summaryrefslogtreecommitdiff
path: root/net/ipv4/tcp_output.c
AgeCommit message (Collapse)Author
2013-05-23tcp: xps: fix reordering issuesEric Dumazet
commit 3853b5841c01a ("xps: Improvements in TX queue selection") introduced ooo_okay flag, but the condition to set it is slightly wrong. In our traces, we have seen ACK packets being received out of order, and RST packets sent in response. We should test if we have any packets still in host queue. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-29net: Add MIB counters for checksum errorsEric Dumazet
Add MIB counters for checksum errors in IP layer, and TCP/UDP/ICMP layers, to help diagnose problems. $ nstat -a | grep Csum IcmpInCsumErrors 72 0.0 TcpInCsumErrors 382 0.0 UdpInCsumErrors 463221 0.0 Icmp6InCsumErrors 75 0.0 Udp6InCsumErrors 173442 0.0 IpExtInCsumErrors 10884 0.0 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-22Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: drivers/net/ethernet/emulex/benet/be_main.c drivers/net/ethernet/intel/igb/igb_main.c drivers/net/wireless/brcm80211/brcmsmac/mac80211_if.c include/net/scm.h net/batman-adv/routing.c net/ipv4/tcp_input.c The e{uid,gid} --> {uid,gid} credentials fix conflicted with the cleanup in net-next to now pass cred structs around. The be2net driver had a bug fix in 'net' that overlapped with the VLAN interface changes by Patrick McHardy in net-next. An IGB conflict existed because in 'net' the build_skb() support was reverted, and in 'net-next' there was a comment style fix within that code. Several batman-adv conflicts were resolved by making sure that all calls to batadv_is_my_mac() are changed to have a new bat_priv first argument. Eric Dumazet's TS ECR fix in TCP in 'net' conflicted with the F-RTO rewrite in 'net-next', mostly overlapping changes. Thanks to Stephen Rothwell and Antonio Quartulli for help with several of these merge resolutions. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-18tcp: introduce TCPSpuriousRtxHostQueues SNMP counterEric Dumazet
Host queues (Qdisc + NIC) can hold packets so long that TCP can eventually retransmit a packet before the first transmit even left the host. Its not clear right now if we could avoid this in the first place : - We could arm RTO timer not at the time we enqueue packets, but at the time we TX complete them (tcp_wfree()) - Cancel the sending of the new copy of the packet if prior one is still in queue. This patch adds instrumentation so that we can at least see how often this problem happens. TCPSpuriousRtxHostQueues SNMP counter is incremented every time we detect the fast clone is not yet freed in tcp_transmit_skb() Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-12tcp: GSO should be TSQ friendlyEric Dumazet
I noticed that TSQ (TCP Small queues) was less effective when TSO is turned off, and GSO is on. If BQL is not enabled, TSQ has then no effect. It turns out the GSO engine frees the original gso_skb at the time the fragments are generated and queued to the NIC. We should instead call the tcp_wfree() destructor for the last fragment, to keep the flow control as intended in TSQ. This effectively limits the number of queued packets on qdisc + NIC layers. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-11tcp: Reallocate headroom if it would overflow csum_startThomas Graf
If a TCP retransmission gets partially ACKed and collapsed multiple times it is possible for the headroom to grow beyond 64K which will overflow the 16bit skb->csum_start which is based on the start of the headroom. It has been observed rarely in the wild with IPoIB due to the 64K MTU. Verify if the acking and collapsing resulted in a headroom exceeding what csum_start can cover and reallocate the headroom if so. A big thank you to Jim Foraker <foraker1@llnl.gov> and the team at LLNL for helping out with the investigation and testing. Reported-by: Jim Foraker <foraker1@llnl.gov> Signed-off-by: Thomas Graf <tgraf@suug.ch> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-09selinux: add a skb_owned_by() hookEric Dumazet
