/, mach-mv78xx0/, mach-orion5x/ into the - mach-mvebu/ to support all SoCs from the Marvell EBU (Engineering - Business Unit) in a single mach- directory. The plat-orion/ - would therefore disappear. - - * Unify the mach-mmp/ and mach-pxa/ into the same mach-pxa - directory. The plat-pxa/ would therefore disappear. - -Credits -------- - - Maen Suleiman - Lior Amsalem - Thomas Petazzoni - Andrew Lunn - Nicolas Pitre - Eric Miao diff --git a/Documentation/arm/Microchip/README b/Documentation/arm/Microchip/README deleted file mode 100644 index a366f37d38f1..000000000000 --- a/Documentation/arm/Microchip/README +++ /dev/null @@ -1,169 +0,0 @@ -ARM Microchip SoCs (aka AT91) -============================= - - -Introduction ------------- -This document gives useful information about the ARM Microchip SoCs that are -currently supported in Linux Mainline (you know, the one on kernel.org). - -It is important to note that the Microchip (previously Atmel) ARM-based MPU -product line is historically named "AT91" or "at91" throughout the Linux kernel -development process even if this product prefix has completely disappeared from -the official Microchip product name. Anyway, files, directories, git trees, -git branches/tags and email subject always contain this "at91" sub-string. - - -AT91 SoCs ---------- -Documentation and detailed datasheet for each product are available on -the Microchip website: http://www.microchip.com. - - Flavors: - * ARM 920 based SoC - - at91rm9200 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf - - * ARM 926 based SoCs - - at91sam9260 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf - - - at91sam9xe - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf - - - at91sam9261 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf - - - at91sam9263 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf - - - at91sam9rl - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/doc6289.pdf - - - at91sam9g20 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001516A.pdf - - - at91sam9g45 family - - at91sam9g45 - - at91sam9g46 - - at91sam9m10 - - at91sam9m11 (device superset) - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf - - - at91sam9x5 family (aka "The 5 series") - - at91sam9g15 - - at91sam9g25 - - at91sam9g35 - - at91sam9x25 - - at91sam9x35 - + Datasheet (can be considered as covering the whole family) - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf - - - at91sam9n12 - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001517A.pdf - - * ARM Cortex-A5 based SoCs - - sama5d3 family - - sama5d31 - - sama5d33 - - sama5d34 - - sama5d35 - - sama5d36 (device superset) - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf - - * ARM Cortex-A5 + NEON based SoCs - - sama5d4 family - - sama5d41 - - sama5d42 - - sama5d43 - - sama5d44 (device superset) - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/60001525A.pdf - - - sama5d2 family - - sama5d21 - - sama5d22 - - sama5d23 - - sama5d24 - - sama5d26 - - sama5d27 (device superset) - - sama5d28 (device superset + environmental monitors) - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001476B.pdf - - * ARM Cortex-M7 MCUs - - sams70 family - - sams70j19 - - sams70j20 - - sams70j21 - - sams70n19 - - sams70n20 - - sams70n21 - - sams70q19 - - sams70q20 - - sams70q21 - - - samv70 family - - samv70j19 - - samv70j20 - - samv70n19 - - samv70n20 - - samv70q19 - - samv70q20 - - - samv71 family - - samv71j19 - - samv71j20 - - samv71j21 - - samv71n19 - - samv71n20 - - samv71n21 - - samv71q19 - - samv71q20 - - samv71q21 - - + Datasheet - http://ww1.microchip.com/downloads/en/DeviceDoc/60001527A.pdf - - -Linux kernel information ------------------------- -Linux kernel mach directory: arch/arm/mach-at91 -MAINTAINERS entry is: "ARM/Microchip (AT91) SoC support" - - -Device Tree for AT91 SoCs and boards ------------------------------------- -All AT91 SoCs are converted to Device Tree. Since Linux 3.19, these products -must use this method to boot the Linux kernel. - -Work In Progress statement: -Device Tree files and Device Tree bindings that apply to AT91 SoCs and boards are -considered as "Unstable". To be completely clear, any at91 binding can change at -any time. So, be sure to use a Device Tree Binary and a Kernel Image generated from -the same source tree. -Please refer to the Documentation/devicetree/bindings/ABI.txt file for a -definition of a "Stable" binding/ABI. -This statement will be removed by AT91 MAINTAINERS when appropriate. - -Naming conventions and best practice: -- SoCs Device Tree Source Include files are named after the official name of - the product (at91sam9g20.dtsi or sama5d33.dtsi for instance). -- Device Tree Source Include files (.dtsi) are used to collect common nodes that can be - shared across SoCs or boards (sama5d3.dtsi or at91sam9x5cm.dtsi for instance). - When collecting nodes for a particular peripheral or topic, the identifier have to - be placed at the end of the file name, separated with a "_" (at91sam9x5_can.dtsi - or sama5d3_gmac.dtsi for example). -- board Device Tree Source files (.dts) are prefixed by the string "at91-" so - that they can be identified easily. Note that some files are historical exceptions - to this rule (sama5d3[13456]ek.dts, usb_a9g20.dts or animeo_ip.dts for example). diff --git a/Documentation/arm/Netwinder b/Documentation/arm/Netwinder deleted file mode 100644 index f1b457fbd3de..000000000000 --- a/Documentation/arm/Netwinder +++ /dev/null @@ -1,78 +0,0 @@ -NetWinder specific documentation -================================ - -The NetWinder is a small low-power computer, primarily designed -to run Linux. It is based around the StrongARM RISC processor, -DC21285 PCI bridge, with PC-type hardware glued around it. - -Port usage -========== - -Min - Max Description ---------------------------- -0x0000 - 0x000f DMA1 -0x0020 - 0x0021 PIC1 -0x0060 - 0x006f Keyboard -0x0070 - 0x007f RTC -0x0080 - 0x0087 DMA1 -0x0088 - 0x008f DMA2 -0x00a0 - 0x00a3 PIC2 -0x00c0 - 0x00df DMA2 -0x0180 - 0x0187 IRDA -0x01f0 - 0x01f6 ide0 -0x0201 Game port -0x0203 RWA010 configuration read -0x0220 - ? SoundBlaster -0x0250 - ? WaveArtist -0x0279 RWA010 configuration index -0x02f8 - 0x02ff Serial ttyS1 -0x0300 - 0x031f Ether10 -0x0338 GPIO1 -0x033a GPIO2 -0x0370 - 0x0371 W83977F configuration registers -0x0388 - ? AdLib -0x03c0 - 0x03df VGA -0x03f6 ide0 -0x03f8 - 0x03ff Serial ttyS0 -0x0400 - 0x0408 DC21143 -0x0480 - 0x0487 DMA1 -0x0488 - 0x048f DMA2 -0x0a79 RWA010 configuration write -0xe800 - 0xe80f ide0/ide1 BM DMA - - -Interrupt usage -=============== - -IRQ type Description ---------------------------- - 0 ISA 100Hz timer - 1 ISA Keyboard - 2 ISA cascade - 3 ISA Serial ttyS1 - 4 ISA Serial ttyS0 - 5 ISA PS/2 mouse - 6 ISA IRDA - 7 ISA Printer - 8 ISA RTC alarm - 9 ISA -10 ISA GP10 (Orange reset button) -11 ISA -12 ISA WaveArtist -13 ISA -14 ISA hda1 -15 ISA - -DMA usage -========= - -DMA type Description ---------------------------- - 0 ISA IRDA - 1 ISA - 2 ISA cascade - 3 ISA WaveArtist - 4 ISA - 5 ISA - 6 ISA - 7 ISA WaveArtist diff --git a/Documentation/arm/OMAP/DSS b/Documentation/arm/OMAP/DSS deleted file mode 100644 index 4484e021290e..000000000000 --- a/Documentation/arm/OMAP/DSS +++ /dev/null @@ -1,362 +0,0 @@ -OMAP2/3 Display Subsystem -------------------------- - -This is an almost total rewrite of the OMAP FB driver in drivers/video/omap -(let's call it DSS1). The main differences between DSS1 and DSS2 are DSI, -TV-out and multiple display support, but there are lots of small improvements -also. - -The DSS2 driver (omapdss module) is in arch/arm/plat-omap/dss/, and the FB, -panel and controller drivers are in drivers/video/omap2/. DSS1 and DSS2 live -currently side by side, you can choose which one to use. - -Features --------- - -Working and tested features include: - -- MIPI DPI (parallel) output -- MIPI DSI output in command mode -- MIPI DBI (RFBI) output -- SDI output -- TV output -- All pieces can be compiled as a module or inside kernel -- Use DISPC to update any of the outputs -- Use CPU to update RFBI or DSI output -- OMAP DISPC planes -- RGB16, RGB24 packed, RGB24 unpacked -- YUV2, UYVY -- Scaling -- Adjusting DSS FCK to find a good pixel clock -- Use DSI DPLL to create DSS FCK - -Tested boards include: -- OMAP3 SDP board -- Beagle board -- N810 - -omapdss driver --------------- - -The DSS driver does not itself have any support for Linux framebuffer, V4L or -such like the current ones, but it has an internal kernel API that upper level -drivers can use. - -The DSS driver models OMAP's overlays, overlay managers and displays in a -flexible way to enable non-common multi-display configuration. In addition to -modelling the hardware overlays, omapdss supports virtual overlays and overlay -managers. These can be used when updating a display with CPU or system DMA. - -omapdss driver support for audio --------------------------------- -There exist several display technologies and standards that support audio as -well. Hence, it is relevant to update the DSS device driver to provide an audio -interface that may be used by an audio driver or any other driver interested in -the functionality. - -The audio_enable function is intended to prepare the relevant -IP for playback (e.g., enabling an audio FIFO, taking in/out of reset -some IP, enabling companion chips, etc). It is intended to be called before -audio_start. The audio_disable function performs the reverse operation and is -intended to be called after audio_stop. - -While a given DSS device driver may support audio, it is possible that for -certain configurations audio is not supported (e.g., an HDMI display using a -VESA video timing). The audio_supported function is intended to query whether -the current configuration of the display supports audio. - -The audio_config function is intended to configure all the relevant audio -parameters of the display. In order to make the function independent of any -specific DSS device driver, a struct omap_dss_audio is defined. Its purpose -is to contain all the required parameters for audio configuration. At the -moment, such structure contains pointers to IEC-60958 channel status word -and CEA-861 audio infoframe structures. This should be enough to support -HDMI and DisplayPort, as both are based on CEA-861 and IEC-60958. - -The audio_enable/disable, audio_config and audio_supported functions could be -implemented as functions that may sleep. Hence, they should not be called -while holding a spinlock or a readlock. - -The audio_start/audio_stop function is intended to effectively start/stop audio -playback after the configuration has taken place. These functions are designed -to be used in an atomic context. Hence, audio_start should return quickly and be -called only after all the needed resources for audio playback (audio FIFOs, -DMA channels, companion chips, etc) have been enabled to begin data transfers. -audio_stop is designed to only stop the audio transfers. The resources used -for playback are released using audio_disable. - -The enum omap_dss_audio_state may be used to help the implementations of -the interface to keep track of the audio state. The initial state is _DISABLED; -then, the state transitions to _CONFIGURED, and then, when it is ready to -play audio, to _ENABLED. The state _PLAYING is used when the audio is being -rendered. - - -Panel and controller drivers ----------------------------- - -The drivers implement panel or controller specific functionality and are not -usually visible to users except through omapfb driver. They register -themselves to the DSS driver. - -omapfb driver -------------- - -The omapfb driver implements arbitrary number of standard linux framebuffers. -These framebuffers can be routed flexibly to any overlays, thus allowing very -dynamic display architecture. - -The driver exports some omapfb specific ioctls, which are compatible with the -ioctls in the old driver. - -The rest of the non standard features are exported via sysfs. Whether the final -implementation will use sysfs, or ioctls, is still open. - -V4L2 drivers ------------- - -V4L2 is being implemented in TI. - -From omapdss point of view the V4L2 drivers should be similar to framebuffer -driver. - -Architecture --------------------- - -Some clarification what the different components do: - - - Framebuffer is a memory area inside OMAP's SRAM/SDRAM that contains the - pixel data for the image. Framebuffer has width and height and color - depth. - - Overlay defines where the pixels are read from and where they go on the - screen. The overlay may be smaller than framebuffer, thus displaying only - part of the framebuffer. The position of the overlay may be changed if - the overlay is smaller than the display. - - Overlay manager combines the overlays in to one image and feeds them to - display. - - Display is the actual physical display device. - -A framebuffer can be connected to multiple overlays to show the same pixel data -on all of the overlays. Note that in this case the overlay input sizes must be -the same, but, in case of video overlays, the output size can be different. Any -framebuffer can be connected to any overlay. - -An overlay can be connected to one overlay manager. Also DISPC overlays can be -connected only to DISPC overlay managers, and virtual overlays can be only -connected to virtual overlays. - -An overlay manager can be connected to one display. There are certain -restrictions which kinds of displays an overlay manager can be connected: - - - DISPC TV overlay manager can be only connected to TV display. - - Virtual overlay managers can only be connected to DBI or DSI displays. - - DISPC LCD overlay manager can be connected to all displays, except TV - display. - -Sysfs ------ -The sysfs interface is mainly used for testing. I don't think sysfs -interface is the best for this in the final version, but I don't quite know -what would be the best interfaces for these things. - -The sysfs interface is divided to two parts: DSS and FB. - -/sys/class/graphics/fb? directory: -mirror 0=off, 1=on -rotate Rotation 0-3 for 0, 90, 180, 270 degrees -rotate_type 0 = DMA rotation, 1 = VRFB rotation -overlays List of overlay numbers to which framebuffer pixels go -phys_addr Physical address of the framebuffer -virt_addr Virtual address of the framebuffer -size Size of the framebuffer - -/sys/devices/platform/omapdss/overlay? directory: -enabled 0=off, 1=on -input_size width,height (ie. the framebuffer size) -manager Destination overlay manager name -name -output_size width,height -position x,y -screen_width width -global_alpha global alpha 0-255 0=transparent 255=opaque - -/sys/devices/platform/omapdss/manager? directory: -display Destination display -name -alpha_blending_enabled 0=off, 1=on -trans_key_enabled 0=off, 1=on -trans_key_type gfx-destination, video-source -trans_key_value transparency color key (RGB24) -default_color default background color (RGB24) - -/sys/devices/platform/omapdss/display? directory: -ctrl_name Controller name -mirror 0=off, 1=on -update_mode 0=off, 1=auto, 2=manual -enabled 0=off, 1=on -name -rotate Rotation 0-3 for 0, 90, 180, 270 degrees -timings Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw) - When writing, two special timings are accepted for tv-out: - "pal" and "ntsc" -panel_name -tear_elim Tearing elimination 0=off, 1=on -output_type Output type (video encoder only): "composite" or "svideo" - -There are also some debugfs files at /omapdss/ which show information -about clocks and registers. - -Examples --------- - -The following definitions have been made for the examples below: - -ovl0=/sys/devices/platform/omapdss/overlay0 -ovl1=/sys/devices/platform/omapdss/overlay1 -ovl2=/sys/devices/platform/omapdss/overlay2 - -mgr0=/sys/devices/platform/omapdss/manager0 -mgr1=/sys/devices/platform/omapdss/manager1 - -lcd=/sys/devices/platform/omapdss/display0 -dvi=/sys/devices/platform/omapdss/display1 -tv=/sys/devices/platform/omapdss/display2 - -fb0=/sys/class/graphics/fb0 -fb1=/sys/class/graphics/fb1 -fb2=/sys/class/graphics/fb2 - -Default setup on OMAP3 SDP --------------------------- - -Here's the default setup on OMAP3 SDP board. All planes go to LCD. DVI -and TV-out are not in use. The columns from left to right are: -framebuffers, overlays, overlay managers, displays. Framebuffers are -handled by omapfb, and the rest by the DSS. - -FB0 --- GFX -\ DVI -FB1 --- VID1 --+- LCD ---- LCD -FB2 --- VID2 -/ TV ----- TV - -Example: Switch from LCD to DVI ----------------------- - -w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1` -h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1` - -echo "0" > $lcd/enabled -echo "" > $mgr0/display -fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h -# at this point you have to switch the dvi/lcd dip-switch from the omap board -echo "dvi" > $mgr0/display -echo "1" > $dvi/enabled - -After this the configuration looks like: - -FB0 --- GFX -\ -- DVI -FB1 --- VID1 --+- LCD -/ LCD -FB2 --- VID2 -/ TV ----- TV - -Example: Clone GFX overlay to LCD and TV -------------------------------- - -w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1` -h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1` - -echo "0" > $ovl0/enabled -echo "0" > $ovl1/enabled - -echo "" > $fb1/overlays -echo "0,1" > $fb0/overlays - -echo "$w,$h" > $ovl1/output_size -echo "tv" > $ovl1/manager - -echo "1" > $ovl0/enabled -echo "1" > $ovl1/enabled - -echo "1" > $tv/enabled - -After this the configuration looks like (only relevant parts shown): - -FB0 +-- GFX ---- LCD ---- LCD - \- VID1 ---- TV ---- TV - -Misc notes ----------- - -OMAP FB allocates the framebuffer memory using the standard dma allocator. You -can enable Contiguous Memory Allocator (CONFIG_CMA) to improve the dma -allocator, and if CMA is enabled, you use "cma=" kernel parameter to increase -the global memory area for CMA. - -Using DSI DPLL to generate pixel clock it is possible produce the pixel clock -of 86.5MHz (max possible), and with that you get 1280x1024@57 output from DVI. - -Rotation and mirroring currently only supports RGB565 and RGB8888 modes. VRFB -does not support mirroring. - -VRFB rotation requires much more memory than non-rotated framebuffer, so you -probably need to increase your vram setting before using VRFB rotation. Also, -many applications may not work with VRFB if they do not pay attention to all -framebuffer parameters. - -Kernel boot arguments ---------------------- - -omapfb.mode=:[,...] - - Default video mode for specified displays. For example, - "dvi:800x400MR-24@60". See drivers/video/modedb.c. - There are also two special modes: "pal" and "ntsc" that - can be used to tv out. - -omapfb.vram=:[@][,...] - - VRAM allocated for a framebuffer. Normally omapfb allocates vram - depending on the display size. With this you can manually allocate - more or define the physical address of each framebuffer. For example, - "1:4M" to allocate 4M for fb1. - -omapfb.debug= - - Enable debug printing. You have to have OMAPFB debug support enabled - in kernel config. - -omapfb.test= - - Draw test pattern to framebuffer whenever framebuffer settings change. - You need to have OMAPFB debug support enabled in kernel config. - -omapfb.vrfb= - - Use VRFB rotation for all framebuffers. - -omapfb.rotate= - - Default rotation applied to all framebuffers. - 0 - 0 degree rotation - 1 - 90 degree rotation - 2 - 180 degree rotation - 3 - 270 degree rotation - -omapfb.mirror= - - Default mirror for all framebuffers. Only works with DMA rotation. - -omapdss.def_disp= - - Name of default display, to which all overlays will be connected. - Common examples are "lcd" or "tv". - -omapdss.debug= - - Enable debug printing. You have to have DSS debug support enabled in - kernel config. - -TODO ----- - -DSS locking - -Error checking -- Lots of checks are missing or implemented just as BUG() - -System DMA update for DSI -- Can be used for RGB16 and RGB24P modes. Probably not for RGB24U (how - to skip the empty byte?) - -OMAP1 support -- Not sure if needed - diff --git a/Documentation/arm/OMAP/README b/Documentation/arm/OMAP/README deleted file mode 100644 index 90c6c57d61e8..000000000000 --- a/Documentation/arm/OMAP/README +++ /dev/null @@ -1,11 +0,0 @@ -This file contains documentation for running mainline -kernel on omaps. - -KERNEL NEW DEPENDENCIES -v4.3+ Update is needed for custom .config files to make sure - CONFIG_REGULATOR_PBIAS is enabled for MMC1 to work - properly. - -v4.18+ Update is needed for custom .config files to make sure - CONFIG_MMC_SDHCI_OMAP is enabled for all MMC instances - to work in DRA7 and K2G based boards. diff --git a/Documentation/arm/OMAP/omap_pm b/Documentation/arm/OMAP/omap_pm deleted file mode 100644 index 4ae915a9f899..000000000000 --- a/Documentation/arm/OMAP/omap_pm +++ /dev/null @@ -1,154 +0,0 @@ - -The OMAP PM interface -===================== - -This document describes the temporary OMAP PM interface. Driver -authors use these functions to communicate minimum latency or -throughput constraints to the kernel power management code. -Over time, the intention is to merge features from the OMAP PM -interface into the Linux PM QoS code. - -Drivers need to express PM parameters which: - -- support the range of power management parameters present in the TI SRF; - -- separate the drivers from the underlying PM parameter - implementation, whether it is the TI SRF or Linux PM QoS or Linux - latency framework or something else; - -- specify PM parameters in terms of fundamental units, such as - latency and throughput, rather than units which are specific to OMAP - or to particular OMAP variants; - -- allow drivers which are shared with other architectures (e.g., - DaVinci) to add these constraints in a way which won't affect non-OMAP - systems, - -- can be implemented immediately with minimal disruption of other - architectures. - - -This document proposes the OMAP PM interface, including the following -five power management functions for driver code: - -1. Set the maximum MPU wakeup latency: - (*pdata->set_max_mpu_wakeup_lat)(struct device *dev, unsigned long t) - -2. Set the maximum device wakeup latency: - (*pdata->set_max_dev_wakeup_lat)(struct device *dev, unsigned long t) - -3. Set the maximum system DMA transfer start latency (CORE pwrdm): - (*pdata->set_max_sdma_lat)(struct device *dev, long t) - -4. Set the minimum bus throughput needed by a device: - (*pdata->set_min_bus_tput)(struct device *dev, u8 agent_id, unsigned long r) - -5. Return the number of times the device has lost context - (*pdata->get_dev_context_loss_count)(struct device *dev) - - -Further documentation for all OMAP PM interface functions can be -found in arch/arm/plat-omap/include/mach/omap-pm.h. - - -The OMAP PM layer is intended to be temporary ---------------------------------------------- - -The intention is that eventually the Linux PM QoS layer should support -the range of power management features present in OMAP3. As this -happens, existing drivers using the OMAP PM interface can be modified -to use the Linux PM QoS code; and the OMAP PM interface can disappear. - - -Driver usage of the OMAP PM functions -------------------------------------- - -As the 'pdata' in the above examples indicates, these functions are -exposed to drivers through function pointers in driver .platform_data -structures. The function pointers are initialized by the board-*.c -files to point to the corresponding OMAP PM functions: -.set_max_dev_wakeup_lat will point to -omap_pm_set_max_dev_wakeup_lat(), etc. Other architectures which do -not support these functions should leave these function pointers set -to NULL. Drivers should use the following idiom: - - if (pdata->set_max_dev_wakeup_lat) - (*pdata->set_max_dev_wakeup_lat)(dev, t); - -The most common usage of these functions will probably be to specify -the maximum time from when an interrupt occurs, to when the device -becomes accessible. To accomplish this, driver writers should use the -set_max_mpu_wakeup_lat() function to constrain the MPU wakeup -latency, and the set_max_dev_wakeup_lat() function to constrain the -device wakeup latency (from clk_enable() to accessibility). For -example, - - /* Limit MPU wakeup latency */ - if (pdata->set_max_mpu_wakeup_lat) - (*pdata->set_max_mpu_wakeup_lat)(dev, tc); - - /* Limit device powerdomain wakeup latency */ - if (pdata->set_max_dev_wakeup_lat) - (*pdata->set_max_dev_wakeup_lat)(dev, td); - - /* total wakeup latency in this example: (tc + td) */ - -The PM parameters can be overwritten by calling the function again -with the new value. The settings can be removed by calling the -function with a t argument of -1 (except in the case of -set_max_bus_tput(), which should be called with an r argument of 0). - -The fifth function above, omap_pm_get_dev_context_loss_count(), -is intended as an optimization to allow drivers to determine whether the -device has lost its internal context. If context has been lost, the -driver must restore its internal context before proceeding. - - -Other specialized interface functions -------------------------------------- - -The five functions listed above are intended to be usable by any -device driver. DSPBridge and CPUFreq have a few special requirements. -DSPBridge expresses target DSP performance levels in terms of OPP IDs. -CPUFreq expresses target MPU performance levels in terms of MPU -frequency. The OMAP PM interface contains functions for these -specialized cases to convert that input information (OPPs/MPU -frequency) into the form that the underlying power management -implementation needs: - -6. (*pdata->dsp_get_opp_table)(void) - -7. (*pdata->dsp_set_min_opp)(u8 opp_id) - -8. (*pdata->dsp_get_opp)(void) - -9. (*pdata->cpu_get_freq_table)(void) - -10. (*pdata->cpu_set_freq)(unsigned long f) - -11. (*pdata->cpu_get_freq)(void) - -Customizing OPP for platform -============================ -Defining CONFIG_PM should enable OPP layer for the silicon -and the registration of OPP table should take place automatically. -However, in special cases, the default OPP table may need to be -tweaked, for e.g.: - * enable default OPPs which are disabled by default, but which - could be enabled on a platform - * Disable an unsupported OPP on the platform - * Define and add a custom opp table entry -in these cases, the board file needs to do additional steps as follows: -arch/arm/mach-omapx/board-xyz.c - #include "pm.h" - .... - static void __init omap_xyz_init_irq(void) - { - .... - /* Initialize the default table */ - omapx_opp_init(); - /* Do customization to the defaults */ - .... - } -NOTE: omapx_opp_init will be omap3_opp_init or as required -based on the omap family. diff --git a/Documentation/arm/Porting b/Documentation/arm/Porting deleted file mode 100644 index a492233931b9..000000000000 --- a/Documentation/arm/Porting +++ /dev/null @@ -1,135 +0,0 @@ -Taken from list archive at http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html - -Initial definitions -------------------- - -The following symbol definitions rely on you knowing the translation that -__virt_to_phys() does for your machine. This macro converts the passed -virtual address to a physical address. Normally, it is simply: - - phys = virt - PAGE_OFFSET + PHYS_OFFSET - - -Decompressor Symbols --------------------- - -ZTEXTADDR - Start address of decompressor. There's no point in talking about - virtual or physical addresses here, since the MMU will be off at - the time when you call the decompressor code. You normally call - the kernel at this address to start it booting. This doesn't have - to be located in RAM, it can be in flash or other read-only or - read-write addressable medium. - -ZBSSADDR - Start address of zero-initialised work area for the decompressor. - This must be pointing at RAM. The decompressor will zero initialise - this for you. Again, the MMU will be off. - -ZRELADDR - This is the address where the decompressed kernel will be written, - and eventually executed. The following constraint must be valid: - - __virt_to_phys(TEXTADDR) == ZRELADDR - - The initial part of the kernel is carefully coded to be position - independent. - -INITRD_PHYS - Physical address to place the initial RAM disk. Only relevant if - you are using the bootpImage stuff (which only works on the old - struct param_struct). - -INITRD_VIRT - Virtual address of the initial RAM disk. The following constraint - must be valid: - - __virt_to_phys(INITRD_VIRT) == INITRD_PHYS - -PARAMS_PHYS - Physical address of the struct param_struct or tag list, giving the - kernel various parameters about its execution environment. - - -Kernel Symbols --------------- - -PHYS_OFFSET - Physical start address of the first bank of RAM. - -PAGE_OFFSET - Virtual start address of the first bank of RAM. During the kernel - boot phase, virtual address PAGE_OFFSET will be mapped to physical - address PHYS_OFFSET, along with any other mappings you supply. - This should be the same value as TASK_SIZE. - -TASK_SIZE - The maximum size of a user process in bytes. Since user space - always starts at zero, this is the maximum address that a user - process can access+1. The user space stack grows down from this - address. - - Any virtual address below TASK_SIZE is deemed to be user process - area, and therefore managed dynamically on a process by process - basis by the kernel. I'll call this the user segment. - - Anything above TASK_SIZE is common to all processes. I'll call - this the kernel segment. - - (In other words, you can't put IO mappings below TASK_SIZE, and - hence PAGE_OFFSET). - -TEXTADDR - Virtual start address of kernel, normally PAGE_OFFSET + 0x8000. - This is where the kernel image ends up. With the latest kernels, - it must be located at 32768 bytes into a 128MB region. Previous - kernels placed a restriction of 256MB here. - -DATAADDR - Virtual address for the kernel data segment. Must not be defined - when using the decompressor. - -VMALLOC_START -VMALLOC_END - Virtual addresses bounding the vmalloc() area. There must not be - any static mappings in this area; vmalloc will overwrite them. - The addresses must also be in the kernel segment (see above). - Normally, the vmalloc() area starts VMALLOC_OFFSET bytes above the - last virtual RAM address (found using variable high_memory). - -VMALLOC_OFFSET - Offset normally incorporated into VMALLOC_START to provide a hole - between virtual RAM and the vmalloc area. We do this to allow - out of bounds memory accesses (eg, something writing off the end - of the mapped memory map) to be caught. Normally set to 8MB. - -Architecture Specific Macros ----------------------------- - -BOOT_MEM(pram,pio,vio) - `pram' specifies the physical start address of RAM. Must always - be present, and should be the same as PHYS_OFFSET. - - `pio' is the physical address of an 8MB region containing IO for - use with the debugging macros in arch/arm/kernel/debug-armv.S. - - `vio' is the virtual address of the 8MB debugging region. - - It is expected that the debugging region will be re-initialised - by the architecture specific code later in the code (via the - MAPIO function). - -BOOT_PARAMS - Same as, and see PARAMS_PHYS. - -FIXUP(func) - Machine specific fixups, run before memory subsystems have been - initialised. - -MAPIO(func) - Machine specific function to map IO areas (including the debug - region above). - -INITIRQ(func) - Machine specific function to initialise interrupts. - diff --git a/Documentation/arm/README b/Documentation/arm/README deleted file mode 100644 index 9d1e5b2c92e6..000000000000 --- a/Documentation/arm/README +++ /dev/null @@ -1,204 +0,0 @@ - ARM Linux 2.6 - ============= - - Please check for - updates. - -Compilation of kernel ---------------------- - - In order to compile ARM Linux, you will need a compiler capable of - generating ARM ELF code with GNU extensions. GCC 3.3 is known to be - a good compiler. Fortunately, you needn't guess. The kernel will report - an error if your compiler is a recognized offender. - - To build ARM Linux natively, you shouldn't have to alter the ARCH = line - in the top level Makefile. However, if you don't have the ARM Linux ELF - tools installed as default, then you should change the CROSS_COMPILE - line as detailed below. - - If you wish to cross-compile, then alter the following lines in the top - level make file: - - ARCH = - with - ARCH = arm - - and - - CROSS_COMPILE= - to - CROSS_COMPILE= - eg. - CROSS_COMPILE=arm-linux- - - Do a 'make config', followed by 'make Image' to build the kernel - (arch/arm/boot/Image). A compressed image can be built by doing a - 'make zImage' instead of 'make Image'. - - -Bug reports etc ---------------- - - Please send patches to the patch system. For more information, see - http://www.arm.linux.org.uk/developer/patches/info.php Always include some - explanation as to what the patch does and why it is needed. - - Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk, - or submitted through the web form at - http://www.arm.linux.org.uk/developer/ - - When sending bug reports, please ensure that they contain all relevant - information, eg. the kernel messages that were printed before/during - the problem, what you were doing, etc. - - -Include files -------------- - - Several new include directories have been created under include/asm-arm, - which are there to reduce the clutter in the top-level directory. These - directories, and their purpose is listed below: - - arch-* machine/platform specific header files - hardware driver-internal ARM specific data structures/definitions - mach descriptions of generic ARM to specific machine interfaces - proc-* processor dependent header files (currently only two - categories) - - -Machine/Platform support ------------------------- - - The ARM tree contains support for a lot of different machine types. To - continue supporting these differences, it has become necessary to split - machine-specific parts by directory. For this, the machine category is - used to select which directories and files get included (we will use - $(MACHINE) to refer to the category) - - To this end, we now have arch/arm/mach-$(MACHINE) directories which are - designed to house the non-driver files for a particular machine (eg, PCI, - memory management, architecture definitions etc). For all future - machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach - directory. - - -Modules -------- - - Although modularisation is supported (and required for the FP emulator), - each module on an ARM2/ARM250/ARM3 machine when is loaded will take - memory up to the next 32k boundary due to the size of the pages. - Therefore, is modularisation on these machines really worth it? - - However, ARM6 and up machines allow modules to take multiples of 4k, and - as such Acorn RiscPCs and other architectures using these processors can - make good use of modularisation. - - -ADFS Image files ----------------- - - You can access image files on your ADFS partitions by mounting the ADFS - partition, and then using the loopback device driver. You must have - losetup installed. - - Please note that the PCEmulator DOS partitions have a partition table at - the start, and as such, you will have to give '-o offset' to losetup. - - -Request to developers ---------------------- - - When writing device drivers which include a separate assembler file, please - include it in with the C file, and not the arch/arm/lib directory. This - allows the driver to be compiled as a loadable module without requiring - half the code to be compiled into the kernel image. - - In general, try to avoid using assembler unless it is really necessary. It - makes drivers far less easy to port to other hardware. - - -ST506 hard drives ------------------ - - The ST506 hard drive controllers seem to be working fine (if a little - slowly). At the moment they will only work off the controllers on an - A4x0's motherboard, but for it to work off a Podule just requires - someone with a podule to add the addresses for the IRQ mask and the - HDC base to the source. - - As of 31/3/96 it works with two drives (you should get the ADFS - *configure harddrive set to 2). I've got an internal 20MB and a great - big external 5.25" FH 64MB drive (who could ever want more :-) ). - - I've just got 240K/s off it (a dd with bs=128k); thats about half of what - RiscOS gets; but it's a heck of a lot better than the 50K/s I was getting - last week :-) - - Known bug: Drive data errors can cause a hang; including cases where - the controller has fixed the error using ECC. (Possibly ONLY - in that case...hmm). - - -1772 Floppy ------------ - This also seems to work OK, but hasn't been stressed much lately. It - hasn't got any code for disc change detection in there at the moment which - could be a bit of a problem! Suggestions on the correct way to do this - are welcome. - - -CONFIG_MACH_ and CONFIG_ARCH_ ------------------------------ - A change was made in 2003 to the macro names for new machines. - Historically, CONFIG_ARCH_ was used for the bonafide architecture, - e.g. SA1100, as well as implementations of the architecture, - e.g. Assabet. It was decided to change the implementation macros - to read CONFIG_MACH_ for clarity. Moreover, a retroactive fixup has - not been made because it would complicate patching. - - Previous registrations may be found online. - - - -Kernel entry (head.S) --------------------------- - The initial entry into the kernel is via head.S, which uses machine - independent code. The machine is selected by the value of 'r1' on - entry, which must be kept unique. - - Due to the large number of machines which the ARM port of Linux provides - for, we have a method to manage this which ensures that we don't end up - duplicating large amounts of code. - - We group machine (or platform) support code into machine classes. A - class typically based around one or more system on a chip devices, and - acts as a natural container around the actual implementations. These - classes are given directories - arch/arm/mach- and - arch/arm/mach- - which contain the source files to/include/mach - support the machine class. This directories also contain any machine - specific supporting code. - - For example, the SA1100 class is based upon the SA1100 and SA1110 SoC - devices, and contains the code to support the way the on-board and off- - board devices are used, or the device is setup, and provides that - machine specific "personality." - - For platforms that support device tree (DT), the machine selection is - controlled at runtime by passing the device tree blob to the kernel. At - compile-time, support for the machine type must be selected. This allows for - a single multiplatform kernel build to be used for several machine types. - - For platforms that do not use device tree, this machine selection is - controlled by the machine type ID, which acts both as a run-time and a - compile-time code selection method. You can register a new machine via the - web site at: - - - - Note: Please do not register a machine type for DT-only platforms. If your - platform is DT-only, you do not need a registered machine type. - ---- -Russell King (15/03/2004) diff --git a/Documentation/arm/SA1100/ADSBitsy b/Documentation/arm/SA1100/ADSBitsy deleted file mode 100644 index f9f62e8c0719..000000000000 --- a/Documentation/arm/SA1100/ADSBitsy +++ /dev/null @@ -1,43 +0,0 @@ -ADS Bitsy Single Board Computer -(It is different from Bitsy(iPAQ) of Compaq) - -For more details, contact Applied Data Systems or see -http://www.applieddata.net/products.html - -The Linux support for this product has been provided by -Woojung Huh - -Use 'make adsbitsy_config' before any 'make config'. -This will set up defaults for ADS Bitsy support. - -The kernel zImage is linked to be loaded and executed at 0xc0400000. - -Linux can be used with the ADS BootLoader that ships with the -newer rev boards. See their documentation on how to load Linux. - -Supported peripherals: -- SA1100 LCD frame buffer (8/16bpp...sort of) -- SA1111 USB Master -- SA1100 serial port -- pcmcia, compact flash -- touchscreen(ucb1200) -- console on LCD screen -- serial ports (ttyS[0-2]) - - ttyS0 is default for serial console - -To do: -- everything else! :-) - -Notes: - -- The flash on board is divided into 3 partitions. - You should be careful to use flash on board. - Its partition is different from GraphicsClient Plus and GraphicsMaster - -- 16bpp mode requires a different cable than what ships with the board. - Contact ADS or look through the manual to wire your own. Currently, - if you compile with 16bit mode support and switch into a lower bpp - mode, the timing is off so the image is corrupted. This will be - fixed soon. - -Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! diff --git a/Documentation/arm/SA1100/Assabet b/Documentation/arm/SA1100/Assabet deleted file mode 100644 index e08a6739e72c..000000000000 --- a/Documentation/arm/SA1100/Assabet +++ /dev/null @@ -1,300 +0,0 @@ -The Intel Assabet (SA-1110 evaluation) board -============================================ - -Please see: -http://developer.intel.com - -Also some notes from John G Dorsey : -http://www.cs.cmu.edu/~wearable/software/assabet.html - - -Building the kernel -------------------- - -To build the kernel with current defaults: - - make assabet_config - make oldconfig - make zImage - -The resulting kernel image should be available in linux/arch/arm/boot/zImage. - - -Installing a bootloader ------------------------ - -A couple of bootloaders able to boot Linux on Assabet are available: - -BLOB (http://www.lartmaker.nl/lartware/blob/) - - BLOB is a bootloader used within the LART project. Some contributed - patches were merged into BLOB to add support for Assabet. - -Compaq's Bootldr + John Dorsey's patch for Assabet support -(http://www.handhelds.org/Compaq/bootldr.html) -(http://www.wearablegroup.org/software/bootldr/) - - Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC. - John Dorsey has produced add-on patches to add support for Assabet and - the JFFS filesystem. - -RedBoot (http://sources.redhat.com/redboot/) - - RedBoot is a bootloader developed by Red Hat based on the eCos RTOS - hardware abstraction layer. It supports Assabet amongst many other - hardware platforms. - -RedBoot is currently the recommended choice since it's the only one to have -networking support, and is the most actively maintained. - -Brief examples on how to boot Linux with RedBoot are shown below. But first -you need to have RedBoot installed in your flash memory. A known to work -precompiled RedBoot binary is available from the following location: - -ftp://ftp.netwinder.org/users/n/nico/ -ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/ -ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/ - -Look for redboot-assabet*.tgz. Some installation infos are provided in -redboot-assabet*.txt. - - -Initial RedBoot configuration ------------------------------ - -The commands used here are explained in The RedBoot User's Guide available -on-line at http://sources.redhat.com/ecos/docs.html. -Please refer to it for explanations. - -If you have a CF network card (my Assabet kit contained a CF+ LP-E from -Socket Communications Inc.), you should strongly consider using it for TFTP -file transfers. You must insert it before RedBoot runs since it can't detect -it dynamically. - -To initialize the flash directory: - - fis init -f - -To initialize the non-volatile settings, like whether you want to use BOOTP or -a static IP address, etc, use this command: - - fconfig -i - - -Writing a kernel image into flash ---------------------------------- - -First, the kernel image must be loaded into RAM. If you have the zImage file -available on a TFTP server: - - load zImage -r -b 0x100000 - -If you rather want to use Y-Modem upload over the serial port: - - load -m ymodem -r -b 0x100000 - -To write it to flash: - - fis create "Linux kernel" -b 0x100000 -l 0xc0000 - - -Booting the kernel ------------------- - -The kernel still requires a filesystem to boot. A ramdisk image can be loaded -as follows: - - load ramdisk_image.gz -r -b 0x800000 - -Again, Y-Modem upload can be used instead of TFTP by replacing the file name -by '-y ymodem'. - -Now the kernel can be retrieved from flash like this: - - fis load "Linux kernel" - -or loaded as described previously. To boot the kernel: - - exec -b 0x100000 -l 0xc0000 - -The ramdisk image could be stored into flash as well, but there are better -solutions for on-flash filesystems as mentioned below. - - -Using JFFS2 ------------ - -Using JFFS2 (the Second Journalling Flash File System) is probably the most -convenient way to store a writable filesystem into flash. JFFS2 is used in -conjunction with the MTD layer which is responsible for low-level flash -management. More information on the Linux MTD can be found on-line at: -http://www.linux-mtd.infradead.org/. A JFFS howto with some infos about -creating JFFS/JFFS2 images is available from the same site. - -For instance, a sample JFFS2 image can be retrieved from the same FTP sites -mentioned below for the precompiled RedBoot image. - -To load this file: - - load sample_img.jffs2 -r -b 0x100000 - -The result should look like: - -RedBoot> load sample_img.jffs2 -r -b 0x100000 -Raw file loaded 0x00100000-0x00377424 - -Now we must know the size of the unallocated flash: - - fis free - -Result: - -RedBoot> fis free - 0x500E0000 .. 0x503C0000 - -The values above may be different depending on the size of the filesystem and -the type of flash. See their usage below as an example and take care of -substituting yours appropriately. - -We must determine some values: - -size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000 -size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424 - -We want to fit the filesystem image of course, but we also want to give it all -the remaining flash space as well. To write it: - - fis unlock -f 0x500E0000 -l 0x2e0000 - fis erase -f 0x500E0000 -l 0x2e0000 - fis write -b 0x100000 -l 0x277424 -f 0x500E0000 - fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000 - -Now the filesystem is associated to a MTD "partition" once Linux has discovered -what they are in the boot process. From Redboot, the 'fis list' command -displays them: - -RedBoot> fis list -Name FLASH addr Mem addr Length Entry point -RedBoot 0x50000000 0x50000000 0x00020000 0x00000000 -RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000 -FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000 -Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000 -JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000 - -However Linux should display something like: - -SA1100 flash: probing 32-bit flash bus -SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode -Using RedBoot partition definition -Creating 5 MTD partitions on "SA1100 flash": -0x00000000-0x00020000 : "RedBoot" -0x00020000-0x000e0000 : "Linux kernel" -0x000e0000-0x003c0000 : "JFFS2" -0x003c0000-0x003e0000 : "RedBoot config" -0x003e0000-0x00400000 : "FIS directory" - -What's important here is the position of the partition we are interested in, -which is the third one. Within Linux, this correspond to /dev/mtdblock2. -Therefore to boot Linux with the kernel and its root filesystem in flash, we -need this RedBoot command: - - fis load "Linux kernel" - exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2" - -Of course other filesystems than JFFS might be used, like cramfs for example. -You might want to boot with a root filesystem over NFS, etc. It is also -possible, and sometimes more convenient, to flash a filesystem directly from -within Linux while booted from a ramdisk or NFS. The Linux MTD repository has -many tools to deal with flash memory as well, to erase it for example. JFFS2 -can then be mounted directly on a freshly erased partition and files can be -copied over directly. Etc... - - -RedBoot scripting ------------------ - -All the commands above aren't so useful if they have to be typed in every -time the Assabet is rebooted. Therefore it's possible to automate the boot -process using RedBoot's scripting capability. - -For example, I use this to boot Linux with both the kernel and the ramdisk -images retrieved from a TFTP server on the network: - -RedBoot> fconfig -Run script at boot: false true -Boot script: -Enter script, terminate with empty line ->> load zImage -r -b 0x100000 ->> load ramdisk_ks.gz -r -b 0x800000 ->> exec -b 0x100000 -l 0xc0000 ->> -Boot script timeout (1000ms resolution): 3 -Use BOOTP for network configuration: true -GDB connection port: 9000 -Network debug at boot time: false -Update RedBoot non-volatile configuration - are you sure (y/n)? y - -Then, rebooting the Assabet is just a matter of waiting for the login prompt. - - - -Nicolas Pitre -nico@fluxnic.net -June 12, 2001 - - -Status of peripherals in -rmk tree (updated 14/10/2001) -------------------------------------------------------- - -Assabet: - Serial ports: - Radio: TX, RX, CTS, DSR, DCD, RI - PM: Not tested. - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM - PM: Not tested. - I2C: Implemented, not fully tested. - L3: Fully tested, pass. - PM: Not tested. - - Video: - LCD: Fully tested. PM - (LCD doesn't like being blanked with - neponset connected) - Video out: Not fully - - Audio: - UDA1341: - Playback: Fully tested, pass. - Record: Implemented, not tested. - PM: Not tested. - - UCB1200: - Audio play: Implemented, not heavily tested. - Audio rec: Implemented, not heavily tested. - Telco audio play: Implemented, not heavily tested. - Telco audio rec: Implemented, not heavily tested. - POTS control: No - Touchscreen: Yes - PM: Not tested. - - Other: - PCMCIA: - LPE: Fully tested, pass. - USB: No - IRDA: - SIR: Fully tested, pass. - FIR: Fully tested, pass. - PM: Not tested. - -Neponset: - Serial ports: - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR - PM: Not tested. - USB: Implemented, not heavily tested. - PCMCIA: Implemented, not heavily tested. - PM: Not tested. - CF: Implemented, not heavily tested. - PM: Not tested. - -More stuff can be found in the -np (Nicolas Pitre's) tree. - diff --git a/Documentation/arm/SA1100/Brutus b/Documentation/arm/SA1100/Brutus deleted file mode 100644 index 6a3aa95e9bfd..000000000000 --- a/Documentation/arm/SA1100/Brutus +++ /dev/null @@ -1,66 +0,0 @@ -Brutus is an evaluation platform for the SA1100 manufactured by Intel. -For more details, see: - -http://developer.intel.com - -To compile for Brutus, you must issue the following commands: - - make brutus_config - make config - [accept all the defaults] - make zImage - -The resulting kernel will end up in linux/arch/arm/boot/zImage. This file -must be loaded at 0xc0008000 in Brutus's memory and execution started at -0xc0008000 as well with the value of registers r0 = 0 and r1 = 16 upon -entry. - -But prior to execute the kernel, a ramdisk image must also be loaded in -memory. Use memory address 0xd8000000 for this. Note that the file -containing the (compressed) ramdisk image must not exceed 4 MB. - -Typically, you'll need angelboot to load the kernel. -The following angelboot.opt file should be used: - ------ begin angelboot.opt ----- -base 0xc0008000 -entry 0xc0008000 -r0 0x00000000 -r1 0x00000010 -device /dev/ttyS0 -options "9600 8N1" -baud 115200 -otherfile ramdisk_img.gz -otherbase 0xd8000000 ------ end angelboot.opt ----- - -Then load the kernel and ramdisk with: - - angelboot -f angelboot.opt zImage - -The first Brutus serial port (assumed to be linked to /dev/ttyS0 on your -host PC) is used by angel to load the kernel and ramdisk image. The serial -console is provided through the second Brutus serial port. To access it, -you may use minicom configured with /dev/ttyS1, 9600 baud, 8N1, no flow -control. - -Currently supported: - - RS232 serial ports - - audio output - - LCD screen - - keyboard - -The actual Brutus support may not be complete without extra patches. -If such patches exist, they should be found from -ftp.netwinder.org/users/n/nico. - -A full PCMCIA support is still missing, although it's possible to hack -some drivers in order to drive already inserted cards at boot time with -little modifications. - -Any contribution is welcome. - -Please send patches to nico@fluxnic.net - -Have Fun ! - diff --git a/Documentation/arm/SA1100/CERF b/Documentation/arm/SA1100/CERF deleted file mode 100644 index b3d845301ef1..000000000000 --- a/Documentation/arm/SA1100/CERF +++ /dev/null @@ -1,29 +0,0 @@ -*** The StrongARM version of the CerfBoard/Cube has been discontinued *** - -The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board -that measures approximately 2" square. It includes an Ethernet -controller, an RS232-compatible serial port, a USB function port, and -one CompactFlash+ slot on the back. Pictures can be found at the -Intrinsyc website, http://www.intrinsyc.com. - -This document describes the support in the Linux kernel for the -Intrinsyc CerfBoard. - -Supported in this version: - - CompactFlash+ slot (select PCMCIA in General Setup and any options - that may be required) - - Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in - Network Devices) - - Serial ports with a serial console (hardcoded to 38400 8N1) - -In order to get this kernel onto your Cerf, you need a server that runs -both BOOTP and TFTP. Detailed instructions should have come with your -evaluation kit on how to use the bootloader. This series of commands -will suffice: - - make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig - make ARCH=arm CROSS_COMPILE=arm-linux- zImage - make ARCH=arm CROSS_COMPILE=arm-linux- modules - cp arch/arm/boot/zImage - -support@intrinsyc.com diff --git a/Documentation/arm/SA1100/FreeBird b/Documentation/arm/SA1100/FreeBird deleted file mode 100644 index ab9193663b2b..000000000000 --- a/Documentation/arm/SA1100/FreeBird +++ /dev/null @@ -1,21 +0,0 @@ -Freebird-1.1 is produced by Legend(C), Inc. -http://web.archive.org/web/*/http://www.legend.com.cn -and software/linux maintained by Coventive(C), Inc. -(http://www.coventive.com) - -Based on the Nicolas's strongarm kernel tree. - -=============================================================== -Maintainer: - -Chester Kuo - - -Author : -Tim wu -CIH -Eric Peng -Jeff Lee -Allen Cheng -Tony Liu - diff --git a/Documentation/arm/SA1100/GraphicsClient b/Documentation/arm/SA1100/GraphicsClient deleted file mode 100644 index 867bb35943af..000000000000 --- a/Documentation/arm/SA1100/GraphicsClient +++ /dev/null @@ -1,98 +0,0 @@ -ADS GraphicsClient Plus Single Board Computer - -For more details, contact Applied Data Systems or see -http://www.applieddata.net/products.html - -The original Linux support for this product has been provided by -Nicolas Pitre . Continued development work by -Woojung Huh - -It's currently possible to mount a root filesystem via NFS providing a -complete Linux environment. Otherwise a ramdisk image may be used. The -board supports MTD/JFFS, so you could also mount something on there. - -Use 'make graphicsclient_config' before any 'make config'. This will set up -defaults for GraphicsClient Plus support. - -The kernel zImage is linked to be loaded and executed at 0xc0200000. -Also the following registers should have the specified values upon entry: - - r0 = 0 - r1 = 29 (this is the GraphicsClient architecture number) - -Linux can be used with the ADS BootLoader that ships with the -newer rev boards. See their documentation on how to load Linux. -Angel is not available for the GraphicsClient Plus AFAIK. - -There is a board known as just the GraphicsClient that ADS used to -produce but has end of lifed. This code will not work on the older -board with the ADS bootloader, but should still work with Angel, -as outlined below. In any case, if you're planning on deploying -something en masse, you should probably get the newer board. - -If using Angel on the older boards, here is a typical angel.opt option file -if the kernel is loaded through the Angel Debug Monitor: - ------ begin angelboot.opt ----- -base 0xc0200000 -entry 0xc0200000 -r0 0x00000000 -r1 0x0000001d -device /dev/ttyS1 -options "38400 8N1" -baud 115200 -#otherfile ramdisk.gz -#otherbase 0xc0800000 -exec minicom ------ end angelboot.opt ----- - -Then the kernel (and ramdisk if otherfile/otherbase lines above are -uncommented) would be loaded with: - - angelboot -f angelboot.opt zImage - -Here it is assumed that the board is connected to ttyS1 on your PC -and that minicom is preconfigured with /dev/ttyS1, 38400 baud, 8N1, no flow -control by default. - -If any other bootloader is used, ensure it accomplish the same, especially -for r0/r1 register values before jumping into the kernel. - - -Supported peripherals: -- SA1100 LCD frame buffer (8/16bpp...sort of) -- on-board SMC 92C96 ethernet NIC -- SA1100 serial port -- flash memory access (MTD/JFFS) -- pcmcia -- touchscreen(ucb1200) -- ps/2 keyboard -- console on LCD screen -- serial ports (ttyS[0-2]) - - ttyS0 is default for serial console -- Smart I/O (ADC, keypad, digital inputs, etc) - See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation - and example user space code. ps/2 keybd is multiplexed through this driver - -To do: -- UCB1200 audio with new ucb_generic layer -- everything else! :-) - -Notes: - -- The flash on board is divided into 3 partitions. mtd0 is where - the ADS boot ROM and zImage is stored. It's been marked as - read-only to keep you from blasting over the bootloader. :) mtd1 is - for the ramdisk.gz image. mtd2 is user flash space and can be - utilized for either JFFS or if you're feeling crazy, running ext2 - on top of it. If you're not using the ADS bootloader, you're - welcome to blast over the mtd1 partition also. - -- 16bpp mode requires a different cable than what ships with the board. - Contact ADS or look through the manual to wire your own. Currently, - if you compile with 16bit mode support and switch into a lower bpp - mode, the timing is off so the image is corrupted. This will be - fixed soon. - -Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! - diff --git a/Documentation/arm/SA1100/GraphicsMaster b/Documentation/arm/SA1100/GraphicsMaster deleted file mode 100644 index 9145088a0ba2..000000000000 --- a/Documentation/arm/SA1100/GraphicsMaster +++ /dev/null @@ -1,53 +0,0 @@ -ADS GraphicsMaster Single Board Computer - -For more details, contact Applied Data Systems or see -http://www.applieddata.net/products.html - -The original Linux support for this product has been provided by -Nicolas Pitre . Continued development work by -Woojung Huh - -Use 'make graphicsmaster_config' before any 'make config'. -This will set up defaults for GraphicsMaster support. - -The kernel zImage is linked to be loaded and executed at 0xc0400000. - -Linux can be used with the ADS BootLoader that ships with the -newer rev boards. See their documentation on how to load Linux. - -Supported peripherals: -- SA1100 LCD frame buffer (8/16bpp...sort of) -- SA1111 USB Master -- on-board SMC 92C96 ethernet NIC -- SA1100 serial port -- flash memory access (MTD/JFFS) -- pcmcia, compact flash -- touchscreen(ucb1200) -- ps/2 keyboard -- console on LCD screen -- serial ports (ttyS[0-2]) - - ttyS0 is default for serial console -- Smart I/O (ADC, keypad, digital inputs, etc) - See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation - and example user space code. ps/2 keybd is multiplexed through this driver - -To do: -- everything else! :-) - -Notes: - -- The flash on board is divided into 3 partitions. mtd0 is where - the zImage is stored. It's been marked as read-only to keep you - from blasting over the bootloader. :) mtd1 is - for the ramdisk.gz image. mtd2 is user flash space and can be - utilized for either JFFS or if you're feeling crazy, running ext2 - on top of it. If you're not using the ADS bootloader, you're - welcome to blast over the mtd1 partition also. - -- 16bpp mode requires a different cable than what ships with the board. - Contact ADS or look through the manual to wire your own. Currently, - if you compile with 16bit mode support and switch into a lower bpp - mode, the timing is off so the image is corrupted. This will be - fixed soon. - -Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! diff --git a/Documentation/arm/SA1100/HUW_WEBPANEL b/Documentation/arm/SA1100/HUW_WEBPANEL deleted file mode 100644 index fd56b48d4833..000000000000 --- a/Documentation/arm/SA1100/HUW_WEBPANEL +++ /dev/null @@ -1,17 +0,0 @@ -The HUW_WEBPANEL is a product of the german company Hoeft & Wessel AG - -If you want more information, please visit -http://www.hoeft-wessel.de - -To build the kernel: - make huw_webpanel_config - make oldconfig - [accept all defaults] - make zImage - -Mostly of the work is done by: -Roman Jordan jor@hoeft-wessel.de -Christoph Schulz schu@hoeft-wessel.de - -2000/12/18/ - diff --git a/Documentation/arm/SA1100/Itsy b/Documentation/arm/SA1100/Itsy deleted file mode 100644 index 44b94997fa0d..000000000000 --- a/Documentation/arm/SA1100/Itsy +++ /dev/null @@ -1,39 +0,0 @@ -Itsy is a research project done by the Western Research Lab, and Systems -Research Center in Palo Alto, CA. The Itsy project is one of several -research projects at Compaq that are related to pocket computing. - -For more information, see: - - http://www.hpl.hp.com/downloads/crl/itsy/ - -Notes on initial 2.4 Itsy support (8/27/2000) : -The port was done on an Itsy version 1.5 machine with a daughtercard with -64 Meg of DRAM and 32 Meg of Flash. The initial work includes support for -serial console (to see what you're doing). No other devices have been -enabled. - -To build, do a "make menuconfig" (or xmenuconfig) and select Itsy support. -Disable Flash and LCD support. and then do a make zImage. -Finally, you will need to cd to arch/arm/boot/tools and execute a make there -to build the params-itsy program used to boot the kernel. - -In order to install the port of 2.4 to the itsy, You will need to set the -configuration parameters in the monitor as follows: -Arg 1:0x08340000, Arg2: 0xC0000000, Arg3:18 (0x12), Arg4:0 -Make sure the start-routine address is set to 0x00060000. - -Next, flash the params-itsy program to 0x00060000 ("p 1 0x00060000" in the -flash menu) Flash the kernel in arch/arm/boot/zImage into 0x08340000 -("p 1 0x00340000"). Finally flash an initial ramdisk into 0xC8000000 -("p 2 0x0") We used ramdisk-2-30.gz from the 0.11 version directory on -handhelds.org. - -The serial connection we established was at: - 8-bit data, no parity, 1 stop bit(s), 115200.00 b/s. in the monitor, in the -params-itsy program, and in the kernel itself. This can be changed, but -not easily. The monitor parameters are easily changed, the params program -setup is assembly outl's, and the kernel is a configuration item specific to -the itsy. (i.e. grep for CONFIG_SA1100_ITSY and you'll find where it is.) - - -This should get you a properly booting 2.4 kernel on the itsy. diff --git a/Documentation/arm/SA1100/LART b/Documentation/arm/SA1100/LART deleted file mode 100644 index 6d412b685598..000000000000 --- a/Documentation/arm/SA1100/LART +++ /dev/null @@ -1,14 +0,0 @@ -Linux Advanced Radio Terminal (LART) ------------------------------------- - -The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded -applications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all -other StrongARM-gadgets. Almost all SA signals are directly accessible -through a number of connectors. The powersupply accepts voltages -between 3.5V and 16V and is overdimensioned to support a range of -daughterboards. A quad Ethernet / IDE / PS2 / sound daughterboard -is under development, with plenty of others in different stages of -planning. - -The hardware designs for this board have been released under an open license; -see the LART page at http://www.lartmaker.nl/ for more information. diff --git a/Documentation/arm/SA1100/PLEB b/Documentation/arm/SA1100/PLEB deleted file mode 100644 index b9c8a631a351..000000000000 --- a/Documentation/arm/SA1100/PLEB +++ /dev/null @@ -1,11 +0,0 @@ -The PLEB project was started as a student initiative at the School of -Computer Science and Engineering, University of New South Wales to make a -pocket computer capable of running the Linux Kernel. - -PLEB support has yet to be fully integrated. - -For more information, see: - - http://www.cse.unsw.edu.au - - diff --git a/Documentation/arm/SA1100/Pangolin b/Documentation/arm/SA1100/Pangolin deleted file mode 100644 index 077a6120e129..000000000000 --- a/Documentation/arm/SA1100/Pangolin +++ /dev/null @@ -1,23 +0,0 @@ -Pangolin is a StrongARM 1110-based evaluation platform produced -by Dialogue Technology (http://www.dialogue.com.tw/). -It has EISA slots for ease of configuration with SDRAM/Flash -memory card, USB/Serial/Audio card, Compact Flash card, -PCMCIA/IDE card and TFT-LCD card. - -To compile for Pangolin, you must issue the following commands: - - make pangolin_config - make oldconfig - make zImage - -Supported peripherals: -- SA1110 serial port (UART1/UART2/UART3) -- flash memory access -- compact flash driver -- UDA1341 sound driver -- SA1100 LCD controller for 800x600 16bpp TFT-LCD -- MQ-200 driver for 800x600 16bpp TFT-LCD -- Penmount(touch panel) driver -- PCMCIA driver -- SMC91C94 LAN driver -- IDE driver (experimental) diff --git a/Documentation/arm/SA1100/Tifon b/Documentation/arm/SA1100/Tifon deleted file mode 100644 index dd1934d9c851..000000000000 --- a/Documentation/arm/SA1100/Tifon +++ /dev/null @@ -1,7 +0,0 @@ -Tifon ------ - -More info has to come... - -Contact: Peter Danielsson - diff --git a/Documentation/arm/SA1100/Yopy b/Documentation/arm/SA1100/Yopy deleted file mode 100644 index e14f16d836ac..000000000000 --- a/Documentation/arm/SA1100/Yopy +++ /dev/null @@ -1,2 +0,0 @@ -See http://www.yopydeveloper.org for more. - diff --git a/Documentation/arm/SA1100/empeg b/Documentation/arm/SA1100/empeg deleted file mode 100644 index 4ece4849a42c..000000000000 --- a/Documentation/arm/SA1100/empeg +++ /dev/null @@ -1,2 +0,0 @@ -See ../empeg/README - diff --git a/Documentation/arm/SA1100/nanoEngine b/Documentation/arm/SA1100/nanoEngine deleted file mode 100644 index 48a7934f95f6..000000000000 --- a/Documentation/arm/SA1100/nanoEngine +++ /dev/null @@ -1,11 +0,0 @@ -nanoEngine ----------- - -"nanoEngine" is a SA1110 based single board computer from -Bright Star Engineering Inc. See www.brightstareng.com/arm -for more info. -(Ref: Stuart Adams ) - -Also visit Larry Doolittle's "Linux for the nanoEngine" site: -http://www.brightstareng.com/arm/nanoeng.htm - diff --git a/Documentation/arm/SA1100/serial_UART b/Documentation/arm/SA1100/serial_UART deleted file mode 100644 index a63966f1d083..000000000000 --- a/Documentation/arm/SA1100/serial_UART +++ /dev/null @@ -1,47 +0,0 @@ -The SA1100 serial port had its major/minor numbers officially assigned: - -> Date: Sun, 24 Sep 2000 21:40:27 -0700 -> From: H. Peter Anvin -> To: Nicolas Pitre -> Cc: Device List Maintainer -> Subject: Re: device -> -> Okay. Note that device numbers 204 and 205 are used for "low density -> serial devices", so you will have a range of minors on those majors (the -> tty device layer handles this just fine, so you don't have to worry about -> doing anything special.) -> -> So your assignments are: -> -> 204 char Low-density serial ports -> 5 = /dev/ttySA0 SA1100 builtin serial port 0 -> 6 = /dev/ttySA1 SA1100 builtin serial port 1 -> 7 = /dev/ttySA2 SA1100 builtin serial port 2 -> -> 205 char Low-density serial ports (alternate device) -> 5 = /dev/cusa0 Callout device for ttySA0 -> 6 = /dev/cusa1 Callout device for ttySA1 -> 7 = /dev/cusa2 Callout device for ttySA2 -> - -You must create those inodes in /dev on the root filesystem used -by your SA1100-based device: - - mknod ttySA0 c 204 5 - mknod ttySA1 c 204 6 - mknod ttySA2 c 204 7 - mknod cusa0 c 205 5 - mknod cusa1 c 205 6 - mknod cusa2 c 205 7 - -In addition to the creation of the appropriate device nodes above, you -must ensure your user space applications make use of the correct device -name. The classic example is the content of the /etc/inittab file where -you might have a getty process started on ttyS0. In this case: - -- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc. - -- don't forget to add 'ttySA0', 'console', or the appropriate tty name - in /etc/securetty for root to be allowed to login as well. - - diff --git a/Documentation/arm/SH-Mobile/.gitignore b/Documentation/arm/SH-Mobile/.gitignore deleted file mode 100644 index c928dbf3cc88..000000000000 --- a/Documentation/arm/SH-Mobile/.gitignore +++ /dev/null @@ -1 +0,0 @@ -vrl4 diff --git a/Documentation/arm/SPEAr/overview.txt b/Documentation/arm/SPEAr/overview.txt deleted file mode 100644 index 1b049be6c84f..000000000000 --- a/Documentation/arm/SPEAr/overview.txt +++ /dev/null @@ -1,63 +0,0 @@ - SPEAr ARM Linux Overview - ========================== - -Introduction ------------- - - SPEAr (Structured Processor Enhanced Architecture). - weblink : http://www.st.com/spear - - The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-Chip CPUs are - supported by the 'spear' platform of ARM Linux. Currently SPEAr1310, - SPEAr1340, SPEAr300, SPEAr310, SPEAr320 and SPEAr600 SOCs are supported. - - Hierarchy in SPEAr is as follows: - - SPEAr (Platform) - - SPEAr3XX (3XX SOC series, based on ARM9) - - SPEAr300 (SOC) - - SPEAr300 Evaluation Board - - SPEAr310 (SOC) - - SPEAr310 Evaluation Board - - SPEAr320 (SOC) - - SPEAr320 Evaluation Board - - SPEAr6XX (6XX SOC series, based on ARM9) - - SPEAr600 (SOC) - - SPEAr600 Evaluation Board - - SPEAr13XX (13XX SOC series, based on ARM CORTEXA9) - - SPEAr1310 (SOC) - - SPEAr1310 Evaluation Board - - SPEAr1340 (SOC) - - SPEAr1340 Evaluation Board - - Configuration - ------------- - - A generic configuration is provided for each machine, and can be used as the - default by - make spear13xx_defconfig - make spear3xx_defconfig - make spear6xx_defconfig - - Layout - ------ - - The common files for multiple machine families (SPEAr3xx, SPEAr6xx and - SPEAr13xx) are located in the platform code contained in arch/arm/plat-spear - with headers in plat/. - - Each machine series have a directory with name arch/arm/mach-spear followed by - series name. Like mach-spear3xx, mach-spear6xx and mach-spear13xx. - - Common file for machines of spear3xx family is mach-spear3xx/spear3xx.c, for - spear6xx is mach-spear6xx/spear6xx.c and for spear13xx family is - mach-spear13xx/spear13xx.c. mach-spear* also contain soc/machine specific - files, like spear1310.c, spear1340.c spear300.c, spear310.c, spear320.c and - spear600.c. mach-spear* doesn't contains board specific files as they fully - support Flattened Device Tree. - - - Document Author - --------------- - - Viresh Kumar , (c) 2010-2012 ST Microelectronics diff --git a/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt b/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt deleted file mode 100644 index fa968aa99d67..