Commit 90ba9b1986b5ac (tcp: tcp_make_synack() can use alloc_skb()) broke certain SELinux/NetLabel configurations by no longer correctly assigning the sock to the outgoing SYNACK packet. Cost of atomic operations on the LISTEN socket is quite big, and we would like it to happen only if really needed. This patch introduces a new security_ops->skb_owned_by() method, that is a void operation unless selinux is active. Reported-by: Miroslav Vadkerti <mvadkert@redhat.com> Diagnosed-by: Paul Moore <pmoore@redhat.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-security-module@vger.kernel.org Acked-by: James Morris <james.l.morris@oracle.com> Tested-by: Paul Moore <pmoore@redhat.com> Acked-by: Paul Moore <pmoore@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-22Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Pull to get the thermal netlink multicast group name fix, otherwise the assertion added in net-next to netlink to detect that kind of bug makes systems unbootable for some folks. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-22tcp: preserve ACK clocking in TSOEric Dumazet
A long standing problem with TSO is the fact that tcp_tso_should_defer() rearms the deferred timer, while it should not. Current code leads to following bad bursty behavior : 20:11:24.484333 IP A > B: . 297161:316921(19760) ack 1 win 119 20:11:24.484337 IP B > A: . ack 263721 win 1117 20:11:24.485086 IP B > A: . ack 265241 win 1117 20:11:24.485925 IP B > A: . ack 266761 win 1117 20:11:24.486759 IP B > A: . ack 268281 win 1117 20:11:24.487594 IP B > A: . ack 269801 win 1117 20:11:24.488430 IP B > A: . ack 271321 win 1117 20:11:24.489267 IP B > A: . ack 272841 win 1117 20:11:24.490104 IP B > A: . ack 274361 win 1117 20:11:24.490939 IP B > A: . ack 275881 win 1117 20:11:24.491775 IP B > A: . ack 277401 win 1117 20:11:24.491784 IP A > B: . 316921:332881(15960) ack 1 win 119 20:11:24.492620 IP B > A: . ack 278921 win 1117 20:11:24.493448 IP B > A: . ack 280441 win 1117 20:11:24.494286 IP B > A: . ack 281961 win 1117 20:11:24.495122 IP B > A: . ack 283481 win 1117 20:11:24.495958 IP B > A: . ack 285001 win 1117 20:11:24.496791 IP B > A: . ack 286521 win 1117 20:11:24.497628 IP B > A: . ack 288041 win 1117 20:11:24.498459 IP B > A: . ack 289561 win 1117 20:11:24.499296 IP B > A: . ack 291081 win 1117 20:11:24.500133 IP B > A: . ack 292601 win 1117 20:11:24.500970 IP B > A: . ack 294121 win 1117 20:11:24.501388 IP B > A: . ack 295641 win 1117 20:11:24.501398 IP A > B: . 332881:351881(19000) ack 1 win 119 While the expected behavior is more like : 20:19:49.259620 IP A > B: . 197601:202161(4560) ack 1 win 119 20:19:49.260446 IP B > A: . ack 154281 win 1212 20:19:49.261282 IP B > A: . ack 155801 win 1212 20:19:49.262125 IP B > A: . ack 157321 win 1212 20:19:49.262136 IP A > B: . 202161:206721(4560) ack 1 win 119 20:19:49.262958 IP B > A: . ack 158841 win 1212 20:19:49.263795 IP B > A: . ack 160361 win 1212 20:19:49.264628 IP B > A: . ack 161881 win 1212 20:19:49.264637 IP A > B: . 206721:211281(4560) ack 1 win 119 20:19:49.265465 IP B > A: . ack 163401 win 1212 20:19:49.265886 IP B > A: . ack 164921 win 1212 20:19:49.266722 IP B > A: . ack 166441 win 1212 20:19:49.266732 IP A > B: . 211281:215841(4560) ack 1 win 119 20:19:49.267559 IP B > A: . ack 167961 win 1212 20:19:49.268394 IP B > A: . ack 169481 win 1212 20:19:49.269232 IP B > A: . ack 171001 win 1212 20:19:49.269241 IP A > B: . 215841:221161(5320) ack 1 win 119 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-21tcp: refactor F-RTOYuchung Cheng
The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Pull in the 'net' tree to get Daniel Borkmann's flow dissector infrastructure change. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-17tcp: Remove TCPCTChristoph Paasch
TCPCT uses option-number 253, reserved for experimental use and should not be used in production environments. Further, TCPCT does not fully implement RFC 6013. As a nice side-effect, removing TCPCT increases TCP's performance for very short flows: Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests for files of 1KB size. before this patch: average (among 7 runs) of 20845.5 Requests/Second after: average (among 7 runs) of 21403.6 Requests/Second Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-14tcp: fix skb_availroom()Eric Dumazet