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt +++ /dev/null @@ -1,75 +0,0 @@ - S3C24XX CPUfreq support - ======================= - -Introduction ------------- - - The S3C24XX series support a number of power saving systems, such as - the ability to change the core, memory and peripheral operating - frequencies. The core control is exported via the CPUFreq driver - which has a number of different manual or automatic controls over the - rate the core is running at. - - There are two forms of the driver depending on the specific CPU and - how the clocks are arranged. The first implementation used as single - PLL to feed the ARM, memory and peripherals via a series of dividers - and muxes and this is the implementation that is documented here. A - newer version where there is a separate PLL and clock divider for the - ARM core is available as a separate driver. - - -Layout ------- - - The code core manages the CPU specific drivers, any data that they - need to register and the interface to the generic drivers/cpufreq - system. Each CPU registers a driver to control the PLL, clock dividers - and anything else associated with it. Any board that wants to use this - framework needs to supply at least basic details of what is required. - - The core registers with drivers/cpufreq at init time if all the data - necessary has been supplied. - - -CPU support ------------ - - The support for each CPU depends on the facilities provided by the - SoC and the driver as each device has different PLL and clock chains - associated with it. - - -Slow Mode ---------- - - The SLOW mode where the PLL is turned off altogether and the - system is fed by the external crystal input is currently not - supported. - - -sysfs ------ - - The core code exports extra information via sysfs in the directory - devices/system/cpu/cpu0/arch-freq. - - -Board Support -------------- - - Each board that wants to use the cpufreq code must register some basic - information with the core driver to provide information about what the - board requires and any restrictions being placed on it. - - The board needs to supply information about whether it needs the IO bank - timings changing, any maximum frequency limits and information about the - SDRAM refresh rate. - - - - -Document Author ---------------- - -Ben Dooks, Copyright 2009 Simtec Electronics -Licensed under GPLv2 diff --git a/Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt b/Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt deleted file mode 100644 index b87292e05f2f..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt +++ /dev/null @@ -1,58 +0,0 @@ - Simtec Electronics EB2410ITX (BAST) - =================================== - - http://www.simtec.co.uk/products/EB2410ITX/ - -Introduction ------------- - - The EB2410ITX is a S3C2410 based development board with a variety of - peripherals and expansion connectors. This board is also known by - the shortened name of Bast. - - -Configuration -------------- - - To set the default configuration, use `make bast_defconfig` which - supports the commonly used features of this board. - - -Support -------- - - Official support information can be found on the Simtec Electronics - website, at the product page http://www.simtec.co.uk/products/EB2410ITX/ - - Useful links: - - - Resources Page http://www.simtec.co.uk/products/EB2410ITX/resources.html - - - Board FAQ at http://www.simtec.co.uk/products/EB2410ITX/faq.html - - - Bootloader info http://www.simtec.co.uk/products/SWABLE/resources.html - and FAQ http://www.simtec.co.uk/products/SWABLE/faq.html - - -MTD ---- - - The NAND and NOR support has been merged from the linux-mtd project. - Any problems, see http://www.linux-mtd.infradead.org/ for more - information or up-to-date versions of linux-mtd. - - -IDE ---- - - Both onboard IDE ports are supported, however there is no support for - changing speed of devices, PIO Mode 4 capable drives should be used. - - -Maintainers ------------ - - This board is maintained by Simtec Electronics. - - -Copyright 2004 Ben Dooks, Simtec Electronics diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/Samsung-S3C24XX/GPIO.txt deleted file mode 100644 index e8f918b96123..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt +++ /dev/null @@ -1,171 +0,0 @@ - S3C24XX GPIO Control - ==================== - -Introduction ------------- - - The s3c2410 kernel provides an interface to configure and - manipulate the state of the GPIO pins, and find out other - information about them. - - There are a number of conditions attached to the configuration - of the s3c2410 GPIO system, please read the Samsung provided - data-sheet/users manual to find out the complete list. - - See Documentation/arm/Samsung/GPIO.txt for the core implementation. - - -GPIOLIB -------- - - With the event of the GPIOLIB in drivers/gpio, support for some - of the GPIO functions such as reading and writing a pin will - be removed in favour of this common access method. - - Once all the extant drivers have been converted, the functions - listed below will be removed (they may be marked as __deprecated - in the near future). - - The following functions now either have a s3c_ specific variant - or are merged into gpiolib. See the definitions in - arch/arm/plat-samsung/include/plat/gpio-cfg.h: - - s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output() - s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input() - s3c2410_gpio_getirq() gpio_to_irq() - s3c2410_gpio_cfgpin() s3c_gpio_cfgpin() - s3c2410_gpio_getcfg() s3c_gpio_getcfg() - s3c2410_gpio_pullup() s3c_gpio_setpull() - - -GPIOLIB conversion ------------------- - -If you need to convert your board or driver to use gpiolib from the phased -out s3c2410 API, then here are some notes on the process. - -1) If your board is exclusively using an GPIO, say to control peripheral - power, then it will require to claim the gpio with gpio_request() before - it can use it. - - It is recommended to check the return value, with at least WARN_ON() - during initialisation. - -2) The s3c2410_gpio_cfgpin() can be directly replaced with s3c_gpio_cfgpin() - as they have the same arguments, and can either take the pin specific - values, or the more generic special-function-number arguments. - -3) s3c2410_gpio_pullup() changes have the problem that while the - s3c2410_gpio_pullup(x, 1) can be easily translated to the - s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0) - are not so easy. - - The s3c2410_gpio_pullup(x, 0) case enables the pull-up (or in the case - of some of the devices, a pull-down) and as such the new API distinguishes - between the UP and DOWN case. There is currently no 'just turn on' setting - which may be required if this becomes a problem. - -4) s3c2410_gpio_setpin() can be replaced by gpio_set_value(), the old call - does not implicitly configure the relevant gpio to output. The gpio - direction should be changed before using gpio_set_value(). - -5) s3c2410_gpio_getpin() is replaceable by gpio_get_value() if the pin - has been set to input. It is currently unknown what the behaviour is - when using gpio_get_value() on an output pin (s3c2410_gpio_getpin - would return the value the pin is supposed to be outputting). - -6) s3c2410_gpio_getirq() should be directly replaceable with the - gpio_to_irq() call. - -The s3c2410_gpio and gpio_ calls have always operated on the same gpio -numberspace, so there is no problem with converting the gpio numbering -between the calls. - - -Headers -------- - - See arch/arm/mach-s3c24xx/include/mach/regs-gpio.h for the list - of GPIO pins, and the configuration values for them. This - is included by using #include - - -PIN Numbers ------------ - - Each pin has an unique number associated with it in regs-gpio.h, - e.g. S3C2410_GPA(0) or S3C2410_GPF(1). These defines are used to tell - the GPIO functions which pin is to be used. - - With the conversion to gpiolib, there is no longer a direct conversion - from gpio pin number to register base address as in earlier kernels. This - is due to the number space required for newer SoCs where the later - GPIOs are not contiguous. - - -Configuring a pin ------------------ - - The following function allows the configuration of a given pin to - be changed. - - void s3c_gpio_cfgpin(unsigned int pin, unsigned int function); - - e.g.: - - s3c_gpio_cfgpin(S3C2410_GPA(0), S3C_GPIO_SFN(1)); - s3c_gpio_cfgpin(S3C2410_GPE(8), S3C_GPIO_SFN(2)); - - which would turn GPA(0) into the lowest Address line A0, and set - GPE(8) to be connected to the SDIO/MMC controller's SDDAT1 line. - - -Reading the current configuration ---------------------------------- - - The current configuration of a pin can be read by using standard - gpiolib function: - - s3c_gpio_getcfg(unsigned int pin); - - The return value will be from the same set of values which can be - passed to s3c_gpio_cfgpin(). - - -Configuring a pull-up resistor ------------------------------- - - A large proportion of the GPIO pins on the S3C2410 can have weak - pull-up resistors enabled. This can be configured by the following - function: - - void s3c_gpio_setpull(unsigned int pin, unsigned int to); - - Where the to value is S3C_GPIO_PULL_NONE to set the pull-up off, - and S3C_GPIO_PULL_UP to enable the specified pull-up. Any other - values are currently undefined. - - -Getting and setting the state of a PIN --------------------------------------- - - These calls are now implemented by the relevant gpiolib calls, convert - your board or driver to use gpiolib. - - -Getting the IRQ number associated with a PIN --------------------------------------------- - - A standard gpiolib function can map the given pin number to an IRQ - number to pass to the IRQ system. - - int gpio_to_irq(unsigned int pin); - - Note, not all pins have an IRQ. - - -Author -------- - -Ben Dooks, 03 October 2004 -Copyright 2004 Ben Dooks, Simtec Electronics diff --git a/Documentation/arm/Samsung-S3C24XX/H1940.txt b/Documentation/arm/Samsung-S3C24XX/H1940.txt deleted file mode 100644 index b738859b1fc0..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/H1940.txt +++ /dev/null @@ -1,40 +0,0 @@ - HP IPAQ H1940 - ============= - -http://www.handhelds.org/projects/h1940.html - -Introduction ------------- - - The HP H1940 is a S3C2410 based handheld device, with - bluetooth connectivity. - - -Support -------- - - A variety of information is available - - handhelds.org project page: - - http://www.handhelds.org/projects/h1940.html - - handhelds.org wiki page: - - http://handhelds.org/moin/moin.cgi/HpIpaqH1940 - - Herbert Pötzl pages: - - http://vserver.13thfloor.at/H1940/ - - -Maintainers ------------ - - This project is being maintained and developed by a variety - of people, including Ben Dooks, Arnaud Patard, and Herbert Pötzl. - - Thanks to the many others who have also provided support. - - -(c) 2005 Ben Dooks diff --git a/Documentation/arm/Samsung-S3C24XX/NAND.txt b/Documentation/arm/Samsung-S3C24XX/NAND.txt deleted file mode 100644 index bc478a3409b8..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/NAND.txt +++ /dev/null @@ -1,30 +0,0 @@ - S3C24XX NAND Support - ==================== - -Introduction ------------- - -Small Page NAND ---------------- - -The driver uses a 512 byte (1 page) ECC code for this setup. The -ECC code is not directly compatible with the default kernel ECC -code, so the driver enforces its own OOB layout and ECC parameters - -Large Page NAND ---------------- - -The driver is capable of handling NAND flash with a 2KiB page -size, with support for hardware ECC generation and correction. - -Unlike the 512byte page mode, the driver generates ECC data for -each 256 byte block in an 2KiB page. This means that more than -one error in a page can be rectified. It also means that the -OOB layout remains the default kernel layout for these flashes. - - -Document Author ---------------- - -Ben Dooks, Copyright 2007 Simtec Electronics - diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt deleted file mode 100644 index 00d3c3141e21..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/Overview.txt +++ /dev/null @@ -1,318 +0,0 @@ - S3C24XX ARM Linux Overview - ========================== - - - -Introduction ------------- - - The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported - by the 's3c2410' architecture of ARM Linux. Currently the S3C2410, - S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443 and S3C2450 devices - are supported. - - Support for the S3C2400 and S3C24A0 series was never completed and the - corresponding code has been removed after a while. If someone wishes to - revive this effort, partial support can be retrieved from earlier Linux - versions. - - The S3C2416 and S3C2450 devices are very similar and S3C2450 support is - included under the arch/arm/mach-s3c2416 directory. Note, while core - support for these SoCs is in, work on some of the extra peripherals - and extra interrupts is still ongoing. - - -Configuration -------------- - - A generic S3C2410 configuration is provided, and can be used as the - default by `make s3c2410_defconfig`. This configuration has support - for all the machines, and the commonly used features on them. - - Certain machines may have their own default configurations as well, - please check the machine specific documentation. - - -Layout ------- - - The core support files are located in the platform code contained in - arch/arm/plat-s3c24xx with headers in include/asm-arm/plat-s3c24xx. - This directory should be kept to items shared between the platform - code (arch/arm/plat-s3c24xx) and the arch/arm/mach-s3c24* code. - - Each cpu has a directory with the support files for it, and the - machines that carry the device. For example S3C2410 is contained - in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440 - - Register, kernel and platform data definitions are held in the - arch/arm/mach-s3c2410 directory./include/mach - -arch/arm/plat-s3c24xx: - - Files in here are either common to all the s3c24xx family, - or are common to only some of them with names to indicate this - status. The files that are not common to all are generally named - with the initial cpu they support in the series to ensure a short - name without any possibility of confusion with newer devices. - - As an example, initially s3c244x would cover s3c2440 and s3c2442, but - with the s3c2443 which does not share many of the same drivers in - this directory, the name becomes invalid. We stick to s3c2440- - to indicate a driver that is s3c2440 and s3c2442 compatible. - - This does mean that to find the status of any given SoC, a number - of directories may need to be searched. - - -Machines --------- - - The currently supported machines are as follows: - - Simtec Electronics EB2410ITX (BAST) - - A general purpose development board, see EB2410ITX.txt for further - details - - Simtec Electronics IM2440D20 (Osiris) - - CPU Module from Simtec Electronics, with a S3C2440A CPU, nand flash - and a PCMCIA controller. - - Samsung SMDK2410 - - Samsung's own development board, geared for PDA work. - - Samsung/Aiji SMDK2412 - - The S3C2412 version of the SMDK2440. - - Samsung/Aiji SMDK2413 - - The S3C2412 version of the SMDK2440. - - Samsung/Meritech SMDK2440 - - The S3C2440 compatible version of the SMDK2440, which has the - option of an S3C2440 or S3C2442 CPU module. - - Thorcom VR1000 - - Custom embedded board - - HP IPAQ 1940 - - Handheld (IPAQ), available in several varieties - - HP iPAQ rx3715 - - S3C2440 based IPAQ, with a number of variations depending on - features shipped. - - Acer N30 - - A S3C2410 based PDA from Acer. There is a Wiki page at - http://handhelds.org/moin/moin.cgi/AcerN30Documentation . - - AML M5900 - - American Microsystems' M5900 - - Nex Vision Nexcoder - Nex Vision Otom - - Two machines by Nex Vision - - -Adding New Machines -------------------- - - The architecture has been designed to support as many machines as can - be configured for it in one kernel build, and any future additions - should keep this in mind before altering items outside of their own - machine files. - - Machine definitions should be kept in linux/arch/arm/mach-s3c2410, - and there are a number of examples that can be looked at. - - Read the kernel patch submission policies as well as the - Documentation/arm directory before submitting patches. The - ARM kernel series is managed by Russell King, and has a patch system - located at http://www.arm.linux.org.uk/developer/patches/ - as well as mailing lists that can be found from the same site. - - As a courtesy, please notify of any new - machines or other modifications. - - Any large scale modifications, or new drivers should be discussed - on the ARM kernel mailing list (linux-arm-kernel) before being - attempted. See http://www.arm.linux.org.uk/mailinglists/ for the - mailing list information. - - -I2C ---- - - The hardware I2C core in the CPU is supported in single master - mode, and can be configured via platform data. - - -RTC ---- - - Support for the onboard RTC unit, including alarm function. - - This has recently been upgraded to use the new RTC core, - and the module has been renamed to rtc-s3c to fit in with - the new rtc naming scheme. - - -Watchdog --------- - - The onchip watchdog is available via the standard watchdog - interface. - - -NAND ----- - - The current kernels now have support for the s3c2410 NAND - controller. If there are any problems the latest linux-mtd - code can be found from http://www.linux-mtd.infradead.org/ - - For more information see Documentation/arm/Samsung-S3C24XX/NAND.txt - - -SD/MMC ------- - - The SD/MMC hardware pre S3C2443 is supported in the current - kernel, the driver is drivers/mmc/host/s3cmci.c and supports - 1 and 4 bit SD or MMC cards. - - The SDIO behaviour of this driver has not been fully tested. There is no - current support for hardware SDIO interrupts. - - -Serial ------- - - The s3c2410 serial driver provides support for the internal - serial ports. These devices appear as /dev/ttySAC0 through 3. - - To create device nodes for these, use the following commands - - mknod ttySAC0 c 204 64 - mknod ttySAC1 c 204 65 - mknod ttySAC2 c 204 66 - - -GPIO ----- - - The core contains support for manipulating the GPIO, see the - documentation in GPIO.txt in the same directory as this file. - - Newer kernels carry GPIOLIB, and support is being moved towards - this with some of the older support in line to be removed. - - As of v2.6.34, the move towards using gpiolib support is almost - complete, and very little of the old calls are left. - - See Documentation/arm/Samsung-S3C24XX/GPIO.txt for the S3C24XX specific - support and Documentation/arm/Samsung/GPIO.txt for the core Samsung - implementation. - - -Clock Management ----------------- - - The core provides the interface defined in the header file - include/asm-arm/hardware/clock.h, to allow control over the - various clock units - - -Suspend to RAM --------------- - - For boards that provide support for suspend to RAM, the - system can be placed into low power suspend. - - See Suspend.txt for more information. - - -SPI ---- - - SPI drivers are available for both the in-built hardware - (although there is no DMA support yet) and a generic - GPIO based solution. - - -LEDs ----- - - There is support for GPIO based LEDs via a platform driver - in the LED subsystem. - - -Platform Data -------------- - - Whenever a device has platform specific data that is specified - on a per-machine basis, care should be taken to ensure the - following: - - 1) that default data is not left in the device to confuse the - driver if a machine does not set it at startup - - 2) the data should (if possible) be marked as __initdata, - to ensure that the data is thrown away if the machine is - not the one currently in use. - - The best way of doing this is to make a function that - kmalloc()s an area of memory, and copies the __initdata - and then sets the relevant device's platform data. Making - the function `__init` takes care of ensuring it is discarded - with the rest of the initialisation code - - static __init void s3c24xx_xxx_set_platdata(struct xxx_data *pd) - { - struct s3c2410_xxx_mach_info *npd; - - npd = kmalloc(sizeof(struct s3c2410_xxx_mach_info), GFP_KERNEL); - if (npd) { - memcpy(npd, pd, sizeof(struct s3c2410_xxx_mach_info)); - s3c_device_xxx.dev.platform_data = npd; - } else { - printk(KERN_ERR "no memory for xxx platform data\n"); - } - } - - Note, since the code is marked as __init, it should not be - exported outside arch/arm/mach-s3c2410/, or exported to - modules via EXPORT_SYMBOL() and related functions. - - -Port Contributors ------------------ - - Ben Dooks (BJD) - Vincent Sanders - Herbert Potzl - Arnaud Patard (RTP) - Roc Wu - Klaus Fetscher - Dimitry Andric - Shannon Holland - Guillaume Gourat (NexVision) - Christer Weinigel (wingel) (Acer N30) - Lucas Correia Villa Real (S3C2400 port) - - -Document Author ---------------- - -Ben Dooks, Copyright 2004-2006 Simtec Electronics diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt deleted file mode 100644 index dc1fd362d3c1..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt +++ /dev/null @@ -1,120 +0,0 @@ - S3C2412 ARM Linux Overview - ========================== - -Introduction ------------- - - The S3C2412 is part of the S3C24XX range of ARM9 System-on-Chip CPUs - from Samsung. This part has an ARM926-EJS core, capable of running up - to 266MHz (see data-sheet for more information) - - -Clock ------ - - The core clock code provides a set of clocks to the drivers, and allows - for source selection and a number of other features. - - -Power ------ - - No support for suspend/resume to RAM in the current system. - - -DMA ---- - - No current support for DMA. - - -GPIO ----- - - There is support for setting the GPIO to input/output/special function - and reading or writing to them. - - -UART ----- - - The UART hardware is similar to the S3C2440, and is supported by the - s3c2410 driver in the drivers/serial directory. - - -NAND ----- - - The NAND hardware is similar to the S3C2440, and is supported by the - s3c2410 driver in the drivers/mtd/nand/raw directory. - - -USB Host --------- - - The USB hardware is similar to the S3C2410, with extended clock source - control. The OHCI portion is supported by the ohci-s3c2410 driver, and - the clock control selection is supported by the core clock code. - - -USB Device ----------- - - No current support in the kernel - - -IRQs ----- - - All the standard, and external interrupt sources are supported. The - extra sub-sources are not yet supported. - - -RTC ---- - - The RTC hardware is similar to the S3C2410, and is supported by the - s3c2410-rtc driver. - - -Watchdog --------- - - The watchdog hardware is the same as the S3C2410, and is supported by - the s3c2410_wdt driver. - - -MMC/SD/SDIO ------------ - - No current support for the MMC/SD/SDIO block. - -IIC ---- - - The IIC hardware is the same as the S3C2410, and is supported by the - i2c-s3c24xx driver. - - -IIS ---- - - No current support for the IIS interface. - - -SPI ---- - - No current support for the SPI interfaces. - - -ATA ---- - - No current support for the on-board ATA block. - - -Document Author ---------------- - -Ben Dooks, Copyright 2006 Simtec Electronics diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2413.txt b/Documentation/arm/Samsung-S3C24XX/S3C2413.txt deleted file mode 100644 index 909bdc7dd7b5..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/S3C2413.txt +++ /dev/null @@ -1,21 +0,0 @@ - S3C2413 ARM Linux Overview - ========================== - -Introduction ------------- - - The S3C2413 is an extended version of the S3C2412, with an camera - interface and mobile DDR memory support. See the S3C2412 support - documentation for more information. - - -Camera Interface ---------------- - - This block is currently not supported. - - -Document Author ---------------- - -Ben Dooks, Copyright 2006 Simtec Electronics diff --git a/Documentation/arm/Samsung-S3C24XX/SMDK2440.txt b/Documentation/arm/Samsung-S3C24XX/SMDK2440.txt deleted file mode 100644 index 429390bd4684..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/SMDK2440.txt +++ /dev/null @@ -1,56 +0,0 @@ - Samsung/Meritech SMDK2440 - ========================= - -Introduction ------------- - - The SMDK2440 is a two part evaluation board for the Samsung S3C2440 - processor. It includes support for LCD, SmartMedia, Audio, SD and - 10MBit Ethernet, and expansion headers for various signals, including - the camera and unused GPIO. - - -Configuration -------------- - - To set the default configuration, use `make smdk2440_defconfig` which - will configure the common features of this board, or use - `make s3c2410_config` to include support for all s3c2410/s3c2440 machines - - -Support -------- - - Ben Dooks' SMDK2440 site at http://www.fluff.org/ben/smdk2440/ which - includes linux based USB download tools. - - Some of the h1940 patches that can be found from the H1940 project - site at http://www.handhelds.org/projects/h1940.html can also be - applied to this board. - - -Peripherals ------------ - - There is no current support for any of the extra peripherals on the - base-board itself. - - -MTD ---- - - The NAND flash should be supported by the in kernel MTD NAND support, - NOR flash will be added later. - - -Maintainers ------------ - - This board is being maintained by Ben Dooks, for more info, see - http://www.fluff.org/ben/smdk2440/ - - Many thanks to Dimitry Andric of TomTom for the loan of the SMDK2440, - and to Simtec Electronics for allowing me time to work on this. - - -(c) 2004 Ben Dooks diff --git a/Documentation/arm/Samsung-S3C24XX/Suspend.txt b/Documentation/arm/Samsung-S3C24XX/Suspend.txt deleted file mode 100644 index cb4f0c0cdf9d..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/Suspend.txt +++ /dev/null @@ -1,137 +0,0 @@ - S3C24XX Suspend Support - ======================= - - -Introduction ------------- - - The S3C24XX supports a low-power suspend mode, where the SDRAM is kept - in Self-Refresh mode, and all but the essential peripheral blocks are - powered down. For more information on how this works, please look - at the relevant CPU datasheet from Samsung. - - -Requirements ------------- - - 1) A bootloader that can support the necessary resume operation - - 2) Support for at least 1 source for resume - - 3) CONFIG_PM enabled in the kernel - - 4) Any peripherals that are going to be powered down at the same - time require suspend/resume support. - - -Resuming --------- - - The S3C2410 user manual defines the process of sending the CPU to - sleep and how it resumes. The default behaviour of the Linux code - is to set the GSTATUS3 register to the physical address of the - code to resume Linux operation. - - GSTATUS4 is currently left alone by the sleep code, and is free to - use for any other purposes (for example, the EB2410ITX uses this to - save memory configuration in). - - -Machine Support ---------------- - - The machine specific functions must call the s3c_pm_init() function - to say that its bootloader is capable of resuming. This can be as - simple as adding the following to the machine's definition: - - INITMACHINE(s3c_pm_init) - - A board can do its own setup before calling s3c_pm_init, if it - needs to setup anything else for power management support. - - There is currently no support for over-riding the default method of - saving the resume address, if your board requires it, then contact - the maintainer and discuss what is required. - - Note, the original method of adding an late_initcall() is wrong, - and will end up initialising all compiled machines' pm init! - - The following is an example of code used for testing wakeup from - an falling edge on IRQ_EINT0: - - -static irqreturn_t button_irq(int irq, void *pw) -{ - return IRQ_HANDLED; -} - -statuc void __init machine_init(void) -{ - ... - - request_irq(IRQ_EINT0, button_irq, IRQF_TRIGGER_FALLING, - "button-irq-eint0", NULL); - - enable_irq_wake(IRQ_EINT0); - - s3c_pm_init(); -} - - -Debugging ---------- - - There are several important things to remember when using PM suspend: - - 1) The uart drivers will disable the clocks to the UART blocks when - suspending, which means that use of printascii() or similar direct - access to the UARTs will cause the debug to stop. - - 2) While the pm code itself will attempt to re-enable the UART clocks, - care should be taken that any external clock sources that the UARTs - rely on are still enabled at that point. - - 3) If any debugging is placed in the resume path, then it must have the - relevant clocks and peripherals setup before use (ie, bootloader). - - For example, if you transmit a character from the UART, the baud - rate and uart controls must be setup beforehand. - - -Configuration -------------- - - The S3C2410 specific configuration in `System Type` defines various - aspects of how the S3C2410 suspend and resume support is configured - - `S3C2410 PM Suspend debug` - - This option prints messages to the serial console before and after - the actual suspend, giving detailed information on what is - happening - - - `S3C2410 PM Suspend Memory CRC` - - Allows the entire memory to be checksummed before and after the - suspend to see if there has been any corruption of the contents. - - Note, the time to calculate the CRC is dependent on the CPU speed - and the size of memory. For an 64Mbyte RAM area on an 200MHz - S3C2410, this can take approximately 4 seconds to complete. - - This support requires the CRC32 function to be enabled. - - - `S3C2410 PM Suspend CRC Chunksize (KiB)` - - Defines the size of memory each CRC chunk covers. A smaller value - will mean that the CRC data block will take more memory, but will - identify any faults with better precision - - -Document Author ---------------- - -Ben Dooks, Copyright 2004 Simtec Electronics - diff --git a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt b/Documentation/arm/Samsung-S3C24XX/USB-Host.txt deleted file mode 100644 index f82b1faefad5..000000000000 --- a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt +++ /dev/null @@ -1,93 +0,0 @@ - S3C24XX USB Host support - ======================== - - - -Introduction ------------- - - This document details the S3C2410/S3C2440 in-built OHCI USB host support. - -Configuration -------------- - - Enable at least the following kernel options: - - menuconfig: - - Device Drivers ---> - USB support ---> - <*> Support for Host-side USB - <*> OHCI HCD support - - - .config: - CONFIG_USB - CONFIG_USB_OHCI_HCD - - - Once these options are configured, the standard set of USB device - drivers can be configured and used. - - -Board Support -------------- - - The driver attaches to a platform device, which will need to be - added by the board specific support file in linux/arch/arm/mach-s3c2410, - such as mach-bast.c or mach-smdk2410.c - - The platform device's platform_data field is only needed if the - board implements extra power control or over-current monitoring. - - The OHCI driver does not ensure the state of the S3C2410's MISCCTRL - register, so if both ports are to be used for the host, then it is - the board support file's responsibility to ensure that the second - port is configured to be connected to the OHCI core. - - -Platform Data -------------- - - See arch/arm/mach-s3c2410/include/mach/usb-control.h for the - descriptions of the platform device data. An implementation - can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c . - - The `struct s3c2410_hcd_info` contains a pair of functions - that get called to enable over-current detection, and to - control the port power status. - - The ports are numbered 0 and 1. - - power_control: - - Called to enable or disable the power on the port. - - enable_oc: - - Called to enable or disable the over-current monitoring. - This should claim or release the resources being used to - check the power condition on the port, such as an IRQ. - - report_oc: - - The OHCI driver fills this field in for the over-current code - to call when there is a change to the over-current state on - an port. The ports argument is a bitmask of 1 bit per port, - with bit X being 1 for an over-current on port X. - - The function s3c2410_usb_report_oc() has been provided to - ensure this is called correctly. - - port[x]: - - This is struct describes each port, 0 or 1. The platform driver - should set the flags field of each port to S3C_HCDFLG_USED if - the port is enabled. - - - -Document Author ---------------- - -Ben Dooks, Copyright 2005 Simtec Electronics diff --git a/Documentation/arm/Samsung/Bootloader-interface.txt b/Documentation/arm/Samsung/Bootloader-interface.txt deleted file mode 100644 index d17ed518a7ea..000000000000 --- a/Documentation/arm/Samsung/Bootloader-interface.txt +++ /dev/null @@ -1,68 +0,0 @@ - Interface between kernel and boot loaders on Exynos boards - ========================================================== - -Author: Krzysztof Kozlowski -Date : 6 June 2015 - -The document tries to describe currently used interface between Linux kernel -and boot loaders on Samsung Exynos based boards. This is not a definition -of interface but rather a description of existing state, a reference -for information purpose only. - -In the document "boot loader" means any of following: U-boot, proprietary -SBOOT or any other firmware for ARMv7 and ARMv8 initializing the board before -executing kernel. - - -1. Non-Secure mode - -Address: sysram_ns_base_addr -Offset Value Purpose -============================================================================= -0x08 exynos_cpu_resume_ns, mcpm_entry_point System suspend -0x0c 0x00000bad (Magic cookie) System suspend -0x1c exynos4_secondary_startup Secondary CPU boot -0x1c + 4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot -0x20 0xfcba0d10 (Magic cookie) AFTR -0x24 exynos_cpu_resume_ns AFTR -0x28 + 4*cpu 0x8 (Magic cookie, Exynos3250) AFTR -0x28 0x0 or last value during resume (Exynos542x) System suspend - - -2. Secure mode - -Address: sysram_base_addr -Offset Value Purpose -============================================================================= -0x00 exynos4_secondary_startup Secondary CPU boot -0x04 exynos4_secondary_startup (Exynos542x) Secondary CPU boot -4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot -0x20 exynos_cpu_resume (Exynos4210 r1.0) AFTR -0x24 0xfcba0d10 (Magic cookie, Exynos4210 r1.0) AFTR - -Address: pmu_base_addr -Offset Value Purpose -============================================================================= -0x0800 exynos_cpu_resume AFTR, suspend -0x0800 mcpm_entry_point (Exynos542x with MCPM) AFTR, suspend -0x0804 0xfcba0d10 (Magic cookie) AFTR -0x0804 0x00000bad (Magic cookie) System suspend -0x0814 exynos4_secondary_startup (Exynos4210 r1.1) Secondary CPU boot -0x0818 0xfcba0d10 (Magic cookie, Exynos4210 r1.1) AFTR -0x081C exynos_cpu_resume (Exynos4210 r1.1) AFTR - - -3. Other (regardless of secure/non-secure mode) - -Address: pmu_base_addr -Offset Value Purpose -============================================================================= -0x0908 Non-zero Secondary CPU boot up indicator - on Exynos3250 and Exynos542x - - -4. Glossary - -AFTR - ARM Off Top Running, a low power mode, Cortex cores and many other -modules are power gated, except the TOP modules -MCPM - Multi-Cluster Power Management diff --git a/Documentation/arm/Samsung/GPIO.txt b/Documentation/arm/Samsung/GPIO.txt deleted file mode 100644 index 795adfd88081..000000000000 --- a/Documentation/arm/Samsung/GPIO.txt +++ /dev/null @@ -1,40 +0,0 @@ - Samsung GPIO implementation - =========================== - -Introduction ------------- - -This outlines the Samsung GPIO implementation and the architecture -specific calls provided alongside the drivers/gpio core. - - -S3C24XX (Legacy) ----------------- - -See Documentation/arm/Samsung-S3C24XX/GPIO.txt for more information -about these devices. Their implementation has been brought into line -with the core samsung implementation described in this document. - - -GPIOLIB integration -------------------- - -The gpio implementation uses gpiolib as much as possible, only providing -specific calls for the items that require Samsung specific handling, such -as pin special-function or pull resistor control. - -GPIO numbering is synchronised between the Samsung and gpiolib system. - - -PIN configuration ------------------ - -Pin configuration is specific to the Samsung architecture, with each SoC -registering the necessary information for the core gpio configuration -implementation to configure pins as necessary. - -The s3c_gpio_cfgpin() and s3c_gpio_setpull() provide the means for a -driver or machine to change gpio configuration. - -See arch/arm/plat-samsung/include/plat/gpio-cfg.h for more information -on these functions. diff --git a/Documentation/arm/Samsung/Overview.txt b/Documentation/arm/Samsung/Overview.txt deleted file mode 100644 index 8f7309bad460..000000000000 --- a/Documentation/arm/Samsung/Overview.txt +++ /dev/null @@ -1,86 +0,0 @@ - Samsung ARM Linux Overview - ========================== - -Introduction ------------- - - The Samsung range of ARM SoCs spans many similar devices, from the initial - ARM9 through to the newest ARM cores. This document shows an overview of - the current kernel support, how to use it and where to find the code - that supports this. - - The currently supported SoCs are: - - - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list - - S3C64XX: S3C6400 and S3C6410 - - S5PC110 / S5PV210 - - -S3C24XX Systems ---------------- - - There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which - deals with the architecture and drivers specific to these devices. - - See Documentation/arm/Samsung-S3C24XX/Overview.txt for more information - on the implementation details and specific support. - - -Configuration -------------- - - A number of configurations are supplied, as there is no current way of - unifying all the SoCs into one kernel. - - s5pc110_defconfig - S5PC110 specific default configuration - s5pv210_defconfig - S5PV210 specific default configuration - - -Layout ------- - - The directory layout is currently being restructured, and consists of - several platform directories and then the machine specific directories - of the CPUs being built for. - - plat-samsung provides the base for all the implementations, and is the - last in the line of include directories that are processed for the build - specific information. It contains the base clock, GPIO and device definitions - to get the system running. - - plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs. - - plat-s5p is for s5p specific builds, and contains common support for the - S5P specific systems. Not all S5Ps use all the features in this directory - due to differences in the hardware. - - -Layout changes --------------- - - The old plat-s3c and plat-s5pc1xx directories have been removed, with - support moved to either plat-samsung or plat-s5p as necessary. These moves - where to simplify the include and dependency issues involved with having - so many different platform directories. - - -Port Contributors ------------------ - - Ben Dooks (BJD) - Vincent Sanders - Herbert Potzl - Arnaud Patard (RTP) - Roc Wu - Klaus Fetscher - Dimitry Andric - Shannon Holland - Guillaume Gourat (NexVision) - Christer Weinigel (wingel) (Acer N30) - Lucas Correia Villa Real (S3C2400 port) - - -Document Author ---------------- - -Copyright 2009-2010 Ben Dooks diff --git a/Documentation/arm/Samsung/clksrc-change-registers.awk b/Documentation/arm/Samsung/clksrc-change-registers.awk deleted file mode 100755 index 7be1b8aa7cd9..000000000000 --- a/Documentation/arm/Samsung/clksrc-change-registers.awk +++ /dev/null @@ -1,166 +0,0 @@ -#!/usr/bin/awk -f -# -# Copyright 2010 Ben Dooks -# -# Released under GPLv2 - -# example usage -# ./clksrc-change-registers.awk arch/arm/plat-s5pc1xx/include/plat/regs-clock.h < src > dst - -function extract_value(s) -{ - eqat = index(s, "=") - comat = index(s, ",") - return substr(s, eqat+2, (comat-eqat)-2) -} - -function remove_brackets(b) -{ - return substr(b, 2, length(b)-2) -} - -function splitdefine(l, p) -{ - r = split(l, tp) - - p[0] = tp[2] - p[1] = remove_brackets(tp[3]) -} - -function find_length(f) -{ - if (0) - printf "find_length " f "\n" > "/dev/stderr" - - if (f ~ /0x1/) - return 1 - else if (f ~ /0x3/) - return 2 - else if (f ~ /0x7/) - return 3 - else if (f ~ /0xf/) - return 4 - - printf "unknown length " f "\n" > "/dev/stderr" - exit -} - -function find_shift(s) -{ - id = index(s, "<") - if (id <= 0) { - printf "cannot find shift " s "\n" > "/dev/stderr" - exit - } - - return substr(s, id+2) -} - - -BEGIN { - if (ARGC < 2) { - print "too few arguments" > "/dev/stderr" - exit - } - -# read the header file and find the mask values that we will need -# to replace and create an associative array of values - - while (getline line < ARGV[1] > 0) { - if (line ~ /\#define.*_MASK/ && - !(line ~ /USB_SIG_MASK/)) { - splitdefine(line, fields) - name = fields[0] - if (0) - printf "MASK " line "\n" > "/dev/stderr" - dmask[name,0] = find_length(fields[1]) - dmask[name,1] = find_shift(fields[1]) - if (0) - printf "=> '" name "' LENGTH=" dmask[name,0] " SHIFT=" dmask[name,1] "\n" > "/dev/stderr" - } else { - } - } - - delete ARGV[1] -} - -/clksrc_clk.*=.*{/ { - shift="" - mask="" - divshift="" - reg_div="" - reg_src="" - indent=1 - - print $0 - - for(; indent >= 1;) { - if ((getline line) <= 0) { - printf "unexpected end of file" > "/dev/stderr" - exit 1; - } - - if (line ~ /\.shift/) { - shift = extract_value(line) - } else if (line ~ /\.mask/) { - mask = extract_value(line) - } else if (line ~ /\.reg_divider/) { - reg_div = extract_value(line) - } else if (line ~ /\.reg_source/) { - reg_src = extract_value(line) - } else if (line ~ /\.divider_shift/) { - divshift = extract_value(line) - } else if (line ~ /{/) { - indent++ - print line - } else if (line ~ /}/) { - indent-- - - if (indent == 0) { - if (0) { - printf "shift '" shift "' ='" dmask[shift,0] "'\n" > "/dev/stderr" - printf "mask '" mask "'\n" > "/dev/stderr" - printf "dshft '" divshift "'\n" > "/dev/stderr" - printf "rdiv '" reg_div "'\n" > "/dev/stderr" - printf "rsrc '" reg_src "'\n" > "/dev/stderr" - } - - generated = mask - sub(reg_src, reg_div, generated) - - if (0) { - printf "/* rsrc " reg_src " */\n" - printf "/* rdiv " reg_div " */\n" - printf "/* shift " shift " */\n" - printf "/* mask " mask " */\n" - printf "/* generated " generated " */\n" - } - - if (reg_div != "") { - printf "\t.reg_div = { " - printf ".reg = " reg_div ", " - printf ".shift = " dmask[generated,1] ", " - printf ".size = " dmask[generated,0] ", " - printf "},\n" - } - - printf "\t.reg_src = { " - printf ".reg = " reg_src ", " - printf ".shift = " dmask[mask,1] ", " - printf ".size = " dmask[mask,0] ", " - - printf "},\n" - - } - - print line - } else { - print line - } - - if (0) - printf indent ":" line "\n" > "/dev/stderr" - } -} - -// && ! /clksrc_clk.*=.*{/ { print $0 } diff --git a/Documentation/arm/Setup b/Documentation/arm/Setup deleted file mode 100644 index 0cb1e64bde80..000000000000 --- a/Documentation/arm/Setup +++ /dev/null @@ -1,129 +0,0 @@ -Kernel initialisation parameters on ARM Linux ---------------------------------------------- - -The following document describes the kernel initialisation parameter -structure, otherwise known as 'struct param_struct' which is used -for most ARM Linux architectures. - -This structure is used to pass initialisation parameters from the -kernel loader to the Linux kernel proper, and may be short lived -through the kernel initialisation process. As a general rule, it -should not be referenced outside of arch/arm/kernel/setup.c:setup_arch(). - -There are a lot of parameters listed in there, and they are described -below: - - page_size - - This parameter must be set to the page size of the machine, and - will be checked by the kernel. - - nr_pages - - This is the total number of pages of memory in the system. If - the memory is banked, then this should contain the total number - of pages in the system. - - If the system contains separate VRAM, this value should not - include this information. - - ramdisk_size - - This is now obsolete, and should not be used. - - flags - - Various kernel flags, including: - bit 0 - 1 = mount root read only - bit 1 - unused - bit 2 - 0 = load ramdisk - bit 3 - 0 = prompt for ramdisk - - rootdev - - major/minor number pair of device to mount as the root filesystem. - - video_num_cols - video_num_rows - - These two together describe the character size of the dummy console, - or VGA console character size. They should not be used for any other - purpose. - - It's generally a good idea to set these to be either standard VGA, or - the equivalent character size of your fbcon display. This then allows - all the bootup messages to be displayed correctly. - - video_x - video_y - - This describes the character position of cursor on VGA console, and - is otherwise unused. (should not be used for other console types, and - should not be used for other purposes). - - memc_control_reg - - MEMC chip control register for Acorn Archimedes and Acorn A5000 - based machines. May be used differently by different architectures. - - sounddefault - - Default sound setting on Acorn machines. May be used differently by - different architectures. - - adfsdrives - - Number of ADFS/MFM disks. May be used differently by different - architectures. - - bytes_per_char_h - bytes_per_char_v - - These are now obsolete, and should not be used. - - pages_in_bank[4] - - Number of pages in each bank of the systems memory (used for RiscPC). - This is intended to be used on systems where the physical memory - is non-contiguous from the processors point of view. - - pages_in_vram - - Number of pages in VRAM (used on Acorn RiscPC). This value may also - be used by loaders if the size of the video RAM can't be obtained - from the hardware. - - initrd_start - initrd_size - - This describes the kernel virtual start address and size of the - initial ramdisk. - - rd_start - - Start address in sectors of the ramdisk image on a floppy disk. - - system_rev - - system revision number. - - system_serial_low - system_serial_high - - system 64-bit serial number - - mem_fclk_21285 - - The speed of the external oscillator to the 21285 (footbridge), - which control's the speed of the memory bus, timer & serial port. - Depending upon the speed of the cpu its value can be between - 0-66 MHz. If no params are passed or a value of zero is passed, - then a value of 50 Mhz is the default on 21285 architectures. - - paths[8][128] - - These are now obsolete, and should not be used. - - commandline - - Kernel command line parameters. Details can be found elsewhere. diff --git a/Documentation/arm/VFP/release-notes.txt b/Documentation/arm/VFP/release-notes.txt deleted file mode 100644 index 28a2795705ca..000000000000 --- a/Documentation/arm/VFP/release-notes.txt +++ /dev/null @@ -1,55 +0,0 @@ -Release notes for Linux Kernel VFP support code ------------------------------------------------ - -Date: 20 May 2004 -Author: Russell King - -This is the first release of the Linux Kernel VFP support code. It -provides support for the exceptions bounced from VFP hardware found -on ARM926EJ-S. - -This release has been validated against the SoftFloat-2b library by -John R. Hauser using the TestFloat-2a test suite. Details of this -library and test suite can be found at: - - http://www.jhauser.us/arithmetic/SoftFloat.html - -The operations which have been tested with this package are: - - - fdiv - - fsub - - fadd - - fmul - - fcmp - - fcmpe - - fcvtd - - fcvts - - fsito - - ftosi - - fsqrt - -All the above pass softfloat tests with the following exceptions: - -- fadd/fsub shows some differences in the handling of +0 / -0 results - when input operands differ in signs. -- the handling of underflow exceptions is slightly different. If a - result underflows before rounding, but becomes a normalised number - after rounding, we do not signal an underflow exception. - -Other operations which have been tested by basic assembly-only tests -are: - - - fcpy - - fabs - - fneg - - ftoui - - ftosiz - - ftouiz - -The combination operations have not been tested: - - - fmac - - fnmac - - fmsc - - fnmsc - - fnmul diff --git a/Documentation/arm/arm.rst b/Documentation/arm/arm.rst new file mode 100644 index 000000000000..2edc509df92a --- /dev/null +++ b/Documentation/arm/arm.rst @@ -0,0 +1,214 @@ +======================= +ARM Linux 2.6 and upper +======================= + + Please check for + updates. + +Compilation of kernel +--------------------- + + In order to compile ARM Linux, you will need a compiler capable of + generating ARM ELF code with GNU extensions. GCC 3.3 is known to be + a good compiler. Fortunately, you needn't guess. The kernel will report + an error if your compiler is a recognized offender. + + To build ARM Linux natively, you shouldn't have to alter the ARCH = line + in the top level Makefile. However, if you don't have the ARM Linux ELF + tools installed as default, then you should change the CROSS_COMPILE + line as detailed below. + + If you wish to cross-compile, then alter the following lines in the top + level make file:: + + ARCH = + + with:: + + ARCH = arm + + and:: + + CROSS_COMPILE= + + to:: + + CROSS_COMPILE= + + eg.:: + + CROSS_COMPILE=arm-linux- + + Do a 'make config', followed by 'make Image' to build the kernel + (arch/arm/boot/Image). A compressed image can be built by doing a + 'make zImage' instead of 'make Image'. + + +Bug reports etc +--------------- + + Please send patches to the patch system. For more information, see + http://www.arm.linux.org.uk/developer/patches/info.php Always include some + explanation as to what the patch does and why it is needed. + + Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk, + or submitted through the web form at + http://www.arm.linux.org.uk/developer/ + + When sending bug reports, please ensure that they contain all relevant + information, eg. the kernel messages that were printed before/during + the problem, what you were doing, etc. + + +Include files +------------- + + Several new include directories have been created under include/asm-arm, + which are there to reduce the clutter in the top-level directory. These + directories, and their purpose is listed below: + + ============= ========================================================== + `arch-*` machine/platform specific header files + `hardware` driver-internal ARM specific data structures/definitions + `mach` descriptions of generic ARM to specific machine interfaces + `proc-*` processor dependent header files (currently only two + categories) + ============= ========================================================== + + +Machine/Platform support +------------------------ + + The ARM tree contains support for a lot of different machine types. To + continue supporting these differences, it has become necessary to split + machine-specific parts by directory. For this, the machine category is + used to select which directories and files get included (we will use + $(MACHINE) to refer to the category) + + To this end, we now have arch/arm/mach-$(MACHINE) directories which are + designed to house the non-driver files for a particular machine (eg, PCI, + memory management, architecture definitions etc). For all future + machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach + directory. + + +Modules +------- + + Although modularisation is supported (and required for the FP emulator), + each module on an ARM2/ARM250/ARM3 machine when is loaded will take + memory up to the next 32k boundary due to the size of the pages. + Therefore, is modularisation on these machines really worth it? + + However, ARM6 and up machines allow modules to take multiples of 4k, and + as such Acorn RiscPCs and other architectures using these processors can + make good use of modularisation. + + +ADFS Image files +---------------- + + You can access image files on your ADFS partitions by mounting the ADFS + partition, and then using the loopback device driver. You must have + losetup installed. + + Please note that the PCEmulator DOS partitions have a partition table at + the start, and as such, you will have to give '-o offset' to losetup. + + +Request to developers +--------------------- + + When writing device drivers which include a separate assembler file, please + include it in with the C file, and not the arch/arm/lib directory. This + allows the driver to be compiled as a loadable module without requiring + half the code to be compiled into the kernel image. + + In general, try to avoid using assembler unless it is really necessary. It + makes drivers far less easy to port to other hardware. + + +ST506 hard drives +----------------- + + The ST506 hard drive controllers seem to be working fine (if a little + slowly). At the moment they will only work off the controllers on an + A4x0's motherboard, but for it to work off a Podule just requires + someone with a podule to add the addresses for the IRQ mask and the + HDC base to the source. + + As of 31/3/96 it works with two drives (you should get the ADFS + `*configure` harddrive set to 2). I've got an internal 20MB and a great + big external 5.25" FH 64MB drive (who could ever want more :-) ). + + I've just got 240K/s off it (a dd with bs=128k); thats about half of what + RiscOS gets; but it's a heck of a lot better than the 50K/s I was getting + last week :-) + + Known bug: Drive data errors can cause a hang; including cases where + the controller has fixed the error using ECC. (Possibly ONLY + in that case...hmm). + + +1772 Floppy +----------- + This also seems to work OK, but hasn't been stressed much lately. It + hasn't got any code for disc change detection in there at the moment which + could be a bit of a problem! Suggestions on the correct way to do this + are welcome. + + +`CONFIG_MACH_` and `CONFIG_ARCH_` +--------------------------------- + A change was made in 2003 to the macro names for new machines. + Historically, `CONFIG_ARCH_` was used for the bonafide architecture, + e.g. SA1100, as well as implementations of the architecture, + e.g. Assabet. It was decided to change the implementation macros + to read `CONFIG_MACH_` for clarity. Moreover, a retroactive fixup has + not been made because it would complicate patching. + + Previous registrations may be found online. + + + +Kernel entry (head.S) +--------------------- + The initial entry into the kernel is via head.S, which uses machine + independent code. The machine is selected by the value of 'r1' on + entry, which must be kept unique. + + Due to the large number of machines which the ARM port of Linux provides + for, we have a method to manage this which ensures that we don't end up + duplicating large amounts of code. + + We group machine (or platform) support code into machine classes. A + class typically based around one or more system on a chip devices, and + acts as a natural container around the actual implementations. These + classes are given directories - arch/arm/mach- and + arch/arm/mach- - which contain the source files to/include/mach + support the machine class. This directories also contain any machine + specific supporting code. + + For example, the SA1100 class is based upon the SA1100 and SA1110 SoC + devices, and contains the code to support the way the on-board and off- + board devices are used, or the device is setup, and provides that + machine specific "personality." + + For platforms that support device tree (DT), the machine selection is + controlled at runtime by passing the device tree blob to the kernel. At + compile-time, support for the machine type must be selected. This allows for + a single multiplatform kernel build to be used for several machine types. + + For platforms that do not use device tree, this machine selection is + controlled by the machine type ID, which acts both as a run-time and a + compile-time code selection method. You can register a new machine via the + web site at: + + + + Note: Please do not register a machine type for DT-only platforms. If your + platform is DT-only, you do not need a registered machine type. + +--- + +Russell King (15/03/2004) diff --git a/Documentation/arm/booting.rst b/Documentation/arm/booting.rst new file mode 100644 index 000000000000..4babb6c6ae1e --- /dev/null +++ b/Documentation/arm/booting.rst @@ -0,0 +1,237 @@ +================= +Booting ARM Linux +================= + +Author: Russell King + +Date : 18 May 2002 + +The following documentation is relevant to 2.4.18-rmk6 and beyond. + +In order to boot ARM Linux, you require a boot loader, which is a small +program that runs before the main kernel. The boot loader is expected +to initialise various devices, and eventually call the Linux kernel, +passing information to the kernel. + +Essentially, the boot loader should provide (as a minimum) the +following: + +1. Setup and initialise the RAM. +2. Initialise one serial port. +3. Detect the machine type. +4. Setup the kernel tagged list. +5. Load initramfs. +6. Call the kernel image. + + +1. Setup and initialise RAM +--------------------------- + +Existing boot loaders: + MANDATORY +New boot loaders: + MANDATORY + +The boot loader is expected to find and initialise all RAM that the +kernel will use for volatile data storage in the system. It performs +this in a machine dependent manner. (It may use internal algorithms +to automatically locate and size all RAM, or it may use knowledge of +the RAM in the machine, or any other method the boot loader designer +sees fit.) + + +2. Initialise one serial port +----------------------------- + +Existing boot loaders: + OPTIONAL, RECOMMENDED +New boot loaders: + OPTIONAL, RECOMMENDED + +The boot loader should initialise and enable one serial port on the +target. This allows the kernel serial driver to automatically detect +which serial port it should use for the kernel console (generally +used for debugging purposes, or communication with the target.) + +As an alternative, the boot loader can pass the relevant 'console=' +option to the kernel via the tagged lists specifying the port, and +serial format options as described in + + Documentation/admin-guide/kernel-parameters.rst. + + +3. Detect the machine type +-------------------------- + +Existing boot loaders: + OPTIONAL +New boot loaders: + MANDATORY except for DT-only platforms + +The boot loader should detect the machine type its running on by some +method. Whether this is a hard coded value or some algorithm that +looks at the connected hardware is beyond the scope of this document. +The boot loader must ultimately be able to provide a MACH_TYPE_xxx +value to the kernel. (see linux/arch/arm/tools/mach-types). This +should be passed to the kernel in register r1. + +For DT-only platforms, the machine type will be determined by device +tree. set the machine type to all ones (~0). This is not strictly +necessary, but assures that it will not match any existing types. + +4. Setup boot data +------------------ + +Existing boot loaders: + OPTIONAL, HIGHLY RECOMMENDED +New boot loaders: + MANDATORY + +The boot loader must provide either a tagged list or a dtb image for +passing configuration data to the kernel. The physical address of the +boot data is passed to the kernel in register r2. + +4a. Setup the kernel tagged list +-------------------------------- + +The boot loader must create and initialise the kernel tagged list. +A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. +The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag +has the size field set to '2' (0x00000002). The ATAG_NONE must set +the size field to zero. + +Any number of tags can be placed in the list. It is undefined +whether a repeated tag appends to the information carried by the +previous tag, or whether it replaces the information in its +entirety; some tags behave as the former, others the latter. + +The boot loader must pass at a minimum the size and location of +the system memory, and root filesystem location. Therefore, the +minimum tagged list should look:: + + +-----------+ + base -> | ATAG_CORE | | + +-----------+ | + | ATAG_MEM | | increasing address + +-----------+ | + | ATAG_NONE | | + +-----------+ v + +The tagged list should be stored in system RAM. + +The tagged list must be placed in a region of memory where neither +the kernel decompressor nor initrd 'bootp' program will overwrite +it. The recommended placement is in the first 16KiB of RAM. + +4b. Setup the device tree +------------------------- + +The boot loader must load a device tree image (dtb) into system ram +at a 64bit aligned address and initialize it with the boot data. The +dtb format is documented in Documentation/devicetree/booting-without-of.txt. +The kernel will look for the dtb magic value of 0xd00dfeed at the dtb +physical address to determine if a dtb has been passed instead of a +tagged list. + +The boot loader must pass at a minimum the size and location of the +system memory, and the root filesystem location. The dtb must be +placed in a region of memory where the kernel decompressor will not +overwrite it, while remaining within the region which will be covered +by the kernel's low-memory mapping. + +A safe location is just above the 128MiB boundary from start of RAM. + +5. Load initramfs. +------------------ + +Existing boot loaders: + OPTIONAL +New boot loaders: + OPTIONAL + +If an initramfs is in use then, as with the dtb, it must be placed in +a region of memory where the kernel decompressor will not overwrite it +while also with the region which will be covered by the kernel's +low-memory mapping. + +A safe location is just above the device tree blob which itself will +be loaded just above the 128MiB boundary from the start of RAM as +recommended above. + +6. Calling the kernel image +--------------------------- + +Existing boot loaders: + MANDATORY +New boot loaders: + MANDATORY + +There are two options for calling the kernel zImage. If the zImage +is stored in flash, and is linked correctly to be run from flash, +then it is legal for the boot loader to call the zImage in flash +directly. + +The zImage may also be placed in system RAM and called there. The +kernel should be placed in the first 128MiB of RAM. It is recommended +that it is loaded above 32MiB in order to avoid the need to relocate +prior to decompression, which will make the boot process slightly +faster. + +When booting a raw (non-zImage) kernel the constraints are tighter. +In this case the kernel must be loaded at an offset into system equal +to TEXT_OFFSET - PAGE_OFFSET. + +In any case, the following conditions must be met: + +- Quiesce all DMA capable devices so that memory does not get + corrupted by bogus network packets or disk data. This will save + you many hours of debug. + +- CPU register settings + + - r0 = 0, + - r1 = machine type number discovered in (3) above. + - r2 = physical address of tagged list in system RAM, or + physical address of device tree block (dtb) in system RAM + +- CPU mode + + All forms of interrupts must be disabled (IRQs and FIQs) + + For CPUs which do not include the ARM virtualization extensions, the + CPU must be in SVC mode. (A special exception exists for Angel) + + CPUs which include support for the virtualization extensions can be + entered in HYP mode in order to enable the kernel to make full use of + these extensions. This is the recommended boot method for such CPUs, + unless the virtualisations are already in use by a pre-installed + hypervisor. + + If the kernel is not entered in HYP mode for any reason, it must be + entered in SVC mode. + +- Caches, MMUs + + The MMU must be off. + + Instruction cache may be on or off. + + Data cache must be off. + + If the kernel is entered in HYP mode, the above requirements apply to + the HYP mode configuration in addition to the ordinary PL1 (privileged + kernel modes) configuration. In addition, all traps into the + hypervisor must be disabled, and PL1 access must be granted for all + peripherals and CPU resources for which this is architecturally + possible. Except for entering in HYP mode, the system configuration + should be such that a kernel which does not include support for the + virtualization extensions can boot correctly without extra help. + +- The boot loader is expected to call the kernel image by jumping + directly to the first instruction of the kernel image. + + On CPUs supporting the ARM instruction set, the entry must be + made in ARM state, even for a Thumb-2 kernel. + + On CPUs supporting only the Thumb instruction set such as + Cortex-M class CPUs, the entry must be made in Thumb state. diff --git a/Documentation/arm/cluster-pm-race-avoidance.rst b/Documentation/arm/cluster-pm-race-avoidance.rst new file mode 100644 index 000000000000..aa58603d3f28 --- /dev/null +++ b/Documentation/arm/cluster-pm-race-avoidance.rst @@ -0,0 +1,533 @@ +========================================================= +Cluster-wide Power-up/power-down race avoidance algorithm +========================================================= + +This file documents the algorithm which is used to coordinate CPU and +cluster setup and teardown operations and to manage hardware coherency +controls safely. + +The section "Rationale" explains what the algorithm is for and why it is +needed. "Basic model" explains general concepts using a simplified view +of the system. The other sections explain the actual details of the +algorithm in use. + + +Rationale +--------- + +In a system containing multiple CPUs, it is desirable to have the +ability to turn off individual CPUs when the system is idle, reducing +power consumption and thermal dissipation. + +In a system containing multiple clusters of CPUs, it is also desirable +to have the ability to turn off entire clusters. + +Turning entire clusters off and on is a risky business, because it +involves performing potentially destructive operations affecting a group +of independently running CPUs, while the OS continues to run. This +means that we need some coordination in order to ensure that critical +cluster-level operations are only performed when it is truly safe to do +so. + +Simple locking may not be sufficient to solve this problem, because +mechanisms like Linux spinlocks may rely on coherency mechanisms which +are not immediately enabled when a cluster powers up. Since enabling or +disabling those mechanisms may itself be a non-atomic operation (such as +writing some hardware registers and invalidating large caches), other +methods of coordination are required in order to guarantee safe +power-down and power-up at the cluster level. + +The mechanism presented in this document describes a coherent memory +based protocol for performing the needed coordination. It aims to be as +lightweight as possible, while providing the required safety properties. + + +Basic model +----------- + +Each cluster and CPU is assigned a state, as follows: + + - DOWN + - COMING_UP + - UP + - GOING_DOWN + +:: + + +---------> UP ----------+ + | v + + COMING_UP GOING_DOWN + + ^ | + +--------- DOWN <--------+ + + +DOWN: + The CPU or cluster is not coherent, and is either powered off or + suspended, or is ready to be powered off or suspended. + +COMING_UP: + The CPU or cluster has committed to moving to the UP state. + It may be part way through the process of initialisation and + enabling coherency. + +UP: + The CPU or cluster is active and coherent at the hardware + level. A CPU in this state is not necessarily being used + actively by the kernel. + +GOING_DOWN: + The CPU or cluster has committed to moving to the DOWN + state. It may be part way through the process of teardown and + coherency exit. + + +Each CPU has one of these states assigned to it at any point in time. +The CPU states are described in the "CPU state" section, below. + +Each cluster is also assigned a state, but it is necessary to split the +state value into two parts (the "cluster" state and "inbound" state) and +to introduce additional states in order to avoid races between different +CPUs in the cluster simultaneously modifying the state. The cluster- +level states are described in the "Cluster state" section. + +To help distinguish the CPU states from cluster states in this +discussion, the state names are given a `CPU_` prefix for the CPU states, +and a `CLUSTER_` or `INBOUND_` prefix for the cluster states. + + +CPU state +--------- + +In this algorithm, each individual core in a multi-core processor is +referred to as a "CPU". CPUs are assumed to be single-threaded: +therefore, a CPU can only be doing one thing at a single point in time. + +This means that CPUs fit the basic model closely. + +The algorithm defines the following states for each CPU in the system: + + - CPU_DOWN + - CPU_COMING_UP + - CPU_UP + - CPU_GOING_DOWN + +:: + + cluster setup and + CPU setup complete policy decision + +-----------> CPU_UP ------------+ + | v + + CPU_COMING_UP CPU_GOING_DOWN + + ^ | + +----------- CPU_DOWN <----------+ + policy decision CPU teardown complete + or hardware event + + +The definitions of the four states correspond closely to the states of +the basic model. + +Transitions between states occur as follows. + +A trigger event (spontaneous) means that the CPU can transition to the +next state as a result of making local progress only, with no +requirement for any external event to happen. + + +CPU_DOWN: + A CPU reaches the CPU_DOWN state when it is ready for + power-down. On reaching this state, the CPU will typically + power itself down or suspend itself, via a WFI instruction or a + firmware call. + + Next state: + CPU_COMING_UP + Conditions: + none + + Trigger events: + a) an explicit hardware power-up operation, resulting + from a policy decision on another CPU; + + b) a hardware event, such as an interrupt. + + +CPU_COMING_UP: + A CPU cannot start participating in hardware coherency until the + cluster is set up and coherent. If the cluster is not ready, + then the CPU will wait in the CPU_COMING_UP state until the + cluster has been set up. + + Next state: + CPU_UP + Conditions: + The CPU's parent cluster must be in CLUSTER_UP. + Trigger events: + Transition of the parent cluster to CLUSTER_UP. + + Refer to the "Cluster state" section for a description of the + CLUSTER_UP state. + + +CPU_UP: + When a CPU reaches the CPU_UP state, it is safe for the CPU to + start participating in local coherency. + + This is done by jumping to the kernel's CPU resume code. + + Note that the definition of this state is slightly different + from the basic model definition: CPU_UP does not mean that the + CPU is coherent yet, but it does mean that it is safe to resume + the kernel. The kernel handles the rest of the resume + procedure, so the remaining steps are not visible as part of the + race avoidance algorithm. + + The CPU remains in this state until an explicit policy decision + is made to shut down or suspend the CPU. + + Next state: + CPU_GOING_DOWN + Conditions: + none + Trigger events: + explicit policy decision + + +CPU_GOING_DOWN: + While in this state, the CPU exits coherency, including any + operations required to achieve this (such as cleaning data + caches). + + Next state: + CPU_DOWN + Conditions: + local CPU teardown complete + Trigger events: + (spontaneous) + + +Cluster state +------------- + +A cluster is a group of connected CPUs with some common resources. +Because a cluster contains multiple CPUs, it can be doing multiple +things at the same time. This has some implications. In particular, a +CPU can start up while another CPU is tearing the cluster down. + +In this discussion, the "outbound side" is the view of the cluster state +as seen by a CPU tearing the cluster down. The "inbound side" is the +view of the cluster state as seen by a CPU setting the CPU up. + +In order to enable safe coordination in such situations, it is important +that a CPU which is setting up the cluster can advertise its state +independently of the CPU which is tearing down the cluster. For this +reason, the cluster state is split into two parts: + + "cluster" state: The global state of the cluster; or the state + on the outbound side: + + - CLUSTER_DOWN + - CLUSTER_UP + - CLUSTER_GOING_DOWN + + "inbound" state: The state of the cluster on the inbound side. + + - INBOUND_NOT_COMING_UP + - INBOUND_COMING_UP + + + The different pairings of these states results in six possible + states for the cluster as a whole:: + + CLUSTER_UP + +==========> INBOUND_NOT_COMING_UP -------------+ + # | + | + CLUSTER_UP <----+ | + INBOUND_COMING_UP | v + + ^ CLUSTER_GOING_DOWN CLUSTER_GOING_DOWN + # INBOUND_COMING_UP <=== INBOUND_NOT_COMING_UP + + CLUSTER_DOWN | | + INBOUND_COMING_UP <----+ | + | + ^ | + +=========== CLUSTER_DOWN <------------+ + INBOUND_NOT_COMING_UP + + Transitions -----> can only be made by the outbound CPU, and + only involve changes to the "cluster" state. + + Transitions ===##> can only be made by the inbound CPU, and only + involve changes to the "inbound" state, except where there is no + further transition possible on the outbound side (i.e., the + outbound CPU has put the cluster into the CLUSTER_DOWN state). + + The race avoidance algorithm does not provide a way to determine + which exact CPUs within the cluster play these roles. This must + be decided in advance by some other means. Refer to the section + "Last man and first man selection" for more explanation. + + + CLUSTER_DOWN/INBOUND_NOT_COMING_UP is the only state where the + cluster can actually be powered down. + + The parallelism of the inbound and outbound CPUs is observed by + the existence of two different paths from CLUSTER_GOING_DOWN/ + INBOUND_NOT_COMING_UP (corresponding to GOING_DOWN in the basic + model) to CLUSTER_DOWN/INBOUND_COMING_UP (corresponding to + COMING_UP in the basic model). The second path avoids cluster + teardown completely. + + CLUSTER_UP/INBOUND_COMING_UP is equivalent to UP in the basic + model. The final transition to CLUSTER_UP/INBOUND_NOT_COMING_UP + is trivial and merely resets the state machine ready for the + next cycle. + + Details of the allowable transitions follow. + + The next state in each case is notated + + / () + + where the is the side on which the transition + can occur; either the inbound or the outbound side. + + +CLUSTER_DOWN/INBOUND_NOT_COMING_UP: + Next state: + CLUSTER_DOWN/INBOUND_COMING_UP (inbound) + Conditions: + none + + Trigger events: + a) an explicit hardware power-up operation, resulting + from a policy decision on another CPU; + + b) a hardware event, such as an interrupt. + + +CLUSTER_DOWN/INBOUND_COMING_UP: + + In this state, an inbound CPU sets up the cluster, including + enabling of hardware coherency at the cluster level and any + other operations (such as cache invalidation) which are required + in order to achieve this. + + The purpose of this state is to do sufficient cluster-level + setup to enable other CPUs in the cluster to enter coherency + safely. + + Next state: + CLUSTER_UP/INBOUND_COMING_UP (inbound) + Conditions: + cluster-level setup and hardware coherency complete + Trigger events: + (spontaneous) + + +CLUSTER_UP/INBOUND_COMING_UP: + + Cluster-level setup is complete and hardware coherency is + enabled for the cluster. Other CPUs in the cluster can safely + enter coherency. + + This is a transient state, leading immediately to + CLUSTER_UP/INBOUND_NOT_COMING_UP. All other CPUs on the cluster + should consider treat these two states as equivalent. + + Next state: + CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound) + Conditions: + none + Trigger events: + (spontaneous) + + +CLUSTER_UP/INBOUND_NOT_COMING_UP: + + Cluster-level setup is complete and hardware coherency is + enabled for the cluster. Other CPUs in the cluster can safely + enter coherency. + + The cluster will remain in this state until a policy decision is + made to power the cluster down. + + Next state: + CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP (outbound) + Conditions: + none + Trigger events: + policy decision to power down the cluster + + +CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP: + + An outbound CPU is tearing the cluster down. The selected CPU + must wait in this state until all CPUs in the cluster are in the + CPU_DOWN state. + + When all CPUs are in the CPU_DOWN state, the cluster can be torn + down, for example by cleaning data caches and exiting + cluster-level coherency. + + To avoid wasteful unnecessary teardown operations, the outbound + should check the inbound cluster state for asynchronous + transitions to INBOUND_COMING_UP. Alternatively, individual + CPUs can be checked for entry into CPU_COMING_UP or CPU_UP. + + + Next states: + + CLUSTER_DOWN/INBOUND_NOT_COMING_UP (outbound) + Conditions: + cluster torn down and ready to power off + Trigger events: + (spontaneous) + + CLUSTER_GOING_DOWN/INBOUND_COMING_UP (inbound) + Conditions: + none + + Trigger events: + a) an explicit hardware power-up operation, + resulting from a policy decision on another + CPU; + + b) a hardware event, such as an interrupt. + + +CLUSTER_GOING_DOWN/INBOUND_COMING_UP: + + The cluster is (or was) being torn down, but another CPU has + come online in the meantime and is trying to set up the cluster + again. + + If the outbound CPU observes this state, it has two choices: + + a) back out of teardown, restoring the cluster to the + CLUSTER_UP state; + + b) finish tearing the cluster down and put the cluster + in the CLUSTER_DOWN state; the inbound CPU will + set up the cluster again from there. + + Choice (a) permits the removal of some latency by avoiding + unnecessary teardown and setup operations in situations where + the cluster is not really going to be powered down. + + + Next states: + + CLUSTER_UP/INBOUND_COMING_UP (outbound) + Conditions: + cluster-level setup and hardware + coherency complete + + Trigger events: + (spontaneous) + + CLUSTER_DOWN/INBOUND_COMING_UP (outbound) + Conditions: + cluster torn down and ready to power off + + Trigger events: + (spontaneous) + + +Last man and First man selection +-------------------------------- + +The CPU which performs cluster tear-down operations on the outbound side +is commonly referred to as the "last man". + +The CPU which performs cluster setup on the inbound side is commonly +referred to as the "first man". + +The race avoidance algorithm documented above does not provide a +mechanism to choose which CPUs should play these roles. + + +Last man: + +When shutting down the cluster, all the CPUs involved are initially +executing Linux and hence coherent. Therefore, ordinary spinlocks can +be used to select a last man safely, before the CPUs become +non-coherent. + + +First man: + +Because CPUs may power up asynchronously in response to external wake-up +events, a dynamic mechanism is needed to make sure that only one CPU +attempts to play the first man role and do the cluster-level +initialisation: any other CPUs must wait for this to complete before +proceeding. + +Cluster-level initialisation may involve actions such as configuring +coherency controls in the bus fabric. + +The current implementation in mcpm_head.S uses a separate mutual exclusion +mechanism to do this arbitration. This mechanism is documented in +detail in vlocks.txt. + + +Features and Limitations +------------------------ + +Implementation: + + The current ARM-based implementation is split between + arch/arm/common/mcpm_head.S (low-level inbound CPU operations) and + arch/arm/common/mcpm_entry.c (everything else): + + __mcpm_cpu_going_down() signals the transition of a CPU to the + CPU_GOING_DOWN state. + + __mcpm_cpu_down() signals the transition of a CPU to the CPU_DOWN + state. + + A CPU transitions to CPU_COMING_UP and then to CPU_UP via the + low-level power-up code in mcpm_head.S. This could + involve CPU-specific setup code, but in the current + implementation it does not. + + __mcpm_outbound_enter_critical() and __mcpm_outbound_leave_critical() + handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN + and from there to CLUSTER_DOWN or back to CLUSTER_UP (in + the case of an aborted cluster power-down). + + These functions are more complex than the __mcpm_cpu_*() + functions due to the extra inter-CPU coordination which + is needed for safe transitions at the cluster level. + + A cluster transitions from CLUSTER_DOWN back to CLUSTER_UP via + the low-level power-up code in mcpm_head.S. This + typically involves platform-specific setup code, + provided by the platform-specific power_up_setup + function registered via mcpm_sync_init. + +Deep topologies: + + As currently described and implemented, the algorithm does not + support CPU topologies involving more than two levels (i.e., + clusters of clusters are not supported). The algorithm could be + extended by replicating the cluster-level states for the + additional topological levels, and modifying the transition + rules for the intermediate (non-outermost) cluster levels. + + +Colophon +-------- + +Originally created and documented by Dave Martin for Linaro Limited, in +collaboration with Nicolas Pitre and Achin Gupta. + +Copyright (C) 2012-2013 Linaro Limited +Distributed under the terms of Version 2 of the GNU General Public +License, as defined in linux/COPYING. diff --git a/Documentation/arm/cluster-pm-race-avoidance.txt b/Documentation/arm/cluster-pm-race-avoidance.txt deleted file mode 100644 index 750b6fc24af9..000000000000 --- a/Documentation/arm/cluster-pm-race-avoidance.txt +++ /dev/null @@ -1,498 +0,0 @@ -Cluster-wide Power-up/power-down race avoidance algorithm -========================================================= - -This file documents the algorithm which is used to coordinate CPU and -cluster setup and teardown operations and to manage hardware coherency -controls safely. - -The section "Rationale" explains what the algorithm is for and why it is -needed. "Basic model" explains general concepts using a simplified view -of the system. The other sections explain the actual details of the -algorithm in use. - - -Rationale ---------- - -In a system containing multiple CPUs, it is desirable to have the -ability to turn off individual CPUs when the system is idle, reducing -power consumption and thermal dissipation. - -In a system containing multiple clusters of CPUs, it is also desirable -to have the ability to turn off entire clusters. - -Turning entire clusters off and on is a risky business, because it -involves performing potentially destructive operations affecting a group -of independently running CPUs, while the OS continues to run. This -means that we need some coordination in order to ensure that critical -cluster-level operations are only performed when it is truly safe to do -so. - -Simple locking may not be sufficient to solve this problem, because -mechanisms like Linux spinlocks may rely on coherency mechanisms which -are not immediately enabled when a cluster powers up. Since enabling or -disabling those mechanisms may itself be a non-atomic operation (such as -writing some hardware registers and invalidating large caches), other -methods of coordination are required in order to guarantee safe -power-down and power-up at the cluster level. - -The mechanism presented in this document describes a coherent memory -based protocol for performing the needed coordination. It aims to be as -lightweight as possible, while providing the required safety properties. - - -Basic model ------------ - -Each cluster and CPU is assigned a state, as follows: - - DOWN - COMING_UP - UP - GOING_DOWN - - +---------> UP ----------+ - | v - - COMING_UP GOING_DOWN - - ^ | - +--------- DOWN <--------+ - - -DOWN: The CPU or cluster is not coherent, and is either powered off or - suspended, or is ready to be powered off or suspended. - -COMING_UP: The CPU or cluster has committed to moving to the UP state. - It may be part way through the process of initialisation and - enabling coherency. - -UP: The CPU or cluster is active and coherent at the hardware - level. A CPU in this state is not necessarily being used - actively by the kernel. - -GOING_DOWN: The CPU or cluster has committed to moving to the DOWN - state. It may be part way through the process of teardown and - coherency exit. - - -Each CPU has one of these states assigned to it at any point in time. -The CPU states are described in the "CPU state" section, below. - -Each cluster is also assigned a state, but it is necessary to split the -state value into two parts (the "cluster" state and "inbound" state) and -to introduce additional states in order to avoid races between different -CPUs in the cluster simultaneously modifying the state. The cluster- -level states are described in the "Cluster state" section. - -To help distinguish the CPU states from cluster states in this -discussion, the state names are given a CPU_ prefix for the CPU states, -and a CLUSTER_ or INBOUND_ prefix for the cluster states. - - -CPU state ---------- - -In this algorithm, each individual core in a multi-core processor is -referred to as a "CPU". CPUs are assumed to be single-threaded: -therefore, a CPU can only be doing one thing at a single point in time. - -This means that CPUs fit the basic model closely. - -The algorithm defines the following states for each CPU in the system: - - CPU_DOWN - CPU_COMING_UP - CPU_UP - CPU_GOING_DOWN - - cluster setup and - CPU setup complete policy decision - +-----------> CPU_UP ------------+ - | v - - CPU_COMING_UP CPU_GOING_DOWN - - ^ | - +----------- CPU_DOWN <----------+ - policy decision CPU teardown complete - or hardware event - - -The definitions of the four states correspond closely to the states of -the basic model. - -Transitions between states occur as follows. - -A trigger event (spontaneous) means that the CPU can transition to the -next state as a result of making local progress only, with no -requirement for any external event to happen. - - -CPU_DOWN: - - A CPU reaches the CPU_DOWN state when it is ready for - power-down. On reaching this state, the CPU will typically - power itself down or suspend itself, via a WFI instruction or a - firmware call. - - Next state: CPU_COMING_UP - Conditions: none - - Trigger events: - - a) an explicit hardware power-up operation, resulting - from a policy decision on another CPU; - - b) a hardware event, such as an interrupt. - - -CPU_COMING_UP: - - A CPU cannot start participating in hardware coherency until the - cluster is set up and coherent. If the cluster is not ready, - then the CPU will wait in the CPU_COMING_UP state until the - cluster has been set up. - - Next state: CPU_UP - Conditions: The CPU's parent cluster must be in CLUSTER_UP. - Trigger events: Transition of the parent cluster to CLUSTER_UP. - - Refer to the "Cluster state" section for a description of the - CLUSTER_UP state. - - -CPU_UP: - When a CPU reaches the CPU_UP state, it is safe for the CPU to - start participating in local coherency. - - This is done by jumping to the kernel's CPU resume code. - - Note that the definition of this state is slightly different - from the basic model definition: CPU_UP does not mean that the - CPU is coherent yet, but it does mean that it is safe to resume - the kernel. The kernel handles the rest of the resume - procedure, so the remaining steps are not visible as part of the - race avoidance algorithm. - - The CPU remains in this state until an explicit policy decision - is made to shut down or suspend the CPU. - - Next state: CPU_GOING_DOWN - Conditions: none - Trigger events: explicit policy decision - - -CPU_GOING_DOWN: - - While in this state, the CPU exits coherency, including any - operations required to achieve this (such as cleaning data - caches). - - Next state: CPU_DOWN - Conditions: local CPU teardown complete - Trigger events: (spontaneous) - - -Cluster state -------------- - -A cluster is a group of connected CPUs with some common resources. -Because a cluster contains multiple CPUs, it can be doing multiple -things at the same time. This has some implications. In particular, a -CPU can start up while another CPU is tearing the cluster down. - -In this discussion, the "outbound side" is the view of the cluster state -as seen by a CPU tearing the cluster down. The "inbound side" is the -view of the cluster state as seen by a CPU setting the CPU up. - -In order to enable safe coordination in such situations, it is important -that a CPU which is setting up the cluster can advertise its state -independently of the CPU which is tearing down the cluster. For this -reason, the cluster state is split into two parts: - - "cluster" state: The global state of the cluster; or the state - on the outbound side: - - CLUSTER_DOWN - CLUSTER_UP - CLUSTER_GOING_DOWN - - "inbound" state: The state of the cluster on the inbound side. - - INBOUND_NOT_COMING_UP - INBOUND_COMING_UP - - - The different pairings of these states results in six possible - states for the cluster as a whole: - - CLUSTER_UP - +==========> INBOUND_NOT_COMING_UP -------------+ - # | - | - CLUSTER_UP <----+ | - INBOUND_COMING_UP | v - - ^ CLUSTER_GOING_DOWN CLUSTER_GOING_DOWN - # INBOUND_COMING_UP <=== INBOUND_NOT_COMING_UP - - CLUSTER_DOWN | | - INBOUND_COMING_UP <----+ | - | - ^ | - +=========== CLUSTER_DOWN <------------+ - INBOUND_NOT_COMING_UP - - Transitions -----> can only be made by the outbound CPU, and - only involve changes to the "cluster" state. - - Transitions ===##> can only be made by the inbound CPU, and only - involve changes to the "inbound" state, except where there is no - further transition possible on the outbound side (i.e., the - outbound CPU has put the cluster into the CLUSTER_DOWN state). - - The race avoidance algorithm does not provide a way to determine - which exact CPUs within the cluster play these roles. This must - be decided in advance by some other means. Refer to the section - "Last man and first man selection" for more explanation. - - - CLUSTER_DOWN/INBOUND_NOT_COMING_UP is the only state where the - cluster can actually be powered down. - - The parallelism of the inbound and outbound CPUs is observed by - the existence of two different paths from CLUSTER_GOING_DOWN/ - INBOUND_NOT_COMING_UP (corresponding to GOING_DOWN in the basic - model) to CLUSTER_DOWN/INBOUND_COMING_UP (corresponding to - COMING_UP in the basic model). The second path avoids cluster - teardown completely. - - CLUSTER_UP/INBOUND_COMING_UP is equivalent to UP in the basic - model. The final transition to CLUSTER_UP/INBOUND_NOT_COMING_UP - is trivial and merely resets the state machine ready for the - next cycle. - - Details of the allowable transitions follow. - - The next state in each case is notated - - / () - - where the is the side on which the transition - can occur; either the inbound or the outbound side. - - -CLUSTER_DOWN/INBOUND_NOT_COMING_UP: - - Next state: CLUSTER_DOWN/INBOUND_COMING_UP (inbound) - Conditions: none - Trigger events: - - a) an explicit hardware power-up operation, resulting - from a policy decision on another CPU; - - b) a hardware event, such as an interrupt. - - -CLUSTER_DOWN/INBOUND_COMING_UP: - - In this state, an inbound CPU sets up the cluster, including - enabling of hardware coherency at the cluster level and any - other operations (such as cache invalidation) which are required - in order to achieve this. - - The purpose of this state is to do sufficient cluster-level - setup to enable other CPUs in the cluster to enter coherency - safely. - - Next state: CLUSTER_UP/INBOUND_COMING_UP (inbound) - Conditions: cluster-level setup and hardware coherency complete - Trigger events: (spontaneous) - - -CLUSTER_UP/INBOUND_COMING_UP: - - Cluster-level setup is complete and hardware coherency is - enabled for the cluster. Other CPUs in the cluster can safely - enter coherency. - - This is a transient state, leading immediately to - CLUSTER_UP/INBOUND_NOT_COMING_UP. All other CPUs on the cluster - should consider treat these two states as equivalent. - - Next state: CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound) - Conditions: none - Trigger events: (spontaneous) - - -CLUSTER_UP/INBOUND_NOT_COMING_UP: - - Cluster-level setup is complete and hardware coherency is - enabled for the cluster. Other CPUs in the cluster can safely - enter coherency. - - The cluster will remain in this state until a policy decision is - made to power the cluster down. - - Next state: CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP (outbound) - Conditions: none - Trigger events: policy decision to power down the cluster - - -CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP: - - An outbound CPU is tearing the cluster down. The selected CPU - must wait in this state until all CPUs in the cluster are in the - CPU_DOWN state. - - When all CPUs are in the CPU_DOWN state, the cluster can be torn - down, for example by cleaning data caches and exiting - cluster-level coherency. - - To avoid wasteful unnecessary teardown operations, the outbound - should check the inbound cluster state for asynchronous - transitions to INBOUND_COMING_UP. Alternatively, individual - CPUs can be checked for entry into CPU_COMING_UP or CPU_UP. - - - Next states: - - CLUSTER_DOWN/INBOUND_NOT_COMING_UP (outbound) - Conditions: cluster torn down and ready to power off - Trigger events: (spontaneous) - - CLUSTER_GOING_DOWN/INBOUND_COMING_UP (inbound) - Conditions: none - Trigger events: - - a) an explicit hardware power-up operation, - resulting from a policy decision on another - CPU; - - b) a hardware event, such as an interrupt. - - -CLUSTER_GOING_DOWN/INBOUND_COMING_UP: - - The cluster is (or was) being torn down, but another CPU has - come online in the meantime and is trying to set up the cluster - again. - - If the outbound CPU observes this state, it has two choices: - - a) back out of teardown, restoring the cluster to the - CLUSTER_UP state; - - b) finish tearing the cluster down and put the cluster - in the CLUSTER_DOWN state; the inbound CPU will - set up the cluster again from there. - - Choice (a) permits the removal of some latency by avoiding - unnecessary teardown and setup operations in situations where - the cluster is not really going to be powered down. - - - Next states: - - CLUSTER_UP/INBOUND_COMING_UP (outbound) - Conditions: cluster-level setup and hardware - coherency complete - Trigger events: (spontaneous) - - CLUSTER_DOWN/INBOUND_COMING_UP (outbound) - Conditions: cluster torn down and ready to power off - Trigger events: (spontaneous) - - -Last man and First man selection --------------------------------- - -The CPU which performs cluster tear-down operations on the outbound side -is commonly referred to as the "last man". - -The CPU which performs cluster setup on the inbound side is commonly -referred to as the "first man". - -The race avoidance algorithm documented above does not provide a -mechanism to choose which CPUs should play these roles. - - -Last man: - -When shutting down the cluster, all the CPUs involved are initially -executing Linux and hence coherent. Therefore, ordinary spinlocks can -be used to select a last man safely, before the CPUs become -non-coherent. - - -First man: - -Because CPUs may power up asynchronously in response to external wake-up -events, a dynamic mechanism is needed to make sure that only one CPU -attempts to play the first man role and do the cluster-level -initialisation: any other CPUs must wait for this to complete before -proceeding. - -Cluster-level initialisation may involve actions such as configuring -coherency controls in the bus fabric. - -The current implementation in mcpm_head.S uses a separate mutual exclusion -mechanism to do this arbitration. This mechanism is documented in -detail in vlocks.txt. - - -Features and Limitations ------------------------- - -Implementation: - - The current ARM-based implementation is split between - arch/arm/common/mcpm_head.S (low-level inbound CPU operations) and - arch/arm/common/mcpm_entry.c (everything else): - - __mcpm_cpu_going_down() signals the transition of a CPU to the - CPU_GOING_DOWN state. - - __mcpm_cpu_down() signals the transition of a CPU to the CPU_DOWN - state. - - A CPU transitions to CPU_COMING_UP and then to CPU_UP via the - low-level power-up code in mcpm_head.S. This could - involve CPU-specific setup code, but in the current - implementation it does not. - - __mcpm_outbound_enter_critical() and __mcpm_outbound_leave_critical() - handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN - and from there to CLUSTER_DOWN or back to CLUSTER_UP (in - the case of an aborted cluster power-down). - - These functions are more complex than the __mcpm_cpu_*() - functions due to the extra inter-CPU coordination which - is needed for safe transitions at the cluster level. - - A cluster transitions from CLUSTER_DOWN back to CLUSTER_UP via - the low-level power-up code in mcpm_head.S. This - typically involves platform-specific setup code, - provided by the platform-specific power_up_setup - function registered via mcpm_sync_init. - -Deep topologies: - - As currently described and implemented, the algorithm does not - support CPU topologies involving more than two levels (i.e., - clusters of clusters are not supported). The algorithm could be - extended by replicating the cluster-level states for the - additional topological levels, and modifying the transition - rules for the intermediate (non-outermost) cluster levels. - - -Colophon --------- - -Originally created and documented by Dave Martin for Linaro Limited, in -collaboration with Nicolas Pitre and Achin Gupta. - -Copyright (C) 2012-2013 Linaro Limited -Distributed under the terms of Version 2 of the GNU General Public -License, as defined in linux/COPYING. diff --git a/Documentation/arm/firmware.rst b/Documentation/arm/firmware.rst new file mode 100644 index 000000000000..efd844baec1d --- /dev/null +++ b/Documentation/arm/firmware.rst @@ -0,0 +1,72 @@ +========================================================================== +Interface for registering and calling firmware-specific operations for ARM +========================================================================== + +Written by Tomasz Figa + +Some boards are running with secure firmware running in TrustZone secure +world, which changes the way some things have to be initialized. This makes +a need to provide an interface for such platforms to specify available firmware +operations and call them when needed. + +Firmware operations can be specified by filling in a struct firmware_ops +with appropriate callbacks and then registering it with register_firmware_ops() +function:: + + void register_firmware_ops(const struct firmware_ops *ops) + +The ops pointer must be non-NULL. More information about struct firmware_ops +and its members can be found in arch/arm/include/asm/firmware.h header. + +There is a default, empty set of operations provided, so there is no need to +set anything if platform does not require firmware operations. + +To call a firmware operation, a helper macro is provided:: + + #define call_firmware_op(op, ...) \ + ((firmware_ops->op) ? firmware_ops->op(__VA_ARGS__) : (-ENOSYS)) + +the macro checks if the operation is provided and calls it or otherwise returns +-ENOSYS to signal that given operation is not available (for example, to allow +fallback to legacy operation). + +Example of registering firmware operations:: + + /* board file */ + + static int platformX_do_idle(void) + { + /* tell platformX firmware to enter idle */ + return 0; + } + + static int platformX_cpu_boot(int i) + { + /* tell platformX firmware to boot CPU i */ + return 0; + } + + static const struct firmware_ops platformX_firmware_ops = { + .do_idle = exynos_do_idle, + .cpu_boot = exynos_cpu_boot, + /* other operations not available on platformX */ + }; + + /* init_early callback of machine descriptor */ + static void __init board_init_early(void) + { + register_firmware_ops(&platformX_firmware_ops); + } + +Example of using a firmware operation:: + + /* some platform code, e.g. SMP initialization */ + + __raw_writel(__pa_symbol(exynos4_secondary_startup), + CPU1_BOOT_REG); + + /* Call Exynos specific smc call */ + if (call_firmware_op(cpu_boot, cpu) == -ENOSYS) + cpu_boot_legacy(...); /* Try legacy way */ + + gic_raise_softirq(cpumask_of(cpu), 1); diff --git a/Documentation/arm/firmware.txt b/Documentation/arm/firmware.txt deleted file mode 100644 index 7f175dbb427e..000000000000 --- a/Documentation/arm/firmware.txt +++ /dev/null @@ -1,70 +0,0 @@ -Interface for registering and calling firmware-specific operations for ARM. ----- -Written by Tomasz Figa - -Some boards are running with secure firmware running in TrustZone secure -world, which changes the way some things have to be initialized. This makes -a need to provide an interface for such platforms to specify available firmware -operations and call them when needed. - -Firmware operations can be specified by filling in a struct firmware_ops -with appropriate callbacks and then registering it with register_firmware_ops() -function. - - void register_firmware_ops(const struct firmware_ops *ops) - -The ops pointer must be non-NULL. More information about struct firmware_ops -and its members can be found in arch/arm/include/asm/firmware.h header. - -There is a default, empty set of operations provided, so there is no need to -set anything if platform does not require firmware operations. - -To call a firmware operation, a helper macro is provided - - #define call_firmware_op(op, ...) \ - ((firmware_ops->op) ? firmware_ops->op(__VA_ARGS__) : (-ENOSYS)) - -the macro checks if the operation is provided and calls it or otherwise returns --ENOSYS to signal that given operation is not available (for example, to allow -fallback to legacy operation). - -Example of registering firmware operations: - - /* board file */ - - static int platformX_do_idle(void) - { - /* tell platformX firmware to enter idle */ - return 0; - } - - static int platformX_cpu_boot(int i) - { - /* tell platformX firmware to boot CPU i */ - return 0; - } - - static const struct firmware_ops platformX_firmware_ops = { - .do_idle = exynos_do_idle, - .cpu_boot = exynos_cpu_boot, - /* other operations not available on platformX */ - }; - - /* init_early callback of machine descriptor */ - static void __init board_init_early(void) - { - register_firmware_ops(&platformX_firmware_ops); - } - -Example of using a firmware operation: - - /* some platform code, e.g. SMP initialization */ - - __raw_writel(__pa_symbol(exynos4_secondary_startup), - CPU1_BOOT_REG); - - /* Call Exynos specific smc call */ - if (call_firmware_op(cpu_boot, cpu) == -ENOSYS) - cpu_boot_legacy(...); /* Try legacy way */ - - gic_raise_softirq(cpumask_of(cpu), 1); diff --git a/Documentation/arm/index.rst b/Documentation/arm/index.rst new file mode 100644 index 000000000000..bd316d1a1802 --- /dev/null +++ b/Documentation/arm/index.rst @@ -0,0 +1,80 @@ +:orphan: + +================ +ARM Architecture +================ + +.. toctree:: + :maxdepth: 1 + + arm + booting + cluster-pm-race-avoidance + firmware + interrupts + kernel_mode_neon + kernel_user_helpers + memory + mem_alignment + tcm + setup + swp_emulation + uefi + vlocks + porting + +SoC-specific documents +====================== + +.. toctree:: + :maxdepth: 1 + + ixp4xx + + marvel + microchip + + netwinder + nwfpe/index + + keystone/overview + keystone/knav-qmss + + omap/index + + pxa/mfp + + + sa1100/index + + stm32/stm32f746-overview + stm32/overview + stm32/stm32h743-overview + stm32/stm32f769-overview + stm32/stm32f429-overview + stm32/stm32mp157-overview + + sunxi + + samsung/index + samsung-s3c24xx/index + + sunxi/clocks + + spear/overview + + sti/stih416-overview + sti/stih407-overview + sti/stih418-overview + sti/overview + sti/stih415-overview + + vfp/release-notes + + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/arm/interrupts.rst b/Documentation/arm/interrupts.rst new file mode 100644 index 000000000000..2ae70e0e9732 --- /dev/null +++ b/Documentation/arm/interrupts.rst @@ -0,0 +1,169 @@ +========== +Interrupts +========== + +2.5.2-rmk5: + This is the first kernel that contains a major shake up of some of the + major architecture-specific subsystems. + +Firstly, it contains some pretty major changes to the way we handle the +MMU TLB. Each MMU TLB variant is now handled completely separately - +we have TLB v3, TLB v4 (without write buffer), TLB v4 (with write buffer), +and finally TLB v4 (with write buffer, with I TLB invalidate entry). +There is more assembly code inside each of these functions, mainly to +allow more flexible TLB handling for the future. + +Secondly, the IRQ subsystem. + +The 2.5 kernels will be having major changes to the way IRQs are handled. +Unfortunately, this means that machine types that touch the irq_desc[] +array (basically all machine types) will break, and this means every +machine type that we currently have. + +Lets take an example. On the Assabet with Neponset, we have:: + + GPIO25 IRR:2 + SA1100 ------------> Neponset -----------> SA1111 + IIR:1 + -----------> USAR + IIR:0 + -----------> SMC9196 + +The way stuff currently works, all SA1111 interrupts are mutually +exclusive of each other - if you're processing one interrupt from the +SA1111 and another comes in, you have to wait for that interrupt to +finish processing before you can service the new interrupt. Eg, an +IDE PIO-based interrupt on the SA1111 excludes all other SA1111 and +SMC9196 interrupts until it has finished transferring its multi-sector +data, which can be a long time. Note also that since we loop in the +SA1111 IRQ handler, SA1111 IRQs can hold off SMC9196 IRQs indefinitely. + + +The new approach brings several new ideas... + +We introduce the concept of a "parent" and a "child". For example, +to the Neponset handler, the "parent" is GPIO25, and the "children"d +are SA1111, SMC9196 and USAR. + +We also bring the idea of an IRQ "chip" (mainly to reduce the size of +the irqdesc array). This doesn't have to be a real "IC"; indeed the +SA11x0 IRQs are handled by two separate "chip" structures, one for +GPIO0-10, and another for all the rest. It is just a container for +the various operations (maybe this'll change to a better name). +This structure has the following operations:: + + struct irqchip { + /* + * Acknowledge the IRQ. + * If this is a level-based IRQ, then it is expected to mask the IRQ + * as well. + */ + void (*ack)(unsigned int irq); + /* + * Mask the IRQ in hardware. + */ + void (*mask)(unsigned int irq); + /* + * Unmask the IRQ in hardware. + */ + void (*unmask)(unsigned int irq); + /* + * Re-run the IRQ + */ + void (*rerun)(unsigned int irq); + /* + * Set the type of the IRQ. + */ + int (*type)(unsigned int irq, unsigned int, type); + }; + +ack + - required. May be the same function as mask for IRQs + handled by do_level_IRQ. +mask + - required. +unmask + - required. +rerun + - optional. Not required if you're using do_level_IRQ for all + IRQs that use this 'irqchip'. Generally expected to re-trigger + the hardware IRQ if possible. If not, may call the handler + directly. +type + - optional. If you don't support changing the type of an IRQ, + it should be null so people can detect if they are unable to + set the IRQ type. + +For each IRQ, we keep the following information: + + - "disable" depth (number of disable_irq()s without enable_irq()s) + - flags indicating what we can do with this IRQ (valid, probe, + noautounmask) as before + - status of the IRQ (probing, enable, etc) + - chip + - per-IRQ handler + - irqaction structure list + +The handler can be one of the 3 standard handlers - "level", "edge" and +"simple", or your own specific handler if you need to do something special. + +The "level" handler is what we currently have - its pretty simple. +"edge" knows about the brokenness of such IRQ implementations - that you +need to leave the hardware IRQ enabled while processing it, and queueing +further IRQ events should the IRQ happen again while processing. The +"simple" handler is very basic, and does not perform any hardware +manipulation, nor state tracking. This is useful for things like the +SMC9196 and USAR above. + +So, what's changed? +=================== + +1. Machine implementations must not write to the irqdesc array. + +2. New functions to manipulate the irqdesc array. The first 4 are expected + to be useful only to machine specific code. The last is recommended to + only be used by machine specific code, but may be used in drivers if + absolutely necessary. + + set_irq_chip(irq,chip) + Set the mask/unmask methods for handling this IRQ + + set_irq_handler(irq,handler) + Set the handler for this IRQ (level, edge, simple) + + set_irq_chained_handler(irq,handler) + Set a "chained" handler for this IRQ - automatically + enables this IRQ (eg, Neponset and SA1111 handlers). + + set_irq_flags(irq,flags) + Set the valid/probe/noautoenable flags. + + set_irq_type(irq,type) + Set active the IRQ edge(s)/level. This replaces the + SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge() + function. Type should be one of IRQ_TYPE_xxx defined in + + +3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type. + +4. Direct access to SA1111 INTPOL is deprecated. Use set_irq_type instead. + +5. A handler is expected to perform any necessary acknowledgement of the + parent IRQ via the correct chip specific function. For instance, if + the SA1111 is directly connected to a SA1110 GPIO, then you should + acknowledge the SA1110 IRQ each time you re-read the SA1111 IRQ status. + +6. For any child which doesn't have its own IRQ enable/disable controls + (eg, SMC9196), the handler must mask or acknowledge the parent IRQ + while the child handler is called, and the child handler should be the + "simple" handler (not "edge" nor "level"). After the handler completes, + the parent IRQ should be unmasked, and the status of all children must + be re-checked for pending events. (see the Neponset IRQ handler for + details). + +7. fixup_irq() is gone, as is `arch/arm/mach-*/include/mach/irq.h` + +Please note that this will not solve all problems - some of them are +hardware based. Mixing level-based and edge-based IRQs on the same +parent signal (eg neponset) is one such area where a software based +solution can't provide the full answer to low IRQ latency. diff --git a/Documentation/arm/ixp4xx.rst b/Documentation/arm/ixp4xx.rst new file mode 100644 index 000000000000..a57235616294 --- /dev/null +++ b/Documentation/arm/ixp4xx.rst @@ -0,0 +1,173 @@ +=========================================================== +Release Notes for Linux on Intel's IXP4xx Network Processor +=========================================================== + +Maintained by Deepak Saxena +------------------------------------------------------------------------- + +1. Overview + +Intel's IXP4xx network processor is a highly integrated SOC that +is targeted for network applications, though it has become popular +in industrial control and other areas due to low cost and power +consumption. The IXP4xx family currently consists of several processors +that support different network offload functions such as encryption, +routing, firewalling, etc. The IXP46x family is an updated version which +supports faster speeds, new memory and flash configurations, and more +integration such as an on-chip I2C controller. + +For more information on the various versions of the CPU, see: + + http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm + +Intel also made the IXCP1100 CPU for sometime which is an IXP4xx +stripped of much of the network intelligence. + +2. Linux Support + +Linux currently supports the following features on the IXP4xx chips: + +- Dual serial ports +- PCI interface +- Flash access (MTD/JFFS) +- I2C through GPIO on IXP42x +- GPIO for input/output/interrupts + See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions. +- Timers (watchdog, OS) + +The following components of the chips are not supported by Linux and +require the use of Intel's proprietary CSR software: + +- USB device interface +- Network interfaces (HSS, Utopia, NPEs, etc) +- Network offload functionality + +If you need to use any of the above, you need to download Intel's +software from: + + http://developer.intel.com/design/network/products/npfamily/ixp425.htm + +DO NOT POST QUESTIONS TO THE LINUX MAILING LISTS REGARDING THE PROPRIETARY +SOFTWARE. + +There are several websites that provide directions/pointers on using +Intel's software: + + - http://sourceforge.net/projects/ixp4xx-osdg/ + Open Source Developer's Guide for using uClinux and the Intel libraries + + - http://gatewaymaker.sourceforge.net/ + Simple one page summary of building a gateway using an IXP425 and Linux + + - http://ixp425.sourceforge.net/ + ATM device driver for IXP425 that relies on Intel's libraries + +3. Known Issues/Limitations + +3a. Limited inbound PCI window + +The IXP4xx family allows for up to 256MB of memory but the PCI interface +can only expose 64MB of that memory to the PCI bus. This means that if +you are running with > 64MB, all PCI buffers outside of the accessible +range will be bounced using the routines in arch/arm/common/dmabounce.c. + +3b. Limited outbound PCI window + +IXP4xx provides two methods of accessing PCI memory space: + +1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB). + To access PCI via this space, we simply ioremap() the BAR + into the kernel and we can use the standard read[bwl]/write[bwl] + macros. This is the preffered method due to speed but it + limits the system to just 64MB of PCI memory. This can be + problamatic if using video cards and other memory-heavy devices. + +2) If > 64MB of memory space is required, the IXP4xx can be + configured to use indirect registers to access PCI This allows + for up to 128MB (0x48000000 to 0x4fffffff) of memory on the bus. + The disadvantage of this is that every PCI access requires + three local register accesses plus a spinlock, but in some + cases the performance hit is acceptable. In addition, you cannot + mmap() PCI devices in this case due to the indirect nature + of the PCI window. + +By default, the direct method is used for performance reasons. If +you need more PCI memory, enable the IXP4XX_INDIRECT_PCI config option. + +3c. GPIO as Interrupts + +Currently the code only handles level-sensitive GPIO interrupts + +4. Supported platforms + +ADI Engineering Coyote Gateway Reference Platform +http://www.adiengineering.com/productsCoyote.html + + The ADI Coyote platform is reference design for those building + small residential/office gateways. One NPE is connected to a 10/100 + interface, one to 4-port 10/100 switch, and the third to and ADSL + interface. In addition, it also supports to POTs interfaces connected + via SLICs. Note that those are not supported by Linux ATM. Finally, + the platform has two mini-PCI slots used for 802.11[bga] cards. + Finally, there is an IDE port hanging off the expansion bus. + +Gateworks Avila Network Platform +http://www.gateworks.com/support/overview.php + + The Avila platform is basically and IXDP425 with the 4 PCI slots + replaced with mini-PCI slots and a CF IDE interface hanging off + the expansion bus. + +Intel IXDP425 Development Platform +http://www.intel.com/design/network/products/npfamily/ixdpg425.htm + + This is Intel's standard reference platform for the IXDP425 and is + also known as the Richfield board. It contains 4 PCI slots, 16MB + of flash, two 10/100 ports and one ADSL port. + +Intel IXDP465 Development Platform +http://www.intel.com/design/network/products/npfamily/ixdp465.htm + + This is basically an IXDP425 with an IXP465 and 32M of flash instead + of just 16. + +Intel IXDPG425 Development Platform + + This is basically and ADI Coyote board with a NEC EHCI controller + added. One issue with this board is that the mini-PCI slots only + have the 3.3v line connected, so you can't use a PCI to mini-PCI + adapter with an E100 card. So to NFS root you need to use either + the CSR or a WiFi card and a ramdisk that BOOTPs and then does + a pivot_root to NFS. + +Motorola PrPMC1100 Processor Mezanine Card +http://www.fountainsys.com + + The PrPMC1100 is based on the IXCP1100 and is meant to plug into + and IXP2400/2800 system to act as the system controller. It simply + contains a CPU and 16MB of flash on the board and needs to be + plugged into a carrier board to function. Currently Linux only + supports the Motorola PrPMC carrier board for this platform. + +5. TODO LIST + +- Add support for Coyote IDE +- Add support for edge-based GPIO interrupts +- Add support for CF IDE on expansion bus + +6. Thanks + +The IXP4xx work has been funded by Intel Corp. and MontaVista Software, Inc. + +The following people have contributed patches/comments/etc: + +- Lennerty Buytenhek +- Lutz Jaenicke +- Justin Mayfield +- Robert E. Ranslam + +[I know I've forgotten others, please email me to be added] + +------------------------------------------------------------------------- + +Last Update: 01/04/2005 diff --git a/Documentation/arm/kernel_mode_neon.rst b/Documentation/arm/kernel_mode_neon.rst new file mode 100644 index 000000000000..9bfb71a2a9b9 --- /dev/null +++ b/Documentation/arm/kernel_mode_neon.rst @@ -0,0 +1,124 @@ +================ +Kernel mode NEON +================ + +TL;DR summary +------------- +* Use only NEON instructions, or VFP instructions that don't rely on support + code +* Isolate your NEON code in a separate compilation unit, and compile it with + '-march=armv7-a -mfpu=neon -mfloat-abi=softfp' +* Put kernel_neon_begin() and kernel_neon_end() calls around the calls into your + NEON code +* Don't sleep in your NEON code, and be aware that it will be executed with + preemption disabled + + +Introduction +------------ +It is