Chrome OS team reported a crash on a Pixel ChromeBook in TCP stack : https://code.google.com/p/chromium/issues/detail?id=182056 commit a21d45726acac (tcp: avoid order-1 allocations on wifi and tx path) did a poor choice adding an 'avail_size' field to skb, while what we really needed was a 'reserved_tailroom' one. It would have avoided commit 22b4a4f22da (tcp: fix retransmit of partially acked frames) and this commit. Crash occurs because skb_split() is not aware of the 'avail_size' management (and should not be aware) Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Mukesh Agrawal <quiche@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-12tcp: TLP loss detection.Nandita Dukkipati
This is the second of the TLP patch series; it augments the basic TLP algorithm with a loss detection scheme. This patch implements a mechanism for loss detection when a Tail loss probe retransmission plugs a hole thereby masking packet loss from the sender. The loss detection algorithm relies on counting TLP dupacks as outlined in Sec. 3 of: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 The basic idea is: Sender keeps track of TLP "episode" upon retransmission of a TLP packet. An episode ends when the sender receives an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the episode. We want to make sure that before the episode ends the sender receives a "TLP dupack", indicating that the TLP retransmission was unnecessary, so there was no loss/hole that needed plugging. If the sender gets no TLP dupack before the end of the episode, then it reduces ssthresh and the congestion window, because the TLP packet arriving at the receiver probably plugged a hole. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-12tcp: Tail loss probe (TLP)Nandita Dukkipati
This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-22tcp: fix SYN-data space mis-accountingYuchung Cheng
In fast open the sender unncessarily reduces the space available for data in SYN by 12 bytes. This is because in the sender incorrectly reserves space for TS option twice in tcp_send_syn_data(): tcp_mtu_to_mss() already accounts for TS option space. But it further reserves MAX_TCP_OPTION_SPACE when computing the payload space. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-15net: Add skb_unclone() helper function.Pravin B Shelar
This function will be used in next GRE_GSO patch. This patch does not change any functionality. Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Acked-by: Eric Dumazet <edumazet@google.com>
2013-02-13net: Fix possible wrong checksum generation.Pravin B Shelar
Patch cef401de7be8c4e (net: fix possible wrong checksum generation) fixed wrong checksum calculation but it broke TSO by defining new GSO type but not a netdev feature for that type. net_gso_ok() would not allow hardware checksum/segmentation offload of such packets without the feature. Following patch fixes TSO and wrong checksum. This patch uses same logic that Eric Dumazet used. Patch introduces new flag SKBTX_SHARED_FRAG if at least one frag can be modified by the user. but SKBTX_SHARED_FRAG flag is kept in skb shared info tx_flags rather than gso_type. tx_flags is better compared to gso_type since we can have skb with shared frag without gso packet. It does not link SHARED_FRAG to GSO, So there is no need to define netdev feature for this. Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-13tcp: send packets with a socket timestampAndrey Vagin
A socket timestamp is a sum of the global tcp_time_stamp and a per-socket offset. A socket offset is added in places where externally visible tcp timestamp option is parsed/initialized. Connections in the SYN_RECV state are not supported, global tcp_time_stamp is used for them, because repair mode doesn't support this state. In a future it can be implemented by the similar way as for TIME_WAIT sockets. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-28net: fix possible wrong checksum generationEric Dumazet