possible to use NEON instructions (and in some cases, VFP instructions) in +code that runs in kernel mode. However, for performance reasons, the NEON/VFP +register file is not preserved and restored at every context switch or taken +exception like the normal register file is, so some manual intervention is +required. Furthermore, special care is required for code that may sleep [i.e., +may call schedule()], as NEON or VFP instructions will be executed in a +non-preemptible section for reasons outlined below. + + +Lazy preserve and restore +------------------------- +The NEON/VFP register file is managed using lazy preserve (on UP systems) and +lazy restore (on both SMP and UP systems). This means that the register file is +kept 'live', and is only preserved and restored when multiple tasks are +contending for the NEON/VFP unit (or, in the SMP case, when a task migrates to +another core). Lazy restore is implemented by disabling the NEON/VFP unit after +every context switch, resulting in a trap when subsequently a NEON/VFP +instruction is issued, allowing the kernel to step in and perform the restore if +necessary. + +Any use of the NEON/VFP unit in kernel mode should not interfere with this, so +it is required to do an 'eager' preserve of the NEON/VFP register file, and +enable the NEON/VFP unit explicitly so no exceptions are generated on first +subsequent use. This is handled by the function kernel_neon_begin(), which +should be called before any kernel mode NEON or VFP instructions are issued. +Likewise, the NEON/VFP unit should be disabled again after use to make sure user +mode will hit the lazy restore trap upon next use. This is handled by the +function kernel_neon_end(). + + +Interruptions in kernel mode +---------------------------- +For reasons of performance and simplicity, it was decided that there shall be no +preserve/restore mechanism for the kernel mode NEON/VFP register contents. This +implies that interruptions of a kernel mode NEON section can only be allowed if +they are guaranteed not to touch the NEON/VFP registers. For this reason, the +following rules and restrictions apply in the kernel: +* NEON/VFP code is not allowed in interrupt context; +* NEON/VFP code is not allowed to sleep; +* NEON/VFP code is executed with preemption disabled. + +If latency is a concern, it is possible to put back to back calls to +kernel_neon_end() and kernel_neon_begin() in places in your code where none of +the NEON registers are live. (Additional calls to kernel_neon_begin() should be +reasonably cheap if no context switch occurred in the meantime) + + +VFP and support code +-------------------- +Earlier versions of VFP (prior to version 3) rely on software support for things +like IEEE-754 compliant underflow handling etc. When the VFP unit needs such +software assistance, it signals the kernel by raising an undefined instruction +exception. The kernel responds by inspecting the VFP control registers and the +current instruction and arguments, and emulates the instruction in software. + +Such software assistance is currently not implemented for VFP instructions +executed in kernel mode. If such a condition is encountered, the kernel will +fail and generate an OOPS. + + +Separating NEON code from ordinary code +--------------------------------------- +The compiler is not aware of the special significance of kernel_neon_begin() and +kernel_neon_end(), i.e., that it is only allowed to issue NEON/VFP instructions +between calls to these respective functions. Furthermore, GCC may generate NEON +instructions of its own at -O3 level if -mfpu=neon is selected, and even if the +kernel is currently compiled at -O2, future changes may result in NEON/VFP +instructions appearing in unexpected places if no special care is taken. + +Therefore, the recommended and only supported way of using NEON/VFP in the +kernel is by adhering to the following rules: + +* isolate the NEON code in a separate compilation unit and compile it with + '-march=armv7-a -mfpu=neon -mfloat-abi=softfp'; +* issue the calls to kernel_neon_begin(), kernel_neon_end() as well as the calls + into the unit containing the NEON code from a compilation unit which is *not* + built with the GCC flag '-mfpu=neon' set. + +As the kernel is compiled with '-msoft-float', the above will guarantee that +both NEON and VFP instructions will only ever appear in designated compilation +units at any optimization level. + + +NEON assembler +-------------- +NEON assembler is supported with no additional caveats as long as the rules +above are followed. + + +NEON code generated by GCC +-------------------------- +The GCC option -ftree-vectorize (implied by -O3) tries to exploit implicit +parallelism, and generates NEON code from ordinary C source code. This is fully +supported as long as the rules above are followed. + + +NEON intrinsics +--------------- +NEON intrinsics are also supported. However, as code using NEON intrinsics +relies on the GCC header , (which #includes ), you should +observe the following in addition to the rules above: + +* Compile the unit containing the NEON intrinsics with '-ffreestanding' so GCC + uses its builtin version of (this is a C99 header which the kernel + does not supply); +* Include last, or at least after diff --git a/Documentation/arm/kernel_mode_neon.txt b/Documentation/arm/kernel_mode_neon.txt deleted file mode 100644 index b9e060c5b61e..000000000000 --- a/Documentation/arm/kernel_mode_neon.txt +++ /dev/null @@ -1,121 +0,0 @@ -Kernel mode NEON -================ - -TL;DR summary -------------- -* Use only NEON instructions, or VFP instructions that don't rely on support - code -* Isolate your NEON code in a separate compilation unit, and compile it with - '-march=armv7-a -mfpu=neon -mfloat-abi=softfp' -* Put kernel_neon_begin() and kernel_neon_end() calls around the calls into your - NEON code -* Don't sleep in your NEON code, and be aware that it will be executed with - preemption disabled - - -Introduction ------------- -It is possible to use NEON instructions (and in some cases, VFP instructions) in -code that runs in kernel mode. However, for performance reasons, the NEON/VFP -register file is not preserved and restored at every context switch or taken -exception like the normal register file is, so some manual intervention is -required. Furthermore, special care is required for code that may sleep [i.e., -may call schedule()], as NEON or VFP instructions will be executed in a -non-preemptible section for reasons outlined below. - - -Lazy preserve and restore -------------------------- -The NEON/VFP register file is managed using lazy preserve (on UP systems) and -lazy restore (on both SMP and UP systems). This means that the register file is -kept 'live', and is only preserved and restored when multiple tasks are -contending for the NEON/VFP unit (or, in the SMP case, when a task migrates to -another core). Lazy restore is implemented by disabling the NEON/VFP unit after -every context switch, resulting in a trap when subsequently a NEON/VFP -instruction is issued, allowing the kernel to step in and perform the restore if -necessary. - -Any use of the NEON/VFP unit in kernel mode should not interfere with this, so -it is required to do an 'eager' preserve of the NEON/VFP register file, and -enable the NEON/VFP unit explicitly so no exceptions are generated on first -subsequent use. This is handled by the function kernel_neon_begin(), which -should be called before any kernel mode NEON or VFP instructions are issued. -Likewise, the NEON/VFP unit should be disabled again after use to make sure user -mode will hit the lazy restore trap upon next use. This is handled by the -function kernel_neon_end(). - - -Interruptions in kernel mode ----------------------------- -For reasons of performance and simplicity, it was decided that there shall be no -preserve/restore mechanism for the kernel mode NEON/VFP register contents. This -implies that interruptions of a kernel mode NEON section can only be allowed if -they are guaranteed not to touch the NEON/VFP registers. For this reason, the -following rules and restrictions apply in the kernel: -* NEON/VFP code is not allowed in interrupt context; -* NEON/VFP code is not allowed to sleep; -* NEON/VFP code is executed with preemption disabled. - -If latency is a concern, it is possible to put back to back calls to -kernel_neon_end() and kernel_neon_begin() in places in your code where none of -the NEON registers are live. (Additional calls to kernel_neon_begin() should be -reasonably cheap if no context switch occurred in the meantime) - - -VFP and support code --------------------- -Earlier versions of VFP (prior to version 3) rely on software support for things -like IEEE-754 compliant underflow handling etc. When the VFP unit needs such -software assistance, it signals the kernel by raising an undefined instruction -exception. The kernel responds by inspecting the VFP control registers and the -current instruction and arguments, and emulates the instruction in software. - -Such software assistance is currently not implemented for VFP instructions -executed in kernel mode. If such a condition is encountered, the kernel will -fail and generate an OOPS. - - -Separating NEON code from ordinary code ---------------------------------------- -The compiler is not aware of the special significance of kernel_neon_begin() and -kernel_neon_end(), i.e., that it is only allowed to issue NEON/VFP instructions -between calls to these respective functions. Furthermore, GCC may generate NEON -instructions of its own at -O3 level if -mfpu=neon is selected, and even if the -kernel is currently compiled at -O2, future changes may result in NEON/VFP -instructions appearing in unexpected places if no special care is taken. - -Therefore, the recommended and only supported way of using NEON/VFP in the -kernel is by adhering to the following rules: -* isolate the NEON code in a separate compilation unit and compile it with - '-march=armv7-a -mfpu=neon -mfloat-abi=softfp'; -* issue the calls to kernel_neon_begin(), kernel_neon_end() as well as the calls - into the unit containing the NEON code from a compilation unit which is *not* - built with the GCC flag '-mfpu=neon' set. - -As the kernel is compiled with '-msoft-float', the above will guarantee that -both NEON and VFP instructions will only ever appear in designated compilation -units at any optimization level. - - -NEON assembler --------------- -NEON assembler is supported with no additional caveats as long as the rules -above are followed. - - -NEON code generated by GCC --------------------------- -The GCC option -ftree-vectorize (implied by -O3) tries to exploit implicit -parallelism, and generates NEON code from ordinary C source code. This is fully -supported as long as the rules above are followed. - - -NEON intrinsics ---------------- -NEON intrinsics are also supported. However, as code using NEON intrinsics -relies on the GCC header , (which #includes ), you should -observe the following in addition to the rules above: -* Compile the unit containing the NEON intrinsics with '-ffreestanding' so GCC - uses its builtin version of (this is a C99 header which the kernel - does not supply); -* Include last, or at least after diff --git a/Documentation/arm/kernel_user_helpers.rst b/Documentation/arm/kernel_user_helpers.rst new file mode 100644 index 000000000000..eb6f3d916622 --- /dev/null +++ b/Documentation/arm/kernel_user_helpers.rst @@ -0,0 +1,268 @@ +============================ +Kernel-provided User Helpers +============================ + +These are segment of kernel provided user code reachable from user space +at a fixed address in kernel memory. This is used to provide user space +with some operations which require kernel help because of unimplemented +native feature and/or instructions in many ARM CPUs. The idea is for this +code to be executed directly in user mode for best efficiency but which is +too intimate with the kernel counter part to be left to user libraries. +In fact this code might even differ from one CPU to another depending on +the available instruction set, or whether it is a SMP systems. In other +words, the kernel reserves the right to change this code as needed without +warning. Only the entry points and their results as documented here are +guaranteed to be stable. + +This is different from (but doesn't preclude) a full blown VDSO +implementation, however a VDSO would prevent some assembly tricks with +constants that allows for efficient branching to those code segments. And +since those code segments only use a few cycles before returning to user +code, the overhead of a VDSO indirect far call would add a measurable +overhead to such minimalistic operations. + +User space is expected to bypass those helpers and implement those things +inline (either in the code emitted directly by the compiler, or part of +the implementation of a library call) when optimizing for a recent enough +processor that has the necessary native support, but only if resulting +binaries are already to be incompatible with earlier ARM processors due to +usage of similar native instructions for other things. In other words +don't make binaries unable to run on earlier processors just for the sake +of not using these kernel helpers if your compiled code is not going to +use new instructions for other purpose. + +New helpers may be added over time, so an older kernel may be missing some +helpers present in a newer kernel. For this reason, programs must check +the value of __kuser_helper_version (see below) before assuming that it is +safe to call any particular helper. This check should ideally be +performed only once at process startup time, and execution aborted early +if the required helpers are not provided by the kernel version that +process is running on. + +kuser_helper_version +-------------------- + +Location: 0xffff0ffc + +Reference declaration:: + + extern int32_t __kuser_helper_version; + +Definition: + + This field contains the number of helpers being implemented by the + running kernel. User space may read this to determine the availability + of a particular helper. + +Usage example:: + + #define __kuser_helper_version (*(int32_t *)0xffff0ffc) + + void check_kuser_version(void) + { + if (__kuser_helper_version < 2) { + fprintf(stderr, "can't do atomic operations, kernel too old\n"); + abort(); + } + } + +Notes: + + User space may assume that the value of this field never changes + during the lifetime of any single process. This means that this + field can be read once during the initialisation of a library or + startup phase of a program. + +kuser_get_tls +------------- + +Location: 0xffff0fe0 + +Reference prototype:: + + void * __kuser_get_tls(void); + +Input: + + lr = return address + +Output: + + r0 = TLS value + +Clobbered registers: + + none + +Definition: + + Get the TLS value as previously set via the __ARM_NR_set_tls syscall. + +Usage example:: + + typedef void * (__kuser_get_tls_t)(void); + #define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0) + + void foo() + { + void *tls = __kuser_get_tls(); + printf("TLS = %p\n", tls); + } + +Notes: + + - Valid only if __kuser_helper_version >= 1 (from kernel version 2.6.12). + +kuser_cmpxchg +------------- + +Location: 0xffff0fc0 + +Reference prototype:: + + int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr); + +Input: + + r0 = oldval + r1 = newval + r2 = ptr + lr = return address + +Output: + + r0 = success code (zero or non-zero) + C flag = set if r0 == 0, clear if r0 != 0 + +Clobbered registers: + + r3, ip, flags + +Definition: + + Atomically store newval in `*ptr` only if `*ptr` is equal to oldval. + Return zero if `*ptr` was changed or non-zero if no exchange happened. + The C flag is also set if `*ptr` was changed to allow for assembly + optimization in the calling code. + +Usage example:: + + typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr); + #define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0) + + int atomic_add(volatile int *ptr, int val) + { + int old, new; + + do { + old = *ptr; + new = old + val; + } while(__kuser_cmpxchg(old, new, ptr)); + + return new; + } + +Notes: + + - This routine already includes memory barriers as needed. + + - Valid only if __kuser_helper_version >= 2 (from kernel version 2.6.12). + +kuser_memory_barrier +-------------------- + +Location: 0xffff0fa0 + +Reference prototype:: + + void __kuser_memory_barrier(void); + +Input: + + lr = return address + +Output: + + none + +Clobbered registers: + + none + +Definition: + + Apply any needed memory barrier to preserve consistency with data modified + manually and __kuser_cmpxchg usage. + +Usage example:: + + typedef void (__kuser_dmb_t)(void); + #define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0) + +Notes: + + - Valid only if __kuser_helper_version >= 3 (from kernel version 2.6.15). + +kuser_cmpxchg64 +--------------- + +Location: 0xffff0f60 + +Reference prototype:: + + int __kuser_cmpxchg64(const int64_t *oldval, + const int64_t *newval, + volatile int64_t *ptr); + +Input: + + r0 = pointer to oldval + r1 = pointer to newval + r2 = pointer to target value + lr = return address + +Output: + + r0 = success code (zero or non-zero) + C flag = set if r0 == 0, clear if r0 != 0 + +Clobbered registers: + + r3, lr, flags + +Definition: + + Atomically store the 64-bit value pointed by `*newval` in `*ptr` only if `*ptr` + is equal to the 64-bit value pointed by `*oldval`. Return zero if `*ptr` was + changed or non-zero if no exchange happened. + + The C flag is also set if `*ptr` was changed to allow for assembly + optimization in the calling code. + +Usage example:: + + typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval, + const int64_t *newval, + volatile int64_t *ptr); + #define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60) + + int64_t atomic_add64(volatile int64_t *ptr, int64_t val) + { + int64_t old, new; + + do { + old = *ptr; + new = old + val; + } while(__kuser_cmpxchg64(&old, &new, ptr)); + + return new; + } + +Notes: + + - This routine already includes memory barriers as needed. + + - Due to the length of this sequence, this spans 2 conventional kuser + "slots", therefore 0xffff0f80 is not used as a valid entry point. + + - Valid only if __kuser_helper_version >= 5 (from kernel version 3.1). diff --git a/Documentation/arm/kernel_user_helpers.txt b/Documentation/arm/kernel_user_helpers.txt deleted file mode 100644 index 5673594717cf..000000000000 --- a/Documentation/arm/kernel_user_helpers.txt +++ /dev/null @@ -1,267 +0,0 @@ -Kernel-provided User Helpers -============================ - -These are segment of kernel provided user code reachable from user space -at a fixed address in kernel memory. This is used to provide user space -with some operations which require kernel help because of unimplemented -native feature and/or instructions in many ARM CPUs. The idea is for this -code to be executed directly in user mode for best efficiency but which is -too intimate with the kernel counter part to be left to user libraries. -In fact this code might even differ from one CPU to another depending on -the available instruction set, or whether it is a SMP systems. In other -words, the kernel reserves the right to change this code as needed without -warning. Only the entry points and their results as documented here are -guaranteed to be stable. - -This is different from (but doesn't preclude) a full blown VDSO -implementation, however a VDSO would prevent some assembly tricks with -constants that allows for efficient branching to those code segments. And -since those code segments only use a few cycles before returning to user -code, the overhead of a VDSO indirect far call would add a measurable -overhead to such minimalistic operations. - -User space is expected to bypass those helpers and implement those things -inline (either in the code emitted directly by the compiler, or part of -the implementation of a library call) when optimizing for a recent enough -processor that has the necessary native support, but only if resulting -binaries are already to be incompatible with earlier ARM processors due to -usage of similar native instructions for other things. In other words -don't make binaries unable to run on earlier processors just for the sake -of not using these kernel helpers if your compiled code is not going to -use new instructions for other purpose. - -New helpers may be added over time, so an older kernel may be missing some -helpers present in a newer kernel. For this reason, programs must check -the value of __kuser_helper_version (see below) before assuming that it is -safe to call any particular helper. This check should ideally be -performed only once at process startup time, and execution aborted early -if the required helpers are not provided by the kernel version that -process is running on. - -kuser_helper_version --------------------- - -Location: 0xffff0ffc - -Reference declaration: - - extern int32_t __kuser_helper_version; - -Definition: - - This field contains the number of helpers being implemented by the - running kernel. User space may read this to determine the availability - of a particular helper. - -Usage example: - -#define __kuser_helper_version (*(int32_t *)0xffff0ffc) - -void check_kuser_version(void) -{ - if (__kuser_helper_version < 2) { - fprintf(stderr, "can't do atomic operations, kernel too old\n"); - abort(); - } -} - -Notes: - - User space may assume that the value of this field never changes - during the lifetime of any single process. This means that this - field can be read once during the initialisation of a library or - startup phase of a program. - -kuser_get_tls -------------- - -Location: 0xffff0fe0 - -Reference prototype: - - void * __kuser_get_tls(void); - -Input: - - lr = return address - -Output: - - r0 = TLS value - -Clobbered registers: - - none - -Definition: - - Get the TLS value as previously set via the __ARM_NR_set_tls syscall. - -Usage example: - -typedef void * (__kuser_get_tls_t)(void); -#define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0) - -void foo() -{ - void *tls = __kuser_get_tls(); - printf("TLS = %p\n", tls); -} - -Notes: - - - Valid only if __kuser_helper_version >= 1 (from kernel version 2.6.12). - -kuser_cmpxchg -------------- - -Location: 0xffff0fc0 - -Reference prototype: - - int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr); - -Input: - - r0 = oldval - r1 = newval - r2 = ptr - lr = return address - -Output: - - r0 = success code (zero or non-zero) - C flag = set if r0 == 0, clear if r0 != 0 - -Clobbered registers: - - r3, ip, flags - -Definition: - - Atomically store newval in *ptr only if *ptr is equal to oldval. - Return zero if *ptr was changed or non-zero if no exchange happened. - The C flag is also set if *ptr was changed to allow for assembly - optimization in the calling code. - -Usage example: - -typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr); -#define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0) - -int atomic_add(volatile int *ptr, int val) -{ - int old, new; - - do { - old = *ptr; - new = old + val; - } while(__kuser_cmpxchg(old, new, ptr)); - - return new; -} - -Notes: - - - This routine already includes memory barriers as needed. - - - Valid only if __kuser_helper_version >= 2 (from kernel version 2.6.12). - -kuser_memory_barrier --------------------- - -Location: 0xffff0fa0 - -Reference prototype: - - void __kuser_memory_barrier(void); - -Input: - - lr = return address - -Output: - - none - -Clobbered registers: - - none - -Definition: - - Apply any needed memory barrier to preserve consistency with data modified - manually and __kuser_cmpxchg usage. - -Usage example: - -typedef void (__kuser_dmb_t)(void); -#define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0) - -Notes: - - - Valid only if __kuser_helper_version >= 3 (from kernel version 2.6.15). - -kuser_cmpxchg64 ---------------- - -Location: 0xffff0f60 - -Reference prototype: - - int __kuser_cmpxchg64(const int64_t *oldval, - const int64_t *newval, - volatile int64_t *ptr); - -Input: - - r0 = pointer to oldval - r1 = pointer to newval - r2 = pointer to target value - lr = return address - -Output: - - r0 = success code (zero or non-zero) - C flag = set if r0 == 0, clear if r0 != 0 - -Clobbered registers: - - r3, lr, flags - -Definition: - - Atomically store the 64-bit value pointed by *newval in *ptr only if *ptr - is equal to the 64-bit value pointed by *oldval. Return zero if *ptr was - changed or non-zero if no exchange happened. - - The C flag is also set if *ptr was changed to allow for assembly - optimization in the calling code. - -Usage example: - -typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval, - const int64_t *newval, - volatile int64_t *ptr); -#define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60) - -int64_t atomic_add64(volatile int64_t *ptr, int64_t val) -{ - int64_t old, new; - - do { - old = *ptr; - new = old + val; - } while(__kuser_cmpxchg64(&old, &new, ptr)); - - return new; -} - -Notes: - - - This routine already includes memory barriers as needed. - - - Due to the length of this sequence, this spans 2 conventional kuser - "slots", therefore 0xffff0f80 is not used as a valid entry point. - - - Valid only if __kuser_helper_version >= 5 (from kernel version 3.1). diff --git a/Documentation/arm/keystone/Overview.txt b/Documentation/arm/keystone/Overview.txt deleted file mode 100644 index 400c0c270d2e..000000000000 --- a/Documentation/arm/keystone/Overview.txt +++ /dev/null @@ -1,55 +0,0 @@ - TI Keystone Linux Overview - -------------------------- - -Introduction ------------- -Keystone range of SoCs are based on ARM Cortex-A15 MPCore Processors -and c66x DSP cores. This document describes essential information required -for users to run Linux on Keystone based EVMs from Texas Instruments. - -Following SoCs & EVMs are currently supported:- - ------------- K2HK SoC and EVM -------------------------------------------------- - -a.k.a Keystone 2 Hawking/Kepler SoC -TCI6636K2H & TCI6636K2K: See documentation at - http://www.ti.com/product/tci6638k2k - http://www.ti.com/product/tci6638k2h - -EVM: -http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx - ------------- K2E SoC and EVM --------------------------------------------------- - -a.k.a Keystone 2 Edison SoC -K2E - 66AK2E05: See documentation at - http://www.ti.com/product/66AK2E05/technicaldocuments - -EVM: -https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html - ------------- K2L SoC and EVM --------------------------------------------------- - -a.k.a Keystone 2 Lamarr SoC -K2L - TCI6630K2L: See documentation at - http://www.ti.com/product/TCI6630K2L/technicaldocuments -EVM: -https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html - -Configuration -------------- - -All of the K2 SoCs/EVMs share a common defconfig, keystone_defconfig and same -image is used to boot on individual EVMs. The platform configuration is -specified through DTS. Following are the DTS used:- - K2HK EVM : k2hk-evm.dts - K2E EVM : k2e-evm.dts - K2L EVM : k2l-evm.dts - -The device tree documentation for the keystone machines are located at - Documentation/devicetree/bindings/arm/keystone/keystone.txt - -Document Author ---------------- -Murali Karicheri -Copyright 2015 Texas Instruments diff --git a/Documentation/arm/keystone/knav-qmss.rst b/Documentation/arm/keystone/knav-qmss.rst new file mode 100644 index 000000000000..7f7638d80b42 --- /dev/null +++ b/Documentation/arm/keystone/knav-qmss.rst @@ -0,0 +1,60 @@ +====================================================================== +Texas Instruments Keystone Navigator Queue Management SubSystem driver +====================================================================== + +Driver source code path + drivers/soc/ti/knav_qmss.c + drivers/soc/ti/knav_qmss_acc.c + +The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of +the main hardware sub system which forms the backbone of the Keystone +multi-core Navigator. QMSS consist of queue managers, packed-data structure +processors(PDSP), linking RAM, descriptor pools and infrastructure +Packet DMA. +The Queue Manager is a hardware module that is responsible for accelerating +management of the packet queues. Packets are queued/de-queued by writing or +reading descriptor address to a particular memory mapped location. The PDSPs +perform QMSS related functions like accumulation, QoS, or event management. +Linking RAM registers are used to link the descriptors which are stored in +descriptor RAM. Descriptor RAM is configurable as internal or external memory. +The QMSS driver manages the PDSP setups, linking RAM regions, +queue pool management (allocation, push, pop and notify) and descriptor +pool management. + +knav qmss driver provides a set of APIs to drivers to open/close qmss queues, +allocate descriptor pools, map the descriptors, push/pop to queues etc. For +details of the available APIs, please refers to include/linux/soc/ti/knav_qmss.h + +DT documentation is available at +Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt + +Accumulator QMSS queues using PDSP firmware +============================================ +The QMSS PDSP firmware support accumulator channel that can monitor a single +queue or multiple contiguous queues. drivers/soc/ti/knav_qmss_acc.c is the +driver that interface with the accumulator PDSP. This configures +accumulator channels defined in DTS (example in DT documentation) to monitor +1 or 32 queues per channel. More description on the firmware is available in +CPPI/QMSS Low Level Driver document (docs/CPPI_QMSS_LLD_SDS.pdf) at + + git://git.ti.com/keystone-rtos/qmss-lld.git + +k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin firmware supports upto 48 accumulator +channels. This firmware is available under ti-keystone folder of +firmware.git at + + git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git + +To use copy the firmware image to lib/firmware folder of the initramfs or +ubifs file system and provide a sym link to k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin +in the file system and boot up the kernel. User would see + + "firmware file ks2_qmss_pdsp_acc48.bin downloaded for PDSP" + +in the boot up log if loading of firmware to PDSP is successful. + +Use of accumulated queues requires the firmware image to be present in the +file system. The driver doesn't acc queues to the supported queue range if +PDSP is not running in the SoC. The API call fails if there is a queue open +request to an acc queue and PDSP is not running. So make sure to copy firmware +to file system before using these queue types. diff --git a/Documentation/arm/keystone/knav-qmss.txt b/Documentation/arm/keystone/knav-qmss.txt deleted file mode 100644 index fcdb9fd5f53a..000000000000 --- a/Documentation/arm/keystone/knav-qmss.txt +++ /dev/null @@ -1,56 +0,0 @@ -* Texas Instruments Keystone Navigator Queue Management SubSystem driver - -Driver source code path - drivers/soc/ti/knav_qmss.c - drivers/soc/ti/knav_qmss_acc.c - -The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of -the main hardware sub system which forms the backbone of the Keystone -multi-core Navigator. QMSS consist of queue managers, packed-data structure -processors(PDSP), linking RAM, descriptor pools and infrastructure -Packet DMA. -The Queue Manager is a hardware module that is responsible for accelerating -management of the packet queues. Packets are queued/de-queued by writing or -reading descriptor address to a particular memory mapped location. The PDSPs -perform QMSS related functions like accumulation, QoS, or event management. -Linking RAM registers are used to link the descriptors which are stored in -descriptor RAM. Descriptor RAM is configurable as internal or external memory. -The QMSS driver manages the PDSP setups, linking RAM regions, -queue pool management (allocation, push, pop and notify) and descriptor -pool management. - -knav qmss driver provides a set of APIs to drivers to open/close qmss queues, -allocate descriptor pools, map the descriptors, push/pop to queues etc. For -details of the available APIs, please refers to include/linux/soc/ti/knav_qmss.h - -DT documentation is available at -Documentation/devicetree/bindings/soc/ti/keystone-navigator-qmss.txt - -Accumulator QMSS queues using PDSP firmware -============================================ -The QMSS PDSP firmware support accumulator channel that can monitor a single -queue or multiple contiguous queues. drivers/soc/ti/knav_qmss_acc.c is the -driver that interface with the accumulator PDSP. This configures -accumulator channels defined in DTS (example in DT documentation) to monitor -1 or 32 queues per channel. More description on the firmware is available in -CPPI/QMSS Low Level Driver document (docs/CPPI_QMSS_LLD_SDS.pdf) at - git://git.ti.com/keystone-rtos/qmss-lld.git - -k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin firmware supports upto 48 accumulator -channels. This firmware is available under ti-keystone folder of -firmware.git at - git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git - -To use copy the firmware image to lib/firmware folder of the initramfs or -ubifs file system and provide a sym link to k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin -in the file system and boot up the kernel. User would see - - "firmware file ks2_qmss_pdsp_acc48.bin downloaded for PDSP" - -in the boot up log if loading of firmware to PDSP is successful. - -Use of accumulated queues requires the firmware image to be present in the -file system. The driver doesn't acc queues to the supported queue range if -PDSP is not running in the SoC. The API call fails if there is a queue open -request to an acc queue and PDSP is not running. So make sure to copy firmware -to file system before using these queue types. diff --git a/Documentation/arm/keystone/overview.rst b/Documentation/arm/keystone/overview.rst new file mode 100644 index 000000000000..cd90298c493c --- /dev/null +++ b/Documentation/arm/keystone/overview.rst @@ -0,0 +1,74 @@ +========================== +TI Keystone Linux Overview +========================== + +Introduction +------------ +Keystone range of SoCs are based on ARM Cortex-A15 MPCore Processors +and c66x DSP cores. This document describes essential information required +for users to run Linux on Keystone based EVMs from Texas Instruments. + +Following SoCs & EVMs are currently supported:- + +K2HK SoC and EVM +================= + +a.k.a Keystone 2 Hawking/Kepler SoC +TCI6636K2H & TCI6636K2K: See documentation at + + http://www.ti.com/product/tci6638k2k + http://www.ti.com/product/tci6638k2h + +EVM: + http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx + +K2E SoC and EVM +=============== + +a.k.a Keystone 2 Edison SoC + +K2E - 66AK2E05: + +See documentation at + + http://www.ti.com/product/66AK2E05/technicaldocuments + +EVM: + https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html + +K2L SoC and EVM +=============== + +a.k.a Keystone 2 Lamarr SoC + +K2L - TCI6630K2L: + +See documentation at + http://www.ti.com/product/TCI6630K2L/technicaldocuments + +EVM: + https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html + +Configuration +------------- + +All of the K2 SoCs/EVMs share a common defconfig, keystone_defconfig and same +image is used to boot on individual EVMs. The platform configuration is +specified through DTS. Following are the DTS used: + + K2HK EVM: + k2hk-evm.dts + K2E EVM: + k2e-evm.dts + K2L EVM: + k2l-evm.dts + +The device tree documentation for the keystone machines are located at + + Documentation/devicetree/bindings/arm/keystone/keystone.txt + +Document Author +--------------- +Murali Karicheri + +Copyright 2015 Texas Instruments diff --git a/Documentation/arm/marvel.rst b/Documentation/arm/marvel.rst new file mode 100644 index 000000000000..16ab2eb085b8 --- /dev/null +++ b/Documentation/arm/marvel.rst @@ -0,0 +1,488 @@ +================ +ARM Marvell SoCs +================ + +This document lists all the ARM Marvell SoCs that are currently +supported in mainline by the Linux kernel. As the Marvell families of +SoCs are large and complex, it is hard to understand where the support +for a particular SoC is available in the Linux kernel. This document +tries to help in understanding where those SoCs are supported, and to +match them with their corresponding public datasheet, when available. + +Orion family +------------ + + Flavors: + - 88F5082 + - 88F5181 + - 88F5181L + - 88F5182 + + - Datasheet: http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf + - Programmer's User Guide: http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf + - User Manual: http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf + - 88F5281 + + - Datasheet: http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf + - 88F6183 + Core: + Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 compatible + Linux kernel mach directory: + arch/arm/mach-orion5x + Linux kernel plat directory: + arch/arm/plat-orion + +Kirkwood family +--------------- + + Flavors: + - 88F6282 a.k.a Armada 300 + + - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf + - 88F6283 a.k.a Armada 310 + + - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf + - 88F6190 + + - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf + - 88F6192 + + - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf + - 88F6182 + - 88F6180 + + - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf + - 88F6281 + + - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf + Homepage: + http://www.marvell.com/embedded-processors/kirkwood/ + Core: + Feroceon 88fr131 ARMv5 compatible + Linux kernel mach directory: + arch/arm/mach-mvebu + Linux kernel plat directory: + none + +Discovery family +---------------- + + Flavors: + - MV78100 + + - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf + - MV78200 + + - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf + - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf + - MV76100 + + Not supported by the Linux kernel. + + Core: + Feroceon 88fr571-vd ARMv5 compatible + + Linux kernel mach directory: + arch/arm/mach-mv78xx0 + Linux kernel plat directory: + arch/arm/plat-orion + +EBU Armada family +----------------- + + Armada 370 Flavors: + - 88F6710 + - 88F6707 + - 88F6W11 + + - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf + - Hardware Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf + - Functional Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf + + Core: + Sheeva ARMv7 compatible PJ4B + + Armada 375 Flavors: + - 88F6720 + + - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf + + Core: + ARM Cortex-A9 + + Armada 38x Flavors: + - 88F6810 Armada 380 + - 88F6820 Armada 385 + - 88F6828 Armada 388 + + - Product infos: http://www.marvell.com/embedded-processors/armada-38x/ + - Functional Spec: https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/ + + Core: + ARM Cortex-A9 + + Armada 39x Flavors: + - 88F6920 Armada 390 + - 88F6928 Armada 398 + + - Product infos: http://www.marvell.com/embedded-processors/armada-39x/ + + Core: + ARM Cortex-A9 + + Armada XP Flavors: + - MV78230 + - MV78260 + - MV78460 + + NOTE: + not to be confused with the non-SMP 78xx0 SoCs + + Product Brief: + http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf + + Functional Spec: + http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf + + - Hardware Specs: + + - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF + - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF + - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF + + Core: + Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP + + Linux kernel mach directory: + arch/arm/mach-mvebu + Linux kernel plat directory: + none + +EBU Armada family ARMv8 +----------------------- + + Armada 3710/3720 Flavors: + - 88F3710 + - 88F3720 + + Core: + ARM Cortex A53 (ARMv8) + + Homepage: + http://www.marvell.com/embedded-processors/armada-3700/ + + Product Brief: + http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf + + Device tree files: + arch/arm64/boot/dts/marvell/armada-37* + + Armada 7K Flavors: + - 88F7020 (AP806 Dual + one CP110) + - 88F7040 (AP806 Quad + one CP110) + + Core: ARM Cortex A72 + + Homepage: + http://www.marvell.com/embedded-processors/armada-70xx/ + + Product Brief: + - http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf + - http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf + + Device tree files: + arch/arm64/boot/dts/marvell/armada-70* + + Armada 8K Flavors: + - 88F8020 (AP806 Dual + two CP110) + - 88F8040 (AP806 Quad + two CP110) + Core: + ARM Cortex A72 + + Homepage: + http://www.marvell.com/embedded-processors/armada-80xx/ + + Product Brief: + - http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf + - http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf + + Device tree files: + arch/arm64/boot/dts/marvell/armada-80* + +Avanta family +------------- + + Flavors: + - 88F6510 + - 88F6530P + - 88F6550 + - 88F6560 + + Homepage: + http://www.marvell.com/broadband/ + + Product Brief: + http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf + + No public datasheet available. + + Core: + ARMv5 compatible + + Linux kernel mach directory: + no code in mainline yet, planned for the future + Linux kernel plat directory: + no code in mainline yet, planned for the future + +Storage family +-------------- + + Armada SP: + - 88RC1580 + + Product infos: + http://www.marvell.com/storage/armada-sp/ + + Core: + Sheeva ARMv7 comatible Quad-core PJ4C + + (not supported in upstream Linux kernel) + +Dove family (application processor) +----------------------------------- + + Flavors: + - 88AP510 a.k.a Armada 510 + + Product Brief: + http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf + + Hardware Spec: + http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf + + Functional Spec: + http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf + + Homepage: + http://www.marvell.com/application-processors/armada-500/ + + Core: + ARMv7 compatible + + Directory: + - arch/arm/mach-mvebu (DT enabled platforms) + - arch/arm/mach-dove (non-DT enabled platforms) + +PXA 2xx/3xx/93x/95x family +-------------------------- + + Flavors: + - PXA21x, PXA25x, PXA26x + - Application processor only + - Core: ARMv5 XScale1 core + - PXA270, PXA271, PXA272 + - Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf + - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf + - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf + - Specification : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf + - Specification update : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf + - Application processor only + - Core: ARMv5 XScale2 core + - PXA300, PXA310, PXA320 + - PXA 300 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf + - PXA 310 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf + - PXA 320 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf + - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf + - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip + - Specifications : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf + - Specification Update : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip + - Reference Manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf + - Application processor only + - Core: ARMv5 XScale3 core + - PXA930, PXA935 + - Application processor with Communication processor + - Core: ARMv5 XScale3 core + - PXA955 + - Application processor with Communication processor + - Core: ARMv7 compatible Sheeva PJ4 core + + Comments: + + * This line of SoCs originates from the XScale family developed by + Intel and acquired by Marvell in ~2006. The PXA21x, PXA25x, + PXA26x, PXA27x, PXA3xx and PXA93x were developed by Intel, while + the later PXA95x were developed by Marvell. + + * Due to their XScale origin, these SoCs have virtually nothing in + common with the other (Kirkwood, Dove, etc.) families of Marvell + SoCs, except with the MMP/MMP2 family of SoCs. + + Linux kernel mach directory: + arch/arm/mach-pxa + Linux kernel plat directory: + arch/arm/plat-pxa + +MMP/MMP2/MMP3 family (communication processor) +---------------------------------------------- + + Flavors: + - PXA168, a.k.a Armada 168 + - Homepage : http://www.marvell.com/application-processors/armada-100/armada-168.jsp + - Product brief : http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf + - Hardware manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf + - Software manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf + - Specification update : http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf + - Boot ROM manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf + - App node package : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf + - Application processor only + - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk) + - PXA910/PXA920 + - Homepage : http://www.marvell.com/communication-processors/pxa910/ + - Product Brief : http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf + - Application processor with Communication processor + - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk) + - PXA688, a.k.a. MMP2, a.k.a Armada 610 + - Product Brief : http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf + - Application processor only + - Core: ARMv7 compatible Sheeva PJ4 88sv581x core + - PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream) + - Product Brief : http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf + - Application processor only + - Core: Dual-core ARMv7 compatible Sheeva PJ4C core + - PXA960/PXA968/PXA978 (Linux support not upstream) + - Application processor with Communication Processor + - Core: ARMv7 compatible Sheeva PJ4 core + - PXA986/PXA988 (Linux support not upstream) + - Application processor with Communication Processor + - Core: Dual-core ARMv7 compatible Sheeva PJ4B-MP core + - PXA1088/PXA1920 (Linux support not upstream) + - Application processor with Communication Processor + - Core: quad-core ARMv7 Cortex-A7 + - PXA1908/PXA1928/PXA1936 + - Application processor with Communication Processor + - Core: multi-core ARMv8 Cortex-A53 + + Comments: + + * This line of SoCs originates from the XScale family developed by + Intel and acquired by Marvell in ~2006. All the processors of + this MMP/MMP2 family were developed by Marvell. + + * Due to their XScale origin, these SoCs have virtually nothing in + common with the other (Kirkwood, Dove, etc.) families of Marvell + SoCs, except with the PXA family of SoCs listed above. + + Linux kernel mach directory: + arch/arm/mach-mmp + Linux kernel plat directory: + arch/arm/plat-pxa + +Berlin family (Multimedia Solutions) +------------------------------------- + + - Flavors: + - 88DE3010, Armada 1000 (no Linux support) + - Core: Marvell PJ1 (ARMv5TE), Dual-core + - Product Brief: http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf + - 88DE3005, Armada 1500 Mini + - Design name: BG2CD + - Core: ARM Cortex-A9, PL310 L2CC + - 88DE3006, Armada 1500 Mini Plus + - Design name: BG2CDP + - Core: Dual Core ARM Cortex-A7 + - 88DE3100, Armada 1500 + - Design name: BG2 + - Core: Marvell PJ4B-MP (ARMv7), Tauros3 L2CC + - 88DE3114, Armada 1500 Pro + - Design name: BG2Q + - Core: Quad Core ARM Cortex-A9, PL310 L2CC + - 88DE3214, Armada 1500 Pro 4K + - Design name: BG3 + - Core: ARM Cortex-A15, CA15 integrated L2CC + - 88DE3218, ARMADA 1500 Ultra + - Core: ARM Cortex-A53 + + Homepage: https://www.synaptics.com/products/multimedia-solutions + Directory: arch/arm/mach-berlin + + Comments: + + * This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs + with Synopsys DesignWare (IRQ, GPIO, Timers, ...) and PXA IP (SDHCI, USB, ETH, ...). + + * The Berlin family was acquired by Synaptics from Marvell in 2017. + +CPU Cores +--------- + +The XScale cores were designed by Intel, and shipped by Marvell in the older +PXA processors. Feroceon is a Marvell designed core that developed in-house, +and that evolved into Sheeva. The XScale and Feroceon cores were phased out +over time and replaced with Sheeva cores in later products, which subsequently +got replaced with licensed ARM Cortex-A cores. + + XScale 1 + CPUID 0x69052xxx + ARMv5, iWMMXt + XScale 2 + CPUID 0x69054xxx + ARMv5, iWMMXt + XScale 3 + CPUID 0x69056xxx or 0x69056xxx + ARMv5, iWMMXt + Feroceon-1850 88fr331 "Mohawk" + CPUID 0x5615331x or 0x41xx926x + ARMv5TE, single issue + Feroceon-2850 88fr531-vd "Jolteon" + CPUID 0x5605531x or 0x41xx926x + ARMv5TE, VFP, dual-issue + Feroceon 88fr571-vd "Jolteon" + CPUID 0x5615571x + ARMv5TE, VFP, dual-issue + Feroceon 88fr131 "Mohawk-D" + CPUID 0x5625131x + ARMv5TE, single-issue in-order + Sheeva PJ1 88sv331 "Mohawk" + CPUID 0x561584xx + ARMv5, single-issue iWMMXt v2 + Sheeva PJ4 88sv581x "Flareon" + CPUID 0x560f581x + ARMv7, idivt, optional iWMMXt v2 + Sheeva PJ4B 88sv581x + CPUID 0x561f581x + ARMv7, idivt, optional iWMMXt v2 + Sheeva PJ4B-MP / PJ4C + CPUID 0x562f584x + ARMv7, idivt/idiva, LPAE, optional iWMMXt v2 and/or NEON + +Long-term plans +--------------- + + * Unify the mach-dove/, mach-mv78xx0/, mach-orion5x/ into the + mach-mvebu/ to support all SoCs from the Marvell EBU (Engineering + Business Unit) in a single mach- directory. The plat-orion/ + would therefore disappear. + + * Unify the mach-mmp/ and mach-pxa/ into the same mach-pxa + directory. The plat-pxa/ would therefore disappear. + +Credits +------- + +- Maen Suleiman +- Lior Amsalem +- Thomas Petazzoni +- Andrew Lunn +- Nicolas Pitre +- Eric Miao diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment deleted file mode 100644 index e110e2781039..000000000000 --- a/Documentation/arm/mem_alignment +++ /dev/null @@ -1,58 +0,0 @@ -Too many problems popped up because of unnoticed misaligned memory access in -kernel code lately. Therefore the alignment fixup is now unconditionally -configured in for SA11x0 based targets. According to Alan Cox, this is a -bad idea to configure it out, but Russell King has some good reasons for -doing so on some f***ed up ARM architectures like the EBSA110. However -this is not the case on many design I'm aware of, like all SA11x0 based -ones. - -Of course this is a bad idea to rely on the alignment trap to perform -unaligned memory access in general. If those access are predictable, you -are better to use the macros provided by include/asm/unaligned.h. The -alignment trap can fixup misaligned access for the exception cases, but at -a high performance cost. It better be rare. - -Now for user space applications, it is possible to configure the alignment -trap to SIGBUS any code performing unaligned access (good for debugging bad -code), or even fixup the access by software like for kernel code. The later -mode isn't recommended for performance reasons (just think about the -floating point emulation that works about the same way). Fix your code -instead! - -Please note that randomly changing the behaviour without good thought is -real bad - it changes the behaviour of all unaligned instructions in user -space, and might cause programs to fail unexpectedly. - -To change the alignment trap behavior, simply echo a number into -/proc/cpu/alignment. The number is made up from various bits: - -bit behavior when set ---- ----------------- - -0 A user process performing an unaligned memory access - will cause the kernel to print a message indicating - process name, pid, pc, instruction, address, and the - fault code. - -1 The kernel will attempt to fix up the user process - performing the unaligned access. This is of course - slow (think about the floating point emulator) and - not recommended for production use. - -2 The kernel will send a SIGBUS signal to the user process - performing the unaligned access. - -Note that not all combinations are supported - only values 0 through 5. -(6 and 7 don't make sense). - -For example, the following will turn on the warnings, but without -fixing up or sending SIGBUS signals: - - echo 1 > /proc/cpu/alignment - -You can also read the content of the same file to get statistical -information on unaligned access occurrences plus the current mode of -operation for user space code. - - -Nicolas Pitre, Mar 13, 2001. Modified Russell King, Nov 30, 2001. diff --git a/Documentation/arm/mem_alignment.rst b/Documentation/arm/mem_alignment.rst new file mode 100644 index 000000000000..aa22893b62bc --- /dev/null +++ b/Documentation/arm/mem_alignment.rst @@ -0,0 +1,63 @@ +================ +Memory alignment +================ + +Too many problems popped up because of unnoticed misaligned memory access in +kernel code lately. Therefore the alignment fixup is now unconditionally +configured in for SA11x0 based targets. According to Alan Cox, this is a +bad idea to configure it out, but Russell King has some good reasons for +doing so on some f***ed up ARM architectures like the EBSA110. However +this is not the case on many design I'm aware of, like all SA11x0 based +ones. + +Of course this is a bad idea to rely on the alignment trap to perform +unaligned memory access in general. If those access are predictable, you +are better to use the macros provided by include/asm/unaligned.h. The +alignment trap can fixup misaligned access for the exception cases, but at +a high performance cost. It better be rare. + +Now for user space applications, it is possible to configure the alignment +trap to SIGBUS any code performing unaligned access (good for debugging bad +code), or even fixup the access by software like for kernel code. The later +mode isn't recommended for performance reasons (just think about the +floating point emulation that works about the same way). Fix your code +instead! + +Please note that randomly changing the behaviour without good thought is +real bad - it changes the behaviour of all unaligned instructions in user +space, and might cause programs to fail unexpectedly. + +To change the alignment trap behavior, simply echo a number into +/proc/cpu/alignment. The number is made up from various bits: + +=== ======================================================== +bit behavior when set +=== ======================================================== +0 A user process performing an unaligned memory access + will cause the kernel to print a message indicating + process name, pid, pc, instruction, address, and the + fault code. + +1 The kernel will attempt to fix up the user process + performing the unaligned access. This is of course + slow (think about the floating point emulator) and + not recommended for production use. + +2 The kernel will send a SIGBUS signal to the user process + performing the unaligned access. +=== ======================================================== + +Note that not all combinations are supported - only values 0 through 5. +(6 and 7 don't make sense). + +For example, the following will turn on the warnings, but without +fixing up or sending SIGBUS signals:: + + echo 1 > /proc/cpu/alignment + +You can also read the content of the same file to get statistical +information on unaligned access occurrences plus the current mode of +operation for user space code. + + +Nicolas Pitre, Mar 13, 2001. Modified Russell King, Nov 30, 2001. diff --git a/Documentation/arm/memory.rst b/Documentation/arm/memory.rst new file mode 100644 index 000000000000..0521b4ce5c96 --- /dev/null +++ b/Documentation/arm/memory.rst @@ -0,0 +1,93 @@ +================================= +Kernel Memory Layout on ARM Linux +================================= + + Russell King + + November 17, 2005 (2.6.15) + +This document describes the virtual memory layout which the Linux +kernel uses for ARM processors. It indicates which regions are +free for platforms to use, and which are used by generic code. + +The ARM CPU is capable of addressing a maximum of 4GB virtual memory +space, and this must be shared between user space processes, the +kernel, and hardware devices. + +As the ARM architecture matures, it becomes necessary to reserve +certain regions of VM space for use for new facilities; therefore +this document may reserve more VM space over time. + +=============== =============== =============================================== +Start End Use +=============== =============== =============================================== +ffff8000 ffffffff copy_user_page / clear_user_page use. + For SA11xx and Xscale, this is used to + setup a minicache mapping. + +ffff4000 ffffffff cache aliasing on ARMv6 and later CPUs. + +ffff1000 ffff7fff Reserved. + Platforms must not use this address range. + +ffff0000 ffff0fff CPU vector page. + The CPU vectors are mapped here if the + CPU supports vector relocation (control + register V bit.) + +fffe0000 fffeffff XScale cache flush area. This is used + in proc-xscale.S to flush the whole data + cache. (XScale does not have TCM.) + +fffe8000 fffeffff DTCM mapping area for platforms with + DTCM mounted inside the CPU. + +fffe0000 fffe7fff ITCM mapping area for platforms with + ITCM mounted inside the CPU. + +ffc00000 ffefffff Fixmap mapping region. Addresses provided + by fix_to_virt() will be located here. + +fee00000 feffffff Mapping of PCI I/O space. This is a static + mapping within the vmalloc space. + +VMALLOC_START VMALLOC_END-1 vmalloc() / ioremap() space. + Memory returned by vmalloc/ioremap will + be dynamically placed in this region. + Machine specific static mappings are also + located here through iotable_init(). + VMALLOC_START is based upon the value + of the high_memory variable, and VMALLOC_END + is equal to 0xff800000. + +PAGE_OFFSET high_memory-1 Kernel direct-mapped RAM region. + This maps the platforms RAM, and typically + maps all platform RAM in a 1:1 relationship. + +PKMAP_BASE PAGE_OFFSET-1 Permanent kernel mappings + One way of mapping HIGHMEM pages into kernel + space. + +MODULES_VADDR MODULES_END-1 Kernel module space + Kernel modules inserted via insmod are + placed here using dynamic mappings. + +00001000 TASK_SIZE-1 User space mappings + Per-thread mappings are placed here via + the mmap() system call. + +00000000 00000fff CPU vector page / null pointer trap + CPUs which do not support vector remapping + place their vector page here. NULL pointer + dereferences by both the kernel and user + space are also caught via this mapping. +=============== =============== =============================================== + +Please note that mappings which collide with the above areas may result +in a non-bootable kernel, or may cause the kernel to (eventually) panic +at run time. + +Since future CPUs may impact the kernel mapping layout, user programs +must not access any memory which is not mapped inside their 0x0001000 +to TASK_SIZE address range. If they wish to access these areas, they +must set up their own mappings using open() and mmap(). diff --git a/Documentation/arm/memory.txt b/Documentation/arm/memory.txt deleted file mode 100644 index 546a39048eb0..000000000000 --- a/Documentation/arm/memory.txt +++ /dev/null @@ -1,88 +0,0 @@ - Kernel Memory Layout on ARM Linux - - Russell King - November 17, 2005 (2.6.15) - -This document describes the virtual memory layout which the Linux -kernel uses for ARM processors. It indicates which regions are -free for platforms to use, and which are used by generic code. - -The ARM CPU is capable of addressing a maximum of 4GB virtual memory -space, and this must be shared between user space processes, the -kernel, and hardware devices. - -As the ARM architecture matures, it becomes necessary to reserve -certain regions of VM space for use for new facilities; therefore -this document may reserve more VM space over time. - -Start End Use --------------------------------------------------------------------------- -ffff8000 ffffffff copy_user_page / clear_user_page use. - For SA11xx and Xscale, this is used to - setup a minicache mapping. - -ffff4000 ffffffff cache aliasing on ARMv6 and later CPUs. - -ffff1000 ffff7fff Reserved. - Platforms must not use this address range. - -ffff0000 ffff0fff CPU vector page. - The CPU vectors are mapped here if the - CPU supports vector relocation (control - register V bit.) - -fffe0000 fffeffff XScale cache flush area. This is used - in proc-xscale.S to flush the whole data - cache. (XScale does not have TCM.) - -fffe8000 fffeffff DTCM mapping area for platforms with - DTCM mounted inside the CPU. - -fffe0000 fffe7fff ITCM mapping area for platforms with - ITCM mounted inside the CPU. - -ffc00000 ffefffff Fixmap mapping region. Addresses provided - by fix_to_virt() will be located here. - -fee00000 feffffff Mapping of PCI I/O space. This is a static - mapping within the vmalloc space. - -VMALLOC_START VMALLOC_END-1 vmalloc() / ioremap() space. - Memory returned by vmalloc/ioremap will - be dynamically placed in this region. - Machine specific static mappings are also - located here through iotable_init(). - VMALLOC_START is based upon the value - of the high_memory variable, and VMALLOC_END - is equal to 0xff800000. - -PAGE_OFFSET high_memory-1 Kernel direct-mapped RAM region. - This maps the platforms RAM, and typically - maps all platform RAM in a 1:1 relationship. - -PKMAP_BASE PAGE_OFFSET-1 Permanent kernel mappings - One way of mapping HIGHMEM pages into kernel - space. - -MODULES_VADDR MODULES_END-1 Kernel module space - Kernel modules inserted via insmod are - placed here using dynamic mappings. - -00001000 TASK_SIZE-1 User space mappings - Per-thread mappings are placed here via - the mmap() system call. - -00000000 00000fff CPU vector page / null pointer trap - CPUs which do not support vector remapping - place their vector page here. NULL pointer - dereferences by both the kernel and user - space are also caught via this mapping. - -Please note that mappings which collide with the above areas may result -in a non-bootable kernel, or may cause the kernel to (eventually) panic -at run time. - -Since future CPUs may impact the kernel mapping layout, user programs -must not access any memory which is not mapped inside their 0x0001000 -to TASK_SIZE address range. If they wish to access these areas, they -must set up their own mappings using open() and mmap(). diff --git a/Documentation/arm/microchip.rst b/Documentation/arm/microchip.rst new file mode 100644 index 000000000000..c9a44c98e868 --- /dev/null +++ b/Documentation/arm/microchip.rst @@ -0,0 +1,204 @@ +============================= +ARM Microchip SoCs (aka AT91) +============================= + + +Introduction +------------ +This document gives useful information about the ARM Microchip SoCs that are +currently supported in Linux Mainline (you know, the one on kernel.org). + +It is important to note that the Microchip (previously Atmel) ARM-based MPU +product line is historically named "AT91" or "at91" throughout the Linux kernel +development process even if this product prefix has completely disappeared from +the official Microchip product name. Anyway, files, directories, git trees, +git branches/tags and email subject always contain this "at91" sub-string. + + +AT91 SoCs +--------- +Documentation and detailed datasheet for each product are available on +the Microchip website: http://www.microchip.com. + + Flavors: + * ARM 920 based SoC + - at91rm9200 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf + + * ARM 926 based SoCs + - at91sam9260 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf + + - at91sam9xe + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf + + - at91sam9261 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf + + - at91sam9263 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf + + - at91sam9rl + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/doc6289.pdf + + - at91sam9g20 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001516A.pdf + + - at91sam9g45 family + - at91sam9g45 + - at91sam9g46 + - at91sam9m10 + - at91sam9m11 (device superset) + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf + + - at91sam9x5 family (aka "The 5 series") + - at91sam9g15 + - at91sam9g25 + - at91sam9g35 + - at91sam9x25 + - at91sam9x35 + + * Datasheet (can be considered as covering the whole family) + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf + + - at91sam9n12 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001517A.pdf + + * ARM Cortex-A5 based SoCs + - sama5d3 family + + - sama5d31 + - sama5d33 + - sama5d34 + - sama5d35 + - sama5d36 (device superset) + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf + + * ARM Cortex-A5 + NEON based SoCs + - sama5d4 family + + - sama5d41 + - sama5d42 + - sama5d43 + - sama5d44 (device superset) + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/60001525A.pdf + + - sama5d2 family + + - sama5d21 + - sama5d22 + - sama5d23 + - sama5d24 + - sama5d26 + - sama5d27 (device superset) + - sama5d28 (device superset + environmental monitors) + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001476B.pdf + + * ARM Cortex-M7 MCUs + - sams70 family + + - sams70j19 + - sams70j20 + - sams70j21 + - sams70n19 + - sams70n20 + - sams70n21 + - sams70q19 + - sams70q20 + - sams70q21 + + - samv70 family + + - samv70j19 + - samv70j20 + - samv70n19 + - samv70n20 + - samv70q19 + - samv70q20 + + - samv71 family + + - samv71j19 + - samv71j20 + - samv71j21 + - samv71n19 + - samv71n20 + - samv71n21 + - samv71q19 + - samv71q20 + - samv71q21 + + * Datasheet + + http://ww1.microchip.com/downloads/en/DeviceDoc/60001527A.pdf + + +Linux kernel information +------------------------ +Linux kernel mach directory: arch/arm/mach-at91 +MAINTAINERS entry is: "ARM/Microchip (AT91) SoC support" + + +Device Tree for AT91 SoCs and boards +------------------------------------ +All AT91 SoCs are converted to Device Tree. Since Linux 3.19, these products +must use this method to boot the Linux kernel. + +Work In Progress statement: +Device Tree files and Device Tree bindings that apply to AT91 SoCs and boards are +considered as "Unstable". To be completely clear, any at91 binding can change at +any time. So, be sure to use a Device Tree Binary and a Kernel Image generated from +the same source tree. +Please refer to the Documentation/devicetree/bindings/ABI.txt file for a +definition of a "Stable" binding/ABI. +This statement will be removed by AT91 MAINTAINERS when appropriate. + +Naming conventions and best practice: + +- SoCs Device Tree Source Include files are named after the official name of + the product (at91sam9g20.dtsi or sama5d33.dtsi for instance). +- Device Tree Source Include files (.dtsi) are used to collect common nodes that can be + shared across SoCs or boards (sama5d3.dtsi or at91sam9x5cm.dtsi for instance). + When collecting nodes for a particular peripheral or topic, the identifier have to + be placed at the end of the file name, separated with a "_" (at91sam9x5_can.dtsi + or sama5d3_gmac.dtsi for example). +- board Device Tree Source files (.dts) are prefixed by the string "at91-" so + that they can be identified easily. Note that some files are historical exceptions + to this rule (sama5d3[13456]ek.dts, usb_a9g20.dts or animeo_ip.dts for example). diff --git a/Documentation/arm/netwinder.rst b/Documentation/arm/netwinder.rst new file mode 100644 index 000000000000..8eab66caa2ac --- /dev/null +++ b/Documentation/arm/netwinder.rst @@ -0,0 +1,85 @@ +================================ +NetWinder specific documentation +================================ + +The NetWinder is a small low-power computer, primarily designed +to run Linux. It is based around the StrongARM RISC processor, +DC21285 PCI bridge, with PC-type hardware glued around it. + +Port usage +========== + +======= ====== =============================== +Min Max Description +======= ====== =============================== +0x0000 0x000f DMA1 +0x0020 0x0021 PIC1 +0x0060 0x006f Keyboard +0x0070 0x007f RTC +0x0080 0x0087 DMA1 +0x0088 0x008f DMA2 +0x00a0 0x00a3 PIC2 +0x00c0 0x00df DMA2 +0x0180 0x0187 IRDA +0x01f0 0x01f6 ide0 +0x0201 Game port +0x0203 RWA010 configuration read +0x0220 ? SoundBlaster +0x0250 ? WaveArtist +0x0279 RWA010 configuration index +0x02f8 0x02ff Serial ttyS1 +0x0300 0x031f Ether10 +0x0338 GPIO1 +0x033a GPIO2 +0x0370 0x0371 W83977F configuration registers +0x0388 ? AdLib +0x03c0 0x03df VGA +0x03f6 ide0 +0x03f8 0x03ff Serial ttyS0 +0x0400 0x0408 DC21143 +0x0480 0x0487 DMA1 +0x0488 0x048f DMA2 +0x0a79 RWA010 configuration write +0xe800 0xe80f ide0/ide1 BM DMA +======= ====== =============================== + + +Interrupt usage +=============== + +======= ======= ======================== +IRQ type Description +======= ======= ======================== + 0 ISA 100Hz timer + 1 ISA Keyboard + 2 ISA cascade + 3 ISA Serial ttyS1 + 4 ISA Serial ttyS0 + 5 ISA PS/2 mouse + 6 ISA IRDA + 7 ISA Printer + 8 ISA RTC alarm + 9 ISA +10 ISA GP10 (Orange reset button) +11 ISA +12 ISA WaveArtist +13 ISA +14 ISA hda1 +15 ISA +======= ======= ======================== + +DMA usage +========= + +======= ======= =========== +DMA type Description +======= ======= =========== + 0 ISA IRDA + 1 ISA + 2 ISA cascade + 3 ISA WaveArtist + 4 ISA + 5 ISA + 6 ISA + 7 ISA WaveArtist +======= ======= =========== diff --git a/Documentation/arm/nwfpe/NOTES b/Documentation/arm/nwfpe/NOTES deleted file mode 100644 index 40577b5a49d3..000000000000 --- a/Documentation/arm/nwfpe/NOTES +++ /dev/null @@ -1,29 +0,0 @@ -There seems to be a problem with exp(double) and our emulator. I haven't -been able to track it down yet. This does not occur with the emulator -supplied by Russell King. - -I also found one oddity in the emulator. I don't think it is serious but -will point it out. The ARM calling conventions require floating point -registers f4-f7 to be preserved over a function call. The compiler quite -often uses an stfe instruction to save f4 on the stack upon entry to a -function, and an ldfe instruction to restore it before returning. - -I was looking at some code, that calculated a double result, stored it in f4 -then made a function call. Upon return from the function call the number in -f4 had been converted to an extended value in the emulator. - -This is a side effect of the stfe instruction. The double in f4 had to be -converted to extended, then stored. If an lfm/sfm combination had been used, -then no conversion would occur. This has performance considerations. The -result from the function call and f4 were used in a multiplication. If the -emulator sees a multiply of a double and extended, it promotes the double to -extended, then does the multiply in extended precision. - -This code will cause this problem: - -double x, y, z; -z = log(x)/log(y); - -The result of log(x) (a double) will be calculated, returned in f0, then -moved to f4 to preserve it over the log(y) call. The division will be done -in extended precision, due to the stfe instruction used to save f4 in log(y). diff --git a/Documentation/arm/nwfpe/README b/Documentation/arm/nwfpe/README deleted file mode 100644 index 771871de0c8b..000000000000 --- a/Documentation/arm/nwfpe/README +++ /dev/null @@ -1,70 +0,0 @@ -This directory contains the version 0.92 test release of the NetWinder -Floating Point Emulator. - -The majority of the code was written by me, Scott Bambrough It is -written in C, with a small number of routines in inline assembler -where required. It was written quickly, with a goal of implementing a -working version of all the floating point instructions the compiler -emits as the first target. I have attempted to be as optimal as -possible, but there remains much room for improvement. - -I have attempted to make the emulator as portable as possible. One of -the problems is with leading underscores on kernel symbols. Elf -kernels have no leading underscores, a.out compiled kernels do. I -have attempted to use the C_SYMBOL_NAME macro wherever this may be -important. - -Another choice I made was in the file structure. I have attempted to -contain all operating system specific code in one module (fpmodule.*). -All the other files contain emulator specific code. This should allow -others to port the emulator to NetBSD for instance relatively easily. - -The floating point operations are based on SoftFloat Release 2, by -John Hauser. SoftFloat is a software implementation of floating-point -that conforms to the IEC/IEEE Standard for Binary Floating-point -Arithmetic. As many as four formats are supported: single precision, -double precision, extended double precision, and quadruple precision. -All operations required by the standard are implemented, except for -conversions to and from decimal. We use only the single precision, -double precision and extended double precision formats. The port of -SoftFloat to the ARM was done by Phil Blundell, based on an earlier -port of SoftFloat version 1 by Neil Carson for NetBSD/arm32. - -The file README.FPE contains a description of what has been implemented -so far in the emulator. The file TODO contains a information on what -remains to be done, and other ideas for the emulator. - -Bug reports, comments, suggestions should be directed to me at -. General reports of "this program doesn't -work correctly when your emulator is installed" are useful for -determining that bugs still exist; but are virtually useless when -attempting to isolate the problem. Please report them, but don't -expect quick action. Bugs still exist. The problem remains in isolating -which instruction contains the bug. Small programs illustrating a specific -problem are a godsend. - -Legal Notices -------------- - -The NetWinder Floating Point Emulator is free software. Everything Rebel.com -has written is provided under the GNU GPL. See the file COPYING for copying -conditions. Excluded from the above is the SoftFloat code. John Hauser's -legal notice for SoftFloat is included below. - -------------------------------------------------------------------------------- -SoftFloat Legal Notice - -SoftFloat was written by John R. Hauser. This work was made possible in -part by the International Computer Science Institute, located at Suite 600, -1947 Center Street, Berkeley, California 94704. Funding was partially -provided by the National Science Foundation under grant MIP-9311980. The -original version of this code was written as part of a project to build -a fixed-point vector processor in collaboration with the University of -California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. -------------------------------------------------------------------------------- diff --git a/Documentation/arm/nwfpe/README.FPE b/Documentation/arm/nwfpe/README.FPE deleted file mode 100644 index 26f5d7bb9a41..000000000000 --- a/Documentation/arm/nwfpe/README.FPE +++ /dev/null @@ -1,156 +0,0 @@ -The following describes the current state of the NetWinder's floating point -emulator. - -In the following nomenclature is used to describe the floating point -instructions. It follows the conventions in the ARM manual. - - = , no default -{P|M|Z} = {round to +infinity,round to -infinity,round to zero}, - default = round to nearest - -Note: items enclosed in {} are optional. - -Floating Point Coprocessor Data Transfer Instructions (CPDT) ------------------------------------------------------------- - -LDF/STF - load and store floating - -{cond} Fd, Rn -{cond} Fd, [Rn, #]{!} -{cond} Fd, [Rn], # - -These instructions are fully implemented. - -LFM/SFM - load and store multiple floating - -Form 1 syntax: -{cond} Fd, , [Rn] -{cond} Fd, , [Rn, #]{!} -{cond} Fd, , [Rn], # - -Form 2 syntax: -{cond} Fd, , [Rn]{!} - -These instructions are fully implemented. They store/load three words -for each floating point register into the memory location given in the -instruction. The format in memory is unlikely to be compatible with -other implementations, in particular the actual hardware. Specific -mention of this is made in the ARM manuals. - -Floating Point Coprocessor Register Transfer Instructions (CPRT) ----------------------------------------------------------------- - -Conversions, read/write status/control register instructions - -FLT{cond}{P,M,Z} Fn, Rd Convert integer to floating point -FIX{cond}{P,M,Z} Rd, Fn Convert floating point to integer -WFS{cond} Rd Write floating point status register -RFS{cond} Rd Read floating point status register -WFC{cond} Rd Write floating point control register -RFC{cond} Rd Read floating point control register - -FLT/FIX are fully implemented. - -RFS/WFS are fully implemented. - -RFC/WFC are fully implemented. RFC/WFC are supervisor only instructions, and -presently check the CPU mode, and do an invalid instruction trap if not called -from supervisor mode. - -Compare instructions - -CMF{cond} Fn, Fm Compare floating -CMFE{cond} Fn, Fm Compare floating with exception -CNF{cond} Fn, Fm Compare negated floating -CNFE{cond} Fn, Fm Compare negated floating with exception - -These are fully implemented. - -Floating Point Coprocessor Data Instructions (CPDT) ---------------------------------------------------- - -Dyadic operations: - -ADF{cond}{P,M,Z} Fd, Fn, - add -SUF{cond}{P,M,Z} Fd, Fn, - subtract -RSF{cond}{P,M,Z} Fd, Fn, - reverse subtract -MUF{cond}{P,M,Z} Fd, Fn, - multiply -DVF{cond}{P,M,Z} Fd, Fn, - divide -RDV{cond}{P,M,Z} Fd, Fn, - reverse divide - -These are fully implemented. - -FML{cond}{P,M,Z} Fd, Fn, - fast multiply -FDV{cond}{P,M,Z} Fd, Fn, - fast divide -FRD{cond}{P,M,Z} Fd, Fn, - fast reverse divide - -These are fully implemented as well. They use the same algorithm as the -non-fast versions. Hence, in this implementation their performance is -equivalent to the MUF/DVF/RDV instructions. This is acceptable according -to the ARM manual. The manual notes these are defined only for single -operands, on the actual FPA11 hardware they do not work for double or -extended precision operands. The emulator currently does not check -the requested permissions conditions, and performs the requested operation. - -RMF{cond}{P,M,Z} Fd, Fn, - IEEE remainder - -This is fully implemented. - -Monadic operations: - -MVF{cond}{P,M,Z} Fd, - move -MNF{cond}{P,M,Z} Fd, - move negated - -These are fully implemented. - -ABS{cond}{P,M,Z} Fd, - absolute value -SQT{cond}{P,M,Z} Fd, - square root -RND{cond}{P,M,Z} Fd, - round - -These are fully implemented. - -URD{cond}{P,M,Z} Fd, - unnormalized round -NRM{cond}{P,M,Z} Fd, - normalize - -These are implemented. URD is implemented using the same code as the RND -instruction. Since URD cannot return a unnormalized number, NRM becomes -a NOP. - -Library calls: - -POW{cond}{P,M,Z} Fd, Fn, - power -RPW{cond}{P,M,Z} Fd, Fn, - reverse power -POL{cond}{P,M,Z} Fd, Fn, - polar angle (arctan2) - -LOG{cond}{P,M,Z} Fd, - logarithm to base 10 -LGN{cond}{P,M,Z} Fd, - logarithm to base e -EXP{cond}{P,M,Z} Fd, - exponent -SIN{cond}{P,M,Z} Fd, - sine -COS{cond}{P,M,Z} Fd, - cosine -TAN{cond}{P,M,Z} Fd, - tangent -ASN{cond}{P,M,Z} Fd, - arcsine -ACS{cond}{P,M,Z} Fd, - arccosine -ATN{cond}{P,M,Z} Fd, - arctangent - -These are not implemented. They are not currently issued by the compiler, -and are handled by routines in libc. These are not implemented by the FPA11 -hardware, but are handled by the floating point support code. They should -be implemented in future versions. - -Signalling: - -Signals are implemented. However current ELF kernels produced by Rebel.com -have a bug in them that prevents the module from generating a SIGFPE. This -is caused by a failure to alias fp_current to the kernel variable -current_set[0] correctly. - -The kernel provided with this distribution (vmlinux-nwfpe-0.93) contains -a fix for this problem and also incorporates the current version of the -emulator directly. It is possible to run with no floating point module -loaded with this kernel. It is provided as a demonstration of the -technology and for those who want to do floating point work that depends -on signals. It is not strictly necessary to use the module. - -A module (either the one provided by Russell King, or the one in this -distribution) can be loaded to replace the functionality of the emulator -built into the kernel. diff --git a/Documentation/arm/nwfpe/TODO b/Documentation/arm/nwfpe/TODO deleted file mode 100644 index 8027061b60eb..000000000000 --- a/Documentation/arm/nwfpe/TODO +++ /dev/null @@ -1,67 +0,0 @@ -TODO LIST ---------- - -POW{cond}{P,M,Z} Fd, Fn, - power -RPW{cond}{P,M,Z} Fd, Fn, - reverse power -POL{cond}{P,M,Z} Fd, Fn, - polar angle (arctan2) - -LOG{cond}{P,M,Z} Fd, - logarithm to base 10 -LGN{cond}{P,M,Z} Fd, - logarithm to base e -EXP{cond}{P,M,Z} Fd, - exponent -SIN{cond}{P,M,Z} Fd, - sine -COS{cond}{P,M,Z} Fd, - cosine -TAN{cond}{P,M,Z} Fd, - tangent -ASN{cond}{P,M,Z} Fd, - arcsine -ACS{cond}{P,M,Z} Fd, - arccosine -ATN{cond}{P,M,Z} Fd, - arctangent - -These are not implemented. They are not currently issued by the compiler, -and are handled by routines in libc. These are not implemented by the FPA11 -hardware, but are handled by the floating point support code. They should -be implemented in future versions. - -There are a couple of ways to approach the implementation of these. One -method would be to use accurate table methods for these routines. I have -a couple of papers by S. Gal from IBM's research labs in Haifa, Israel that -seem to promise extreme accuracy (in the order of 99.8%) and reasonable speed. -These methods are used in GLIBC for some of the transcendental functions. - -Another approach, which I know little about is CORDIC. This stands for -Coordinate Rotation Digital Computer, and is a method of computing -transcendental functions using mostly shifts and adds and a few -multiplications and divisions. The ARM excels at shifts and adds, -so such a method could be promising, but requires more research to -determine if it is feasible. - -Rounding Methods - -The IEEE standard defines 4 rounding modes. Round to nearest is the -default, but rounding to + or - infinity or round to zero are also allowed. -Many architectures allow the rounding mode to be specified by modifying bits -in a control register. Not so with the ARM FPA11 architecture. To change -the rounding mode one must specify it with each instruction. - -This has made porting some benchmarks difficult. It is possible to -introduce such a capability into the emulator. The FPCR contains -bits describing the rounding mode. The emulator could be altered to -examine a flag, which if set forced it to ignore the rounding mode in -the instruction, and use the mode specified in the bits in the FPCR. - -This would require a method of getting/setting the flag, and the bits -in the FPCR. This requires a kernel call in ArmLinux, as WFC/RFC are -supervisor only instructions. If anyone has any ideas or comments I -would like to hear them. - -[NOTE: pulled out from some docs on ARM floating point, specifically - for the Acorn FPE, but not limited to it: - - The floating point control register (FPCR) may only be present in some - implementations: it is there to control the hardware in an implementation- - specific manner, for example to disable the floating point system. The user - mode of the ARM is not permitted to use this register (since the right is - reserved to alter it between implementations) and the WFC and RFC - instructions will trap if tried in user mode. - - Hence, the answer is yes, you could do this, but then you will run a high - risk of becoming isolated if and when hardware FP emulation comes out - -- Russell]. diff --git a/Documentation/arm/nwfpe/index.rst b/Documentation/arm/nwfpe/index.rst new file mode 100644 index 000000000000..21fa8ce192ae --- /dev/null +++ b/Documentation/arm/nwfpe/index.rst @@ -0,0 +1,11 @@ +=================================== +NetWinder's floating point emulator +=================================== + +.. toctree:: + :maxdepth: 1 + + nwfpe + netwinder-fpe + notes + todo diff --git a/Documentation/arm/nwfpe/netwinder-fpe.rst b/Documentation/arm/nwfpe/netwinder-fpe.rst new file mode 100644 index 000000000000..cbb320960fc4 --- /dev/null +++ b/Documentation/arm/nwfpe/netwinder-fpe.rst @@ -0,0 +1,162 @@ +============= +Current State +============= + +The following describes the current state of the NetWinder's floating point +emulator. + +In the following nomenclature is used to describe the floating point +instructions. It follows the conventions in the ARM manual. + +:: + + = , no default + {P|M|Z} = {round to +infinity,round to -infinity,round to zero}, + default = round to nearest + +Note: items enclosed in {} are optional. + +Floating Point Coprocessor Data Transfer Instructions (CPDT) +------------------------------------------------------------ + +LDF/STF - load and store floating + +{cond} Fd, Rn +{cond} Fd, [Rn, #]{!} +{cond} Fd, [Rn], # + +These instructions are fully implemented. + +LFM/SFM - load and store multiple floating + +Form 1 syntax: +{cond} Fd, , [Rn] +{cond} Fd, , [Rn, #]{!} +{cond} Fd, , [Rn], # + +Form 2 syntax: +{cond} Fd, , [Rn]{!} + +These instructions are fully implemented. They store/load three words +for each floating point register into the memory location given in the +instruction. The format in memory is unlikely to be compatible with +other implementations, in particular the actual hardware. Specific +mention of this is made in the ARM manuals. + +Floating Point Coprocessor Register Transfer Instructions (CPRT) +---------------------------------------------------------------- + +Conversions, read/write status/control register instructions + +FLT{cond}{P,M,Z} Fn, Rd Convert integer to floating point +FIX{cond}{P,M,Z} Rd, Fn Convert floating point to integer +WFS{cond} Rd Write floating point status register +RFS{cond} Rd Read floating point status register +WFC{cond} Rd Write floating point control register +RFC{cond} Rd Read floating point control register + +FLT/FIX are fully implemented. + +RFS/WFS are fully implemented. + +RFC/WFC are fully implemented. RFC/WFC are supervisor only instructions, and +presently check the CPU mode, and do an invalid instruction trap if not called +from supervisor mode. + +Compare instructions + +CMF{cond} Fn, Fm Compare floating +CMFE{cond} Fn, Fm Compare floating with exception +CNF{cond} Fn, Fm Compare negated floating +CNFE{cond} Fn, Fm Compare negated floating with exception + +These are fully implemented. + +Floating Point Coprocessor Data Instructions (CPDT) +--------------------------------------------------- + +Dyadic operations: + +ADF{cond}{P,M,Z} Fd, Fn, - add +SUF{cond}{P,M,Z} Fd, Fn, - subtract +RSF{cond}{P,M,Z} Fd, Fn, - reverse subtract +MUF{cond}{P,M,Z} Fd, Fn, - multiply +DVF{cond}{P,M,Z} Fd, Fn, - divide +RDV{cond}{P,M,Z} Fd, Fn, - reverse divide + +These are fully implemented. + +FML{cond}{P,M,Z} Fd, Fn, - fast multiply +FDV{cond}{P,M,Z} Fd, Fn, - fast divide +FRD{cond}{P,M,Z} Fd, Fn, - fast reverse divide + +These are fully implemented as well. They use the same algorithm as the +non-fast versions. Hence, in this implementation their performance is +equivalent to the MUF/DVF/RDV instructions. This is acceptable according +to the ARM manual. The manual notes these are defined only for single +operands, on the actual FPA11 hardware they do not work for double or +extended precision operands. The emulator currently does not check +the requested permissions conditions, and performs the requested operation. + +RMF{cond}{P,M,Z} Fd, Fn, - IEEE remainder + +This is fully implemented. + +Monadic operations: + +MVF{cond}{P,M,Z} Fd, - move +MNF{cond}{P,M,Z} Fd, - move negated + +These are fully implemented. + +ABS{cond}{P,M,Z} Fd, - absolute value +SQT{cond}{P,M,Z} Fd, - square root +RND{cond}{P,M,Z} Fd, - round + +These are fully implemented. + +URD{cond}{P,M,Z} Fd, - unnormalized round +NRM{cond}{P,M,Z} Fd, - normalize + +These are implemented. URD is implemented using the same code as the RND +instruction. Since URD cannot return a unnormalized number, NRM becomes +a NOP. + +Library calls: + +POW{cond}{P,M,Z} Fd, Fn, - power +RPW{cond}{P,M,Z} Fd, Fn, - reverse power +POL{cond}{P,M,Z} Fd, Fn, - polar angle (arctan2) + +LOG{cond}{P,M,Z} Fd, - logarithm to base 10 +LGN{cond}{P,M,Z} Fd, - logarithm to base e +EXP{cond}{P,M,Z} Fd, - exponent +SIN{cond}{P,M,Z} Fd, - sine +COS{cond}{P,M,Z} Fd, - cosine +TAN{cond}{P,M,Z} Fd, - tangent +ASN{cond}{P,M,Z} Fd, - arcsine +ACS{cond}{P,M,Z} Fd, - arccosine +ATN{cond}{P,M,Z} Fd, - arctangent + +These are not implemented. They are not currently issued by the compiler, +and are handled by routines in libc. These are not implemented by the FPA11 +hardware, but are handled by the floating point support code. They should +be implemented in future versions. + +Signalling: + +Signals are implemented. However current ELF kernels produced by Rebel.com +have a bug in them that prevents the module from generating a SIGFPE. This +is caused by a failure to alias fp_current to the kernel variable +current_set[0] correctly. + +The kernel provided with this distribution (vmlinux-nwfpe-0.93) contains +a fix for this problem and also incorporates the current version of the +emulator directly. It is possible to run with no floating point module +loaded with this kernel. It is provided as a demonstration of the +technology and for those who want to do floating point work that depends +on signals. It is not strictly necessary to use the module. + +A module (either the one provided by Russell King, or the one in this +distribution) can be loaded to replace the functionality of the emulator +built into the kernel. diff --git a/Documentation/arm/nwfpe/notes.rst b/Documentation/arm/nwfpe/notes.rst new file mode 100644 index 000000000000..102e55af8439 --- /dev/null +++ b/Documentation/arm/nwfpe/notes.rst @@ -0,0 +1,32 @@ +Notes +===== + +There seems to be a problem with exp(double) and our emulator. I haven't +been able to track it down yet. This does not occur with the emulator +supplied by Russell King. + +I also found one oddity in the emulator. I don't think it is serious but +will point it out. The ARM calling conventions require floating point +registers f4-f7 to be preserved over a function call. The compiler quite +often uses an stfe instruction to save f4 on the stack upon entry to a +function, and an ldfe instruction to restore it before returning. + +I was looking at some code, that calculated a double result, stored it in f4 +then made a function call. Upon return from the function call the number in +f4 had been converted to an extended value in the emulator. + +This is a side effect of the stfe instruction. The double in f4 had to be +converted to extended, then stored. If an lfm/sfm combination had been used, +then no conversion would occur. This has performance considerations. The +result from the function call and f4 were used in a multiplication. If the +emulator sees a multiply of a double and extended, it promotes the double to +extended, then does the multiply in extended precision. + +This code will cause this problem: + +double x, y, z; +z = log(x)/log(y); + +The result of log(x) (a double) will be calculated, returned in f0, then +moved to f4 to preserve it over the log(y) call. The division will be done +in extended precision, due to the stfe instruction used to save f4 in log(y). diff --git a/Documentation/arm/nwfpe/nwfpe.rst b/Documentation/arm/nwfpe/nwfpe.rst new file mode 100644 index 000000000000..35cd90dacbff --- /dev/null +++ b/Documentation/arm/nwfpe/nwfpe.rst @@ -0,0 +1,74 @@ +Introduction +============ + +This directory contains the version 0.92 test release of the NetWinder +Floating Point Emulator. + +The majority of the code was written by me, Scott Bambrough It is +written in C, with a small number of routines in inline assembler +where required. It was written quickly, with a goal of implementing a +working version of all the floating point instructions the compiler +emits as the first target. I have attempted to be as optimal as +possible, but there remains much room for improvement. + +I have attempted to make the emulator as portable as possible. One of +the problems is with leading underscores on kernel symbols. Elf +kernels have no leading underscores, a.out compiled kernels do. I +have attempted to use the C_SYMBOL_NAME macro wherever this may be +important. + +Another choice I made was in the file structure. I have attempted to +contain all operating system specific code in one module (fpmodule.*). +All the other files contain emulator specific code. This should allow +others to port the emulator to NetBSD for instance relatively easily. + +The floating point operations are based on SoftFloat Release 2, by +John Hauser. SoftFloat is a software implementation of floating-point +that conforms to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. As many as four formats are supported: single precision, +double precision, extended double precision, and quadruple precision. +All operations required by the standard are implemented, except for +conversions to and from decimal. We use only the single precision, +double precision and extended double precision formats. The port of +SoftFloat to the ARM was done by Phil Blundell, based on an earlier +port of SoftFloat version 1 by Neil Carson for NetBSD/arm32. + +The file README.FPE contains a description of what has been implemented +so far in the emulator. The file TODO contains a information on what +remains to be done, and other ideas for the emulator. + +Bug reports, comments, suggestions should be directed to me at +. General reports of "this program doesn't +work correctly when your emulator is installed" are useful for +determining that bugs still exist; but are virtually useless when +attempting to isolate the problem. Please report them, but don't +expect quick action. Bugs still exist. The problem remains in isolating +which instruction contains the bug. Small programs illustrating a specific +problem are a godsend. + +Legal Notices +------------- + +The NetWinder Floating Point Emulator is free software. Everything Rebel.com +has written is provided under the GNU GPL. See the file COPYING for copying +conditions. Excluded from the above is the SoftFloat code. John Hauser's +legal notice for SoftFloat is included below. + +------------------------------------------------------------------------------- + +SoftFloat Legal Notice + +SoftFloat was written by John R. Hauser. This work was made possible in +part by the International Computer Science Institute, located at Suite 600, +1947 Center Street, Berkeley, California 94704. Funding was partially +provided by the National Science Foundation under grant MIP-9311980. The +original version of this code was written as part of a project to build +a fixed-point vector processor in collaboration with the University of +California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. +------------------------------------------------------------------------------- diff --git a/Documentation/arm/nwfpe/todo.rst b/Documentation/arm/nwfpe/todo.rst new file mode 100644 index 000000000000..393f11b14540 --- /dev/null +++ b/Documentation/arm/nwfpe/todo.rst @@ -0,0 +1,72 @@ +TODO LIST +========= + +:: + + POW{cond}{P,M,Z} Fd, Fn, - power + RPW{cond}{P,M,Z} Fd, Fn, - reverse power + POL{cond}{P,M,Z} Fd, Fn, - polar angle (arctan2) + + LOG{cond}{P,M,Z} Fd, - logarithm to base 10 + LGN{cond}{P,M,Z} Fd, - logarithm to base e + EXP{cond}{P,M,Z} Fd, - exponent + SIN{cond}{P,M,Z} Fd, - sine + COS{cond}{P,M,Z} Fd, - cosine + TAN{cond}{P,M,Z} Fd, - tangent + ASN{cond}{P,M,Z} Fd, - arcsine + ACS{cond}{P,M,Z} Fd, - arccosine + ATN{cond}{P,M,Z} Fd, - arctangent + +These are not implemented. They are not currently issued by the compiler, +and are handled by routines in libc. These are not implemented by the FPA11 +hardware, but are handled by the floating point support code. They should +be implemented in future versions. + +There are a couple of ways to approach the implementation of these. One +method would be to use accurate table methods for these routines. I have +a couple of papers by S. Gal from IBM's research labs in Haifa, Israel that +seem to promise extreme accuracy (in the order of 99.8%) and reasonable speed. +These methods are used in GLIBC for some of the transcendental functions. + +Another approach, which I know little about is CORDIC. This stands for +Coordinate Rotation Digital Computer, and is a method of computing +transcendental functions using mostly shifts and adds and a few +multiplications and divisions. The ARM excels at shifts and adds, +so such a method could be promising, but requires more research to +determine if it is feasible. + +Rounding Methods +---------------- + +The IEEE standard defines 4 rounding modes. Round to nearest is the +default, but rounding to + or - infinity or round to zero are also allowed. +Many architectures allow the rounding mode to be specified by modifying bits +in a control register. Not so with the ARM FPA11 architecture. To change +the rounding mode one must specify it with each instruction. + +This has made porting some benchmarks difficult. It is possible to +introduce such a capability into the emulator. The FPCR contains +bits describing the rounding mode. The emulator could be altered to +examine a flag, which if set forced it to ignore the rounding mode in +the instruction, and use the mode specified in the bits in the FPCR. + +This would require a method of getting/setting the flag, and the bits +in the FPCR. This requires a kernel call in ArmLinux, as WFC/RFC are +supervisor only instructions. If anyone has any ideas or comments I +would like to hear them. + +NOTE: + pulled out from some docs on ARM floating point, specifically + for the Acorn FPE, but not limited to it: + + The floating point control register (FPCR) may only be present in some + implementations: it is there to control the hardware in an implementation- + specific manner, for example to disable the floating point system. The user + mode of the ARM is not permitted to use this register (since the right is + reserved to alter it between implementations) and the WFC and RFC + instructions will trap if tried in user mode. + + Hence, the answer is yes, you could do this, but then you will run a high + risk of becoming isolated if and when hardware FP emulation comes out + + -- Russell. diff --git a/Documentation/arm/omap/dss.rst b/Documentation/arm/omap/dss.rst new file mode 100644 index 000000000000..a40c4d9c717a --- /dev/null +++ b/Documentation/arm/omap/dss.rst @@ -0,0 +1,372 @@ +========================= +OMAP2/3 Display Subsystem +========================= + +This is an almost total rewrite of the OMAP FB driver in drivers/video/omap +(let's call it DSS1). The main differences between DSS1 and DSS2 are DSI, +TV-out and multiple display support, but there are lots of small improvements +also. + +The DSS2 driver (omapdss module) is in arch/arm/plat-omap/dss/, and the FB, +panel and controller drivers are in drivers/video/omap2/. DSS1 and DSS2 live +currently side by side, you can choose which one to use. + +Features +-------- + +Working and tested features include: + +- MIPI DPI (parallel) output +- MIPI DSI output in command mode +- MIPI DBI (RFBI) output +- SDI output +- TV output +- All pieces can be compiled as a module or inside kernel +- Use DISPC to update any of the outputs +- Use CPU to update RFBI or DSI output +- OMAP DISPC planes +- RGB16, RGB24 packed, RGB24 unpacked +- YUV2, UYVY +- Scaling +- Adjusting DSS FCK to find a good pixel clock +- Use DSI DPLL to create DSS FCK + +Tested boards include: +- OMAP3 SDP board +- Beagle board +- N810 + +omapdss driver +-------------- + +The DSS driver does not itself have any support for Linux framebuffer, V4L or +such like the current ones, but it has an internal kernel API that upper level +drivers can use. + +The DSS driver models OMAP's overlays, overlay managers and displays in a +flexible way to enable non-common multi-display configuration. In addition to +modelling the hardware overlays, omapdss supports virtual overlays and overlay +managers. These can be used when updating a display with CPU or system DMA. + +omapdss driver support for audio +-------------------------------- +There exist several display technologies and standards that support audio as +well. Hence, it is relevant to update the DSS device driver to provide an audio +interface that may be used by an audio driver or any other driver interested in +the functionality. + +The audio_enable function is intended to prepare the relevant +IP for playback (e.g., enabling an audio FIFO, taking in/out of reset +some IP, enabling companion chips, etc). It is intended to be called before +audio_start. The audio_disable function performs the reverse operation and is +intended to be called after audio_stop. + +While a given DSS device driver may support audio, it is possible that for +certain configurations audio is not supported (e.g., an HDMI display using a +VESA video timing). The audio_supported function is intended to query whether +the current configuration of the display supports audio. + +The audio_config function is intended to configure all the relevant audio +parameters of the display. In order to make the function independent of any +specific DSS device driver, a struct omap_dss_audio is defined. Its purpose +is to contain all the required parameters for audio configuration. At the +moment, such structure contains pointers to IEC-60958 channel status word +and CEA-861 audio infoframe structures. This should be enough to support +HDMI and DisplayPort, as both are based on CEA-861 and IEC-60958. + +The audio_enable/disable, audio_config and audio_supported functions could be +implemented as functions that may sleep. Hence, they should not be called +while holding a spinlock or a readlock. + +The audio_start/audio_stop function is intended to effectively start/stop audio +playback after the configuration has taken place. These functions are designed +to be used in an atomic context. Hence, audio_start should return quickly and be +called only after all the needed resources for audio playback (audio FIFOs, +DMA channels, companion chips, etc) have been enabled to begin data transfers. +audio_stop is designed to only stop the audio transfers. The resources used +for playback are released using audio_disable. + +The enum omap_dss_audio_state may be used to help the implementations of +the interface to keep track of the audio state. The initial state is _DISABLED; +then, the state transitions to _CONFIGURED, and then, when it is ready to +play audio, to _ENABLED. The state _PLAYING is used when the audio is being +rendered. + + +Panel and controller drivers +---------------------------- + +The drivers implement panel or controller specific functionality and are not +usually visible to users except through omapfb driver. They register +themselves to the DSS driver. + +omapfb driver +------------- + +The omapfb driver implements arbitrary number of standard linux framebuffers. +These framebuffers can be routed flexibly to any overlays, thus allowing very +dynamic display architecture. + +The driver exports some omapfb specific ioctls, which are compatible with the +ioctls in the old driver. + +The rest of the non standard features are exported via sysfs. Whether the final +implementation will use sysfs, or ioctls, is still open. + +V4L2 drivers +------------ + +V4L2 is being implemented in TI. + +From omapdss point of view the V4L2 drivers should be similar to framebuffer +driver. + +Architecture +-------------------- + +Some clarification what the different components do: + + - Framebuffer is a memory area inside OMAP's SRAM/SDRAM that contains the + pixel data for the image. Framebuffer has width and height and color + depth. + - Overlay defines where the pixels are read from and where they go on the + screen. The overlay may be smaller than framebuffer, thus displaying only + part of the framebuffer. The position of the overlay may be changed if + the overlay is smaller than the display. + - Overlay manager combines the overlays in to one image and feeds them to + display. + - Display is the actual physical display device. + +A framebuffer can be connected to multiple overlays to show the same pixel data +on all of the overlays. Note that in this case the overlay input sizes must be +the same, but, in case of video overlays, the output size can be different. Any +framebuffer can be connected to any overlay. + +An overlay can be connected to one overlay manager. Also DISPC overlays can be +connected only to DISPC overlay managers, and virtual overlays can be only +connected to virtual overlays. + +An overlay manager can be connected to one display. There are certain +restrictions which kinds of displays an overlay manager can be connected: + + - DISPC TV overlay manager can be only connected to TV display. + - Virtual overlay managers can only be connected to DBI or DSI displays. + - DISPC LCD overlay manager can be connected to all displays, except TV + display. + +Sysfs +----- +The sysfs interface is mainly used for testing. I don't think sysfs +interface is the best for this in the final version, but I don't quite know +what would be the best interfaces for these things. + +The sysfs interface is divided to two parts: DSS and FB. + +/sys/class/graphics/fb? directory: +mirror 0=off, 1=on +rotate Rotation 0-3 for 0, 90, 180, 270 degrees +rotate_type 0 = DMA rotation, 1 = VRFB rotation +overlays List of overlay numbers to which framebuffer pixels go +phys_addr Physical address of the framebuffer +virt_addr Virtual address of the framebuffer +size Size of the framebuffer + +/sys/devices/platform/omapdss/overlay? directory: +enabled 0=off, 1=on +input_size width,height (ie. the framebuffer size) +manager Destination overlay manager name +name +output_size width,height +position x,y +screen_width width +global_alpha global alpha 0-255 0=transparent 255=opaque + +/sys/devices/platform/omapdss/manager? directory: +display Destination display +name +alpha_blending_enabled 0=off, 1=on +trans_key_enabled 0=off, 1=on +trans_key_type gfx-destination, video-source +trans_key_value transparency color key (RGB24) +default_color default background color (RGB24) + +/sys/devices/platform/omapdss/display? directory: + +=============== ============================================================= +ctrl_name Controller name +mirror 0=off, 1=on +update_mode 0=off, 1=auto, 2=manual +enabled 0=off, 1=on +name +rotate Rotation 0-3 for 0, 90, 180, 270 degrees +timings Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw) + When writing, two special timings are accepted for tv-out: + "pal" and "ntsc" +panel_name +tear_elim Tearing elimination 0=off, 1=on +output_type Output type (video encoder only): "composite" or "svideo" +=============== ============================================================= + +There are also some debugfs files at /omapdss/ which show information +about clocks and registers. + +Examples +-------- + +The following definitions have been made for the examples below:: + + ovl0=/sys/devices/platform/omapdss/overlay0 + ovl1=/sys/devices/platform/omapdss/overlay1 + ovl2=/sys/devices/platform/omapdss/overlay2 + + mgr0=/sys/devices/platform/omapdss/manager0 + mgr1=/sys/devices/platform/omapdss/manager1 + + lcd=/sys/devices/platform/omapdss/display0 + dvi=/sys/devices/platform/omapdss/display1 + tv=/sys/devices/platform/omapdss/display2 + + fb0=/sys/class/graphics/fb0 + fb1=/sys/class/graphics/fb1 + fb2=/sys/class/graphics/fb2 + +Default setup on OMAP3 SDP +-------------------------- + +Here's the default setup on OMAP3 SDP board. All planes go to LCD. DVI +and TV-out are not in use. The columns from left to right are: +framebuffers, overlays, overlay managers, displays. Framebuffers are +handled by omapfb, and the rest by the DSS:: + + FB0 --- GFX -\ DVI + FB1 --- VID1 --+- LCD ---- LCD + FB2 --- VID2 -/ TV ----- TV + +Example: Switch from LCD to DVI +------------------------------- + +:: + + w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1` + h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1` + + echo "0" > $lcd/enabled + echo "" > $mgr0/display + fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h + # at this point you have to switch the dvi/lcd dip-switch from the omap board + echo "dvi" > $mgr0/display + echo "1" > $dvi/enabled + +After this the configuration looks like::: + + FB0 --- GFX -\ -- DVI + FB1 --- VID1 --+- LCD -/ LCD + FB2 --- VID2 -/ TV ----- TV + +Example: Clone GFX overlay to LCD and TV +---------------------------------------- + +:: + + w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1` + h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1` + + echo "0" > $ovl0/enabled + echo "0" > $ovl1/enabled + + echo "" > $fb1/overlays + echo "0,1" > $fb0/overlays + + echo "$w,$h" > $ovl1/output_size + echo "tv" > $ovl1/manager + + echo "1" > $ovl0/enabled + echo "1" > $ovl1/enabled + + echo "1" > $tv/enabled + +After this the configuration looks like (only relevant parts shown):: + + FB0 +-- GFX ---- LCD ---- LCD + \- VID1 ---- TV ---- TV + +Misc notes +---------- + +OMAP FB allocates the framebuffer memory using the standard dma allocator. You +can enable Contiguous Memory Allocator (CONFIG_CMA) to improve the dma +allocator, and if CMA is enabled, you use "cma=" kernel parameter to increase +the global memory area for CMA. + +Using DSI DPLL to generate pixel clock it is possible produce the pixel clock +of 86.5MHz (max possible), and with that you get 1280x1024@57 output from DVI. + +Rotation and mirroring currently only supports RGB565 and RGB8888 modes. VRFB +does not support mirroring. + +VRFB rotation requires much more memory than non-rotated framebuffer, so you +probably need to increase your vram setting before using VRFB rotation. Also, +many applications may not work with VRFB if they do not pay attention to all +framebuffer parameters. + +Kernel boot arguments +--------------------- + +omapfb.mode=:[,...] + - Default video mode for specified displays. For example, + "dvi:800x400MR-24@60". See drivers/video/modedb.c. + There are also two special modes: "pal" and "ntsc" that + can be used to tv out. + +omapfb.vram=:[@][,...] + - VRAM allocated for a framebuffer. Normally omapfb allocates vram + depending on the display size. With this you can manually allocate + more or define the physical address of each framebuffer. For example, + "1:4M" to allocate 4M for fb1. + +omapfb.debug= + - Enable debug printing. You have to have OMAPFB debug support enabled + in kernel config. + +omapfb.test= + - Draw test pattern to framebuffer whenever framebuffer settings change. + You need to have OMAPFB debug support enabled in kernel config. + +omapfb.vrfb= + - Use VRFB rotation for all framebuffers. + +omapfb.rotate= + - Default rotation applied to all framebuffers. + 0 - 0 degree rotation + 1 - 90 degree rotation + 2 - 180 degree rotation + 3 - 270 degree rotation + +omapfb.mirror= + - Default mirror for all framebuffers. Only works with DMA rotation. + +omapdss.def_disp= + - Name of default display, to which all overlays will be connected. + Common examples are "lcd" or "tv". + +omapdss.debug= + - Enable debug printing. You have to have DSS debug support enabled in + kernel config. + +TODO +---- + +DSS locking + +Error checking + +- Lots of checks are missing or implemented just as BUG() + +System DMA update for DSI + +- Can be used for RGB16 and RGB24P modes. Probably not for RGB24U (how + to skip the empty byte?) + +OMAP1 support + +- Not sure if needed diff --git a/Documentation/arm/omap/index.rst b/Documentation/arm/omap/index.rst new file mode 100644 index 000000000000..f1e9c11d9f9b --- /dev/null +++ b/Documentation/arm/omap/index.rst @@ -0,0 +1,10 @@ +======= +TI OMAP +======= + +.. toctree:: + :maxdepth: 1 + + omap + omap_pm + dss diff --git a/Documentation/arm/omap/omap.rst b/Documentation/arm/omap/omap.rst new file mode 100644 index 000000000000..f440c0f4613f --- /dev/null +++ b/Documentation/arm/omap/omap.rst @@ -0,0 +1,18 @@ +============ +OMAP history +============ + +This file contains documentation for running mainline +kernel on omaps. + +====== ====================================================== +KERNEL NEW DEPENDENCIES +====== ====================================================== +v4.3+ Update is needed for custom .config files to make sure + CONFIG_REGULATOR_PBIAS is enabled for MMC1 to work + properly. + +v4.18+ Update is needed for custom .config files to make sure + CONFIG_MMC_SDHCI_OMAP is enabled for all MMC instances + to work in DRA7 and K2G based boards. +====== ====================================================== diff --git a/Documentation/arm/omap/omap_pm.rst b/Documentation/arm/omap/omap_pm.rst new file mode 100644 index 000000000000..a335e4c8ce2c --- /dev/null +++ b/Documentation/arm/omap/omap_pm.rst @@ -0,0 +1,165 @@ +===================== +The OMAP PM interface +===================== + +This document describes the temporary OMAP PM interface. Driver +authors use these functions to communicate minimum latency or +throughput constraints to the kernel power management code. +Over time, the intention is to merge features from the OMAP PM +interface into the Linux PM QoS code. + +Drivers need to express PM parameters which: + +- support the range of power management parameters present in the TI SRF; + +- separate the drivers from the underlying PM parameter + implementation, whether it is the TI SRF or Linux PM QoS or Linux + latency framework or something else; + +- specify PM parameters in terms of fundamental units, such as + latency and throughput, rather than units which are specific to OMAP + or to particular OMAP variants; + +- allow drivers which are shared with other architectures (e.g., + DaVinci) to add these constraints in a way which won't affect non-OMAP + systems, + +- can be implemented immediately with minimal disruption of other + architectures. + + +This document proposes the OMAP PM interface, including the following +five power management functions for driver code: + +1. Set the maximum MPU wakeup latency:: + + (*pdata->set_max_mpu_wakeup_lat)(struct device *dev, unsigned long t) + +2. Set the maximum device wakeup latency:: + + (*pdata->set_max_dev_wakeup_lat)(struct device *dev, unsigned long t) + +3. Set the maximum system DMA transfer start latency (CORE pwrdm):: + + (*pdata->set_max_sdma_lat)(struct device *dev, long t) + +4. Set the minimum bus throughput needed by a device:: + + (*pdata->set_min_bus_tput)(struct device *dev, u8 agent_id, unsigned long r) + +5. Return the number of times the device has lost context:: + + (*pdata->get_dev_context_loss_count)(struct device *dev) + + +Further documentation for all OMAP PM interface functions can be +found in arch/arm/plat-omap/include/mach/omap-pm.h. + + +The OMAP PM layer is intended to be temporary +--------------------------------------------- + +The intention is that eventually the Linux PM QoS layer should support +the range of power management features present in OMAP3. As this +happens, existing drivers using the OMAP PM interface can be modified +to use the Linux PM QoS code; and the OMAP PM interface can disappear. + + +Driver usage of the OMAP PM functions +------------------------------------- + +As the 'pdata' in the above examples indicates, these functions are +exposed to drivers through function pointers in driver .platform_data +structures. The function pointers are initialized by the `board-*.c` +files to point to the corresponding OMAP PM functions: + +- set_max_dev_wakeup_lat will point to + omap_pm_set_max_dev_wakeup_lat(), etc. Other architectures which do + not support these functions should leave these function pointers set + to NULL. Drivers should use the following idiom:: + + if (pdata->set_max_dev_wakeup_lat) + (*pdata->set_max_dev_wakeup_lat)(dev, t); + +The most common usage of these functions will probably be to specify +the maximum time from when an interrupt occurs, to when the device +becomes accessible. To accomplish this, driver writers should use the +set_max_mpu_wakeup_lat() function to constrain the MPU wakeup +latency, and the set_max_dev_wakeup_lat() function to constrain the +device wakeup latency (from clk_enable() to accessibility). For +example:: + + /* Limit MPU wakeup latency */ + if (pdata->set_max_mpu_wakeup_lat) + (*pdata->set_max_mpu_wakeup_lat)(dev, tc); + + /* Limit device powerdomain wakeup latency */ + if (pdata->set_max_dev_wakeup_lat) + (*pdata->set_max_dev_wakeup_lat)(dev, td); + + /* total wakeup latency in this example: (tc + td) */ + +The PM parameters can be overwritten by calling the function again +with the new value. The settings can be removed by calling the +function with a t argument of -1 (except in the case of +set_max_bus_tput(), which should be called with an r argument of 0). + +The fifth function above, omap_pm_get_dev_context_loss_count(), +is intended as an optimization to allow drivers to determine whether the +device has lost its internal context. If context has been lost, the +driver must restore its internal context before proceeding. + + +Other specialized interface functions +------------------------------------- + +The five functions listed above are intended to be usable by any +device driver. DSPBridge and CPUFreq have a few special requirements. +DSPBridge expresses target DSP performance levels in terms of OPP IDs. +CPUFreq expresses target MPU performance levels in terms of MPU +frequency. The OMAP PM interface contains functions for these +specialized cases to convert that input information (OPPs/MPU +frequency) into the form that the underlying power management +implementation needs: + +6. `(*pdata->dsp_get_opp_table)(void)` + +7. `(*pdata->dsp_set_min_opp)(u8 opp_id)` + +8. `(*pdata->dsp_get_opp)(void)` + +9. `(*pdata->cpu_get_freq_table)(void)` + +10. `(*pdata->cpu_set_freq)(unsigned long f)` + +11. `(*pdata->cpu_get_freq)(void)` + +Customizing OPP for platform +============================ +Defining CONFIG_PM should enable OPP layer for the silicon +and the registration of OPP table should take place automatically. +However, in special cases, the default OPP table may need to be +tweaked, for e.g.: + + * enable default OPPs which are disabled by default, but which + could be enabled on a platform + * Disable an unsupported OPP on the platform + * Define and add a custom opp table entry + in these cases, the board file needs to do additional steps as follows: + +arch/arm/mach-omapx/board-xyz.c:: + + #include "pm.h" + .... + static void __init omap_xyz_init_irq(void) + { + .... + /* Initialize the default table */ + omapx_opp_init(); + /* Do customization to the defaults */ + .... + } + +NOTE: + omapx_opp_init will be omap3_opp_init or as required + based on the omap family. diff --git a/Documentation/arm/porting.rst b/Documentation/arm/porting.rst new file mode 100644 index 000000000000..bd21958bdb2d --- /dev/null +++ b/Documentation/arm/porting.rst @@ -0,0 +1,137 @@ +======= +Porting +======= + +Taken from list archive at http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html + +Initial definitions +------------------- + +The following symbol definitions rely on you knowing the translation that +__virt_to_phys() does for your machine. This macro converts the passed +virtual address to a physical address. Normally, it is simply: + + phys = virt - PAGE_OFFSET + PHYS_OFFSET + + +Decompressor Symbols +-------------------- + +ZTEXTADDR + Start address of decompressor. There's no point in talking about + virtual or physical addresses here, since the MMU will be off at + the time when you call the decompressor code. You normally call + the kernel at this address to start it booting. This doesn't have + to be located in RAM, it can be in flash or other read-only or + read-write addressable medium. + +ZBSSADDR + Start address of zero-initialised work area for the decompressor. + This must be pointing at RAM. The decompressor will zero initialise + this for you. Again, the MMU will be off. + +ZRELADDR + This is the address where the decompressed kernel will be written, + and eventually executed. The following constraint must be valid: + + __virt_to_phys(TEXTADDR) == ZRELADDR + + The initial part of the kernel is carefully coded to be position + independent. + +INITRD_PHYS + Physical address to place the initial RAM disk. Only relevant if + you are using the bootpImage stuff (which only works on the old + struct param_struct). + +INITRD_VIRT + Virtual address of the initial RAM disk. The following constraint + must be valid: + + __virt_to_phys(INITRD_VIRT) == INITRD_PHYS + +PARAMS_PHYS + Physical address of the struct param_struct or tag list, giving the + kernel various parameters about its execution environment. + + +Kernel Symbols +-------------- + +PHYS_OFFSET + Physical start address of the first bank of RAM. + +PAGE_OFFSET + Virtual start address of the first bank of RAM. During the kernel + boot phase, virtual address PAGE_OFFSET will be mapped to physical + address PHYS_OFFSET, along with any other mappings you supply. + This should be the same value as TASK_SIZE. + +TASK_SIZE + The maximum size of a user process in bytes. Since user space + always starts at zero, this is the maximum address that a user + process can access+1. The user space stack grows down from this + address. + + Any virtual address below TASK_SIZE is deemed to be user process + area, and therefore managed dynamically on a process by process + basis by the kernel. I'll call this the user segment. + + Anything above TASK_SIZE is common to all processes. I'll call + this the kernel segment. + + (In other words, you can't put IO mappings below TASK_SIZE, and + hence PAGE_OFFSET). + +TEXTADDR + Virtual start address of kernel, normally PAGE_OFFSET + 0x8000. + This is where the kernel image ends up. With the latest kernels, + it must be located at 32768 bytes into a 128MB region. Previous + kernels placed a restriction of 256MB here. + +DATAADDR + Virtual address for the kernel data segment. Must not be defined + when using the decompressor. + +VMALLOC_START / VMALLOC_END + Virtual addresses bounding the vmalloc() area. There must not be + any static mappings in this area; vmalloc will overwrite them. + The addresses must also be in the kernel segment (see above). + Normally, the vmalloc() area starts VMALLOC_OFFSET bytes above the + last virtual RAM address (found using variable high_memory). + +VMALLOC_OFFSET + Offset normally incorporated into VMALLOC_START to provide a hole + between virtual RAM and the vmalloc area. We do this to allow + out of bounds memory accesses (eg, something writing off the end + of the mapped memory map) to be caught. Normally set to 8MB. + +Architecture Specific Macros +---------------------------- + +BOOT_MEM(pram,pio,vio) + `pram` specifies the physical start address of RAM. Must always + be present, and should be the same as PHYS_OFFSET. + + `pio` is the physical address of an 8MB region containing IO for + use with the debugging macros in arch/arm/kernel/debug-armv.S. + + `vio` is the virtual address of the 8MB debugging region. + + It is expected that the debugging region will be re-initialised + by the architecture specific code later in the code (via the + MAPIO function). + +BOOT_PARAMS + Same as, and see PARAMS_PHYS. + +FIXUP(func) + Machine specific fixups, run before memory subsystems have been + initialised. + +MAPIO(func) + Machine specific function to map IO areas (including the debug + region above). + +INITIRQ(func) + Machine specific function to initialise interrupts. diff --git a/Documentation/arm/pxa/mfp.rst b/Documentation/arm/pxa/mfp.rst new file mode 100644 index 000000000000..ac34e5d7ee44 --- /dev/null +++ b/Documentation/arm/pxa/mfp.rst @@ -0,0 +1,288 @@ +============================================== +MFP Configuration for PXA2xx/PXA3xx Processors +============================================== + + Eric Miao + +MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and +later PXA series processors. This document describes the existing MFP API, +and how board/platform driver authors could make use of it. + +Basic Concept +============= + +Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP +mechanism is introduced from PXA3xx to completely move the pin-mux functions +out of the GPIO controller. In addition to pin-mux configurations, the MFP +also controls the low power state, driving strength, pull-up/down and event +detection of each pin. Below is a diagram of internal connections between +the MFP logic and the remaining SoC peripherals:: + + +--------+ + | |--(GPIO19)--+ + | GPIO | | + | |--(GPIO...) | + +--------+ | + | +---------+ + +--------+ +------>| | + | PWM2 |--(PWM_OUT)-------->| MFP | + +--------+ +------>| |-------> to external PAD + | +---->| | + +--------+ | | +-->| | + | SSP2 |---(TXD)----+ | | +---------+ + +--------+ | | + | | + +--------+ | | + | Keypad |--(MKOUT4)----+ | + +--------+ | + | + +--------+ | + | UART2 |---(TXD)--------+ + +--------+ + +NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily +mean it's dedicated for GPIO19, only as a hint that internally this pin +can be routed from GPIO19 of the GPIO controller. + +To better understand the change from PXA25x/PXA27x GPIO alternate function +to this new MFP mechanism, here are several key points: + + 1. GPIO controller on PXA3xx is now a dedicated controller, same as other + internal controllers like PWM, SSP and UART, with 128 internal signals + which can be routed to external through one or more MFPs (e.g. GPIO<0> + can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2, + see arch/arm/mach-pxa/mfp-pxa300.h) + + 2. Alternate function configuration is removed from this GPIO controller, + the remaining functions are pure GPIO-specific, i.e. + + - GPIO signal level control + - GPIO direction control + - GPIO level change detection + + 3. Low power state for each pin is now controlled by MFP, this means the + PGSRx registers on PXA2xx are now useless on