Pravin Shelar mentioned that GSO could potentially generate wrong TX checksum if skb has fragments that are overwritten by the user between the checksum computation and transmit. He suggested to linearize skbs but this extra copy can be avoided for normal tcp skbs cooked by tcp_sendmsg(). This patch introduces a new SKB_GSO_SHARED_FRAG flag, set in skb_shinfo(skb)->gso_type if at least one frag can be modified by the user. Typical sources of such possible overwrites are {vm}splice(), sendfile(), and macvtap/tun/virtio_net drivers. Tested: $ netperf -H 7.7.8.84 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3959.52 $ netperf -H 7.7.8.84 -t TCP_SENDFILE TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3216.80 Performance of the SENDFILE is impacted by the extra allocation and copy, and because we use order-0 pages, while the TCP_STREAM uses bigger pages. Reported-by: Pravin Shelar <pshelar@nicira.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-06tcp: make sysctl_tcp_ecn namespace awareHannes Frederic Sowa
As per suggestion from Eric Dumazet this patch makes tcp_ecn sysctl namespace aware. The reason behind this patch is to ease the testing of ecn problems on the internet and allows applications to tune their own use of ecn. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds
Pull networking changes from David Miller: 1) Allow to dump, monitor, and change the bridge multicast database using netlink. From Cong Wang. 2) RFC 5961 TCP blind data injection attack mitigation, from Eric Dumazet. 3) Networking user namespace support from Eric W. Biederman. 4) tuntap/virtio-net multiqueue support by Jason Wang. 5) Support for checksum offload of encapsulated packets (basically, tunneled traffic can still be checksummed by HW). From Joseph Gasparakis. 6) Allow BPF filter access to VLAN tags, from Eric Dumazet and Daniel Borkmann. 7) Bridge port parameters over netlink and BPDU blocking support from Stephen Hemminger. 8) Improve data access patterns during inet socket demux by rearranging socket layout, from Eric Dumazet. 9) TIPC protocol updates and cleanups from Ying Xue, Paul Gortmaker, and Jon Maloy. 10) Update TCP socket hash sizing to be more in line with current day realities. The existing heurstics were choosen a decade ago. From Eric Dumazet. 11) Fix races, queue bloat, and excessive wakeups in ATM and associated drivers, from Krzysztof Mazur and David Woodhouse. 12) Support DOVE (Distributed Overlay Virtual Ethernet) extensions in VXLAN driver, from David Stevens. 13) Add "oops_only" mode to netconsole, from Amerigo Wang. 14) Support set and query of VEB/VEPA bridge mode via PF_BRIDGE, also allow DCB netlink to work on namespaces other than the initial namespace. From John Fastabend. 15) Support PTP in the Tigon3 driver, from Matt Carlson. 16) tun/vhost zero copy fixes and improvements, plus turn it on by default, from Michael S. Tsirkin. 17) Support per-association statistics in SCTP, from Michele Baldessari. And many, many, driver updates, cleanups, and improvements. Too numerous to mention individually. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1722 commits) net/mlx4_en: Add support for destination MAC in steering rules net/mlx4_en: Use generic etherdevice.h functions. net: ethtool: Add destination MAC address to flow steering API bridge: add support of adding and deleting mdb entries bridge: notify mdb changes via netlink ndisc: Unexport ndisc_{build,send}_skb(). uapi: add missing netconf.h to export list pkt_sched: avoid requeues if possible solos-pci: fix double-free of TX skb in DMA mode bnx2: Fix accidental reversions. bna: Driver Version Updated to 3.1.2.1 bna: Firmware update bna: Add RX State bna: Rx Page Based Allocation bna: TX Intr Coalescing Fix bna: Tx and Rx Optimizations bna: Code Cleanup and Enhancements ath9k: check pdata variable before dereferencing it ath5k: RX timestamp is reported at end of frame ath9k_htc: RX timestamp is reported at end of frame ...