PXA3xx + + 4. Wakeup detection is now controlled by MFP, PWER does not control the + wakeup from GPIO(s) any more, depending on the sleeping state, ADxER + (as defined in pxa3xx-regs.h) controls the wakeup from MFP + +NOTE: with such a clear separation of MFP and GPIO, by GPIO we normally +mean it is a GPIO signal, and by MFP or pin xxx, we mean a physical +pad (or ball). + +MFP API Usage +============= + +For board code writers, here are some guidelines: + +1. include ONE of the following header files in your .c: + + - #include "mfp-pxa25x.h" + - #include "mfp-pxa27x.h" + - #include "mfp-pxa300.h" + - #include "mfp-pxa320.h" + - #include "mfp-pxa930.h" + + NOTE: only one file in your .c, depending on the processors used, + because pin configuration definitions may conflict in these file (i.e. + same name, different meaning and settings on different processors). E.g. + for zylonite platform, which support both PXA300/PXA310 and PXA320, two + separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c + (in addition to handle MFP configuration differences, they also handle + the other differences between the two combinations). + + NOTE: PXA300 and PXA310 are almost identical in pin configurations (with + PXA310 supporting some additional ones), thus the difference is actually + covered in a single mfp-pxa300.h. + +2. prepare an array for the initial pin configurations, e.g.:: + + static unsigned long mainstone_pin_config[] __initdata = { + /* Chip Select */ + GPIO15_nCS_1, + + /* LCD - 16bpp Active TFT */ + GPIOxx_TFT_LCD_16BPP, + GPIO16_PWM0_OUT, /* Backlight */ + + /* MMC */ + GPIO32_MMC_CLK, + GPIO112_MMC_CMD, + GPIO92_MMC_DAT_0, + GPIO109_MMC_DAT_1, + GPIO110_MMC_DAT_2, + GPIO111_MMC_DAT_3, + + ... + + /* GPIO */ + GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH, + }; + + a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(), + and written to the actual registers, they are useless and may discard, + adding '__initdata' will help save some additional bytes here. + + b) when there is only one possible pin configurations for a component, + some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on + PXA25x and PXA27x processors + + c) if by board design, a pin can be configured to wake up the system + from low power state, it can be 'OR'ed with any of: + + WAKEUP_ON_EDGE_BOTH + WAKEUP_ON_EDGE_RISE + WAKEUP_ON_EDGE_FALL + WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs, + + to indicate that this pin has the capability of wake-up the system, + and on which edge(s). This, however, doesn't necessarily mean the + pin _will_ wakeup the system, it will only when set_irq_wake() is + invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq()) + and eventually calls gpio_set_wake() for the actual register setting. + + d) although PXA3xx MFP supports edge detection on each pin, the + internal logic will only wakeup the system when those specific bits + in ADxER registers are set, which can be well mapped to the + corresponding peripheral, thus set_irq_wake() can be called with + the peripheral IRQ to enable the wakeup. + + +MFP on PXA3xx +============= + +Every external I/O pad on PXA3xx (excluding those for special purpose) has +one MFP logic associated, and is controlled by one MFP register (MFPR). + +The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):: + + 31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 + +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + | RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL | + +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + + Bit 3: RESERVED + Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin + Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin + Bit 6: EDGE_CLEAR - disable edge detection on this pin + Bit 7: SLEEP_OE_N - enable outputs during low power modes + Bit 8: SLEEP_DATA - output data on the pin during low power modes + Bit 9: SLEEP_SEL - selection control for low power modes signals + Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin + Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin + Bit 15: PULL_SEL - pull state controlled by selected alternate function + (0) or by PULL{UP,DOWN}_EN bits (1) + + Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7 + Bit 10-12: DRIVE - drive strength and slew rate + 0b000 - fast 1mA + 0b001 - fast 2mA + 0b002 - fast 3mA + 0b003 - fast 4mA + 0b004 - slow 6mA + 0b005 - fast 6mA + 0b006 - slow 10mA + 0b007 - fast 10mA + +MFP Design for PXA2xx/PXA3xx +============================ + +Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified +MFP API is introduced to cover both series of processors. + +The basic idea of this design is to introduce definitions for all possible pin +configurations, these definitions are processor and platform independent, and +the actual API invoked to convert these definitions into register settings and +make them effective there-after. + +Files Involved +-------------- + + - arch/arm/mach-pxa/include/mach/mfp.h + + for + 1. Unified pin definitions - enum constants for all configurable pins + 2. processor-neutral bit definitions for a possible MFP configuration + + - arch/arm/mach-pxa/mfp-pxa3xx.h + + for PXA3xx specific MFPR register bit definitions and PXA3xx common pin + configurations + + - arch/arm/mach-pxa/mfp-pxa2xx.h + + for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations + + - arch/arm/mach-pxa/mfp-pxa25x.h + arch/arm/mach-pxa/mfp-pxa27x.h + arch/arm/mach-pxa/mfp-pxa300.h + arch/arm/mach-pxa/mfp-pxa320.h + arch/arm/mach-pxa/mfp-pxa930.h + + for processor specific definitions + + - arch/arm/mach-pxa/mfp-pxa3xx.c + - arch/arm/mach-pxa/mfp-pxa2xx.c + + for implementation of the pin configuration to take effect for the actual + processor. + +Pin Configuration +----------------- + + The following comments are copied from mfp.h (see the actual source code + for most updated info):: + + /* + * a possible MFP configuration is represented by a 32-bit integer + * + * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum) + * bit 10..12 - Alternate Function Selection + * bit 13..15 - Drive Strength + * bit 16..18 - Low Power Mode State + * bit 19..20 - Low Power Mode Edge Detection + * bit 21..22 - Run Mode Pull State + * + * to facilitate the definition, the following macros are provided + * + * MFP_CFG_DEFAULT - default MFP configuration value, with + * alternate function = 0, + * drive strength = fast 3mA (MFP_DS03X) + * low power mode = default + * edge detection = none + * + * MFP_CFG - default MFPR value with alternate function + * MFP_CFG_DRV - default MFPR value with alternate function and + * pin drive strength + * MFP_CFG_LPM - default MFPR value with alternate function and + * low power mode + * MFP_CFG_X - default MFPR value with alternate function, + * pin drive strength and low power mode + */ + + Examples of pin configurations are:: + + #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT) + + which reads GPIO94 can be configured as SSP3_RXD, with alternate function + selection of 1, driving strength of 0b101, and a float state in low power + modes. + + NOTE: this is the default setting of this pin being configured as SSP3_RXD + which can be modified a bit in board code, though it is not recommended to + do so, simply because this default setting is usually carefully encoded, + and is supposed to work in most cases. + +Register Settings +----------------- + + Register settings on PXA3xx for a pin configuration is actually very + straight-forward, most bits can be converted directly into MFPR value + in a easier way. Two sets of MFPR values are calculated: the run-time + ones and the low power mode ones, to allow different settings. + + The conversion from a generic pin configuration to the actual register + settings on PXA2xx is a bit complicated: many registers are involved, + including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see + mfp-pxa2xx.c for how the conversion is made. diff --git a/Documentation/arm/pxa/mfp.txt b/Documentation/arm/pxa/mfp.txt deleted file mode 100644 index 0b7cab978c02..000000000000 --- a/Documentation/arm/pxa/mfp.txt +++ /dev/null @@ -1,286 +0,0 @@ - MFP Configuration for PXA2xx/PXA3xx Processors - - Eric Miao - -MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and -later PXA series processors. This document describes the existing MFP API, -and how board/platform driver authors could make use of it. - - Basic Concept -=============== - -Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP -mechanism is introduced from PXA3xx to completely move the pin-mux functions -out of the GPIO controller. In addition to pin-mux configurations, the MFP -also controls the low power state, driving strength, pull-up/down and event -detection of each pin. Below is a diagram of internal connections between -the MFP logic and the remaining SoC peripherals: - - +--------+ - | |--(GPIO19)--+ - | GPIO | | - | |--(GPIO...) | - +--------+ | - | +---------+ - +--------+ +------>| | - | PWM2 |--(PWM_OUT)-------->| MFP | - +--------+ +------>| |-------> to external PAD - | +---->| | - +--------+ | | +-->| | - | SSP2 |---(TXD)----+ | | +---------+ - +--------+ | | - | | - +--------+ | | - | Keypad |--(MKOUT4)----+ | - +--------+ | - | - +--------+ | - | UART2 |---(TXD)--------+ - +--------+ - -NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily -mean it's dedicated for GPIO19, only as a hint that internally this pin -can be routed from GPIO19 of the GPIO controller. - -To better understand the change from PXA25x/PXA27x GPIO alternate function -to this new MFP mechanism, here are several key points: - - 1. GPIO controller on PXA3xx is now a dedicated controller, same as other - internal controllers like PWM, SSP and UART, with 128 internal signals - which can be routed to external through one or more MFPs (e.g. GPIO<0> - can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2, - see arch/arm/mach-pxa/mfp-pxa300.h) - - 2. Alternate function configuration is removed from this GPIO controller, - the remaining functions are pure GPIO-specific, i.e. - - - GPIO signal level control - - GPIO direction control - - GPIO level change detection - - 3. Low power state for each pin is now controlled by MFP, this means the - PGSRx registers on PXA2xx are now useless on PXA3xx - - 4. Wakeup detection is now controlled by MFP, PWER does not control the - wakeup from GPIO(s) any more, depending on the sleeping state, ADxER - (as defined in pxa3xx-regs.h) controls the wakeup from MFP - -NOTE: with such a clear separation of MFP and GPIO, by GPIO we normally -mean it is a GPIO signal, and by MFP or pin xxx, we mean a physical -pad (or ball). - - MFP API Usage -=============== - -For board code writers, here are some guidelines: - -1. include ONE of the following header files in your .c: - - - #include "mfp-pxa25x.h" - - #include "mfp-pxa27x.h" - - #include "mfp-pxa300.h" - - #include "mfp-pxa320.h" - - #include "mfp-pxa930.h" - - NOTE: only one file in your .c, depending on the processors used, - because pin configuration definitions may conflict in these file (i.e. - same name, different meaning and settings on different processors). E.g. - for zylonite platform, which support both PXA300/PXA310 and PXA320, two - separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c - (in addition to handle MFP configuration differences, they also handle - the other differences between the two combinations). - - NOTE: PXA300 and PXA310 are almost identical in pin configurations (with - PXA310 supporting some additional ones), thus the difference is actually - covered in a single mfp-pxa300.h. - -2. prepare an array for the initial pin configurations, e.g.: - - static unsigned long mainstone_pin_config[] __initdata = { - /* Chip Select */ - GPIO15_nCS_1, - - /* LCD - 16bpp Active TFT */ - GPIOxx_TFT_LCD_16BPP, - GPIO16_PWM0_OUT, /* Backlight */ - - /* MMC */ - GPIO32_MMC_CLK, - GPIO112_MMC_CMD, - GPIO92_MMC_DAT_0, - GPIO109_MMC_DAT_1, - GPIO110_MMC_DAT_2, - GPIO111_MMC_DAT_3, - - ... - - /* GPIO */ - GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH, - }; - - a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(), - and written to the actual registers, they are useless and may discard, - adding '__initdata' will help save some additional bytes here. - - b) when there is only one possible pin configurations for a component, - some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on - PXA25x and PXA27x processors - - c) if by board design, a pin can be configured to wake up the system - from low power state, it can be 'OR'ed with any of: - - WAKEUP_ON_EDGE_BOTH - WAKEUP_ON_EDGE_RISE - WAKEUP_ON_EDGE_FALL - WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs, - - to indicate that this pin has the capability of wake-up the system, - and on which edge(s). This, however, doesn't necessarily mean the - pin _will_ wakeup the system, it will only when set_irq_wake() is - invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq()) - and eventually calls gpio_set_wake() for the actual register setting. - - d) although PXA3xx MFP supports edge detection on each pin, the - internal logic will only wakeup the system when those specific bits - in ADxER registers are set, which can be well mapped to the - corresponding peripheral, thus set_irq_wake() can be called with - the peripheral IRQ to enable the wakeup. - - - MFP on PXA3xx -=============== - -Every external I/O pad on PXA3xx (excluding those for special purpose) has -one MFP logic associated, and is controlled by one MFP register (MFPR). - -The MFPR has the following bit definitions (for PXA300/PXA310/PXA320): - - 31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ - | RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL | - +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ - - Bit 3: RESERVED - Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin - Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin - Bit 6: EDGE_CLEAR - disable edge detection on this pin - Bit 7: SLEEP_OE_N - enable outputs during low power modes - Bit 8: SLEEP_DATA - output data on the pin during low power modes - Bit 9: SLEEP_SEL - selection control for low power modes signals - Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin - Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin - Bit 15: PULL_SEL - pull state controlled by selected alternate function - (0) or by PULL{UP,DOWN}_EN bits (1) - - Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7 - Bit 10-12: DRIVE - drive strength and slew rate - 0b000 - fast 1mA - 0b001 - fast 2mA - 0b002 - fast 3mA - 0b003 - fast 4mA - 0b004 - slow 6mA - 0b005 - fast 6mA - 0b006 - slow 10mA - 0b007 - fast 10mA - - MFP Design for PXA2xx/PXA3xx -============================== - -Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified -MFP API is introduced to cover both series of processors. - -The basic idea of this design is to introduce definitions for all possible pin -configurations, these definitions are processor and platform independent, and -the actual API invoked to convert these definitions into register settings and -make them effective there-after. - - Files Involved - -------------- - - - arch/arm/mach-pxa/include/mach/mfp.h - - for - 1. Unified pin definitions - enum constants for all configurable pins - 2. processor-neutral bit definitions for a possible MFP configuration - - - arch/arm/mach-pxa/mfp-pxa3xx.h - - for PXA3xx specific MFPR register bit definitions and PXA3xx common pin - configurations - - - arch/arm/mach-pxa/mfp-pxa2xx.h - - for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations - - - arch/arm/mach-pxa/mfp-pxa25x.h - arch/arm/mach-pxa/mfp-pxa27x.h - arch/arm/mach-pxa/mfp-pxa300.h - arch/arm/mach-pxa/mfp-pxa320.h - arch/arm/mach-pxa/mfp-pxa930.h - - for processor specific definitions - - - arch/arm/mach-pxa/mfp-pxa3xx.c - - arch/arm/mach-pxa/mfp-pxa2xx.c - - for implementation of the pin configuration to take effect for the actual - processor. - - Pin Configuration - ----------------- - - The following comments are copied from mfp.h (see the actual source code - for most updated info) - - /* - * a possible MFP configuration is represented by a 32-bit integer - * - * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum) - * bit 10..12 - Alternate Function Selection - * bit 13..15 - Drive Strength - * bit 16..18 - Low Power Mode State - * bit 19..20 - Low Power Mode Edge Detection - * bit 21..22 - Run Mode Pull State - * - * to facilitate the definition, the following macros are provided - * - * MFP_CFG_DEFAULT - default MFP configuration value, with - * alternate function = 0, - * drive strength = fast 3mA (MFP_DS03X) - * low power mode = default - * edge detection = none - * - * MFP_CFG - default MFPR value with alternate function - * MFP_CFG_DRV - default MFPR value with alternate function and - * pin drive strength - * MFP_CFG_LPM - default MFPR value with alternate function and - * low power mode - * MFP_CFG_X - default MFPR value with alternate function, - * pin drive strength and low power mode - */ - - Examples of pin configurations are: - - #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT) - - which reads GPIO94 can be configured as SSP3_RXD, with alternate function - selection of 1, driving strength of 0b101, and a float state in low power - modes. - - NOTE: this is the default setting of this pin being configured as SSP3_RXD - which can be modified a bit in board code, though it is not recommended to - do so, simply because this default setting is usually carefully encoded, - and is supposed to work in most cases. - - Register Settings - ----------------- - - Register settings on PXA3xx for a pin configuration is actually very - straight-forward, most bits can be converted directly into MFPR value - in a easier way. Two sets of MFPR values are calculated: the run-time - ones and the low power mode ones, to allow different settings. - - The conversion from a generic pin configuration to the actual register - settings on PXA2xx is a bit complicated: many registers are involved, - including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see - mfp-pxa2xx.c for how the conversion is made. diff --git a/Documentation/arm/sa1100/adsbitsy.rst b/Documentation/arm/sa1100/adsbitsy.rst new file mode 100644 index 000000000000..c179cb26b682 --- /dev/null +++ b/Documentation/arm/sa1100/adsbitsy.rst @@ -0,0 +1,51 @@ +=============================== +ADS Bitsy Single Board Computer +=============================== + +(It is different from Bitsy(iPAQ) of Compaq) + +For more details, contact Applied Data Systems or see +http://www.applieddata.net/products.html + +The Linux support for this product has been provided by +Woojung Huh + +Use 'make adsbitsy_config' before any 'make config'. +This will set up defaults for ADS Bitsy support. + +The kernel zImage is linked to be loaded and executed at 0xc0400000. + +Linux can be used with the ADS BootLoader that ships with the +newer rev boards. See their documentation on how to load Linux. + +Supported peripherals +===================== + +- SA1100 LCD frame buffer (8/16bpp...sort of) +- SA1111 USB Master +- SA1100 serial port +- pcmcia, compact flash +- touchscreen(ucb1200) +- console on LCD screen +- serial ports (ttyS[0-2]) + - ttyS0 is default for serial console + +To do +===== + +- everything else! :-) + +Notes +===== + +- The flash on board is divided into 3 partitions. + You should be careful to use flash on board. + Its partition is different from GraphicsClient Plus and GraphicsMaster + +- 16bpp mode requires a different cable than what ships with the board. + Contact ADS or look through the manual to wire your own. Currently, + if you compile with 16bit mode support and switch into a lower bpp + mode, the timing is off so the image is corrupted. This will be + fixed soon. + +Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! diff --git a/Documentation/arm/sa1100/assabet.rst b/Documentation/arm/sa1100/assabet.rst new file mode 100644 index 000000000000..3e704831c311 --- /dev/null +++ b/Documentation/arm/sa1100/assabet.rst @@ -0,0 +1,301 @@ +============================================ +The Intel Assabet (SA-1110 evaluation) board +============================================ + +Please see: +http://developer.intel.com + +Also some notes from John G Dorsey : +http://www.cs.cmu.edu/~wearable/software/assabet.html + + +Building the kernel +------------------- + +To build the kernel with current defaults:: + + make assabet_config + make oldconfig + make zImage + +The resulting kernel image should be available in linux/arch/arm/boot/zImage. + + +Installing a bootloader +----------------------- + +A couple of bootloaders able to boot Linux on Assabet are available: + +BLOB (http://www.lartmaker.nl/lartware/blob/) + + BLOB is a bootloader used within the LART project. Some contributed + patches were merged into BLOB to add support for Assabet. + +Compaq's Bootldr + John Dorsey's patch for Assabet support +(http://www.handhelds.org/Compaq/bootldr.html) +(http://www.wearablegroup.org/software/bootldr/) + + Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC. + John Dorsey has produced add-on patches to add support for Assabet and + the JFFS filesystem. + +RedBoot (http://sources.redhat.com/redboot/) + + RedBoot is a bootloader developed by Red Hat based on the eCos RTOS + hardware abstraction layer. It supports Assabet amongst many other + hardware platforms. + +RedBoot is currently the recommended choice since it's the only one to have +networking support, and is the most actively maintained. + +Brief examples on how to boot Linux with RedBoot are shown below. But first +you need to have RedBoot installed in your flash memory. A known to work +precompiled RedBoot binary is available from the following location: + +- ftp://ftp.netwinder.org/users/n/nico/ +- ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/ +- ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/ + +Look for redboot-assabet*.tgz. Some installation infos are provided in +redboot-assabet*.txt. + + +Initial RedBoot configuration +----------------------------- + +The commands used here are explained in The RedBoot User's Guide available +on-line at http://sources.redhat.com/ecos/docs.html. +Please refer to it for explanations. + +If you have a CF network card (my Assabet kit contained a CF+ LP-E from +Socket Communications Inc.), you should strongly consider using it for TFTP +file transfers. You must insert it before RedBoot runs since it can't detect +it dynamically. + +To initialize the flash directory:: + + fis init -f + +To initialize the non-volatile settings, like whether you want to use BOOTP or +a static IP address, etc, use this command:: + + fconfig -i + + +Writing a kernel image into flash +--------------------------------- + +First, the kernel image must be loaded into RAM. If you have the zImage file +available on a TFTP server:: + + load zImage -r -b 0x100000 + +If you rather want to use Y-Modem upload over the serial port:: + + load -m ymodem -r -b 0x100000 + +To write it to flash:: + + fis create "Linux kernel" -b 0x100000 -l 0xc0000 + + +Booting the kernel +------------------ + +The kernel still requires a filesystem to boot. A ramdisk image can be loaded +as follows:: + + load ramdisk_image.gz -r -b 0x800000 + +Again, Y-Modem upload can be used instead of TFTP by replacing the file name +by '-y ymodem'. + +Now the kernel can be retrieved from flash like this:: + + fis load "Linux kernel" + +or loaded as described previously. To boot the kernel:: + + exec -b 0x100000 -l 0xc0000 + +The ramdisk image could be stored into flash as well, but there are better +solutions for on-flash filesystems as mentioned below. + + +Using JFFS2 +----------- + +Using JFFS2 (the Second Journalling Flash File System) is probably the most +convenient way to store a writable filesystem into flash. JFFS2 is used in +conjunction with the MTD layer which is responsible for low-level flash +management. More information on the Linux MTD can be found on-line at: +http://www.linux-mtd.infradead.org/. A JFFS howto with some infos about +creating JFFS/JFFS2 images is available from the same site. + +For instance, a sample JFFS2 image can be retrieved from the same FTP sites +mentioned below for the precompiled RedBoot image. + +To load this file:: + + load sample_img.jffs2 -r -b 0x100000 + +The result should look like:: + + RedBoot> load sample_img.jffs2 -r -b 0x100000 + Raw file loaded 0x00100000-0x00377424 + +Now we must know the size of the unallocated flash:: + + fis free + +Result:: + + RedBoot> fis free + 0x500E0000 .. 0x503C0000 + +The values above may be different depending on the size of the filesystem and +the type of flash. See their usage below as an example and take care of +substituting yours appropriately. + +We must determine some values:: + + size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000 + size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424 + +We want to fit the filesystem image of course, but we also want to give it all +the remaining flash space as well. To write it:: + + fis unlock -f 0x500E0000 -l 0x2e0000 + fis erase -f 0x500E0000 -l 0x2e0000 + fis write -b 0x100000 -l 0x277424 -f 0x500E0000 + fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000 + +Now the filesystem is associated to a MTD "partition" once Linux has discovered +what they are in the boot process. From Redboot, the 'fis list' command +displays them:: + + RedBoot> fis list + Name FLASH addr Mem addr Length Entry point + RedBoot 0x50000000 0x50000000 0x00020000 0x00000000 + RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000 + FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000 + Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000 + JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000 + +However Linux should display something like:: + + SA1100 flash: probing 32-bit flash bus + SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode + Using RedBoot partition definition + Creating 5 MTD partitions on "SA1100 flash": + 0x00000000-0x00020000 : "RedBoot" + 0x00020000-0x000e0000 : "Linux kernel" + 0x000e0000-0x003c0000 : "JFFS2" + 0x003c0000-0x003e0000 : "RedBoot config" + 0x003e0000-0x00400000 : "FIS directory" + +What's important here is the position of the partition we are interested in, +which is the third one. Within Linux, this correspond to /dev/mtdblock2. +Therefore to boot Linux with the kernel and its root filesystem in flash, we +need this RedBoot command:: + + fis load "Linux kernel" + exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2" + +Of course other filesystems than JFFS might be used, like cramfs for example. +You might want to boot with a root filesystem over NFS, etc. It is also +possible, and sometimes more convenient, to flash a filesystem directly from +within Linux while booted from a ramdisk or NFS. The Linux MTD repository has +many tools to deal with flash memory as well, to erase it for example. JFFS2 +can then be mounted directly on a freshly erased partition and files can be +copied over directly. Etc... + + +RedBoot scripting +----------------- + +All the commands above aren't so useful if they have to be typed in every +time the Assabet is rebooted. Therefore it's possible to automate the boot +process using RedBoot's scripting capability. + +For example, I use this to boot Linux with both the kernel and the ramdisk +images retrieved from a TFTP server on the network:: + + RedBoot> fconfig + Run script at boot: false true + Boot script: + Enter script, terminate with empty line + >> load zImage -r -b 0x100000 + >> load ramdisk_ks.gz -r -b 0x800000 + >> exec -b 0x100000 -l 0xc0000 + >> + Boot script timeout (1000ms resolution): 3 + Use BOOTP for network configuration: true + GDB connection port: 9000 + Network debug at boot time: false + Update RedBoot non-volatile configuration - are you sure (y/n)? y + +Then, rebooting the Assabet is just a matter of waiting for the login prompt. + + + +Nicolas Pitre +nico@fluxnic.net + +June 12, 2001 + + +Status of peripherals in -rmk tree (updated 14/10/2001) +------------------------------------------------------- + +Assabet: + Serial ports: + Radio: TX, RX, CTS, DSR, DCD, RI + - PM: Not tested. + - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM + - PM: Not tested. + - I2C: Implemented, not fully tested. + - L3: Fully tested, pass. + - PM: Not tested. + + Video: + - LCD: Fully tested. PM + + (LCD doesn't like being blanked with neponset connected) + + - Video out: Not fully + + Audio: + UDA1341: + - Playback: Fully tested, pass. + - Record: Implemented, not tested. + - PM: Not tested. + + UCB1200: + - Audio play: Implemented, not heavily tested. + - Audio rec: Implemented, not heavily tested. + - Telco audio play: Implemented, not heavily tested. + - Telco audio rec: Implemented, not heavily tested. + - POTS control: No + - Touchscreen: Yes + - PM: Not tested. + + Other: + - PCMCIA: + - LPE: Fully tested, pass. + - USB: No + - IRDA: + - SIR: Fully tested, pass. + - FIR: Fully tested, pass. + - PM: Not tested. + +Neponset: + Serial ports: + - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR + - PM: Not tested. + - USB: Implemented, not heavily tested. + - PCMCIA: Implemented, not heavily tested. + - CF: Implemented, not heavily tested. + - PM: Not tested. + +More stuff can be found in the -np (Nicolas Pitre's) tree. diff --git a/Documentation/arm/sa1100/brutus.rst b/Documentation/arm/sa1100/brutus.rst new file mode 100644 index 000000000000..e1a23bee6d44 --- /dev/null +++ b/Documentation/arm/sa1100/brutus.rst @@ -0,0 +1,69 @@ +====== +Brutus +====== + +Brutus is an evaluation platform for the SA1100 manufactured by Intel. +For more details, see: + +http://developer.intel.com + +To compile for Brutus, you must issue the following commands:: + + make brutus_config + make config + [accept all the defaults] + make zImage + +The resulting kernel will end up in linux/arch/arm/boot/zImage. This file +must be loaded at 0xc0008000 in Brutus's memory and execution started at +0xc0008000 as well with the value of registers r0 = 0 and r1 = 16 upon +entry. + +But prior to execute the kernel, a ramdisk image must also be loaded in +memory. Use memory address 0xd8000000 for this. Note that the file +containing the (compressed) ramdisk image must not exceed 4 MB. + +Typically, you'll need angelboot to load the kernel. +The following angelboot.opt file should be used:: + + base 0xc0008000 + entry 0xc0008000 + r0 0x00000000 + r1 0x00000010 + device /dev/ttyS0 + options "9600 8N1" + baud 115200 + otherfile ramdisk_img.gz + otherbase 0xd8000000 + +Then load the kernel and ramdisk with:: + + angelboot -f angelboot.opt zImage + +The first Brutus serial port (assumed to be linked to /dev/ttyS0 on your +host PC) is used by angel to load the kernel and ramdisk image. The serial +console is provided through the second Brutus serial port. To access it, +you may use minicom configured with /dev/ttyS1, 9600 baud, 8N1, no flow +control. + +Currently supported +=================== + + - RS232 serial ports + - audio output + - LCD screen + - keyboard + +The actual Brutus support may not be complete without extra patches. +If such patches exist, they should be found from +ftp.netwinder.org/users/n/nico. + +A full PCMCIA support is still missing, although it's possible to hack +some drivers in order to drive already inserted cards at boot time with +little modifications. + +Any contribution is welcome. + +Please send patches to nico@fluxnic.net + +Have Fun ! diff --git a/Documentation/arm/sa1100/cerf.rst b/Documentation/arm/sa1100/cerf.rst new file mode 100644 index 000000000000..7fa71b609bf9 --- /dev/null +++ b/Documentation/arm/sa1100/cerf.rst @@ -0,0 +1,35 @@ +============== +CerfBoard/Cube +============== + +*** The StrongARM version of the CerfBoard/Cube has been discontinued *** + +The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board +that measures approximately 2" square. It includes an Ethernet +controller, an RS232-compatible serial port, a USB function port, and +one CompactFlash+ slot on the back. Pictures can be found at the +Intrinsyc website, http://www.intrinsyc.com. + +This document describes the support in the Linux kernel for the +Intrinsyc CerfBoard. + +Supported in this version +========================= + + - CompactFlash+ slot (select PCMCIA in General Setup and any options + that may be required) + - Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in + Network Devices) + - Serial ports with a serial console (hardcoded to 38400 8N1) + +In order to get this kernel onto your Cerf, you need a server that runs +both BOOTP and TFTP. Detailed instructions should have come with your +evaluation kit on how to use the bootloader. This series of commands +will suffice:: + + make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig + make ARCH=arm CROSS_COMPILE=arm-linux- zImage + make ARCH=arm CROSS_COMPILE=arm-linux- modules + cp arch/arm/boot/zImage + +support@intrinsyc.com diff --git a/Documentation/arm/sa1100/freebird.rst b/Documentation/arm/sa1100/freebird.rst new file mode 100644 index 000000000000..81043d0c6d64 --- /dev/null +++ b/Documentation/arm/sa1100/freebird.rst @@ -0,0 +1,25 @@ +======== +Freebird +======== + +Freebird-1.1 is produced by Legend(C), Inc. +`http://web.archive.org/web/*/http://www.legend.com.cn` +and software/linux maintained by Coventive(C), Inc. +(http://www.coventive.com) + +Based on the Nicolas's strongarm kernel tree. + +Maintainer: + +Chester Kuo + - + - + +Author: + +- Tim wu +- CIH +- Eric Peng +- Jeff Lee +- Allen Cheng +- Tony Liu diff --git a/Documentation/arm/sa1100/graphicsclient.rst b/Documentation/arm/sa1100/graphicsclient.rst new file mode 100644 index 000000000000..a73d61c3ce91 --- /dev/null +++ b/Documentation/arm/sa1100/graphicsclient.rst @@ -0,0 +1,102 @@ +============================================= +ADS GraphicsClient Plus Single Board Computer +============================================= + +For more details, contact Applied Data Systems or see +http://www.applieddata.net/products.html + +The original Linux support for this product has been provided by +Nicolas Pitre . Continued development work by +Woojung Huh + +It's currently possible to mount a root filesystem via NFS providing a +complete Linux environment. Otherwise a ramdisk image may be used. The +board supports MTD/JFFS, so you could also mount something on there. + +Use 'make graphicsclient_config' before any 'make config'. This will set up +defaults for GraphicsClient Plus support. + +The kernel zImage is linked to be loaded and executed at 0xc0200000. +Also the following registers should have the specified values upon entry:: + + r0 = 0 + r1 = 29 (this is the GraphicsClient architecture number) + +Linux can be used with the ADS BootLoader that ships with the +newer rev boards. See their documentation on how to load Linux. +Angel is not available for the GraphicsClient Plus AFAIK. + +There is a board known as just the GraphicsClient that ADS used to +produce but has end of lifed. This code will not work on the older +board with the ADS bootloader, but should still work with Angel, +as outlined below. In any case, if you're planning on deploying +something en masse, you should probably get the newer board. + +If using Angel on the older boards, here is a typical angel.opt option file +if the kernel is loaded through the Angel Debug Monitor:: + + base 0xc0200000 + entry 0xc0200000 + r0 0x00000000 + r1 0x0000001d + device /dev/ttyS1 + options "38400 8N1" + baud 115200 + #otherfile ramdisk.gz + #otherbase 0xc0800000 + exec minicom + +Then the kernel (and ramdisk if otherfile/otherbase lines above are +uncommented) would be loaded with:: + + angelboot -f angelboot.opt zImage + +Here it is assumed that the board is connected to ttyS1 on your PC +and that minicom is preconfigured with /dev/ttyS1, 38400 baud, 8N1, no flow +control by default. + +If any other bootloader is used, ensure it accomplish the same, especially +for r0/r1 register values before jumping into the kernel. + + +Supported peripherals +===================== + +- SA1100 LCD frame buffer (8/16bpp...sort of) +- on-board SMC 92C96 ethernet NIC +- SA1100 serial port +- flash memory access (MTD/JFFS) +- pcmcia +- touchscreen(ucb1200) +- ps/2 keyboard +- console on LCD screen +- serial ports (ttyS[0-2]) + - ttyS0 is default for serial console +- Smart I/O (ADC, keypad, digital inputs, etc) + See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation + and example user space code. ps/2 keybd is multiplexed through this driver + +To do +===== + +- UCB1200 audio with new ucb_generic layer +- everything else! :-) + +Notes +===== + +- The flash on board is divided into 3 partitions. mtd0 is where + the ADS boot ROM and zImage is stored. It's been marked as + read-only to keep you from blasting over the bootloader. :) mtd1 is + for the ramdisk.gz image. mtd2 is user flash space and can be + utilized for either JFFS or if you're feeling crazy, running ext2 + on top of it. If you're not using the ADS bootloader, you're + welcome to blast over the mtd1 partition also. + +- 16bpp mode requires a different cable than what ships with the board. + Contact ADS or look through the manual to wire your own. Currently, + if you compile with 16bit mode support and switch into a lower bpp + mode, the timing is off so the image is corrupted. This will be + fixed soon. + +Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! diff --git a/Documentation/arm/sa1100/graphicsmaster.rst b/Documentation/arm/sa1100/graphicsmaster.rst new file mode 100644 index 000000000000..e39892514f0c --- /dev/null +++ b/Documentation/arm/sa1100/graphicsmaster.rst @@ -0,0 +1,60 @@ +======================================== +ADS GraphicsMaster Single Board Computer +======================================== + +For more details, contact Applied Data Systems or see +http://www.applieddata.net/products.html + +The original Linux support for this product has been provided by +Nicolas Pitre . Continued development work by +Woojung Huh + +Use 'make graphicsmaster_config' before any 'make config'. +This will set up defaults for GraphicsMaster support. + +The kernel zImage is linked to be loaded and executed at 0xc0400000. + +Linux can be used with the ADS BootLoader that ships with the +newer rev boards. See their documentation on how to load Linux. + +Supported peripherals +===================== + +- SA1100 LCD frame buffer (8/16bpp...sort of) +- SA1111 USB Master +- on-board SMC 92C96 ethernet NIC +- SA1100 serial port +- flash memory access (MTD/JFFS) +- pcmcia, compact flash +- touchscreen(ucb1200) +- ps/2 keyboard +- console on LCD screen +- serial ports (ttyS[0-2]) + - ttyS0 is default for serial console +- Smart I/O (ADC, keypad, digital inputs, etc) + See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation + and example user space code. ps/2 keybd is multiplexed through this driver + +To do +===== + +- everything else! :-) + +Notes +===== + +- The flash on board is divided into 3 partitions. mtd0 is where + the zImage is stored. It's been marked as read-only to keep you + from blasting over the bootloader. :) mtd1 is + for the ramdisk.gz image. mtd2 is user flash space and can be + utilized for either JFFS or if you're feeling crazy, running ext2 + on top of it. If you're not using the ADS bootloader, you're + welcome to blast over the mtd1 partition also. + +- 16bpp mode requires a different cable than what ships with the board. + Contact ADS or look through the manual to wire your own. Currently, + if you compile with 16bit mode support and switch into a lower bpp + mode, the timing is off so the image is corrupted. This will be + fixed soon. + +Any contribution can be sent to nico@fluxnic.net and will be greatly welcome! diff --git a/Documentation/arm/sa1100/huw_webpanel.rst b/Documentation/arm/sa1100/huw_webpanel.rst new file mode 100644 index 000000000000..1dc7ccb165f0 --- /dev/null +++ b/Documentation/arm/sa1100/huw_webpanel.rst @@ -0,0 +1,21 @@ +======================= +Hoeft & Wessel Webpanel +======================= + +The HUW_WEBPANEL is a product of the german company Hoeft & Wessel AG + +If you want more information, please visit +http://www.hoeft-wessel.de + +To build the kernel:: + + make huw_webpanel_config + make oldconfig + [accept all defaults] + make zImage + +Mostly of the work is done by: +Roman Jordan jor@hoeft-wessel.de +Christoph Schulz schu@hoeft-wessel.de + +2000/12/18/ diff --git a/Documentation/arm/sa1100/index.rst b/Documentation/arm/sa1100/index.rst new file mode 100644 index 000000000000..fb2385b3accf --- /dev/null +++ b/Documentation/arm/sa1100/index.rst @@ -0,0 +1,23 @@ +==================== +Intel StrongARM 1100 +==================== + +.. toctree:: + :maxdepth: 1 + + adsbitsy + assabet + brutus + cerf + freebird + graphicsclient + graphicsmaster + huw_webpanel + itsy + lart + nanoengine + pangolin + pleb + serial_uart + tifon + yopy diff --git a/Documentation/arm/sa1100/itsy.rst b/Documentation/arm/sa1100/itsy.rst new file mode 100644 index 000000000000..f49896ba3ef1 --- /dev/null +++ b/Documentation/arm/sa1100/itsy.rst @@ -0,0 +1,47 @@ +==== +Itsy +==== + +Itsy is a research project done by the Western Research Lab, and Systems +Research Center in Palo Alto, CA. The Itsy project is one of several +research projects at Compaq that are related to pocket computing. + +For more information, see: + + http://www.hpl.hp.com/downloads/crl/itsy/ + +Notes on initial 2.4 Itsy support (8/27/2000) : + +The port was done on an Itsy version 1.5 machine with a daughtercard with +64 Meg of DRAM and 32 Meg of Flash. The initial work includes support for +serial console (to see what you're doing). No other devices have been +enabled. + +To build, do a "make menuconfig" (or xmenuconfig) and select Itsy support. +Disable Flash and LCD support. and then do a make zImage. +Finally, you will need to cd to arch/arm/boot/tools and execute a make there +to build the params-itsy program used to boot the kernel. + +In order to install the port of 2.4 to the itsy, You will need to set the +configuration parameters in the monitor as follows:: + + Arg 1:0x08340000, Arg2: 0xC0000000, Arg3:18 (0x12), Arg4:0 + +Make sure the start-routine address is set to 0x00060000. + +Next, flash the params-itsy program to 0x00060000 ("p 1 0x00060000" in the +flash menu) Flash the kernel in arch/arm/boot/zImage into 0x08340000 +("p 1 0x00340000"). Finally flash an initial ramdisk into 0xC8000000 +("p 2 0x0") We used ramdisk-2-30.gz from the 0.11 version directory on +handhelds.org. + +The serial connection we established was at: + +8-bit data, no parity, 1 stop bit(s), 115200.00 b/s. in the monitor, in the +params-itsy program, and in the kernel itself. This can be changed, but +not easily. The monitor parameters are easily changed, the params program +setup is assembly outl's, and the kernel is a configuration item specific to +the itsy. (i.e. grep for CONFIG_SA1100_ITSY and you'll find where it is.) + + +This should get you a properly booting 2.4 kernel on the itsy. diff --git a/Documentation/arm/sa1100/lart.rst b/Documentation/arm/sa1100/lart.rst new file mode 100644 index 000000000000..94c0568d1095 --- /dev/null +++ b/Documentation/arm/sa1100/lart.rst @@ -0,0 +1,15 @@ +==================================== +Linux Advanced Radio Terminal (LART) +==================================== + +The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded +applications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all +other StrongARM-gadgets. Almost all SA signals are directly accessible +through a number of connectors. The powersupply accepts voltages +between 3.5V and 16V and is overdimensioned to support a range of +daughterboards. A quad Ethernet / IDE / PS2 / sound daughterboard +is under development, with plenty of others in different stages of +planning. + +The hardware designs for this board have been released under an open license; +see the LART page at http://www.lartmaker.nl/ for more information. diff --git a/Documentation/arm/sa1100/nanoengine.rst b/Documentation/arm/sa1100/nanoengine.rst new file mode 100644 index 000000000000..47f1a14cf98a --- /dev/null +++ b/Documentation/arm/sa1100/nanoengine.rst @@ -0,0 +1,11 @@ +========== +nanoEngine +========== + +"nanoEngine" is a SA1110 based single board computer from +Bright Star Engineering Inc. See www.brightstareng.com/arm +for more info. +(Ref: Stuart Adams ) + +Also visit Larry Doolittle's "Linux for the nanoEngine" site: +http://www.brightstareng.com/arm/nanoeng.htm diff --git a/Documentation/arm/sa1100/pangolin.rst b/Documentation/arm/sa1100/pangolin.rst new file mode 100644 index 000000000000..f0c5c1618553 --- /dev/null +++ b/Documentation/arm/sa1100/pangolin.rst @@ -0,0 +1,29 @@ +======== +Pangolin +======== + +Pangolin is a StrongARM 1110-based evaluation platform produced +by Dialogue Technology (http://www.dialogue.com.tw/). +It has EISA slots for ease of configuration with SDRAM/Flash +memory card, USB/Serial/Audio card, Compact Flash card, +PCMCIA/IDE card and TFT-LCD card. + +To compile for Pangolin, you must issue the following commands:: + + make pangolin_config + make oldconfig + make zImage + +Supported peripherals +===================== + +- SA1110 serial port (UART1/UART2/UART3) +- flash memory access +- compact flash driver +- UDA1341 sound driver +- SA1100 LCD controller for 800x600 16bpp TFT-LCD +- MQ-200 driver for 800x600 16bpp TFT-LCD +- Penmount(touch panel) driver +- PCMCIA driver +- SMC91C94 LAN driver +- IDE driver (experimental) diff --git a/Documentation/arm/sa1100/pleb.rst b/Documentation/arm/sa1100/pleb.rst new file mode 100644 index 000000000000..d5b732967aa3 --- /dev/null +++ b/Documentation/arm/sa1100/pleb.rst @@ -0,0 +1,13 @@ +==== +PLEB +==== + +The PLEB project was started as a student initiative at the School of +Computer Science and Engineering, University of New South Wales to make a +pocket computer capable of running the Linux Kernel. + +PLEB support has yet to be fully integrated. + +For more information, see: + + http://www.cse.unsw.edu.au diff --git a/Documentation/arm/sa1100/serial_uart.rst b/Documentation/arm/sa1100/serial_uart.rst new file mode 100644 index 000000000000..ea983642b9be --- /dev/null +++ b/Documentation/arm/sa1100/serial_uart.rst @@ -0,0 +1,51 @@ +================== +SA1100 serial port +================== + +The SA1100 serial port had its major/minor numbers officially assigned:: + + > Date: Sun, 24 Sep 2000 21:40:27 -0700 + > From: H. Peter Anvin + > To: Nicolas Pitre + > Cc: Device List Maintainer + > Subject: Re: device + > + > Okay. Note that device numbers 204 and 205 are used for "low density + > serial devices", so you will have a range of minors on those majors (the + > tty device layer handles this just fine, so you don't have to worry about + > doing anything special.) + > + > So your assignments are: + > + > 204 char Low-density serial ports + > 5 = /dev/ttySA0 SA1100 builtin serial port 0 + > 6 = /dev/ttySA1 SA1100 builtin serial port 1 + > 7 = /dev/ttySA2 SA1100 builtin serial port 2 + > + > 205 char Low-density serial ports (alternate device) + > 5 = /dev/cusa0 Callout device for ttySA0 + > 6 = /dev/cusa1 Callout device for ttySA1 + > 7 = /dev/cusa2 Callout device for ttySA2 + > + +You must create those inodes in /dev on the root filesystem used +by your SA1100-based device:: + + mknod ttySA0 c 204 5 + mknod ttySA1 c 204 6 + mknod ttySA2 c 204 7 + mknod cusa0 c 205 5 + mknod cusa1 c 205 6 + mknod cusa2 c 205 7 + +In addition to the creation of the appropriate device nodes above, you +must ensure your user space applications make use of the correct device +name. The classic example is the content of the /etc/inittab file where +you might have a getty process started on ttyS0. + +In this case: + +- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc. + +- don't forget to add 'ttySA0', 'console', or the appropriate tty name + in /etc/securetty for root to be allowed to login as well. diff --git a/Documentation/arm/sa1100/tifon.rst b/Documentation/arm/sa1100/tifon.rst new file mode 100644 index 000000000000..c26e910b9ea7 --- /dev/null +++ b/Documentation/arm/sa1100/tifon.rst @@ -0,0 +1,7 @@ +===== +Tifon +===== + +More info has to come... + +Contact: Peter Danielsson diff --git a/Documentation/arm/sa1100/yopy.rst b/Documentation/arm/sa1100/yopy.rst new file mode 100644 index 000000000000..5b35a5f61a44 --- /dev/null +++ b/Documentation/arm/sa1100/yopy.rst @@ -0,0 +1,5 @@ +==== +Yopy +==== + +See http://www.yopydeveloper.org for more. diff --git a/Documentation/arm/samsung-s3c24xx/cpufreq.rst b/Documentation/arm/samsung-s3c24xx/cpufreq.rst new file mode 100644 index 000000000000..2ddc26c03b1f --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/cpufreq.rst @@ -0,0 +1,76 @@ +======================= +S3C24XX CPUfreq support +======================= + +Introduction +------------ + + The S3C24XX series support a number of power saving systems, such as + the ability to change the core, memory and peripheral operating + frequencies. The core control is exported via the CPUFreq driver + which has a number of different manual or automatic controls over the + rate the core is running at. + + There are two forms of the driver depending on the specific CPU and + how the clocks are arranged. The first implementation used as single + PLL to feed the ARM, memory and peripherals via a series of dividers + and muxes and this is the implementation that is documented here. A + newer version where there is a separate PLL and clock divider for the + ARM core is available as a separate driver. + + +Layout +------ + + The code core manages the CPU specific drivers, any data that they + need to register and the interface to the generic drivers/cpufreq + system. Each CPU registers a driver to control the PLL, clock dividers + and anything else associated with it. Any board that wants to use this + framework needs to supply at least basic details of what is required. + + The core registers with drivers/cpufreq at init time if all the data + necessary has been supplied. + + +CPU support +----------- + + The support for each CPU depends on the facilities provided by the + SoC and the driver as each device has different PLL and clock chains + associated with it. + + +Slow Mode +--------- + + The SLOW mode where the PLL is turned off altogether and the + system is fed by the external crystal input is currently not + supported. + + +sysfs +----- + + The core code exports extra information via sysfs in the directory + devices/system/cpu/cpu0/arch-freq. + + +Board Support +------------- + + Each board that wants to use the cpufreq code must register some basic + information with the core driver to provide information about what the + board requires and any restrictions being placed on it. + + The board needs to supply information about whether it needs the IO bank + timings changing, any maximum frequency limits and information about the + SDRAM refresh rate. + + + + +Document Author +--------------- + +Ben Dooks, Copyright 2009 Simtec Electronics +Licensed under GPLv2 diff --git a/Documentation/arm/samsung-s3c24xx/eb2410itx.rst b/Documentation/arm/samsung-s3c24xx/eb2410itx.rst new file mode 100644 index 000000000000..7863c93652f8 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/eb2410itx.rst @@ -0,0 +1,59 @@ +=================================== +Simtec Electronics EB2410ITX (BAST) +=================================== + + http://www.simtec.co.uk/products/EB2410ITX/ + +Introduction +------------ + + The EB2410ITX is a S3C2410 based development board with a variety of + peripherals and expansion connectors. This board is also known by + the shortened name of Bast. + + +Configuration +------------- + + To set the default configuration, use `make bast_defconfig` which + supports the commonly used features of this board. + + +Support +------- + + Official support information can be found on the Simtec Electronics + website, at the product page http://www.simtec.co.uk/products/EB2410ITX/ + + Useful links: + + - Resources Page http://www.simtec.co.uk/products/EB2410ITX/resources.html + + - Board FAQ at http://www.simtec.co.uk/products/EB2410ITX/faq.html + + - Bootloader info http://www.simtec.co.uk/products/SWABLE/resources.html + and FAQ http://www.simtec.co.uk/products/SWABLE/faq.html + + +MTD +--- + + The NAND and NOR support has been merged from the linux-mtd project. + Any problems, see http://www.linux-mtd.infradead.org/ for more + information or up-to-date versions of linux-mtd. + + +IDE +--- + + Both onboard IDE ports are supported, however there is no support for + changing speed of devices, PIO Mode 4 capable drives should be used. + + +Maintainers +----------- + + This board is maintained by Simtec Electronics. + + +Copyright 2004 Ben Dooks, Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/gpio.rst b/Documentation/arm/samsung-s3c24xx/gpio.rst new file mode 100644 index 000000000000..f7c3d7d011a2 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/gpio.rst @@ -0,0 +1,172 @@ +==================== +S3C24XX GPIO Control +==================== + +Introduction +------------ + + The s3c2410 kernel provides an interface to configure and + manipulate the state of the GPIO pins, and find out other + information about them. + + There are a number of conditions attached to the configuration + of the s3c2410 GPIO system, please read the Samsung provided + data-sheet/users manual to find out the complete list. + + See Documentation/arm/samsung/gpio.rst for the core implementation. + + +GPIOLIB +------- + + With the event of the GPIOLIB in drivers/gpio, support for some + of the GPIO functions such as reading and writing a pin will + be removed in favour of this common access method. + + Once all the extant drivers have been converted, the functions + listed below will be removed (they may be marked as __deprecated + in the near future). + + The following functions now either have a `s3c_` specific variant + or are merged into gpiolib. See the definitions in + arch/arm/plat-samsung/include/plat/gpio-cfg.h: + + - s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output() + - s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input() + - s3c2410_gpio_getirq() gpio_to_irq() + - s3c2410_gpio_cfgpin() s3c_gpio_cfgpin() + - s3c2410_gpio_getcfg() s3c_gpio_getcfg() + - s3c2410_gpio_pullup() s3c_gpio_setpull() + + +GPIOLIB conversion +------------------ + +If you need to convert your board or driver to use gpiolib from the phased +out s3c2410 API, then here are some notes on the process. + +1) If your board is exclusively using an GPIO, say to control peripheral + power, then it will require to claim the gpio with gpio_request() before + it can use it. + + It is recommended to check the return value, with at least WARN_ON() + during initialisation. + +2) The s3c2410_gpio_cfgpin() can be directly replaced with s3c_gpio_cfgpin() + as they have the same arguments, and can either take the pin specific + values, or the more generic special-function-number arguments. + +3) s3c2410_gpio_pullup() changes have the problem that while the + s3c2410_gpio_pullup(x, 1) can be easily translated to the + s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0) + are not so easy. + + The s3c2410_gpio_pullup(x, 0) case enables the pull-up (or in the case + of some of the devices, a pull-down) and as such the new API distinguishes + between the UP and DOWN case. There is currently no 'just turn on' setting + which may be required if this becomes a problem. + +4) s3c2410_gpio_setpin() can be replaced by gpio_set_value(), the old call + does not implicitly configure the relevant gpio to output. The gpio + direction should be changed before using gpio_set_value(). + +5) s3c2410_gpio_getpin() is replaceable by gpio_get_value() if the pin + has been set to input. It is currently unknown what the behaviour is + when using gpio_get_value() on an output pin (s3c2410_gpio_getpin + would return the value the pin is supposed to be outputting). + +6) s3c2410_gpio_getirq() should be directly replaceable with the + gpio_to_irq() call. + +The s3c2410_gpio and `gpio_` calls have always operated on the same gpio +numberspace, so there is no problem with converting the gpio numbering +between the calls. + + +Headers +------- + + See arch/arm/mach-s3c24xx/include/mach/regs-gpio.h for the list + of GPIO pins, and the configuration values for them. This + is included by using #include + + +PIN Numbers +----------- + + Each pin has an unique number associated with it in regs-gpio.h, + e.g. S3C2410_GPA(0) or S3C2410_GPF(1). These defines are used to tell + the GPIO functions which pin is to be used. + + With the conversion to gpiolib, there is no longer a direct conversion + from gpio pin number to register base address as in earlier kernels. This + is due to the number space required for newer SoCs where the later + GPIOs are not contiguous. + + +Configuring a pin +----------------- + + The following function allows the configuration of a given pin to + be changed. + + void s3c_gpio_cfgpin(unsigned int pin, unsigned int function); + + e.g.: + + s3c_gpio_cfgpin(S3C2410_GPA(0), S3C_GPIO_SFN(1)); + s3c_gpio_cfgpin(S3C2410_GPE(8), S3C_GPIO_SFN(2)); + + which would turn GPA(0) into the lowest Address line A0, and set + GPE(8) to be connected to the SDIO/MMC controller's SDDAT1 line. + + +Reading the current configuration +--------------------------------- + + The current configuration of a pin can be read by using standard + gpiolib function: + + s3c_gpio_getcfg(unsigned int pin); + + The return value will be from the same set of values which can be + passed to s3c_gpio_cfgpin(). + + +Configuring a pull-up resistor +------------------------------ + + A large proportion of the GPIO pins on the S3C2410 can have weak + pull-up resistors enabled. This can be configured by the following + function: + + void s3c_gpio_setpull(unsigned int pin, unsigned int to); + + Where the to value is S3C_GPIO_PULL_NONE to set the pull-up off, + and S3C_GPIO_PULL_UP to enable the specified pull-up. Any other + values are currently undefined. + + +Getting and setting the state of a PIN +-------------------------------------- + + These calls are now implemented by the relevant gpiolib calls, convert + your board or driver to use gpiolib. + + +Getting the IRQ number associated with a PIN +-------------------------------------------- + + A standard gpiolib function can map the given pin number to an IRQ + number to pass to the IRQ system. + + int gpio_to_irq(unsigned int pin); + + Note, not all pins have an IRQ. + + +Author +------- + +Ben Dooks, 03 October 2004 +Copyright 2004 Ben Dooks, Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/h1940.rst b/Documentation/arm/samsung-s3c24xx/h1940.rst new file mode 100644 index 000000000000..62a562c178e3 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/h1940.rst @@ -0,0 +1,41 @@ +============= +HP IPAQ H1940 +============= + +http://www.handhelds.org/projects/h1940.html + +Introduction +------------ + + The HP H1940 is a S3C2410 based handheld device, with + bluetooth connectivity. + + +Support +------- + + A variety of information is available + + handhelds.org project page: + + http://www.handhelds.org/projects/h1940.html + + handhelds.org wiki page: + + http://handhelds.org/moin/moin.cgi/HpIpaqH1940 + + Herbert Pötzl pages: + + http://vserver.13thfloor.at/H1940/ + + +Maintainers +----------- + + This project is being maintained and developed by a variety + of people, including Ben Dooks, Arnaud Patard, and Herbert Pötzl. + + Thanks to the many others who have also provided support. + + +(c) 2005 Ben Dooks diff --git a/Documentation/arm/samsung-s3c24xx/index.rst b/Documentation/arm/samsung-s3c24xx/index.rst new file mode 100644 index 000000000000..6c7b241cbf37 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/index.rst @@ -0,0 +1,18 @@ +========================== +Samsung S3C24XX SoC Family +========================== + +.. toctree:: + :maxdepth: 1 + + h1940 + gpio + cpufreq + suspend + usb-host + s3c2412 + eb2410itx + nand + smdk2440 + s3c2413 + overview diff --git a/Documentation/arm/samsung-s3c24xx/nand.rst b/Documentation/arm/samsung-s3c24xx/nand.rst new file mode 100644 index 000000000000..938995694ee7 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/nand.rst @@ -0,0 +1,30 @@ +==================== +S3C24XX NAND Support +==================== + +Introduction +------------ + +Small Page NAND +--------------- + +The driver uses a 512 byte (1 page) ECC code for this setup. The +ECC code is not directly compatible with the default kernel ECC +code, so the driver enforces its own OOB layout and ECC parameters + +Large Page NAND +--------------- + +The driver is capable of handling NAND flash with a 2KiB page +size, with support for hardware ECC generation and correction. + +Unlike the 512byte page mode, the driver generates ECC data for +each 256 byte block in an 2KiB page. This means that more than +one error in a page can be rectified. It also means that the +OOB layout remains the default kernel layout for these flashes. + + +Document Author +--------------- + +Ben Dooks, Copyright 2007 Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/overview.rst b/Documentation/arm/samsung-s3c24xx/overview.rst new file mode 100644 index 000000000000..e9a1dc7276b5 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/overview.rst @@ -0,0 +1,319 @@ +========================== +S3C24XX ARM Linux Overview +========================== + + + +Introduction +------------ + + The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported + by the 's3c2410' architecture of ARM Linux. Currently the S3C2410, + S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443 and S3C2450 devices + are supported. + + Support for the S3C2400 and S3C24A0 series was never completed and the + corresponding code has been removed after a while. If someone wishes to + revive this effort, partial support can be retrieved from earlier Linux + versions. + + The S3C2416 and S3C2450 devices are very similar and S3C2450 support is + included under the arch/arm/mach-s3c2416 directory. Note, while core + support for these SoCs is in, work on some of the extra peripherals + and extra interrupts is still ongoing. + + +Configuration +------------- + + A generic S3C2410 configuration is provided, and can be used as the + default by `make s3c2410_defconfig`. This configuration has support + for all the machines, and the commonly used features on them. + + Certain machines may have their own default configurations as well, + please check the machine specific documentation. + + +Layout +------ + + The core support files are located in the platform code contained in + arch/arm/plat-s3c24xx with headers in include/asm-arm/plat-s3c24xx. + This directory should be kept to items shared between the platform + code (arch/arm/plat-s3c24xx) and the arch/arm/mach-s3c24* code. + + Each cpu has a directory with the support files for it, and the + machines that carry the device. For example S3C2410 is contained + in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440 + + Register, kernel and platform data definitions are held in the + arch/arm/mach-s3c2410 directory./include/mach + +arch/arm/plat-s3c24xx: + + Files in here are either common to all the s3c24xx family, + or are common to only some of them with names to indicate this + status. The files that are not common to all are generally named + with the initial cpu they support in the series to ensure a short + name without any possibility of confusion with newer devices. + + As an example, initially s3c244x would cover s3c2440 and s3c2442, but + with the s3c2443 which does not share many of the same drivers in + this directory, the name becomes invalid. We stick to s3c2440- + to indicate a driver that is s3c2440 and s3c2442 compatible. + + This does mean that to find the status of any given SoC, a number + of directories may need to be searched. + + +Machines +-------- + + The currently supported machines are as follows: + + Simtec Electronics EB2410ITX (BAST) + + A general purpose development board, see EB2410ITX.txt for further + details + + Simtec Electronics IM2440D20 (Osiris) + + CPU Module from Simtec Electronics, with a S3C2440A CPU, nand flash + and a PCMCIA controller. + + Samsung SMDK2410 + + Samsung's own development board, geared for PDA work. + + Samsung/Aiji SMDK2412 + + The S3C2412 version of the SMDK2440. + + Samsung/Aiji SMDK2413 + + The S3C2412 version of the SMDK2440. + + Samsung/Meritech SMDK2440 + + The S3C2440 compatible version of the SMDK2440, which has the + option of an S3C2440 or S3C2442 CPU module. + + Thorcom VR1000 + + Custom embedded board + + HP IPAQ 1940 + + Handheld (IPAQ), available in several varieties + + HP iPAQ rx3715 + + S3C2440 based IPAQ, with a number of variations depending on + features shipped. + + Acer N30 + + A S3C2410 based PDA from Acer. There is a Wiki page at + http://handhelds.org/moin/moin.cgi/AcerN30Documentation . + + AML M5900 + + American Microsystems' M5900 + + Nex Vision Nexcoder + Nex Vision Otom + + Two machines by Nex Vision + + +Adding New Machines +------------------- + + The architecture has been designed to support as many machines as can + be configured for it in one kernel build, and any future additions + should keep this in mind before altering items outside of their own + machine files. + + Machine definitions should be kept in linux/arch/arm/mach-s3c2410, + and there are a number of examples that can be looked at. + + Read the kernel patch submission policies as well as the + Documentation/arm directory before submitting patches. The + ARM kernel series is managed by Russell King, and has a patch system + located at http://www.arm.linux.org.uk/developer/patches/ + as well as mailing lists that can be found from the same site. + + As a courtesy, please notify of any new + machines or other modifications. + + Any large scale modifications, or new drivers should be discussed + on the ARM kernel mailing list (linux-arm-kernel) before being + attempted. See http://www.arm.linux.org.uk/mailinglists/ for the + mailing list information. + + +I2C +--- + + The hardware I2C core in the CPU is supported in single master + mode, and can be configured via platform data. + + +RTC +--- + + Support for the onboard RTC unit, including alarm function. + + This has recently been upgraded to use the new RTC core, + and the module has been renamed to rtc-s3c to fit in with + the new rtc naming scheme. + + +Watchdog +-------- + + The onchip watchdog is available via the standard watchdog + interface. + + +NAND +---- + + The current kernels now have support for the s3c2410 NAND + controller. If there are any problems the latest linux-mtd + code can be found from http://www.linux-mtd.infradead.org/ + + For more information see Documentation/arm/samsung-s3c24xx/nand.rst + + +SD/MMC +------ + + The SD/MMC hardware pre S3C2443 is supported in the current + kernel, the driver is drivers/mmc/host/s3cmci.c and supports + 1 and 4 bit SD or MMC cards. + + The SDIO behaviour of this driver has not been fully tested. There is no + current support for hardware SDIO interrupts. + + +Serial +------ + + The s3c2410 serial driver provides support for the internal + serial ports. These devices appear as /dev/ttySAC0 through 3. + + To create device nodes for these, use the following commands + + mknod ttySAC0 c 204 64 + mknod ttySAC1 c 204 65 + mknod ttySAC2 c 204 66 + + +GPIO +---- + + The core contains support for manipulating the GPIO, see the + documentation in GPIO.txt in the same directory as this file. + + Newer kernels carry GPIOLIB, and support is being moved towards + this with some of the older support in line to be removed. + + As of v2.6.34, the move towards using gpiolib support is almost + complete, and very little of the old calls are left. + + See Documentation/arm/samsung-s3c24xx/gpio.rst for the S3C24XX specific + support and Documentation/arm/samsung/gpio.rst for the core Samsung + implementation. + + +Clock Management +---------------- + + The core provides the interface defined in the header file + include/asm-arm/hardware/clock.h, to allow control over the + various clock units + + +Suspend to RAM +-------------- + + For boards that provide support for suspend to RAM, the + system can be placed into low power suspend. + + See Suspend.txt for more information. + + +SPI +--- + + SPI drivers are available for both the in-built hardware + (although there is no DMA support yet) and a generic + GPIO based solution. + + +LEDs +---- + + There is support for GPIO based LEDs via a platform driver + in the LED subsystem. + + +Platform Data +------------- + + Whenever a device has platform specific data that is specified + on a per-machine basis, care should be taken to ensure the + following: + + 1) that default data is not left in the device to confuse the + driver if a machine does not set it at startup + + 2) the data should (if possible) be marked as __initdata, + to ensure that the data is thrown away if the machine is + not the one currently in use. + + The best way of doing this is to make a function that + kmalloc()s an area of memory, and copies the __initdata + and then sets the relevant device's platform data. Making + the function `__init` takes care of ensuring it is discarded + with the rest of the initialisation code:: + + static __init void s3c24xx_xxx_set_platdata(struct xxx_data *pd) + { + struct s3c2410_xxx_mach_info *npd; + + npd = kmalloc(sizeof(struct s3c2410_xxx_mach_info), GFP_KERNEL); + if (npd) { + memcpy(npd, pd, sizeof(struct s3c2410_xxx_mach_info)); + s3c_device_xxx.dev.platform_data = npd; + } else { + printk(KERN_ERR "no memory for xxx platform data\n"); + } + } + + Note, since the code is marked as __init, it should not be + exported outside arch/arm/mach-s3c2410/, or exported to + modules via EXPORT_SYMBOL() and related functions. + + +Port Contributors +----------------- + + Ben Dooks (BJD) + Vincent Sanders + Herbert Potzl + Arnaud Patard (RTP) + Roc Wu + Klaus Fetscher + Dimitry Andric + Shannon Holland + Guillaume Gourat (NexVision) + Christer Weinigel (wingel) (Acer N30) + Lucas Correia Villa Real (S3C2400 port) + + +Document Author +--------------- + +Ben Dooks, Copyright 2004-2006 Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/s3c2412.rst b/Documentation/arm/samsung-s3c24xx/s3c2412.rst new file mode 100644 index 000000000000..68b985fc6bf4 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/s3c2412.rst @@ -0,0 +1,121 @@ +========================== +S3C2412 ARM Linux Overview +========================== + +Introduction +------------ + + The S3C2412 is part of the S3C24XX range of ARM9 System-on-Chip CPUs + from Samsung. This part has an ARM926-EJS core, capable of running up + to 266MHz (see data-sheet for more information) + + +Clock +----- + + The core clock code provides a set of clocks to the drivers, and allows + for source selection and a number of other features. + + +Power +----- + + No support for suspend/resume to RAM in the current system. + + +DMA +--- + + No current support for DMA. + + +GPIO +---- + + There is support for setting the GPIO to input/output/special function + and reading or writing to them. + + +UART +---- + + The UART hardware is similar to the S3C2440, and is supported by the + s3c2410 driver in the drivers/serial directory. + + +NAND +---- + + The NAND hardware is similar to the S3C2440, and is supported by the + s3c2410 driver in the drivers/mtd/nand/raw directory. + + +USB Host +-------- + + The USB hardware is similar to the S3C2410, with extended clock source + control. The OHCI portion is supported by the ohci-s3c2410 driver, and + the clock control selection is supported by the core clock code. + + +USB Device +---------- + + No current support in the kernel + + +IRQs +---- + + All the standard, and external interrupt sources are supported. The + extra sub-sources are not yet supported. + + +RTC +--- + + The RTC hardware is similar to the S3C2410, and is supported by the + s3c2410-rtc driver. + + +Watchdog +-------- + + The watchdog hardware is the same as the S3C2410, and is supported by + the s3c2410_wdt driver. + + +MMC/SD/SDIO +----------- + + No current support for the MMC/SD/SDIO block. + +IIC +--- + + The IIC hardware is the same as the S3C2410, and is supported by the + i2c-s3c24xx driver. + + +IIS +--- + + No current support for the IIS interface. + + +SPI +--- + + No current support for the SPI interfaces. + + +ATA +--- + + No current support for the on-board ATA block. + + +Document Author +--------------- + +Ben Dooks, Copyright 2006 Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/s3c2413.rst b/Documentation/arm/samsung-s3c24xx/s3c2413.rst new file mode 100644 index 000000000000..1f51e207fc46 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/s3c2413.rst @@ -0,0 +1,22 @@ +========================== +S3C2413 ARM Linux Overview +========================== + +Introduction +------------ + + The S3C2413 is an extended version of the S3C2412, with an camera + interface and mobile DDR memory support. See the S3C2412 support + documentation for more information. + + +Camera Interface +---------------- + + This block is currently not supported. + + +Document Author +--------------- + +Ben Dooks, Copyright 2006 Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/smdk2440.rst b/Documentation/arm/samsung-s3c24xx/smdk2440.rst new file mode 100644 index 000000000000..524fd0b4afaf --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/smdk2440.rst @@ -0,0 +1,57 @@ +========================= +Samsung/Meritech SMDK2440 +========================= + +Introduction +------------ + + The SMDK2440 is a two part evaluation board for the Samsung S3C2440 + processor. It includes support for LCD, SmartMedia, Audio, SD and + 10MBit Ethernet, and expansion headers for various signals, including + the camera and unused GPIO. + + +Configuration +------------- + + To set the default configuration, use `make smdk2440_defconfig` which + will configure the common features of this board, or use + `make s3c2410_config` to include support for all s3c2410/s3c2440 machines + + +Support +------- + + Ben Dooks' SMDK2440 site at http://www.fluff.org/ben/smdk2440/ which + includes linux based USB download tools. + + Some of the h1940 patches that can be found from the H1940 project + site at http://www.handhelds.org/projects/h1940.html can also be + applied to this board. + + +Peripherals +----------- + + There is no current support for any of the extra peripherals on the + base-board itself. + + +MTD +--- + + The NAND flash should be supported by the in kernel MTD NAND support, + NOR flash will be added later. + + +Maintainers +----------- + + This board is being maintained by Ben Dooks, for more info, see + http://www.fluff.org/ben/smdk2440/ + + Many thanks to Dimitry Andric of TomTom for the loan of the SMDK2440, + and to Simtec Electronics for allowing me time to work on this. + + +(c) 2004 Ben Dooks diff --git a/Documentation/arm/samsung-s3c24xx/suspend.rst b/Documentation/arm/samsung-s3c24xx/suspend.rst new file mode 100644 index 000000000000..b4f3ae9fe76e --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/suspend.rst @@ -0,0 +1,137 @@ +======================= +S3C24XX Suspend Support +======================= + + +Introduction +------------ + + The S3C24XX supports a low-power suspend mode, where the SDRAM is kept + in Self-Refresh mode, and all but the essential peripheral blocks are + powered down. For more information on how this works, please look + at the relevant CPU datasheet from Samsung. + + +Requirements +------------ + + 1) A bootloader that can support the necessary resume operation + + 2) Support for at least 1 source for resume + + 3) CONFIG_PM enabled in the kernel + + 4) Any peripherals that are going to be powered down at the same + time require suspend/resume support. + + +Resuming +-------- + + The S3C2410 user manual defines the process of sending the CPU to + sleep and how it resumes. The default behaviour of the Linux code + is to set the GSTATUS3 register to the physical address of the + code to resume Linux operation. + + GSTATUS4 is currently left alone by the sleep code, and is free to + use for any other purposes (for example, the EB2410ITX uses this to + save memory configuration in). + + +Machine Support +--------------- + + The machine specific functions must call the s3c_pm_init() function + to say that its bootloader is capable of resuming. This can be as + simple as adding the following to the machine's definition: + + INITMACHINE(s3c_pm_init) + + A board can do its own setup before calling s3c_pm_init, if it + needs to setup anything else for power management support. + + There is currently no support for over-riding the default method of + saving the resume address, if your board requires it, then contact + the maintainer and discuss what is required. + + Note, the original method of adding an late_initcall() is wrong, + and will end up initialising all compiled machines' pm init! + + The following is an example of code used for testing wakeup from + an falling edge on IRQ_EINT0:: + + + static irqreturn_t button_irq(int irq, void *pw) + { + return IRQ_HANDLED; + } + + statuc void __init machine_init(void) + { + ... + + request_irq(IRQ_EINT0, button_irq, IRQF_TRIGGER_FALLING, + "button-irq-eint0", NULL); + + enable_irq_wake(IRQ_EINT0); + + s3c_pm_init(); + } + + +Debugging +--------- + + There are several important things to remember when using PM suspend: + + 1) The uart drivers will disable the clocks to the UART blocks when + suspending, which means that use of printascii() or similar direct + access to the UARTs will cause the debug to stop. + + 2) While the pm code itself will attempt to re-enable the UART clocks, + care should be taken that any external clock sources that the UARTs + rely on are still enabled at that point. + + 3) If any debugging is placed in the resume path, then it must have the + relevant clocks and peripherals setup before use (ie, bootloader). + + For example, if you transmit a character from the UART, the baud + rate and uart controls must be setup beforehand. + + +Configuration +------------- + + The S3C2410 specific configuration in `System Type` defines various + aspects of how the S3C2410 suspend and resume support is configured + + `S3C2410 PM Suspend debug` + + This option prints messages to the serial console before and after + the actual suspend, giving detailed information on what is + happening + + + `S3C2410 PM Suspend Memory CRC` + + Allows the entire memory to be checksummed before and after the + suspend to see if there has been any corruption of the contents. + + Note, the time to calculate the CRC is dependent on the CPU speed + and the size of memory. For an 64Mbyte RAM area on an 200MHz + S3C2410, this can take approximately 4 seconds to complete. + + This support requires the CRC32 function to be enabled. + + + `S3C2410 PM Suspend CRC Chunksize (KiB)` + + Defines the size of memory each CRC chunk covers. A smaller value + will mean that the CRC data block will take more memory, but will + identify any faults with better precision + + +Document Author +--------------- + +Ben Dooks, Copyright 2004 Simtec Electronics diff --git a/Documentation/arm/samsung-s3c24xx/usb-host.rst b/Documentation/arm/samsung-s3c24xx/usb-host.rst new file mode 100644 index 000000000000..c84268bd1884 --- /dev/null +++ b/Documentation/arm/samsung-s3c24xx/usb-host.rst @@ -0,0 +1,91 @@ +======================== +S3C24XX USB Host support +======================== + + + +Introduction +------------ + + This document details the S3C2410/S3C2440 in-built OHCI USB host support. + +Configuration +------------- + + Enable at least the following kernel options: + + menuconfig:: + + Device Drivers ---> + USB support ---> + <*> Support for Host-side USB + <*> OHCI HCD support + + + .config: + + - CONFIG_USB + - CONFIG_USB_OHCI_HCD + + + Once these options are configured, the standard set of USB device + drivers can be configured and used. + + +Board Support +------------- + + The driver attaches to a platform device, which will need to be + added by the board specific support file in linux/arch/arm/mach-s3c2410, + such as mach-bast.c or mach-smdk2410.c + + The platform device's platform_data field is only needed if the + board implements extra power control or over-current monitoring. + + The OHCI driver does not ensure the state of the S3C2410's MISCCTRL + register, so if both ports are to be used for the host, then it is + the board support file's responsibility to ensure that the second + port is configured to be connected to the OHCI core. + + +Platform Data +------------- + + See arch/arm/mach-s3c2410/include/mach/usb-control.h for the + descriptions of the platform device data. An implementation + can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c . + + The `struct s3c2410_hcd_info` contains a pair of functions + that get called to enable over-current detection, and to + control the port power status. + + The ports are numbered 0 and 1. + + power_control: + Called to enable or disable the power on the port. + + enable_oc: + Called to enable or disable the over-current monitoring. + This should claim or release the resources being used to + check the power condition on the port, such as an IRQ. + + report_oc: + The OHCI driver fills this field in for the over-current code + to call when there is a change to the over-current state on + an port. The ports argument is a bitmask of 1 bit per port, + with bit X being 1 for an over-current on port X. + + The function s3c2410_usb_report_oc() has been provided to + ensure this is called correctly. + + port[x]: + This is struct describes each port, 0 or 1. The platform driver + should set the flags field of each port to S3C_HCDFLG_USED if + the port is enabled. + + + +Document Author +--------------- + +Ben Dooks, Copyright 2005 Simtec Electronics diff --git a/Documentation/arm/samsung/bootloader-interface.rst b/Documentation/arm/samsung/bootloader-interface.rst new file mode 100644 index 000000000000..a56f325dae78 --- /dev/null +++ b/Documentation/arm/samsung/bootloader-interface.rst @@ -0,0 +1,81 @@ +========================================================== +Interface between kernel and boot loaders on Exynos boards +========================================================== + +Author: Krzysztof Kozlowski + +Date : 6 June 2015 + +The document tries to describe currently used interface between Linux kernel +and boot loaders on Samsung Exynos based boards. This is not a definition +of interface but rather a description of existing state, a reference +for information purpose only. + +In the document "boot loader" means any of following: U-boot, proprietary +SBOOT or any other firmware for ARMv7 and ARMv8 initializing the board before +executing kernel. + + +1. Non-Secure mode + +Address: sysram_ns_base_addr + +============= ============================================ ================== +Offset Value Purpose +============= ============================================ ================== +0x08 exynos_cpu_resume_ns, mcpm_entry_point System suspend +0x0c 0x00000bad (Magic cookie) System suspend +0x1c exynos4_secondary_startup Secondary CPU boot +0x1c + 4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot +0x20 0xfcba0d10 (Magic cookie) AFTR +0x24 exynos_cpu_resume_ns AFTR +0x28 + 4*cpu 0x8 (Magic cookie, Exynos3250) AFTR +0x28 0x0 or last value during resume (Exynos542x) System suspend +============= ============================================ ================== + + +2. Secure mode + +Address: sysram_base_addr + +============= ============================================ ================== +Offset Value Purpose +============= ============================================ ================== +0x00 exynos4_secondary_startup Secondary CPU boot +0x04 exynos4_secondary_startup (Exynos542x) Secondary CPU boot +4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot +0x20 exynos_cpu_resume (Exynos4210 r1.0) AFTR +0x24 0xfcba0d10 (Magic cookie, Exynos4210 r1.0) AFTR +============= ============================================ ================== + +Address: pmu_base_addr + +============= ============================================ ================== +Offset Value Purpose +============= ============================================ ================== +0x0800 exynos_cpu_resume AFTR, suspend +0x0800 mcpm_entry_point (Exynos542x with MCPM) AFTR, suspend +0x0804 0xfcba0d10 (Magic cookie) AFTR +0x0804 0x00000bad (Magic cookie) System suspend +0x0814 exynos4_secondary_startup (Exynos4210 r1.1) Secondary CPU boot +0x0818 0xfcba0d10 (Magic cookie, Exynos4210 r1.1) AFTR +0x081C exynos_cpu_resume (Exynos4210 r1.1) AFTR +============= ============================================ ================== + +3. Other (regardless of secure/non-secure mode) + +Address: pmu_base_addr + +============= =============================== =============================== +Offset Value Purpose +============= =============================== =============================== +0x0908 Non-zero Secondary CPU boot up indicator + on Exynos3250 and Exynos542x +============= =============================== =============================== + + +4. Glossary + +AFTR - ARM Off Top Running, a low power mode, Cortex cores and many other +modules are power gated, except the TOP modules +MCPM - Multi-Cluster Power Management diff --git a/Documentation/arm/samsung/clksrc-change-registers.awk b/Documentation/arm/samsung/clksrc-change-registers.awk new file mode 100755 index 000000000000..7be1b8aa7cd9 --- /dev/null +++ b/Documentation/arm/samsung/clksrc-change-registers.awk @@ -0,0 +1,166 @@ +#!/usr/bin/awk -f +# +# Copyright 2010 Ben Dooks +# +# Released under GPLv2 + +# example usage +# ./clksrc-change-registers.awk arch/arm/plat-s5pc1xx/include/plat/regs-clock.h < src > dst + +function extract_value(s) +{ + eqat = index(s, "=") + comat = index(s, ",") + return substr(s, eqat+2, (comat-eqat)-2) +} + +function remove_brackets(b) +{ + return substr(b, 2, length(b)-2) +} + +function splitdefine(l, p) +{ + r = split(l, tp) + + p[0] = tp[2] + p[1] = remove_brackets(tp[3]) +} + +function find_length(f) +{ + if (0) + printf "find_length " f "\n" > "/dev/stderr" + + if (f ~ /0x1/) + return 1 + else if (f ~ /0x3/) + return 2 + else if (f ~ /0x7/) + return 3 + else if (f ~ /0xf/) + return 4 + + printf "unknown length " f "\n" > "/dev/stderr" + exit +} + +function find_shift(s) +{ + id = index(s, "<") + if (id <= 0) { + printf "cannot find shift " s "\n" > "/dev/stderr" + exit + } + + return substr(s, id+2) +} + + +BEGIN { + if (ARGC < 2) { + print "too few arguments" > "/dev/stderr" + exit + } + +# read the header file and find the mask values that we will need +# to replace and create an associative array of values + + while (getline line < ARGV[1] > 0) { + if (line ~ /\#define.*_MASK/ && + !(line ~ /USB_SIG_MASK/)) { + splitdefine(line, fields) + name = fields[0] + if (0) + printf "MASK " line "\n" > "/dev/stderr" + dmask[name,0] = find_length(fields[1]) + dmask[name,1] = find_shift(fields[1]) + if (0) + printf "=> '" name "' LENGTH=" dmask[name,0] " SHIFT=" dmask[name,1] "\n" > "/dev/stderr" + } else { + } + } + + delete ARGV[1] +} + +/clksrc_clk.*=.*{/ { + shift="" + mask="" + divshift="" + reg_div="" + reg_src="" + indent=1 + + print $0 + + for(; indent >= 1;) { + if ((getline line) <= 0) { + printf "unexpected end of file" > "/dev/stderr" + exit 1; + } + + if (line ~ /\.shift/) { + shift = extract_value(line) + } else if (line ~ /\.mask/) { + mask = extract_value(line) + } else if (line ~ /\.reg_divider/) { + reg_div = extract_value(line) + } else if (line ~ /\.reg_source/) { + reg_src = extract_value(line) + } else if (line ~ /\.divider_shift/) { + divshift = extract_value(line) + } else if (line ~ /{/) { + indent++ + print line + } else if (line ~ /}/) { + indent-- + + if (indent == 0) { + if (0) { + printf "shift '" shift "' ='" dmask[shift,0] "'\n" > "/dev/stderr" + printf "mask '" mask "'\n" > "/dev/stderr" + printf "dshft '" divshift "'\n" > "/dev/stderr" + printf "rdiv '" reg_div "'\n" > "/dev/stderr" + printf "rsrc '" reg_src "'\n" > "/dev/stderr" + } + + generated = mask + sub(reg_src, reg_div, generated) + + if (0) { + printf "/* rsrc " reg_src " */\n" + printf "/* rdiv " reg_div " */\n" + printf "/* shift " shift " */\n" + printf "/* mask " mask " */\n" + printf "/* generated " generated " */\n" + } + + if (reg_div != "") { + printf "\t.reg_div = { " + printf ".reg = " reg_div ", " + printf ".shift = " dmask[generated,1] ", " + printf ".size = " dmask[generated,0] ", " + printf "},\n" + } + + printf "\t.reg_src = { " + printf ".reg = " reg_src ", " + printf ".shift = " dmask[mask,1] ", " + printf ".size = " dmask[mask,0] ", " + + printf "},\n" + + } + + print line + } else { + print line + } + + if (0) + printf indent ":" line "\n" > "/dev/stderr" + } +} + +// && ! /clksrc_clk.*=.*{/ { print $0 } diff --git a/Documentation/arm/samsung/gpio.rst b/Documentation/arm/samsung/gpio.rst new file mode 100644 index 000000000000..5f7cadd7159e --- /dev/null +++ b/Documentation/arm/samsung/gpio.rst @@ -0,0 +1,41 @@ +=========================== +Samsung GPIO implementation +=========================== + +Introduction +------------ + +This outlines the Samsung GPIO implementation and the architecture +specific calls provided alongside the drivers/gpio core. + + +S3C24XX (Legacy) +---------------- + +See Documentation/arm/samsung-s3c24xx/gpio.rst for more information +about these devices. Their implementation has been brought into line +with the core samsung implementation described in this document. + + +GPIOLIB integration +------------------- + +The gpio implementation uses gpiolib as much as possible, only providing +specific calls for the items that require Samsung specific handling, such +as pin special-function or pull resistor control. + +GPIO numbering is synchronised between the Samsung and gpiolib system. + + +PIN configuration +----------------- + +Pin configuration is specific to the Samsung architecture, with each SoC +registering the necessary information for the core gpio configuration +implementation to configure pins as necessary. + +The s3c_gpio_cfgpin() and s3c_gpio_setpull() provide the means for a +driver or machine to change gpio configuration. + +See arch/arm/plat-samsung/include/plat/gpio-cfg.h for more information +on these functions. diff --git a/Documentation/arm/samsung/index.rst b/Documentation/arm/samsung/index.rst new file mode 100644 index 000000000000..f54d95734362 --- /dev/null +++ b/Documentation/arm/samsung/index.rst @@ -0,0 +1,10 @@ +=========== +Samsung SoC +=========== + +.. toctree:: + :maxdepth: 1 + + gpio + bootloader-interface + overview diff --git a/Documentation/arm/samsung/overview.rst b/Documentation/arm/samsung/overview.rst new file mode 100644 index 000000000000..e74307897416 --- /dev/null +++ b/Documentation/arm/samsung/overview.rst @@ -0,0 +1,89 @@ +========================== +Samsung ARM Linux Overview +========================== + +Introduction +------------ + + The Samsung range of ARM SoCs spans many similar devices, from the initial + ARM9 through to the newest ARM cores. This document shows an overview of + the current kernel support, how to use it and where to find the code + that supports this. + + The currently supported SoCs are: + + - S3C24XX: See Documentation/arm/samsung-s3c24xx/overview.rst for full list + - S3C64XX: S3C6400 and S3C6410 + - S5PC110 / S5PV210 + + +S3C24XX Systems +--------------- + + There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which + deals with the architecture and drivers specific to these devices. + + See Documentation/arm/samsung-s3c24xx/overview.rst for more information + on the implementation details and specific support. + + +Configuration +------------- + + A number of configurations are supplied, as there is no current way of + unifying all the SoCs into one kernel. + + s5pc110_defconfig + - S5PC110 specific default configuration + s5pv210_defconfig + - S5PV210 specific default configuration + + +Layout +------ + + The directory layout is currently being restructured, and consists of + several platform directories and then the machine specific directories + of the CPUs being built for. + + plat-samsung provides the base for all the implementations, and is the + last in the line of include directories that are processed for the build + specific information. It contains the base clock, GPIO and device definitions + to get the system running. + + plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs. + + plat-s5p is for s5p specific builds, and contains common support for the + S5P specific systems. Not all S5Ps use all the features in this directory + due to differences in the hardware. + + +Layout changes +-------------- + + The old plat-s3c and plat-s5pc1xx directories have been removed, with + support moved to either plat-samsung or plat-s5p as necessary. These moves + where to simplify the include and dependency issues involved with having + so many different platform directories. + + +Port Contributors +----------------- + + Ben Dooks (BJD) + Vincent Sanders + Herbert Potzl + Arnaud Patard (RTP) + Roc Wu + Klaus Fetscher + Dimitry Andric + Shannon Holland + Guillaume Gourat (NexVision) + Christer Weinigel (wingel) (Acer N30) + Lucas Correia Villa Real (S3C2400 port) + + +Document Author +--------------- + +Copyright 2009-2010 Ben Dooks diff --git a/Documentation/arm/setup.rst b/Documentation/arm/setup.rst new file mode 100644 index 000000000000..8e12ef3fb9a7 --- /dev/null +++ b/Documentation/arm/setup.rst @@ -0,0 +1,108 @@ +============================================= +Kernel initialisation parameters on ARM Linux +============================================= + +The following document describes the kernel initialisation parameter +structure, otherwise known as 'struct param_struct' which is used +for most ARM Linux architectures. + +This structure is used to pass initialisation parameters from the +kernel loader to the Linux kernel proper, and may be short lived +through the kernel initialisation process. As a general rule, it +should not be referenced outside of arch/arm/kernel/setup.c:setup_arch(). + +There are a lot of parameters listed in there, and they are described +below: + + page_size + This parameter must be set to the page size of the machine, and + will be checked by the kernel. + + nr_pages + This is the total number of pages of memory in the system. If + the memory is banked, then this should contain the total number + of pages in the system. + + If the system contains separate VRAM, this value should not + include this information. + + ramdisk_size + This is now obsolete, and should not be used. + + flags + Various kernel flags, including: + + ===== ======================== + bit 0 1 = mount root read only + bit 1 unused + bit 2 0 = load ramdisk + bit 3 0 = prompt for ramdisk + ===== ======================== + + rootdev + major/minor number pair of device to mount as the root filesystem. + + video_num_cols / video_num_rows + These two together describe the character size of the dummy console, + or VGA console character size. They should not be used for any other + purpose. + + It's generally a good idea to set these to be either standard VGA, or + the equivalent character size of your fbcon display. This then allows + all the bootup messages to be displayed correctly. + + video_x / video_y + This describes the character position of cursor on VGA console, and + is otherwise unused. (should not be used for other console types, and + should not be used for other purposes). + + memc_control_reg + MEMC chip control register for Acorn Archimedes and Acorn A5000 + based machines. May be used differently by different architectures. + + sounddefault + Default sound setting on Acorn machines. May be used differently by + different architectures. + + adfsdrives + Number of ADFS/MFM disks. May be used differently by different + architectures. + + bytes_per_char_h / bytes_per_char_v + These are now obsolete, and should not be used. + + pages_in_bank[4] + Number of pages in each bank of the systems memory (used for RiscPC). + This is intended to be used on systems where the physical memory + is non-contiguous from the processors point of view. + + pages_in_vram + Number of pages in VRAM (used on Acorn RiscPC). This value may also + be used by loaders if the size of the video RAM can't be obtained + from the hardware. + + initrd_start / initrd_size + This describes the kernel virtual start address and size of the + initial ramdisk. + + rd_start + Start address in sectors of the ramdisk image on a floppy disk. + + system_rev + system revision number. + + system_serial_low / system_serial_high + system 64-bit serial number + + mem_fclk_21285 + The speed of the external oscillator to the 21285 (footbridge), + which control's the speed of the memory bus, timer & serial port. + Depending upon the speed of the cpu its value can be between + 0-66 MHz. If no params are passed or a value of zero is passed, + then a value of 50 Mhz is the default on 21285 architectures. + + paths[8][128] + These are now obsolete, and should not be used. + + commandline + Kernel command line parameters. Details can be found elsewhere. diff --git a/Documentation/arm/sh-mobile/.gitignore b/Documentation/arm/sh-mobile/.gitignore new file mode 100644 index 000000000000..c928dbf3cc88 --- /dev/null +++ b/Documentation/arm/sh-mobile/.gitignore @@ -0,0 +1 @@ +vrl4 diff --git a/Documentation/arm/spear/overview.rst b/Documentation/arm/spear/overview.rst new file mode 100644 index 000000000000..8a1a87aca427 --- /dev/null +++ b/Documentation/arm/spear/overview.rst @@ -0,0 +1,65 @@ +======================== +SPEAr ARM Linux Overview +======================== + +Introduction +------------ + + SPEAr (Structured Processor Enhanced Architecture). + weblink : http://www.st.com/spear + + The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-Chip CPUs are + supported by the 'spear' platform of ARM Linux. Currently SPEAr1310, + SPEAr1340, SPEAr300, SPEAr310, SPEAr320 and SPEAr600 SOCs are supported. + + Hierarchy in SPEAr is as follows: + + SPEAr (Platform) + - SPEAr3XX (3XX SOC series, based on ARM9) + - SPEAr300 (SOC) + - SPEAr300 Evaluation Board + - SPEAr310 (SOC) + - SPEAr310 Evaluation Board + - SPEAr320 (SOC) + - SPEAr320 Evaluation Board + - SPEAr6XX (6XX SOC series, based on ARM9) + - SPEAr600 (SOC) + - SPEAr600 Evaluation Board + - SPEAr13XX (13XX SOC series, based on ARM CORTEXA9) + - SPEAr1310 (SOC) + - SPEAr1310 Evaluation Board + - SPEAr1340 (SOC) + - SPEAr1340 Evaluation Board + +Configuration +------------- + + A generic configuration is provided for each machine, and can be used as the + default by:: + + make spear13xx_defconfig + make spear3xx_defconfig + make spear6xx_defconfig + +Layout +------ + + The common files for multiple machine families (SPEAr3xx, SPEAr6xx and + SPEAr13xx) are located in the platform code contained in arch/arm/plat-spear + with headers in plat/. + + Each machine series have a directory with name arch/arm/mach-spear followed by + series name. Like mach-spear3xx, mach-spear6xx and mach-spear13xx. + + Common file for machines of spear3xx family is mach-spear3xx/spear3xx.c, for + spear6xx is mach-spear6xx/spear6xx.c and for spear13xx family is + mach-spear13xx/spear13xx.c. mach-spear* also contain soc/machine specific + files, like spear1310.c, spear1340.c spear300.c, spear310.c, spear320.c and + spear600.c. mach-spear* doesn't contains board specific files as they fully + support Flattened Device Tree. + + +Document Author +--------------- + + Viresh Kumar , (c) 2010-2012 ST Microelectronics diff --git a/Documentation/arm/sti/overview.rst b/Documentation/arm/sti/overview.rst new file mode 100644 index 000000000000..70743617a74f --- /dev/null +++ b/Documentation/arm/sti/overview.rst @@ -0,0 +1,36 @@ +====================== +STi ARM Linux Overview +====================== + +Introduction +------------ + + The ST Microelectronics Multimedia and Application Processors range of + CortexA9 System-on-Chip are supported by the 'STi' platform of + ARM Linux. Currently STiH415, STiH416 SOCs are supported with both + B2000 and B2020 Reference boards. + + +configuration +------------- + + A generic configuration is provided for both STiH415/416, and can be used as the + default by:: + + make stih41x_defconfig + +Layout +------ + + All the files for multiple machine families (STiH415, STiH416, and STiG125) + are located in the platform code contained in arch/arm/mach-sti + + There is a generic board board-dt.c in the mach folder which support + Flattened Device Tree, which means, It works with any compatible board with + Device Trees. + + +Document Author +--------------- + + Srinivas Kandagatla , (c) 2013 ST Microelectronics diff --git a/Documentation/arm/sti/overview.txt b/Documentation/arm/sti/overview.txt deleted file mode 100644 index 1a4e93d6027f..000000000000 --- a/Documentation/arm/sti/overview.txt +++ /dev/null @@ -1,33 +0,0 @@ - STi ARM Linux Overview - ========================== - -Introduction ------------- - - The ST Microelectronics Multimedia and Application Processors range of - CortexA9 System-on-Chip are supported by the 'STi' platform of - ARM Linux. Currently STiH415, STiH416 SOCs are supported with both - B2000 and B2020 Reference boards. - - - configuration - ------------- - - A generic configuration is provided for both STiH415/416, and can be used as the - default by - make stih41x_defconfig - - Layout - ------ - All the files for multiple machine families (STiH415, STiH416, and STiG125) - are located in the platform code contained in arch/arm/mach-sti - - There is a generic board board-dt.c in the mach folder which support - Flattened Device Tree, which means, It works with any compatible board with - Device Trees. - - - Document Author - --------------- - - Srinivas Kandagatla , (c) 2013 ST Microelectronics diff --git a/Documentation/arm/sti/stih407-overview.rst b/Documentation/arm/sti/stih407-overview.rst new file mode 100644 index 000000000000..027e75bc7b7c --- /dev/null +++ b/Documentation/arm/sti/stih407-overview.rst @@ -0,0 +1,19 @@ +================ +STiH407 Overview +================ + +Introduction +------------ + + The STiH407 is the new generation of SoC for Multi-HD, AVC set-top boxes + and server/connected client application for satellite, cable, terrestrial + and IP-STB markets. + + Features + - ARM Cortex-A9 1.5 GHz dual core CPU (28nm) + - SATA2, USB 3.0, PCIe, Gbit Ethernet + +Document Author +--------------- + + Maxime Coquelin , (c) 2014 ST Microelectronics diff --git a/Documentation/arm/sti/stih407-overview.txt b/Documentation/arm/sti/stih407-overview.txt deleted file mode 100644 index 3343f32f58bc..000000000000 --- a/Documentation/arm/sti/stih407-overview.txt +++ /dev/null @@ -1,18 +0,0 @@ - STiH407 Overview - ================ - -Introduction ------------- - - The STiH407 is the new generation of SoC for Multi-HD, AVC set-top boxes - and server/connected client application for satellite, cable, terrestrial - and IP-STB markets. - - Features - - ARM Cortex-A9 1.5 GHz dual core CPU (28nm) - - SATA2, USB 3.0, PCIe, Gbit Ethernet - - Document Author - --------------- - - Maxime Coquelin , (c) 2014 ST Microelectronics diff --git a/Documentation/arm/sti/stih415-overview.rst b/Documentation/arm/sti/stih415-overview.rst new file mode 100644 index 000000000000..b67452d610c4 --- /dev/null +++ b/Documentation/arm/sti/stih415-overview.rst @@ -0,0 +1,14 @@ +================ +STiH415 Overview +================ + +Introduction +------------ + + The STiH415 is the next generation of HD, AVC set-top box processors + for satellite, cable, terrestrial and IP-STB markets. + + Features: + + - ARM Cortex-A9 1.0 GHz, dual-core CPU + - SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2 diff --git a/Documentation/arm/sti/stih415-overview.txt b/Documentation/arm/sti/stih415-overview.txt deleted file mode 100644 index 1383e33f265d..000000000000 --- a/Documentation/arm/sti/stih415-overview.txt +++ /dev/null @@ -1,12 +0,0 @@ - STiH415 Overview - ================ - -Introduction ------------- - - The STiH415 is the next generation of HD, AVC set-top box processors - for satellite, cable, terrestrial and IP-STB markets. - - Features - - ARM Cortex-A9 1.0 GHz, dual-core CPU - - SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2 diff --git a/Documentation/arm/sti/stih416-overview.rst b/Documentation/arm/sti/stih416-overview.rst new file mode 100644 index 000000000000..93f17d74d8db --- /dev/null +++ b/Documentation/arm/sti/stih416-overview.rst @@ -0,0 +1,13 @@ +================ +STiH416 Overview +================ + +Introduction +------------ + + The STiH416 is the next generation of HD, AVC set-top box processors + for satellite, cable, terrestrial and IP-STB markets. + + Features + - ARM Cortex-A9 1.2 GHz dual core CPU + - SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2 diff --git a/Documentation/arm/sti/stih416-overview.txt b/Documentation/arm/sti/stih416-overview.txt deleted file mode 100644 index 558444c201c6..000000000000 --- a/Documentation/arm/sti/stih416-overview.txt +++ /dev/null @@ -1,12 +0,0 @@ - STiH416 Overview - ================ - -Introduction ------------- - - The STiH416 is the next generation of HD, AVC set-top box processors - for satellite, cable, terrestrial and IP-STB markets. - - Features - - ARM Cortex-A9 1.2 GHz dual core CPU - - SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2 diff --git a/Documentation/arm/sti/stih418-overview.rst b/Documentation/arm/sti/stih418-overview.rst new file mode 100644 index 000000000000..b563c1f4fe5a --- /dev/null +++ b/Documentation/arm/sti/stih418-overview.rst @@ -0,0 +1,21 @@ +================ +STiH418 Overview +================ + +Introduction +------------ + + The STiH418 is the new generation of SoC for UHDp60 set-top boxes + and server/connected client application for satellite, cable, terrestrial + and IP-STB markets. + + Features + - ARM Cortex-A9 1.5 GHz quad core CPU (28nm) + - SATA2, USB 3.0, PCIe, Gbit Ethernet + - HEVC L5.1 Main 10 + - VP9 + +Document Author +--------------- + + Maxime Coquelin , (c) 2015 ST Microelectronics diff --git a/Documentation/arm/sti/stih418-overview.txt b/Documentation/arm/sti/stih418-overview.txt deleted file mode 100644 index 1cd8fc80646d..000000000000 --- a/Documentation/arm/sti/stih418-overview.txt +++ /dev/null @@ -1,20 +0,0 @@ - STiH418 Overview - ================ - -Introduction ------------- - - The STiH418 is the new generation of SoC for UHDp60 set-top boxes - and server/connected client application for satellite, cable, terrestrial - and IP-STB markets. - - Features - - ARM Cortex-A9 1.5 GHz quad core CPU (28nm) - - SATA2, USB 3.0, PCIe, Gbit Ethernet - - HEVC L5.1 Main 10 - - VP9 - - Document Author - --------------- - - Maxime Coquelin , (c) 2015 ST Microelectronics diff --git a/Documentation/arm/stm32/overview.rst b/Documentation/arm/stm32/overview.rst index f7e734153860..85cfc8410798 100644 --- a/Documentation/arm/stm32/overview.rst +++ b/Documentation/arm/stm32/overview.rst @@ -1,5 +1,3 @@ -:orphan: - ======================== STM32 ARM Linux Overview ======================== diff --git a/Documentation/arm/stm32/stm32f429-overview.rst b/Documentation/arm/stm32/stm32f429-overview.rst index 65bbb1c3b423..a7ebe8ea6697 100644 --- a/Documentation/arm/stm32/stm32f429-overview.rst +++ b/Documentation/arm/stm32/stm32f429-overview.rst @@ -1,5 +1,4 @@ -:orphan: - +================== STM32F429 Overview ================== @@ -23,6 +22,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F429_) .. _STM32F429: http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN1806?ecmp=stm32f429-439_pron_pr-ces2014_nov2013 -:Authors: - -Maxime Coquelin +:Authors: Maxime Coquelin diff --git a/Documentation/arm/stm32/stm32f746-overview.rst b/Documentation/arm/stm32/stm32f746-overview.rst index 42d593085015..78befddc7740 100644 --- a/Documentation/arm/stm32/stm32f746-overview.rst +++ b/Documentation/arm/stm32/stm32f746-overview.rst @@ -1,5 +1,4 @@ -:orphan: - +================== STM32F746 Overview ================== @@ -30,6 +29,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F746_) .. _STM32F746: http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f7-series/stm32f7x6/stm32f746ng.html -:Authors: - -Alexandre Torgue +:Authors: Alexandre Torgue diff --git a/Documentation/arm/stm32/stm32f769-overview.rst b/Documentation/arm/stm32/stm32f769-overview.rst index f6adac862b17..e482980ddf21 100644 --- a/Documentation/arm/stm32/stm32f769-overview.rst +++ b/Documentation/arm/stm32/stm32f769-overview.rst @@ -1,5 +1,4 @@ -:orphan: - +================== STM32F769 Overview ================== @@ -32,6 +31,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F769_) .. _STM32F769: http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series/stm32f7x9/stm32f769ni.html -:Authors: - -Alexandre Torgue +:Authors: Alexandre Torgue diff --git a/Documentation/arm/stm32/stm32h743-overview.rst b/Documentation/arm/stm32/stm32h743-overview.rst index c525835e7473..4e15f1a42730 100644 --- a/Documentation/arm/stm32/stm32h743-overview.rst +++ b/Documentation/arm/stm32/stm32h743-overview.rst @@ -1,5 +1,4 @@ -:orphan: - +================== STM32H743 Overview ================== @@ -31,6 +30,4 @@ Datasheet and reference manual are publicly available on ST website (STM32H743_) .. _STM32H743: http://www.st.com/en/microcontrollers/stm32h7x3.html?querycriteria=productId=LN2033 -:Authors: - -Alexandre Torgue +:Authors: Alexandre Torgue diff --git a/Documentation/arm/stm32/stm32mp157-overview.rst b/Documentation/arm/stm32/stm32mp157-overview.rst index 2c52cd020601..f62fdc8e7d8d 100644 --- a/Documentation/arm/stm32/stm32mp157-overview.rst +++ b/Documentation/arm/stm32/stm32mp157-overview.rst @@ -1,5 +1,4 @@ -:orphan: - +=================== STM32MP157 Overview =================== diff --git a/Documentation/arm/sunxi.rst b/Documentation/arm/sunxi.rst new file mode 100644 index 000000000000..b037428aee98 --- /dev/null +++ b/Documentation/arm/sunxi.rst @@ -0,0 +1,150 @@ +================== +ARM Allwinner SoCs +================== + +This document lists all the ARM Allwinner SoCs that are currently +supported in mainline by the Linux kernel. This document will also +provide links to documentation and/or datasheet for these SoCs. + +SunXi family +------------ + Linux kernel mach directory: arch/arm/mach-sunxi + + Flavors: + + * ARM926 based SoCs + - Allwinner F20 (sun3i) + + * Not Supported + + * ARM Cortex-A8 based SoCs + - Allwinner A10 (sun4i) + + * Datasheet + + http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.21%20%282012-04-06%29.pdf + * User Manual + + http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf + + - Allwinner A10s (sun5i) + + * Datasheet + + http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%20v1.20%20%282012-03-27%29.pdf + + - Allwinner A13 / R8 (sun5i) + + * Datasheet + + http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf + * User Manual + + http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf + + - Next Thing Co GR8 (sun5i) + + * Single ARM Cortex-A7 based SoCs + - Allwinner V3s (sun8i) + + * Datasheet + + http://linux-sunxi.org/File:Allwinner_V3s_Datasheet_V1.0.pdf + + * Dual ARM Cortex-A7 based SoCs + - Allwinner A20 (sun7i) + + * User Manual + + http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf + + - Allwinner A23 (sun8i) + + * Datasheet + + http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf + + * User Manual + + http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf + + * Quad ARM Cortex-A7 based SoCs + - Allwinner A31 (sun6i) + + * Datasheet + + http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf + + * User Manual + + http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf + + - Allwinner A31s (sun6i) + + * Datasheet + + http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf + + * User Manual + + http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf + + - Allwinner A33 (sun8i) + + * Datasheet + + http://dl.linux-sunxi.org/A33/A33%20Datasheet%20release%201.1.pdf + + * User Manual + + http://dl.linux-sunxi.org/A33/A33%20user%20manual%20release%201.1.pdf + + - Allwinner H2+ (sun8i) + + * No document available now, but is known to be working properly with + H3 drivers and memory map. + + - Allwinner H3 (sun8i) + + * Datasheet + + http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.pdf + + - Allwinner R40 (sun8i) + + * Datasheet + + https://github.com/tinalinux/docs/raw/r40-v1.y/R40_Datasheet_V1.0.pdf + + * User Manual + + https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_R40_User_Manual_V1.0.pdf + + * Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs + - Allwinner A80 + + * Datasheet + + http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf + + * Octa ARM Cortex-A7 based SoCs + - Allwinner A83T + + * Datasheet + + https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf + + * User Manual + + https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf + + * Quad ARM Cortex-A53 based SoCs + - Allwinner A64 + + * Datasheet + + http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf + + * User Manual + + http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf diff --git a/Documentation/arm/sunxi/README b/Documentation/arm/sunxi/README deleted file mode 100644 index f8efc21998bf..000000000000 --- a/Documentation/arm/sunxi/README +++ /dev/null @@ -1,102 +0,0 @@ -ARM Allwinner SoCs -================== - -This document lists all the ARM Allwinner SoCs that are currently -supported in mainline by the Linux kernel. This document will also -provide links to documentation and/or datasheet for these SoCs. - -SunXi family ------------- - Linux kernel mach directory: arch/arm/mach-sunxi - - Flavors: - * ARM926 based SoCs - - Allwinner F20 (sun3i) - + Not Supported - - * ARM Cortex-A8 based SoCs - - Allwinner A10 (sun4i) - + Datasheet - http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.21%20%282012-04-06%29.pdf - + User Manual - http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf - - - Allwinner A10s (sun5i) - + Datasheet - http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%20v1.20%20%282012-03-27%29.pdf - - - Allwinner A13 / R8 (sun5i) - + Datasheet - http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf - + User Manual - http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf - - - Next Thing Co GR8 (sun5i) - - * Single ARM Cortex-A7 based SoCs - - Allwinner V3s (sun8i) - + Datasheet - http://linux-sunxi.org/File:Allwinner_V3s_Datasheet_V1.0.pdf - - * Dual ARM Cortex-A7 based SoCs - - Allwinner A20 (sun7i) - + User Manual - http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf - - - Allwinner A23 (sun8i) - + Datasheet - http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf - + User Manual - http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf - - * Quad ARM Cortex-A7 based SoCs - - Allwinner A31 (sun6i) - + Datasheet - http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf - + User Manual - http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf - - - Allwinner A31s (sun6i) - + Datasheet - http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf - + User Manual - http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf - - - Allwinner A33 (sun8i) - + Datasheet - http://dl.linux-sunxi.org/A33/A33%20Datasheet%20release%201.1.pdf - + User Manual - http://dl.linux-sunxi.org/A33/A33%20user%20manual%20release%201.1.pdf - - - Allwinner H2+ (sun8i) - + No document available now, but is known to be working properly with - H3 drivers and memory map. - - - Allwinner H3 (sun8i) - + Datasheet - http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.pdf - - - Allwinner R40 (sun8i) - + Datasheet - https://github.com/tinalinux/docs/raw/r40-v1.y/R40_Datasheet_V1.0.pdf - + User Manual - https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_R40_User_Manual_V1.0.pdf - - * Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs - - Allwinner A80 - + Datasheet - http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf - - * Octa ARM Cortex-A7 based SoCs - - Allwinner A83T - + Datasheet - https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf - + User Manual - https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf - - * Quad ARM Cortex-A53 based SoCs - - Allwinner A64 - + Datasheet - http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf - + User Manual - http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf diff --git a/Documentation/arm/sunxi/clocks.rst b/Documentation/arm/sunxi/clocks.rst new file mode 100644 index 000000000000..23bd03f3e21f --- /dev/null +++ b/Documentation/arm/sunxi/clocks.rst @@ -0,0 +1,57 @@ +======================================================= +Frequently asked questions about the sunxi clock system +======================================================= + +This document contains useful bits of information that people tend to ask +about the sunxi clock system, as well as accompanying ASCII art when adequate. + +Q: Why is the main 24MHz oscillator gatable? Wouldn't that break the + system? + +A: The 24MHz oscillator allows gating to save power. Indeed, if gated + carelessly the system would stop functioning, but with the right + steps, one can gate it and keep the system running. Consider this + simplified suspend example: + + While the system is operational, you would see something like:: + + 24MHz 32kHz + | + PLL1 + \ + \_ CPU Mux + | + [CPU] + + When you are about to suspend, you switch the CPU Mux to the 32kHz + oscillator:: + + 24Mhz 32kHz + | | + PLL1 | + / + CPU Mux _/ + | + [CPU] + + Finally you can gate the main oscillator:: + + 32kHz + | + | + / + CPU Mux _/ + | + [CPU] + +Q: Were can I learn more about the sunxi clocks? + +A: The linux-sunxi wiki contains a page documenting the clock registers, + you can find it at + + http://linux-sunxi.org/A10/CCM + + The authoritative source for information at this time is the ccmu driver + released by Allwinner, you can find it at + + https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/mach-sun4i/clock/ccmu diff --git a/Documentation/arm/sunxi/clocks.txt b/Documentation/arm/sunxi/clocks.txt deleted file mode 100644 index e09a88aa3136..000000000000 --- a/Documentation/arm/sunxi/clocks.txt +++ /dev/null @@ -1,56 +0,0 @@ -Frequently asked questions about the sunxi clock system -======================================================= - -This document contains useful bits of information that people tend to ask -about the sunxi clock system, as well as accompanying ASCII art when adequate. - -Q: Why is the main 24MHz oscillator gatable? Wouldn't that break the - system? - -A: The 24MHz oscillator allows gating to save power. Indeed, if gated - carelessly the system would stop functioning, but with the right - steps, one can gate it and keep the system running. Consider this - simplified suspend example: - - While the system is operational, you would see something like - - 24MHz 32kHz - | - PLL1 - \ - \_ CPU Mux - | - [CPU] - - When you are about to suspend, you switch the CPU Mux to the 32kHz - oscillator: - - 24Mhz 32kHz - | | - PLL1 | - / - CPU Mux _/ - | - [CPU] - - Finally you can gate the main oscillator - - 32kHz - | - | - / - CPU Mux _/ - | - [CPU] - -Q: Were can I learn more about the sunxi clocks? - -A: The linux-sunxi wiki contains a page documenting the clock registers, - you can find it at - - http://linux-sunxi.org/A10/CCM - - The authoritative source for information at this time is the ccmu driver - released by Allwinner, you can find it at - - https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/mach-sun4i/clock/ccmu diff --git a/Documentation/arm/swp_emulation b/Documentation/arm/swp_emulation deleted file mode 100644 index af903d22fd93..000000000000 --- a/Documentation/arm/swp_emulation +++ /dev/null @@ -1,27 +0,0 @@ -Software emulation of deprecated SWP instruction (CONFIG_SWP_EMULATE) ---------------------------------------------------------------------- - -ARMv6 architecture deprecates use of the SWP/SWPB instructions, and recommeds -moving to the load-locked/store-conditional instructions LDREX and STREX. - -ARMv7 multiprocessing extensions introduce the ability to disable these -instructions, triggering an undefined instruction exception when executed. -Trapped instructions are emulated using an LDREX/STREX or LDREXB/STREXB -sequence. If a memory access fault (an abort) occurs, a segmentation fault is -signalled to the triggering process. - -/proc/cpu/swp_emulation holds some statistics/information, including the PID of -the last process to trigger the emulation to be invocated. For example: ---- -Emulated SWP: 12 -Emulated SWPB: 0 -Aborted SWP{B}: 1 -Last process: 314 ---- - -NOTE: when accessing uncached shared regions, LDREX/STREX rely on an external -transaction monitoring block called a global monitor to maintain update -atomicity. If your system does not implement a global monitor, this option can -cause programs that perform SWP operations to uncached memory to deadlock, as -the STREX operation will always fail. - diff --git a/Documentation/arm/swp_emulation.rst b/Documentation/arm/swp_emulation.rst new file mode 100644 index 000000000000..6a608a9c3715 --- /dev/null +++ b/Documentation/arm/swp_emulation.rst @@ -0,0 +1,27 @@ +Software emulation of deprecated SWP instruction (CONFIG_SWP_EMULATE) +--------------------------------------------------------------------- + +ARMv6 architecture deprecates use of the SWP/SWPB instructions, and recommeds +moving to the load-locked/store-conditional instructions LDREX and STREX. + +ARMv7 multiprocessing extensions introduce the ability to disable these +instructions, triggering an undefined instruction exception when executed. +Trapped instructions are emulated using an LDREX/STREX or LDREXB/STREXB +sequence. If a memory access fault (an abort) occurs, a segmentation fault is +signalled to the triggering process. + +/proc/cpu/swp_emulation holds some statistics/information, including the PID of +the last process to trigger the emulation to be invocated. For example:: + + Emulated SWP: 12 + Emulated SWPB: 0 + Aborted SWP{B}: 1 + Last process: 314 + + +NOTE: + when accessing uncached shared regions, LDREX/STREX rely on an external + transaction monitoring block called a global monitor to maintain update + atomicity. If your system does not implement a global monitor, this option can + cause programs that perform SWP operations to uncached memory to deadlock, as + the STREX operation will always fail. diff --git a/Documentation/arm/tcm.rst b/Documentation/arm/tcm.rst new file mode 100644 index 000000000000..effd9c7bc968 --- /dev/null +++ b/Documentation/arm/tcm.rst @@ -0,0 +1,161 @@ +================================================== +ARM TCM (Tightly-Coupled Memory) handling in Linux +================================================== + +Written by Linus Walleij + +Some ARM SoC:s have a so-called TCM (Tightly-Coupled Memory). +This is usually just a few (4-64) KiB of RAM inside the ARM +processor. + +Due to being embedded inside the CPU The TCM has a +Harvard-architecture, so there is an ITCM (instruction TCM) +and a DTCM (data TCM). The DTCM can not contain any +instructions, but the ITCM can actually contain data. +The size of DTCM or ITCM is minimum 4KiB so the typical +minimum configuration is 4KiB ITCM and 4KiB DTCM. + +ARM CPU:s have special registers to read out status, physical +location and size of TCM memories. arch/arm/include/asm/cputype.h +defines a CPUID_TCM register that you can read out from the +system control coprocessor. Documentation from ARM can be found +at http://infocenter.arm.com, search for "TCM Status Register" +to see documents for all CPUs. Reading this register you can +determine if ITCM (bits 1-0) and/or DTCM (bit 17-16) is present +in the machine. + +There is further a TCM region register (search for "TCM Region +Registers" at the ARM site) that can report and modify the location +size of TCM memories at runtime. This is used to read out and modify +TCM location and size. Notice that this is not a MMU table: you +actually move the physical location of the TCM around. At the +place you put it, it will mask any underlying RAM from the +CPU so it is usually wise not to overlap any physical RAM with +the TCM. + +The TCM memory can then be remapped to another address again using +the MMU, but notice that the TCM if often used in situations where +the MMU is turned off. To avoid confusion the current Linux +implementation will map the TCM 1 to 1 from physical to virtual +memory in the location specified by the kernel. Currently Linux +will map ITCM to 0xfffe0000 and on, and DTCM to 0xfffe8000 and +on, supporting a maximum of 32KiB of ITCM and 32KiB of DTCM. + +Newer versions of the region registers also support dividing these +TCMs in two separate banks, so for example an 8KiB ITCM is divided +into two 4KiB banks with its own control registers. The idea is to +be able to lock and hide one of the banks for use by the secure +world (TrustZone). + +TCM is used for a few things: + +- FIQ and other interrupt handlers that need deterministic + timing and cannot wait for cache misses. + +- Idle loops where all external RAM is set to self-refresh + retention mode, so only on-chip RAM is accessible by + the CPU and then we hang inside ITCM waiting for an + interrupt. + +- Other operations which implies shutting off or reconfiguring + the external RAM controller. + +There is an interface for using TCM on the ARM architecture +in . Using this interface it is possible to: + +- Define the physical address and size of ITCM and DTCM. + +- Tag functions to be compiled into ITCM. + +- Tag data and constants to be allocated to DTCM and ITCM. + +- Have the remaining TCM RAM added to a special + allocation pool with gen_pool_create() and gen_pool_add() + and provice tcm_alloc() and tcm_free() for this + memory. Such a heap is great for things like saving + device state when shutting off device power domains. + +A machine that has TCM memory shall select HAVE_TCM from +arch/arm/Kconfig for itself. Code that needs to use TCM shall +#include + +Functions to go into itcm can be tagged like this: +int __tcmfunc foo(int bar); + +Since these are marked to become long_calls and you may want +to have functions called locally inside the TCM without +wasting space, there is also the __tcmlocalfunc prefix that +will make the call relative. + +Variables to go into dtcm can be tagged like this:: + + int __tcmdata foo; + +Constants can be tagged like this:: + + int __tcmconst foo; + +To put assembler into TCM just use:: + + .section ".tcm.text" or .section ".tcm.data" + +respectively. + +Example code:: + + #include + + /* Uninitialized data */ + static u32 __tcmdata tcmvar; + /* Initialized data */ + static u32 __tcmdata tcmassigned = 0x2BADBABEU; + /* Constant */ + static const u32 __tcmconst tcmconst = 0xCAFEBABEU; + + static void __tcmlocalfunc tcm_to_tcm(void) + { + int i; + for (i = 0; i < 100; i++) + tcmvar ++; + } + + static void __tcmfunc hello_tcm(void) + { + /* Some abstract code that runs in ITCM */ + int i; + for (i = 0; i < 100; i++) { + tcmvar ++; + } + tcm_to_tcm(); + } + + static void __init test_tcm(void) + { + u32 *tcmem; + int i; + + hello_tcm(); + printk("Hello TCM executed from ITCM RAM\n"); + + printk("TCM variable from testrun: %u @ %p\n", tcmvar, &tcmvar); + tcmvar = 0xDEADBEEFU; + printk("TCM variable: 0x%x @ %p\n", tcmvar, &tcmvar); + + printk("TCM assigned variable: 0x%x @ %p\n", tcmassigned, &tcmassigned); + + printk("TCM constant: 0x%x @ %p\n", tcmconst, &tcmconst); + + /* Allocate some TCM memory from the pool */ + tcmem = tcm_alloc(20); + if (tcmem) { + printk("TCM Allocated 20 bytes of TCM @ %p\n", tcmem); + tcmem[0] = 0xDEADBEEFU; + tcmem[1] = 0x2BADBABEU; + tcmem[2] = 0xCAFEBABEU; + tcmem[3] = 0xDEADBEEFU; + tcmem[4] = 0x2BADBABEU; + for (i = 0; i < 5; i++) + printk("TCM tcmem[%d] = %08x\n", i, tcmem[i]); + tcm_free(tcmem, 20); + } + } diff --git a/Documentation/arm/tcm.txt b/Documentation/arm/tcm.txt deleted file mode 100644 index 7c15871c1885..000000000000 --- a/Documentation/arm/tcm.txt +++ /dev/null @@ -1,155 +0,0 @@ -ARM TCM (Tightly-Coupled Memory) handling in Linux ----- -Written by Linus Walleij - -Some ARM SoC:s have a so-called TCM (Tightly-Coupled Memory). -This is usually just a few (4-64) KiB of RAM inside the ARM -processor. - -Due to being embedded inside the CPU The TCM has a -Harvard-architecture, so there is an ITCM (instruction TCM) -and a DTCM (data TCM). The DTCM can not contain any -instructions, but the ITCM can actually contain data. -The size of DTCM or ITCM is minimum 4KiB so the typical -minimum configuration is 4KiB ITCM and 4KiB DTCM. - -ARM CPU:s have special registers to read out status, physical -location and size of TCM memories. arch/arm/include/asm/cputype.h -defines a CPUID_TCM register that you can read out from the -system control coprocessor. Documentation from ARM can be found -at http://infocenter.arm.com, search for "TCM Status Register" -to see documents for all CPUs. Reading this register you can -determine if ITCM (bits 1-0) and/or DTCM (bit 17-16) is present -in the machine. - -There is further a TCM region register (search for "TCM Region -Registers" at the ARM site) that can report and modify the location -size of TCM memories at runtime. This is used to read out and modify -TCM location and size. Notice that this is not a MMU table: you -actually move the physical location of the TCM around. At the -place you put it, it will mask any underlying RAM from the -CPU so it is usually wise not to overlap any physical RAM with -the TCM. - -The TCM memory can then be remapped to another address again using -the MMU, but notice that the TCM if often used in situations where -the MMU is turned off. To avoid confusion the current Linux -implementation will map the TCM 1 to 1 from physical to virtual -memory in the location specified by the kernel. Currently Linux -will map ITCM to 0xfffe0000 and on, and DTCM to 0xfffe8000 and -on, supporting a maximum of 32KiB of ITCM and 32KiB of DTCM. - -Newer versions of the region registers also support dividing these -TCMs in two separate banks, so for example an 8KiB ITCM is divided -into two 4KiB banks with its own control registers. The idea is to -be able to lock and hide one of the banks for use by the secure -world (TrustZone). - -TCM is used for a few things: - -- FIQ and other interrupt handlers that need deterministic - timing and cannot wait for cache misses. - -- Idle loops where all external RAM is set to self-refresh - retention mode, so only on-chip RAM is accessible by - the CPU and then we hang inside ITCM waiting for an - interrupt. - -- Other operations which implies shutting off or reconfiguring - the external RAM controller. - -There is an interface for using TCM on the ARM architecture -in . Using this interface it is possible to: - -- Define the physical address and size of ITCM and DTCM. - -- Tag functions to be compiled into ITCM. - -- Tag data and constants to be allocated to DTCM and ITCM. - -- Have the remaining TCM RAM added to a special - allocation pool with gen_pool_create() and gen_pool_add() - and provice tcm_alloc() and tcm_free() for this - memory. Such a heap is great for things like saving - device state when shutting off device power domains. - -A machine that has TCM memory shall select HAVE_TCM from -arch/arm/Kconfig for itself. Code that needs to use TCM shall -#include - -Functions to go into itcm can be tagged like this: -int __tcmfunc foo(int bar); - -Since these are marked to become long_calls and you may want -to have functions called locally inside the TCM without -wasting space, there is also the __tcmlocalfunc prefix that -will make the call relative. - -Variables to go into dtcm can be tagged like this: -int __tcmdata foo; - -Constants can be tagged like this: -int __tcmconst foo; - -To put assembler into TCM just use -.section ".tcm.text" or .section ".tcm.data" -respectively. - -Example code: - -#include - -/* Uninitialized data */ -static u32 __tcmdata tcmvar; -/* Initialized data */ -static u32 __tcmdata tcmassigned = 0x2BADBABEU; -/* Constant */ -static const u32 __tcmconst tcmconst = 0xCAFEBABEU; - -static void __tcmlocalfunc tcm_to_tcm(void) -{ - int i; - for (i = 0; i < 100; i++) - tcmvar ++; -} - -static void __tcmfunc hello_tcm(void) -{ - /* Some abstract code that runs in ITCM */ - int i; - for (i = 0; i < 100; i++) { - tcmvar ++; - } - tcm_to_tcm(); -} - -static void __init test_tcm(void) -{ - u32 *tcmem; - int i; - - hello_tcm(); - printk("Hello TCM executed from ITCM RAM\n"); - - printk("TCM variable from testrun: %u @ %p\n", tcmvar, &tcmvar); - tcmvar = 0xDEADBEEFU; - printk("TCM variable: 0x%x @ %p\n", tcmvar, &tcmvar); - - printk("TCM assigned variable: 0x%x @ %p\n", tcmassigned, &tcmassigned); - - printk("TCM constant: 0x%x @ %p\n", tcmconst, &tcmconst); - - /* Allocate some TCM memory from the pool */ - tcmem = tcm_alloc(20); - if (tcmem) { - printk("TCM Allocated 20 bytes of TCM @ %p\n", tcmem); - tcmem[0] = 0xDEADBEEFU; - tcmem[1] = 0x2BADBABEU; - tcmem[2] = 0xCAFEBABEU; - tcmem[3] = 0xDEADBEEFU; - tcmem[4] = 0x2BADBABEU; - for (i = 0; i < 5; i++) - printk("TCM tcmem[%d] = %08x\n", i, tcmem[i]); - tcm_free(tcmem, 20); - } -} diff --git a/Documentation/arm/uefi.rst b/Documentation/arm/uefi.rst new file mode 100644 index 000000000000..f868330df6be --- /dev/null +++ b/Documentation/arm/uefi.rst @@ -0,0 +1,67 @@ +================================================ +The Unified Extensible Firmware Interface (UEFI) +================================================ + +UEFI, the Unified Extensible Firmware Interface, is a specification +governing the behaviours of compatible firmware interfaces. It is +maintained by the UEFI Forum - http://www.uefi.org/. + +UEFI is an evolution of its predecessor 'EFI', so the terms EFI and +UEFI are used somewhat interchangeably in this document and associated +source code. As a rule, anything new uses 'UEFI', whereas 'EFI' refers +to legacy code or specifications. + +UEFI support in Linux +===================== +Booting on a platform with firmware compliant with the UEFI specification +makes it possible for the kernel to support additional features: + +- UEFI Runtime Services +- Retrieving various configuration information through the standardised + interface of UEFI configuration tables. (ACPI, SMBIOS, ...) + +For actually enabling [U]EFI support, enable: + +- CONFIG_EFI=y +- CONFIG_EFI_VARS=y or m + +The implementation depends on receiving information about the UEFI environment +in a Flattened Device Tree (FDT) - so is only available with CONFIG_OF. + +UEFI stub +========= +The "stub" is a feature that extends the Image/zImage into a valid UEFI +PE/COFF executable, including a loader application that makes it possible to +load the kernel directly from the UEFI shell, boot menu, or one of the +lightweight bootloaders like Gummiboot or rEFInd. + +The kernel image built with stub support remains a valid kernel image for +booting in non-UEFI environments. + +UEFI kernel support on ARM +========================== +UEFI kernel support on the ARM architectures (arm and arm64) is only available +when boot is performed through the stub. + +When booting in UEFI mode, the stub deletes any memory nodes from a provided DT. +Instead, the kernel reads the UEFI memory map. + +The stub populates the FDT /chosen node with (and the kernel scans for) the +following parameters: + +========================== ====== =========================================== +Name Size Description +========================== ====== =========================================== +linux,uefi-system-table 64-bit Physical address of the UEFI System Table. + +linux,uefi-mmap-start 64-bit Physical address of the UEFI memory map, + populated by the UEFI GetMemoryMap() call. + +linux,uefi-mmap-size 32-bit Size in bytes of the UEFI memory map + pointed to in previous entry. + +linux,uefi-mmap-desc-size 32-bit Size in bytes of each entry in the UEFI + memory map. + +linux,uefi-mmap-desc-ver 32-bit Version of the mmap descriptor format. +========================== ====== =========================================== diff --git a/Documentation/arm/uefi.txt b/Documentation/arm/uefi.txt deleted file mode 100644 index 6543a0adea8a..000000000000 --- a/Documentation/arm/uefi.txt +++ /dev/null @@ -1,60 +0,0 @@ -UEFI, the Unified Extensible Firmware Interface, is a specification -governing the behaviours of compatible firmware interfaces. It is -maintained by the UEFI Forum - http://www.uefi.org/. - -UEFI is an evolution of its predecessor 'EFI', so the terms EFI and -UEFI are used somewhat interchangeably in this document and associated -source code. As a rule, anything new uses 'UEFI', whereas 'EFI' refers -to legacy code or specifications. - -UEFI support in Linux -===================== -Booting on a platform with firmware compliant with the UEFI specification -makes it possible for the kernel to support additional features: -- UEFI Runtime Services -- Retrieving various configuration information through the standardised - interface of UEFI configuration tables. (ACPI, SMBIOS, ...) - -For actually enabling [U]EFI support, enable: -- CONFIG_EFI=y -- CONFIG_EFI_VARS=y or m - -The implementation depends on receiving information about the UEFI environment -in a Flattened Device Tree (FDT) - so is only available with CONFIG_OF. - -UEFI stub -========= -The "stub" is a feature that extends the Image/zImage into a valid UEFI -PE/COFF executable, including a loader application that makes it possible to -load the kernel directly from the UEFI shell, boot menu, or one of the -lightweight bootloaders like Gummiboot or rEFInd. - -The kernel image built with stub support remains a valid kernel image for -booting in non-UEFI environments. - -UEFI kernel support on ARM -========================== -UEFI kernel support on the ARM architectures (arm and arm64) is only available -when boot is performed through the stub. - -When booting in UEFI mode, the stub deletes any memory nodes from a provided DT. -Instead, the kernel reads the UEFI memory map. - -The stub populates the FDT /chosen node with (and the kernel scans for) the -following parameters: -________________________________________________________________________________ -Name | Size | Description -================================================================================ -linux,uefi-system-table | 64-bit | Physical address of the UEFI System Table. --------------------------------------------------------------------------------- -linux,uefi-mmap-start | 64-bit | Physical address of the UEFI memory map, - | | populated by the UEFI GetMemoryMap() call. --------------------------------------------------------------------------------- -linux,uefi-mmap-size | 32-bit | Size in bytes of the UEFI memory map - | | pointed to in previous entry. --------------------------------------------------------------------------------- -linux,uefi-mmap-desc-size | 32-bit | Size in bytes of each entry in the UEFI - | | memory map. --------------------------------------------------------------------------------- -linux,uefi-mmap-desc-ver | 32-bit | Version of the mmap descriptor format. --------------------------------------------------------------------------------- diff --git a/Documentation/arm/vfp/release-notes.rst b/Documentation/arm/vfp/release-notes.rst new file mode 100644 index 000000000000..c6b04937cee3 --- /dev/null +++ b/Documentation/arm/vfp/release-notes.rst @@ -0,0 +1,57 @@ +=============================================== +Release notes for Linux Kernel VFP support code +=============================================== + +Date: 20 May 2004 + +Author: Russell King + +This is the first release of the Linux Kernel VFP support code. It +provides support for the exceptions bounced from VFP hardware found +on ARM926EJ-S. + +This release has been validated against the SoftFloat-2b library by +John R. Hauser using the TestFloat-2a test suite. Details of this +library and test suite can be found at: + + http://www.jhauser.us/arithmetic/SoftFloat.html + +The operations which have been tested with this package are: + + - fdiv + - fsub + - fadd + - fmul + - fcmp + - fcmpe + - fcvtd + - fcvts + - fsito + - ftosi + - fsqrt + +All the above pass softfloat tests with the following exceptions: + +- fadd/fsub shows some differences in the handling of +0 / -0 results + when input operands differ in signs. +- the handling of underflow exceptions is slightly different. If a + result underflows before rounding, but becomes a normalised number + after rounding, we do not signal an underflow exception. + +Other operations which have been tested by basic assembly-only tests +are: + + - fcpy + - fabs + - fneg + - ftoui + - ftosiz + - ftouiz + +The combination operations have not been tested: + + - fmac + - fnmac + - fmsc + - fnmsc + - fnmul diff --git a/Documentation/arm/vlocks.rst b/Documentation/arm/vlocks.rst new file mode 100644 index 000000000000..a40a1742110b --- /dev/null +++ b/Documentation/arm/vlocks.rst @@ -0,0 +1,212 @@ +====================================== +vlocks for Bare-Metal Mutual Exclusion +====================================== + +Voting Locks, or "vlocks" provide a simple low-level mutual exclusion +mechanism, with reasonable but minimal requirements on the memory +system. + +These are intended to be used to coordinate critical activity among CPUs +which are otherwise non-coherent, in situations where the hardware +provides no other mechanism to support this and ordinary spinlocks +cannot be used. + + +vlocks make use of the atomicity provided by the memory system for +writes to a single memory location. To arbitrate, every CPU "votes for +itself", by storing a unique number to a common memory location. The +final value seen in that memory location when all the votes have been +cast identifies the winner. + +In order to make sure that the election produces an unambiguous result +in finite time, a CPU will only enter the election in the first place if +no winner has been chosen and the election does not appear to have +started yet. + + +Algorithm +--------- + +The easiest way to explain the vlocks algorithm is with some pseudo-code:: + + + int currently_voting[NR_CPUS] = { 0, }; + int last_vote = -1; /* no votes yet */ + + bool vlock_trylock(int this_cpu) + { + /* signal our desire to vote */ + currently_voting[this_cpu] = 1; + if (last_vote != -1) { + /* someone already volunteered himself */ + currently_voting[this_cpu] = 0; + return false; /* not ourself */ + } + + /* let's suggest ourself */ + last_vote = this_cpu; + currently_voting[this_cpu] = 0; + + /* then wait until everyone else is done voting */ + for_each_cpu(i) { + while (currently_voting[i] != 0) + /* wait */; + } + + /* result */ + if (last_vote == this_cpu) + return true; /* we won */ + return false; + } + + bool vlock_unlock(void) + { + last_vote = -1; + } + + +The currently_voting[] array provides a way for the CPUs to determine +whether an election is in progress, and plays a role analogous to the +"entering" array in Lamport's bakery algorithm [1]. + +However, once the election has started, the underlying memory system +atomicity is used to pick the winner. This avoids the need for a static +priority rule to act as a tie-breaker, or any counters which could +overflow. + +As long as the last_vote variable is globally visible to all CPUs, it +will contain only one value that won't change once every CPU has cleared +its currently_voting flag. + + +Features and limitations +------------------------ + + * vlocks are not intended to be fair. In the contended case, it is the + _last_ CPU which attempts to get the lock which will be most likely + to win. + + vlocks are therefore best suited to situations where it is necessary + to pick a unique winner, but it does not matter which CPU actually + wins. + + * Like other similar mechanisms, vlocks will not scale well to a large + number of CPUs. + + vlocks can be cascaded in a voting hierarchy to permit better scaling + if necessary, as in the following hypothetical example for 4096 CPUs:: + + /* first level: local election */ + my_town = towns[(this_cpu >> 4) & 0xf]; + I_won = vlock_trylock(my_town, this_cpu & 0xf); + if (I_won) { + /* we won the town election, let's go for the state */ + my_state = states[(this_cpu >> 8) & 0xf]; + I_won = vlock_lock(my_state, this_cpu & 0xf)); + if (I_won) { + /* and so on */ + I_won = vlock_lock(the_whole_country, this_cpu & 0xf]; + if (I_won) { + /* ... */ + } + vlock_unlock(the_whole_country); + } + vlock_unlock(my_state); + } + vlock_unlock(my_town); + + +ARM implementation +------------------ + +The current ARM implementation [2] contains some optimisations beyond +the basic algorithm: + + * By packing the members of the currently_voting array close together, + we can read the whole array in one transaction (providing the number + of CPUs potentially contending the lock is small enough). This + reduces the number of round-trips required to external memory. + + In the ARM implementation, this means that we can use a single load + and comparison:: + + LDR Rt, [Rn] + CMP Rt, #0 + + ...in place of code equivalent to:: + + LDRB Rt, [Rn] + CMP Rt, #0 + LDRBEQ Rt, [Rn, #1] + CMPEQ Rt, #0 + LDRBEQ Rt, [Rn, #2] + CMPEQ Rt, #0 + LDRBEQ Rt, [Rn, #3] + CMPEQ Rt, #0 + + This cuts down on the fast-path latency, as well as potentially + reducing bus contention in contended cases. + + The optimisation relies on the fact that the ARM memory system + guarantees coherency between overlapping memory accesses of + different sizes, similarly to many other architectures. Note that + we do not care which element of currently_voting appears in which + bits of Rt, so there is no need to worry about endianness in this + optimisation. + + If there are too many CPUs to read the currently_voting array in + one transaction then multiple transations are still required. The + implementation uses a simple loop of word-sized loads for this + case. The number of transactions is still fewer than would be + required if bytes were loaded individually. + + + In principle, we could aggregate further by using LDRD or LDM, but + to keep the code simple this was not attempted in the initial + implementation. + + + * vlocks are currently only used to coordinate between CPUs which are + unable to enable their caches yet. This means that the + implementation removes many of the barriers which would be required + when executing the algorithm in cached memory. + + packing of the currently_voting array does not work with cached + memory unless all CPUs contending the lock are cache-coherent, due + to cache writebacks from one CPU clobbering values written by other + CPUs. (Though if all the CPUs are cache-coherent, you should be + probably be using proper spinlocks instead anyway). + + + * The "no votes yet" value used for the last_vote variable is 0 (not + -1 as in the pseudocode). This allows statically-allocated vlocks + to be implicitly initialised to an unlocked state simply by putting + them in .bss. + + An offset is added to each CPU's ID for the purpose of setting this + variable, so that no CPU uses the value 0 for its ID. + + +Colophon +-------- + +Originally created and documented by Dave Martin for Linaro Limited, for +use in ARM-based big.LITTLE platforms, with review and input gratefully +received from Nicolas Pitre and Achin Gupta. Thanks to Nicolas for +grabbing most of this text out of the relevant mail thread and writing +up the pseudocode. + +Copyright (C) 2012-2013 Linaro Limited +Distributed under the terms of Version 2 of the GNU General Public +License, as defined in linux/COPYING. + + +References +---------- + +[1] Lamport, L. "A New Solution of Dijkstra's Concurrent Programming + Problem", Communications of the ACM 17, 8 (August 1974), 453-455. + + https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm + +[2] linux/arch/arm/common/vlock.S, www.kernel.org. diff --git a/Documentation/arm/vlocks.txt b/Documentation/arm/vlocks.txt deleted file mode 100644 index 45731672c564..000000000000 --- a/Documentation/arm/vlocks.txt +++ /dev/null @@ -1,211 +0,0 @@ -vlocks for Bare-Metal Mutual Exclusion -====================================== - -Voting Locks, or "vlocks" provide a simple low-level mutual exclusion -mechanism, with reasonable but minimal requirements on the memory -system. - -These are intended to be used to coordinate critical activity among CPUs -which are otherwise non-coherent, in situations where the hardware -provides no other mechanism to support this and ordinary spinlocks -cannot be used. - - -vlocks make use of the atomicity provided by the memory system for -writes to a single memory location. To arbitrate, every CPU "votes for -itself", by storing a unique number to a common memory location. The -final value seen in that memory location when all the votes have been -cast identifies the winner. - -In order to make sure that the election produces an unambiguous result -in finite time, a CPU will only enter the election in the first place if -no winner has been chosen and the election does not appear to have -started yet. - - -Algorithm ---------- - -The easiest way to explain the vlocks algorithm is with some pseudo-code: - - - int currently_voting[NR_CPUS] = { 0, }; - int last_vote = -1; /* no votes yet */ - - bool vlock_trylock(int this_cpu) - { - /* signal our desire to vote */ - currently_voting[this_cpu] = 1; - if (last_vote != -1) { - /* someone already volunteered himself */ - currently_voting[this_cpu] = 0; - return false; /* not ourself */ - } - - /* let's suggest ourself */ - last_vote = this_cpu; - currently_voting[this_cpu] = 0; - - /* then wait until everyone else is done voting */ - for_each_cpu(i) { - while (currently_voting[i] != 0) - /* wait */; - } - - /* result */ - if (last_vote == this_cpu) - return true; /* we won */ - return false; - } - - bool vlock_unlock(void) - { - last_vote = -1; - } - - -The currently_voting[] array provides a way for the CPUs to determine -whether an election is in progress, and plays a role analogous to the -"entering" array in Lamport's bakery algorithm [1]. - -However, once the election has started, the underlying memory system -atomicity is used to pick the winner. This avoids the need for a static -priority rule to act as a tie-breaker, or any counters which could -overflow. - -As long as the last_vote variable is globally visible to all CPUs, it -will contain only one value that won't change once every CPU has cleared -its currently_voting flag. - - -Features and limitations ------------------------- - - * vlocks are not intended to be fair. In the contended case, it is the - _last_ CPU which attempts to get the lock which will be most likely - to win. - - vlocks are therefore best suited to situations where it is necessary - to pick a unique winner, but it does not matter which CPU actually - wins. - - * Like other similar mechanisms, vlocks will not scale well to a large - number of CPUs. - - vlocks can be cascaded in a voting hierarchy to permit better scaling - if necessary, as in the following hypothetical example for 4096 CPUs: - - /* first level: local election */ - my_town = towns[(this_cpu >> 4) & 0xf]; - I_won = vlock_trylock(my_town, this_cpu & 0xf); - if (I_won) { - /* we won the town election, let's go for the state */ - my_state = states[(this_cpu >> 8) & 0xf]; - I_won = vlock_lock(my_state, this_cpu & 0xf)); - if (I_won) { - /* and so on */ - I_won = vlock_lock(the_whole_country, this_cpu & 0xf]; - if (I_won) { - /* ... */ - } - vlock_unlock(the_whole_country); - } - vlock_unlock(my_state); - } - vlock_unlock(my_town); - - -ARM implementation ------------------- - -The current ARM implementation [2] contains some optimisations beyond -the basic algorithm: - - * By packing the members of the currently_voting array close together, - we can read the whole array in one transaction (providing the number - of CPUs potentially contending the lock is small enough). This - reduces the number of round-trips required to external memory. - - In the ARM implementation, this means that we can use a single load - and comparison: - - LDR Rt, [Rn] - CMP Rt, #0 - - ...in place of code equivalent to: - - LDRB Rt, [Rn] - CMP Rt, #0 - LDRBEQ Rt, [Rn, #1] - CMPEQ Rt, #0 - LDRBEQ Rt, [Rn, #2] - CMPEQ Rt, #0 - LDRBEQ Rt, [Rn, #3] - CMPEQ Rt, #0 - - This cuts down on the fast-path latency, as well as potentially - reducing bus contention in contended cases. - - The optimisation relies on the fact that the ARM memory system - guarantees coherency between overlapping memory accesses of - different sizes, similarly to many other architectures. Note that - we do not care which element of currently_voting appears in which - bits of Rt, so there is no need to worry about endianness in this - optimisation. - - If there are too many CPUs to read the currently_voting array in - one transaction then multiple transations are still required. The - implementation uses a simple loop of word-sized loads for this - case. The number of transactions is still fewer than would be - required if bytes were loaded individually. - - - In principle, we could aggregate further by using LDRD or LDM, but - to keep the code simple this was not attempted in the initial - implementation. - - - * vlocks are currently only used to coordinate between CPUs which are - unable to enable their caches yet. This means that the - implementation removes many of the barriers which would be required - when executing the algorithm in cached memory. - - packing of the currently_voting array does not work with cached - memory unless all CPUs contending the lock are cache-coherent, due - to cache writebacks from one CPU clobbering values written by other - CPUs. (Though if all the CPUs are cache-coherent, you should be - probably be using proper spinlocks instead anyway). - - - * The "no votes yet" value used for the last_vote variable is 0 (not - -1 as in the pseudocode). This allows statically-allocated vlocks - to be implicitly initialised to an unlocked state simply by putting - them in .bss. - - An offset is added to each CPU's ID for the purpose of setting this - variable, so that no CPU uses the value 0 for its ID. - - -Colophon --------- - -Originally created and documented by Dave Martin for Linaro Limited, for -use in ARM-based big.LITTLE platforms, with review and input gratefully -received from Nicolas Pitre and Achin Gupta. Thanks to Nicolas for -grabbing most of this text out of the relevant mail thread and writing -up the pseudocode. - -Copyright (C) 2012-2013 Linaro Limited -Distributed under the terms of Version 2 of the GNU General Public -License, as defined in linux/COPYING. - - -References ----------- - -[1] Lamport, L. "A New Solution of Dijkstra's Concurrent Programming - Problem", Communications of the ACM 17, 8 (August 1974), 453-455. - - https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm - -[2] linux/arch/arm/common/vlock.S, www.kernel.org. diff --git a/Documentation/devicetree/bindings/arm/xen.txt b/Documentation/devicetree/bindings/arm/xen.txt index c9b9321434ea..db5c56db30ec 100644 --- a/Documentation/devicetree/bindings/arm/xen.txt +++ b/Documentation/devicetree/bindings/arm/xen.txt @@ -54,7 +54,7 @@ hypervisor { }; The format and meaning of the "xen,uefi-*" parameters are similar to those in -Documentation/arm/uefi.txt, which are provided by the regular UEFI stub. However +Documentation/arm/uefi.rst, which are provided by the regular UEFI stub. However they differ because they are provided by the Xen hypervisor, together with a set of UEFI runtime services implemented via hypercalls, see http://xenbits.xen.org/docs/unstable/hypercall/x86_64/include,public,platform.h.html. diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt index 60f8640f2b2f..4660ccee35a3 100644 --- a/Documentation/devicetree/booting-without-of.txt +++ b/Documentation/devicetree/booting-without-of.txt @@ -160,7 +160,7 @@ it with special cases. of the kernel image. That entry point supports two calling conventions. A summary of the interface is described here. A full description of the boot requirements is documented in - Documentation/arm/Booting + Documentation/arm/booting.rst a) ATAGS interface. Minimal information is passed from firmware to the kernel with a tagged list of predefined parameters. @@ -174,7 +174,7 @@ it with special cases. b) Entry with a flattened device-tree block. Firmware loads the physical address of the flattened device tree block (dtb) into r2, r1 is not used, but it is considered good practice to use a valid - machine number as described in Documentation/arm/Booting. + machine number as described in Documentation/arm/booting.rst. r0 : 0 diff --git a/Documentation/index.rst b/Documentation/index.rst index 216dc0e1e6f2..c6934d90363c 100644 --- a/Documentation/index.rst +++ b/Documentation/index.rst @@ -1,3 +1,4 @@ + .. The Linux Kernel documentation master file, created by sphinx-quickstart on Fri Feb 12 13:51:46 2016. You can adapt this file completely to your liking, but it should at least diff --git a/Documentation/translations/zh_CN/arm/Booting b/Documentation/translations/zh_CN/arm/Booting index 1fe866f8218f..562e9a2957e6 100644 --- a/Documentation/translations/zh_CN/arm/Booting +++ b/Documentation/translations/zh_CN/arm/Booting @@ -1,4 +1,4 @@ -Chinese translated version of Documentation/arm/Booting +Chinese translated version of Documentation/arm/booting.rst If you have any comment or update to the content, please contact the original document maintainer directly. However, if you have a problem @@ -9,7 +9,7 @@ or if there is a problem with the translation. Maintainer: Russell King Chinese maintainer: Fu Wei --------------------------------------------------------------------- -Documentation/arm/Booting 的中文翻译 +Documentation/arm/booting.rst 的中文翻译 如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 diff --git a/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt index cd7fc8f34cf9..99af4363984d 100644 --- a/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt +++ b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt @@ -1,4 +1,4 @@ -Chinese translated version of Documentation/arm/kernel_user_helpers.txt +Chinese translated version of Documentation/arm/kernel_user_helpers.rst If you have any comment or update to the content, please contact the original document maintainer directly. However, if you have a problem @@ -10,7 +10,7 @@ Maintainer: Nicolas Pitre Dave Martin Chinese maintainer: Fu Wei --------------------------------------------------------------------- -Documentation/arm/kernel_user_helpers.txt 的中文翻译 +Documentation/arm/kernel_user_helpers.rst 的中文翻译 如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 diff --git a/MAINTAINERS b/MAINTAINERS index 37ba75bae7aa..96c85695b3d4 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -2218,7 +2218,7 @@ F: drivers/*/*s3c64xx* F: drivers/*/*s5pv210* F: drivers/memory/samsung/* F: drivers/soc/samsung/* -F: Documentation/arm/Samsung/ +F: Documentation/arm/samsung/ F: Documentation/devicetree/bindings/arm/samsung/ F: Documentation/devicetree/bindings/sram/samsung-sram.txt F: Documentation/devicetree/bindings/power/pd-samsung.txt @@ -11571,7 +11571,7 @@ L: linux-omap@vger.kernel.org L: linux-fbdev@vger.kernel.org S: Orphan F: drivers/video/fbdev/omap2/ -F: Documentation/arm/OMAP/DSS +F: Documentation/arm/omap/dss.rst OMAP FRAMEBUFFER SUPPORT L: linux-fbdev@vger.kernel.org diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig index 2bf1ce39a96d..6425871e9903 100644 --- a/arch/arm/Kconfig +++ b/arch/arm/Kconfig @@ -2142,7 +2142,7 @@ config VFP Say Y to include VFP support code in the kernel. This is needed if your hardware includes a VFP unit. - Please see for + Please see for release notes and additional status information. Say N if your target does not have VFP hardware. diff --git a/arch/arm/common/mcpm_entry.c b/arch/arm/common/mcpm_entry.c index e24ad60891b2..8a9aeeb504dd 100644 --- a/arch/arm/common/mcpm_entry.c +++ b/arch/arm/common/mcpm_entry.c @@ -21,7 +21,7 @@ /* * The public API for this code is documented in arch/arm/include/asm/mcpm.h. * For a comprehensive description of the main algorithm used here, please - * see Documentation/arm/cluster-pm-race-avoidance.txt. + * see Documentation/arm/cluster-pm-race-avoidance.rst. */ struct sync_struct mcpm_sync; diff --git a/arch/arm/common/mcpm_head.S b/arch/arm/common/mcpm_head.S index d5bd75dd576d..291d969bc719 100644 --- a/arch/arm/common/mcpm_head.S +++ b/arch/arm/common/mcpm_head.S @@ -5,7 +5,7 @@ * Created by: Nicolas Pitre, March 2012 * Copyright: (C) 2012-2013 Linaro Limited * - * Refer to Documentation/arm/cluster-pm-race-avoidance.txt + * Refer to Documentation/arm/cluster-pm-race-avoidance.rst * for details of the synchronisation algorithms used here. */ diff --git a/arch/arm/common/vlock.S b/arch/arm/common/vlock.S index 9675cc15d0c4..f1c7fd44f1b1 100644 --- a/arch/arm/common/vlock.S +++ b/arch/arm/common/vlock.S @@ -6,7 +6,7 @@ * Copyright: (C) 2012-2013 Linaro Limited * * This algorithm is described in more detail in - * Documentation/arm/vlocks.txt. + * Documentation/arm/vlocks.rst. */ #include diff --git a/arch/arm/include/asm/setup.h b/arch/arm/include/asm/setup.h index 77e5582c2259..67d20712cb48 100644 --- a/arch/arm/include/asm/setup.h +++ b/arch/arm/include/asm/setup.h @@ -5,7 +5,7 @@ * Copyright (C) 1997-1999 Russell King * * Structure passed to kernel to tell it about the - * hardware it's running on. See Documentation/arm/Setup + * hardware it's running on. See Documentation/arm/setup.rst * for more info. */ #ifndef __ASMARM_SETUP_H diff --git a/arch/arm/include/uapi/asm/setup.h b/arch/arm/include/uapi/asm/setup.h index 6b335a9ff8c8..25ceda63b284 100644 --- a/arch/arm/include/uapi/asm/setup.h +++ b/arch/arm/include/uapi/asm/setup.h @@ -9,7 +9,7 @@ * published by the Free Software Foundation. * * Structure passed to kernel to tell it about the - * hardware it's running on. See Documentation/arm/Setup + * hardware it's running on. See Documentation/arm/setup.rst * for more info. */ #ifndef _UAPI__ASMARM_SETUP_H diff --git a/arch/arm/kernel/entry-armv.S b/arch/arm/kernel/entry-armv.S index 0b8cfdd60b90..858d4e541532 100644 --- a/arch/arm/kernel/entry-armv.S +++ b/arch/arm/kernel/entry-armv.S @@ -826,7 +826,7 @@ ENDPROC(__switch_to) * existing ones. This mechanism should be used only for things that are * really small and justified, and not be abused freely. * - * See Documentation/arm/kernel_user_helpers.txt for formal definitions. + * See Documentation/arm/kernel_user_helpers.rst for formal definitions. */ THUMB( .arm ) diff --git a/arch/arm/mach-exynos/common.h b/arch/arm/mach-exynos/common.h index c93356a8d662..56411bb63d45 100644 --- a/arch/arm/mach-exynos/common.h +++ b/arch/arm/mach-exynos/common.h @@ -106,7 +106,7 @@ void exynos_firmware_init(void); #define C2_STATE (1 << 3) /* * Magic values for bootloader indicating chosen low power mode. - * See also Documentation/arm/Samsung/Bootloader-interface.txt + * See also Documentation/arm/samsung/bootloader-interface.rst */ #define EXYNOS_SLEEP_MAGIC 0x00000bad #define EXYNOS_AFTR_MAGIC 0xfcba0d10 diff --git a/arch/arm/mach-ixp4xx/Kconfig b/arch/arm/mach-ixp4xx/Kconfig index fc5378b00f3d..f7211b57b1e7 100644 --- a/arch/arm/mach-ixp4xx/Kconfig +++ b/arch/arm/mach-ixp4xx/Kconfig @@ -33,7 +33,7 @@ config MACH_AVILA help Say 'Y' here if you want your kernel to support the Gateworks Avila Network Platform. For more information on this platform, - see . + see . config MACH_LOFT bool "Loft" @@ -49,7 +49,7 @@ config ARCH_ADI_COYOTE help Say 'Y' here if you want your kernel to support the ADI Engineering Coyote Gateway Reference Platform. For more - information on this platform, see . + information on this platform, see . config MACH_GATEWAY7001 bool "Gateway 7001" @@ -72,21 +72,21 @@ config ARCH_IXDP425 help Say 'Y' here if you want your kernel to support Intel's IXDP425 Development Platform (Also known as Richfield). - For more information on this platform, see . + For more information on this platform, see . config MACH_IXDPG425 bool "IXDPG425" help Say 'Y' here if you want your kernel to support Intel's IXDPG425 Development Platform (Also known as Montajade). - For more information on this platform, see . + For more information on this platform, see . config MACH_IXDP465 bool "IXDP465" help Say 'Y' here if you want your kernel to support Intel's IXDP465 Development Platform (Also known as BMP). - For more information on this platform, see . + For more information on this platform, see . config MACH_GORAMO_MLR bool "GORAMO Multi Link Router" @@ -99,7 +99,7 @@ config MACH_KIXRP435 help Say 'Y' here if you want your kernel to support Intel's KIXRP435 Reference Platform. - For more information on this platform, see . + For more information on this platform, see . # # IXCDP1100 is the exact same HW as IXDP425, but with a different machine @@ -116,7 +116,7 @@ config ARCH_PRPMC1100 help Say 'Y' here if you want your kernel to support the Motorola PrPCM1100 Processor Mezanine Module. For more information on - this platform, see . + this platform, see . config MACH_NAS100D bool diff --git a/arch/arm/mach-s3c24xx/pm.c b/arch/arm/mach-s3c24xx/pm.c index adcb90645460..c64988c609ad 100644 --- a/arch/arm/mach-s3c24xx/pm.c +++ b/arch/arm/mach-s3c24xx/pm.c @@ -5,7 +5,7 @@ // // S3C24XX Power Manager (Suspend-To-RAM) support // -// See Documentation/arm/Samsung-S3C24XX/Suspend.txt for more information +// See Documentation/arm/samsung-s3c24xx/suspend.rst for more information // // Parts based on arch/arm/mach-pxa/pm.c // diff --git a/arch/arm/mm/Kconfig b/arch/arm/mm/Kconfig index cc798115aa9b..820b60a50125 100644 --- a/arch/arm/mm/Kconfig +++ b/arch/arm/mm/Kconfig @@ -709,7 +709,7 @@ config ARM_VIRT_EXT assistance. A compliant bootloader is required in order to make maximum - use of this feature. Refer to Documentation/arm/Booting for + use of this feature. Refer to Documentation/arm/booting.rst for details. config SWP_EMULATE @@ -875,7 +875,7 @@ config KUSER_HELPERS the CPU type fitted to the system. This permits binaries to be run on ARMv4 through to ARMv7 without modification. - See Documentation/arm/kernel_user_helpers.txt for details. + See Documentation/arm/kernel_user_helpers.rst for details. However, the fixed address nature of these helpers can be used by ROP (return orientated programming) authors when creating diff --git a/arch/arm/plat-samsung/Kconfig b/arch/arm/plat-samsung/Kconfig index 53da57fba39c..301e572651c0 100644 --- a/arch/arm/plat-samsung/Kconfig +++ b/arch/arm/plat-samsung/Kconfig @@ -243,7 +243,7 @@ config SAMSUNG_PM_DEBUG depends on DEBUG_EXYNOS_UART || DEBUG_S3C24XX_UART || DEBUG_S3C2410_UART help Say Y here if you want verbose debugging from the PM Suspend and - Resume code. See + Resume code. See for more information. config S3C_PM_DEBUG_LED_SMDK @@ -268,7 +268,7 @@ config SAMSUNG_PM_CHECK Note, this can take several seconds depending on memory size and CPU speed. - See + See config SAMSUNG_PM_CHECK_CHUNKSIZE int "S3C2410 PM Suspend CRC Chunksize (KiB)" @@ -280,7 +280,7 @@ config SAMSUNG_PM_CHECK_CHUNKSIZE the CRC data block will take more memory, but will identify any faults with better precision. - See + See config SAMSUNG_WAKEMASK bool diff --git a/arch/arm/tools/mach-types b/arch/arm/tools/mach-types index 4eac94c1eb6f..9e74c7ff6b04 100644 --- a/arch/arm/tools/mach-types +++ b/arch/arm/tools/mach-types @@ -7,7 +7,7 @@ # http://www.arm.linux.org.uk/developer/machines/download.php # # Please do not send patches to this file; it is automatically generated! -# To add an entry into this database, please see Documentation/arm/README, +# To add an entry into this database, please see Documentation/arm/arm.rst, # or visit: # # http://www.arm.linux.org.uk/developer/machines/?action=new diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig index a36ff61321ce..a4b22bbf0590 100644 --- a/arch/arm64/Kconfig +++ b/arch/arm64/Kconfig @@ -1142,7 +1142,7 @@ config KUSER_HELPERS the system. This permits binaries to be run on ARMv4 through to ARMv8 without modification. - See Documentation/arm/kernel_user_helpers.txt for details. + See Documentation/arm/kernel_user_helpers.rst for details. However, the fixed address nature of these helpers can be used by ROP (return orientated programming) authors when creating diff --git a/arch/arm64/kernel/kuser32.S b/arch/arm64/kernel/kuser32.S index 49825e9e421e..42bd8c0c60e0 100644 --- a/arch/arm64/kernel/kuser32.S +++ b/arch/arm64/kernel/kuser32.S @@ -10,7 +10,7 @@ * aarch32_setup_additional_pages() and are provided for compatibility * reasons with 32 bit (aarch32) applications that need them. * - * See Documentation/arm/kernel_user_helpers.txt for formal definitions. + * See Documentation/arm/kernel_user_helpers.rst for formal definitions. */ #include diff --git a/arch/mips/bmips/setup.c b/arch/mips/bmips/setup.c index 1738a06396f9..2f81a94c71a6 100644 --- a/arch/mips/bmips/setup.c +++ b/arch/mips/bmips/setup.c @@ -162,7 +162,7 @@ void __init plat_mem_setup(void) ioport_resource.start = 0; ioport_resource.end = ~0; - /* intended to somewhat resemble ARM; see Documentation/arm/Booting */ + /* intended to somewhat resemble ARM; see Documentation/arm/booting.rst */ if (fw_arg0 == 0 && fw_arg1 == 0xffffffff) dtb = phys_to_virt(fw_arg2); else if (fw_passed_dtb) /* UHI interface or appended dtb */ diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c b/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c index 4ab14d58e85b..6f7cbf6c2b55 100644 --- a/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c +++ b/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c @@ -8,7 +8,7 @@ * keysize in CBC and ECB mode. * Add support also for DES and 3DES in CBC and ECB mode. * - * You could find the datasheet in Documentation/arm/sunxi/README + * You could find the datasheet in Documentation/arm/sunxi.rst */ #include "sun4i-ss.h" diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-core.c b/drivers/crypto/sunxi-ss/sun4i-ss-core.c index cdcda7f059c8..2e8704271f45 100644 --- a/drivers/crypto/sunxi-ss/sun4i-ss-core.c +++ b/drivers/crypto/sunxi-ss/sun4i-ss-core.c @@ -6,7 +6,7 @@ * * Core file which registers crypto algorithms supported by the SS. * - * You could find a link for the datasheet in Documentation/arm/sunxi/README + * You could find a link for the datasheet in Documentation/arm/sunxi.rst */ #include #include diff --git a/drivers/crypto/sunxi-ss/sun4i-ss-hash.c b/drivers/crypto/sunxi-ss/sun4i-ss-hash.c index d2b6d89aad28..fcffba5ef927 100644 --- a/drivers/crypto/sunxi-ss/sun4i-ss-hash.c +++ b/drivers/crypto/sunxi-ss/sun4i-ss-hash.c @@ -6,7 +6,7 @@ * * This file add support for MD5 and SHA1. * - * You could find the datasheet in Documentation/arm/sunxi/README + * You could find the datasheet in Documentation/arm/sunxi.rst */ #include "sun4i-ss.h" #include diff --git a/drivers/crypto/sunxi-ss/sun4i-ss.h b/drivers/crypto/sunxi-ss/sun4i-ss.h index 68b82d1a6303..8654d48aedc0 100644 --- a/drivers/crypto/sunxi-ss/sun4i-ss.h +++ b/drivers/crypto/sunxi-ss/sun4i-ss.h @@ -8,7 +8,7 @@ * Support MD5 and SHA1 hash algorithms. * Support DES and 3DES * - * You could find the datasheet in Documentation/arm/sunxi/README + * You could find the datasheet in Documentation/arm/sunxi.rst */ #include diff --git a/drivers/input/touchscreen/sun4i-ts.c b/drivers/input/touchscreen/sun4i-ts.c index 92f6e1ae23a2..f11ba7f2dca7 100644 --- a/drivers/input/touchscreen/sun4i-ts.c +++ b/drivers/input/touchscreen/sun4i-ts.c @@ -22,7 +22,7 @@ * in the kernel). So this driver offers straight forward, reliable single * touch functionality only. * - * s.a. A20 User Manual "1.15 TP" (Documentation/arm/sunxi/README) + * s.a. A20 User Manual "1.15 TP" (Documentation/arm/sunxi.rst) * (looks like the description in the A20 User Manual v1.3 is better * than the one in the A10 User Manual v.1.5) */ diff --git a/drivers/tty/serial/Kconfig b/drivers/tty/serial/Kconfig index b416c7b33f49..04c23951b831 100644 --- a/drivers/tty/serial/Kconfig +++ b/drivers/tty/serial/Kconfig @@ -500,7 +500,7 @@ config SERIAL_SA1100 help If you have a machine based on a SA1100/SA1110 StrongARM(R) CPU you can enable its onboard serial port by enabling this option. - Please read for further + Please read for further info. config SERIAL_SA1100_CONSOLE -- cgit v1.2.3-58-ga151 From a7cd67e2b76edd46fbd2517078eeba369f933575 Mon Sep 17 00:00:00 2001 From: Ronald Tschalär Date: Sun, 21 Jul 2019 15:15:12 +0300 Subject: Input: applespi - fix warnings detected by sparse MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This makes sure that we convert from on-wire to CPU endianness in applespi_debug_update_dimensions() and also marks as "static" as it is not needed to be visible outside of the driver. Reported-by: kbuild test robot Signed-off-by: Ronald Tschalär Signed-off-by: Dmitry Torokhov --- drivers/input/keyboard/applespi.c | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/applespi.c b/drivers/input/keyboard/applespi.c index 548737e7aeda..52d394f473a2 100644 --- a/drivers/input/keyboard/applespi.c +++ b/drivers/input/keyboard/applespi.c @@ -944,10 +944,14 @@ static inline int le16_to_int(__le16 x) static void applespi_debug_update_dimensions(struct applespi_data *applespi, const struct tp_finger *f) { - applespi->tp_dim_min_x = min_t(int, applespi->tp_dim_min_x, f->abs_x); - applespi->tp_dim_max_x = max_t(int, applespi->tp_dim_max_x, f->abs_x); - applespi->tp_dim_min_y = min_t(int, applespi->tp_dim_min_y, f->abs_y); - applespi->tp_dim_max_y = max_t(int, applespi->tp_dim_max_y, f->abs_y); + applespi->tp_dim_min_x = min(applespi->tp_dim_min_x, + le16_to_int(f->abs_x)); + applespi->tp_dim_max_x = max(applespi->tp_dim_max_x, + le16_to_int(f->abs_x)); + applespi->tp_dim_min_y = min(applespi->tp_dim_min_y, + le16_to_int(f->abs_y)); + applespi->tp_dim_max_y = max(applespi->tp_dim_max_y, + le16_to_int(f->abs_y)); } static int applespi_tp_dim_open(struct inode *inode, struct file *file) @@ -1611,8 +1615,8 @@ static void applespi_save_bl_level(struct applespi_data *applespi, efi_attr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS; - sts = efivar_entry_set_safe(EFI_BL_LEVEL_NAME, efi_guid, efi_attr, true, - efi_data_len, &efi_data); + sts = efivar_entry_set_safe((efi_char16_t *)EFI_BL_LEVEL_NAME, efi_guid, + efi_attr, true, efi_data_len, &efi_data); if (sts) dev_warn(&applespi->spi->dev, "Error saving backlight level to EFI vars: %d\n", sts); @@ -1953,7 +1957,7 @@ static const struct acpi_device_id applespi_acpi_match[] = { }; MODULE_DEVICE_TABLE(acpi, applespi_acpi_match); -const struct dev_pm_ops applespi_pm_ops = { +static const struct dev_pm_ops applespi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(applespi_suspend, applespi_resume) .poweroff_late = applespi_poweroff_late, }; -- cgit v1.2.3-58-ga151 From 020834bebbcb5db4026757556710ea58ccb76a06 Mon Sep 17 00:00:00 2001 From: Arnd Bergmann Date: Tue, 23 Jul 2019 16:41:35 +0300 Subject: Input: applespi - select CRC16 module In some rare randconfig builds, CRC16 is disabled, which leads to a link error: drivers/input/keyboard/applespi.o: In function `applespi_send_cmd_msg': applespi.c:(.text+0x449f): undefined reference to `crc16' drivers/input/keyboard/applespi.o: In function `applespi_verify_crc': applespi.c:(.text+0x7538): undefined reference to `crc16' This symbol is meant to be selected for each user in Kconfig, so do that here as well. Fixes: 038b1a05eae6 ("Input: add Apple SPI keyboard and trackpad driver") Signed-off-by: Arnd Bergmann Signed-off-by: Dmitry Torokhov --- drivers/input/keyboard/Kconfig | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/Kconfig b/drivers/input/keyboard/Kconfig index 8e9c3ea9d5e7..ebb19e21473e 100644 --- a/drivers/input/keyboard/Kconfig +++ b/drivers/input/keyboard/Kconfig @@ -76,6 +76,7 @@ config KEYBOARD_APPLESPI depends on ACPI && EFI depends on SPI depends on X86 || COMPILE_TEST + select CRC16 help Say Y here if you are running Linux on any Apple MacBook8,1 or later, or any MacBookPro13,* or MacBookPro14,*. -- cgit v1.2.3-58-ga151 From b1cbb2f09d7b3f1726215987d5b28f5aea9548da Mon Sep 17 00:00:00 2001 From: Nikolas Nyby Date: Tue, 23 Jul 2019 16:42:57 +0300 Subject: Input: applespi - fix trivial typo in struct description This fixes a typo in the keyboard_protocol description. coodinate -> coordinate. Signed-off-by: Nikolas Nyby Signed-off-by: Dmitry Torokhov --- drivers/input/keyboard/applespi.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/applespi.c b/drivers/input/keyboard/applespi.c index 52d394f473a2..acf34a5ff571 100644 --- a/drivers/input/keyboard/applespi.c +++ b/drivers/input/keyboard/applespi.c @@ -134,10 +134,10 @@ struct keyboard_protocol { * struct tp_finger - single trackpad finger structure, le16-aligned * * @origin: zero when switching track finger - * @abs_x: absolute x coodinate - * @abs_y: absolute y coodinate - * @rel_x: relative x coodinate - * @rel_y: relative y coodinate + * @abs_x: absolute x coordinate + * @abs_y: absolute y coordinate + * @rel_x: relative x coordinate + * @rel_y: relative y coordinate * @tool_major: tool area, major axis * @tool_minor: tool area, minor axis * @orientation: 16384 when point, else 15 bit angle -- cgit v1.2.3-58-ga151 From 883a2a80f79ca5c0c105605fafabd1f3df99b34c Mon Sep 17 00:00:00 2001 From: Kai-Heng Feng Date: Mon, 22 Jul 2019 10:56:55 +0300 Subject: Input: elantech - enable SMBus on new (2018+) systems There are some new HP laptops with Elantech touchpad that don't support multitouch. Currently we use ETP_NEW_IC_SMBUS_HOST_NOTIFY() to check if SMBus is supported, but in addition to firmware version, the bus type also informs us whether the IC can support SMBus. To avoid breaking old ICs, we will only enable SMbus support based the bus type on systems manufactured after 2018. Lastly, let's consolidate all checks into elantech_use_host_notify() and use it to determine whether to use PS/2 or SMBus. Signed-off-by: Kai-Heng Feng Acked-by: Benjamin Tissoires Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov --- drivers/input/mouse/elantech.c | 54 +++++++++++++++++++----------------------- 1 file changed, 25 insertions(+), 29 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/mouse/elantech.c b/drivers/input/mouse/elantech.c index 2d8434b7b623..73544776a9ed 100644 --- a/drivers/input/mouse/elantech.c +++ b/drivers/input/mouse/elantech.c @@ -1827,6 +1827,30 @@ static int elantech_create_smbus(struct psmouse *psmouse, leave_breadcrumbs); } +static bool elantech_use_host_notify(struct psmouse *psmouse, + struct elantech_device_info *info) +{ + if (ETP_NEW_IC_SMBUS_HOST_NOTIFY(info->fw_version)) + return true; + + switch (info->bus) { + case ETP_BUS_PS2_ONLY: + /* expected case */ + break; + case ETP_BUS_SMB_HST_NTFY_ONLY: + case ETP_BUS_PS2_SMB_HST_NTFY: + /* SMbus implementation is stable since 2018 */ + if (dmi_get_bios_year() >= 2018) + return true; + default: + psmouse_dbg(psmouse, + "Ignoring SMBus bus provider %d\n", info->bus); + break; + } + + return false; +} + /** * elantech_setup_smbus - called once the PS/2 devices are enumerated * and decides to instantiate a SMBus InterTouch device. @@ -1846,7 +1870,7 @@ static int elantech_setup_smbus(struct psmouse *psmouse, * i2c_blacklist_pnp_ids. * Old ICs are up to the user to decide. */ - if (!ETP_NEW_IC_SMBUS_HOST_NOTIFY(info->fw_version) || + if (!elantech_use_host_notify(psmouse, info) || psmouse_matches_pnp_id(psmouse, i2c_blacklist_pnp_ids)) return -ENXIO; } @@ -1866,34 +1890,6 @@ static int elantech_setup_smbus(struct psmouse *psmouse, return 0; } -static bool elantech_use_host_notify(struct psmouse *psmouse, - struct elantech_device_info *info) -{ - if (ETP_NEW_IC_SMBUS_HOST_NOTIFY(info->fw_version)) - return true; - - switch (info->bus) { - case ETP_BUS_PS2_ONLY: - /* expected case */ - break; - case ETP_BUS_SMB_ALERT_ONLY: - /* fall-through */ - case ETP_BUS_PS2_SMB_ALERT: - psmouse_dbg(psmouse, "Ignoring SMBus provider through alert protocol.\n"); - break; - case ETP_BUS_SMB_HST_NTFY_ONLY: - /* fall-through */ - case ETP_BUS_PS2_SMB_HST_NTFY: - return true; - default: - psmouse_dbg(psmouse, - "Ignoring SMBus bus provider %d.\n", - info->bus); - } - - return false; -} - int elantech_init_smbus(struct psmouse *psmouse) { struct elantech_device_info info; -- cgit v1.2.3-58-ga151 From f3b5720cabafe90b8b7cffbc7b8fec1c17d4ff4b Mon Sep 17 00:00:00 2001 From: Dmitry Torokhov Date: Wed, 24 Jul 2019 10:29:03 +0300 Subject: Input: elantech - annotate fall-through case in elantech_use_host_notify() This avoids a warning when building with -Wimplicit-fallthrough. Fixes: 883a2a80f79c ("Input: elantech - enable SMBus on new (2018+) systems") Reported-by: Stephen Rothwell Signed-off-by: Dmitry Torokhov --- drivers/input/mouse/elantech.c | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/input') diff --git a/drivers/input/mouse/elantech.c b/drivers/input/mouse/elantech.c index 73544776a9ed..04fe43440a3c 100644 --- a/drivers/input/mouse/elantech.c +++ b/drivers/input/mouse/elantech.c @@ -1842,6 +1842,7 @@ static bool elantech_use_host_notify(struct psmouse *psmouse, /* SMbus implementation is stable since 2018 */ if (dmi_get_bios_year() >= 2018) return true; + /* fall through */ default: psmouse_dbg(psmouse, "Ignoring SMBus bus provider %d\n", info->bus); -- cgit v1.2.3-58-ga151 From 25f8c834e2a6871920cc1ca113f02fb301d007c3 Mon Sep 17 00:00:00 2001 From: Dmitry Torokhov Date: Fri, 12 Jul 2019 11:37:17 -0700 Subject: Input: synaptics - enable RMI mode for HP Spectre X360 The 2016 kabylake HP Spectre X360 (model number 13-w013dx) works much better with psmouse.synaptics_intertouch=1 kernel parameter, so let's enable RMI4 mode automatically. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204115 Reported-by: Nate Graham Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov --- drivers/input/mouse/synaptics.c | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/input') diff --git a/drivers/input/mouse/synaptics.c b/drivers/input/mouse/synaptics.c index b1956ed4c0dd..46bbe99d6511 100644 --- a/drivers/input/mouse/synaptics.c +++ b/drivers/input/mouse/synaptics.c @@ -182,6 +182,7 @@ static const char * const smbus_pnp_ids[] = { "LEN2055", /* E580 */ "SYN3052", /* HP EliteBook 840 G4 */ "SYN3221", /* HP 15-ay000 */ + "SYN323d", /* HP Spectre X360 13-w013dx */ NULL }; -- cgit v1.2.3-58-ga151 From e77ff779a0c6666b697c56a6e41972bbf30b977f Mon Sep 17 00:00:00 2001 From: YueHaibing Date: Wed, 31 Jul 2019 06:48:09 -0700 Subject: Input: applespi - add dependency on LEDS_CLASS If applespi is enabled, but LEDs class support is not, the build fails: drivers/input/keyboard/applespi.o: In function `applespi_probe': applespi.c:(.text+0x1fcd): undefined reference to `devm_led_classdev_register_ext' Add "depends on LEDS_CLASS" to the Konfig Reported-by: Hulk Robot Fixes: 038b1a05eae6 ("Input: add Apple SPI keyboard and trackpad driver") Signed-off-by: YueHaibing Signed-off-by: Dmitry Torokhov --- drivers/input/keyboard/Kconfig | 1 + 1 file changed, 1 insertion(+) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/Kconfig b/drivers/input/keyboard/Kconfig index ebb19e21473e..90e8a7f2f07c 100644 --- a/drivers/input/keyboard/Kconfig +++ b/drivers/input/keyboard/Kconfig @@ -76,6 +76,7 @@ config KEYBOARD_APPLESPI depends on ACPI && EFI depends on SPI depends on X86 || COMPILE_TEST + depends on LEDS_CLASS select CRC16 help Say Y here if you are running Linux on any Apple MacBook8,1 or later, -- cgit v1.2.3-58-ga151 From b55d996f057bf2e7ba9422a80b5e17e99860cb0b Mon Sep 17 00:00:00 2001 From: Oliver Neukum Date: Thu, 1 Aug 2019 09:40:26 -0700 Subject: Input: usbtouchscreen - initialize PM mutex before using it Mutexes shall be initialized before they are used. Fixes: 12e510dbc57b2 ("Input: usbtouchscreen - fix deadlock in autosuspend") Reported-by: syzbot+199ea16c7f26418b4365@syzkaller.appspotmail.com Signed-off-by: Oliver Neukum Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov --- drivers/input/touchscreen/usbtouchscreen.c | 2 ++ 1 file changed, 2 insertions(+) (limited to 'drivers/input') diff --git a/drivers/input/touchscreen/usbtouchscreen.c b/drivers/input/touchscreen/usbtouchscreen.c index a2cec6cacf57..16d70201de4a 100644 --- a/drivers/input/touchscreen/usbtouchscreen.c +++ b/drivers/input/touchscreen/usbtouchscreen.c @@ -1659,6 +1659,8 @@ static int usbtouch_probe(struct usb_interface *intf, if (!usbtouch || !input_dev) goto out_free; + mutex_init(&usbtouch->pm_mutex); + type = &usbtouch_dev_info[id->driver_info]; usbtouch->type = type; if (!type->process_pkt) -- cgit v1.2.3-58-ga151 From c88090dfc84254fa149174eb3e6a8458de1912c4 Mon Sep 17 00:00:00 2001 From: Oliver Neukum Date: Thu, 1 Aug 2019 09:44:25 -0700 Subject: Input: kbtab - sanity check for endpoint type The driver should check whether the endpoint it uses has the correct type. Reported-by: syzbot+c7df50363aaff50aa363@syzkaller.appspotmail.com Signed-off-by: Oliver Neukum Signed-off-by: Dmitry Torokhov --- drivers/input/tablet/kbtab.c | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/tablet/kbtab.c b/drivers/input/tablet/kbtab.c index 04b85571f41e..aa577898e952 100644 --- a/drivers/input/tablet/kbtab.c +++ b/drivers/input/tablet/kbtab.c @@ -117,6 +117,10 @@ static int kbtab_probe(struct usb_interface *intf, const struct usb_device_id *i if (intf->cur_altsetting->desc.bNumEndpoints < 1) return -ENODEV; + endpoint = &intf->cur_altsetting->endpoint[0].desc; + if (!usb_endpoint_is_int_in(endpoint)) + return -ENODEV; + kbtab = kzalloc(sizeof(struct kbtab), GFP_KERNEL); input_dev = input_allocate_device(); if (!kbtab || !input_dev) @@ -155,8 +159,6 @@ static int kbtab_probe(struct usb_interface *intf, const struct usb_device_id *i input_set_abs_params(input_dev, ABS_Y, 0, 0x1750, 4, 0); input_set_abs_params(input_dev, ABS_PRESSURE, 0, 0xff, 0, 0); - endpoint = &intf->cur_altsetting->endpoint[0].desc; - usb_fill_int_urb(kbtab->irq, dev, usb_rcvintpipe(dev, endpoint->bEndpointAddress), kbtab->data, 8, -- cgit v1.2.3-58-ga151 From 37ad2e343449ced9e41505eae5494bf40f433181 Mon Sep 17 00:00:00 2001 From: "Gustavo A. R. Silva" Date: Tue, 6 Aug 2019 09:03:16 -0700 Subject: Input: applespi - use struct_size() helper One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct touchpad_protocol { ... struct tp_finger fingers[0]; }; Make use of the struct_size() helper instead of an open-coded version in order to avoid any potential type mistakes. So, replace the following form: sizeof(*tp) + tp->number_of_fingers * sizeof(tp->fingers[0]); with: struct_size(tp, fingers, tp->number_of_fingers) This code was detected with the help of Coccinelle. Signed-off-by: Gustavo A. R. Silva Signed-off-by: Dmitry Torokhov --- drivers/input/keyboard/applespi.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'drivers/input') diff --git a/drivers/input/keyboard/applespi.c b/drivers/input/keyboard/applespi.c index acf34a5ff571..584289b67fb3 100644 --- a/drivers/input/keyboard/applespi.c +++ b/drivers/input/keyboard/applespi.c @@ -1494,8 +1494,7 @@ static void applespi_got_data(struct applespi_data *applespi) size_t tp_len; tp = &message->touchpad; - tp_len = sizeof(*tp) + - tp->number_of_fingers * sizeof(tp->fingers[0]); + tp_len = struct_size(tp, fingers, tp->number_of_fingers); if (le16_to_cpu(message->length) + 2 != tp_len) { dev_warn_ratelimited(&applespi->spi->dev, -- cgit v1.2.3-58-ga151 From 849f5ae3a513c550cad741c68dd3d7eb2bcc2a2c Mon Sep 17 00:00:00 2001 From: Oliver Neukum Date: Tue, 6 Aug 2019 09:05:55 -0700 Subject: Input: iforce - add sanity checks The endpoint type should also be checked before a device is accepted. Reported-by: syzbot+5efc10c005014d061a74@syzkaller.appspotmail.com Signed-off-by: Oliver Neukum Signed-off-by: Dmitry Torokhov --- drivers/input/joystick/iforce/iforce-usb.c | 5 +++++ 1 file changed, 5 insertions(+) (limited to 'drivers/input') diff --git a/drivers/input/joystick/iforce/iforce-usb.c b/drivers/input/joystick/iforce/iforce-usb.c index 29abfeeef9a5..6c554c11a7ac 100644 --- a/drivers/input/joystick/iforce/iforce-usb.c +++ b/drivers/input/joystick/iforce/iforce-usb.c @@ -201,7 +201,12 @@ static int iforce_usb_probe(struct usb_interface *intf, return -ENODEV; epirq = &interface->endpoint[0].desc; + if (!usb_endpoint_is_int_in(epirq)) + return -ENODEV; + epout = &interface->endpoint[1].desc; + if (!usb_endpoint_is_int_out(epout)) + return -ENODEV; iforce_usb = kzalloc(sizeof(*iforce_usb), GFP_KERNEL); if (!iforce_usb) -- cgit v1.2.3-58-ga151