2012-12-07tcp: bug fix Fast Open client retransmissionYuchung Cheng
If SYN-ACK partially acks SYN-data, the client retransmits the remaining data by tcp_retransmit_skb(). This increments lost recovery state variables like tp->retrans_out in Open state. If loss recovery happens before the retransmission is acked, it triggers the WARN_ON check in tcp_fastretrans_alert(). For example: the client sends SYN-data, gets SYN-ACK acking only ISN, retransmits data, sends another 4 data packets and get 3 dupacks. Since the retransmission is not caused by network drop it should not update the recovery state variables. Further the server may return a smaller MSS than the cached MSS used for SYN-data, so the retranmission needs a loop. Otherwise some data will not be retransmitted until timeout or other loss recovery events. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-22ipv6: adapt connect for repair moveAndrey Vagin
This is work the same as for ipv4. All other hacks about tcp repair are in common code for ipv4 and ipv6, so this patch is enough for repairing ipv6 connections. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrey Vagin <avagin@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-15tcp: fix retransmission in repair modeAndrew Vagin
Currently if a socket was repaired with a few packet in a write queue, a kernel bug may be triggered: kernel BUG at net/ipv4/tcp_output.c:2330! RIP: 0010:[<ffffffff8155784f>] tcp_retransmit_skb+0x5ff/0x610 According to the initial realization v3.4-rc2-963-gc0e88ff, all skb-s should look like already posted. This patch fixes code according with this sentence. Here are three points, which were not done in the initial patch: 1. A tcp send head should not be changed 2. Initialize TSO state of a skb 3. Reset the retransmission time This patch moves logic from tcp_sendmsg to tcp_write_xmit. A packet passes the ussual way, but isn't sent to network. This patch solves all described problems and handles tcp_sendpages. Cc: Pavel Emelyanov <xemul@parallels.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Signed-off-by: Andrey Vagin <avagin@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-03tcp: use PRR to reduce cwin in CWR stateYuchung Cheng
Use proportional rate reduction (PRR) algorithm to reduce cwnd in CWR state, in addition to Recovery state. Retire the current rate-halving in CWR. When losses are detected via ACKs in CWR state, the sender enters Recovery state but the cwnd reduction continues and does not restart. Rename and refactor cwnd reduction functions since both CWR and Recovery use the same algorithm: tcp_init_cwnd_reduction() is new and initiates reduction state variables. tcp_cwnd_reduction() is previously tcp_update_cwnd_in_recovery(). tcp_ends_cwnd_reduction() is previously tcp_complete_cwr(). The rate halving functions and logic such as tcp_cwnd_down(), tcp_min_cwnd(), and the cwnd moderation inside tcp_enter_cwr() are removed. The unused parameter, flag, in tcp_cwnd_reduction() is also removed. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-31tcp: TCP Fast Open Server - support TFO listenersJerry Chu
This patch builds on top of the previous patch to add the support for TFO listeners. This includes - 1. allocating, properly initializing, and managing the per listener fastopen_queue structure when TFO is enabled 2. changes to the inet_csk_accept code to support TFO. E.g., the request_sock can no longer be freed upon accept(), not until 3WHS finishes 3. allowing a TCP_SYN_RECV socket to properly poll() and sendmsg() if it's a TFO socket 4. properly closing a TFO listener, and a TFO socket before 3WHS finishes 5. supporting TCP_FASTOPEN socket option 6. modifying tcp_check_req() to use to check a TFO socket as well as request_sock 7. supporting TCP's TFO cookie option 8. adding a new SYN-ACK retransmit handler to use the timer directly off the TFO socket rather than the listener socket. Note that TFO server side will not retransmit anything other than SYN-ACK until the 3WHS is completed. The patch also contains an important function "reqsk_fastopen_remove()" to manage the somewhat complex relation between a listener, its request_sock, and the corresponding child socket. See the comment above the function for the detail. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-21tcp: fix possible socket refcount problemEric Dumazet
Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-06tcp_output: fix sparse warning for tcp_wfreeSilviu-Mihai Popescu
Fix sparse warning: * symbol 'tcp_wfree' was not declared. Should it be static? Signed-off-by: Silviu-Mihai Popescu <silviupopescu1990@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-02tcp: Apply device TSO segment limit earlierBen Hutchings
Cache the device gso_max_segs in sock::sk_gso_max_segs and use it to limit the size of TSO skbs. This avoids the need to fall back to software GSO for local TCP senders. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-31net: introduce sk_gfp_atomic() to allow addition of GFP flags depending on ↵Mel Gorman
the individual socket Introduce sk_gfp_atomic(), this function allows to inject sock specific flags to each sock related allocation. It is only used on allocation paths that may be required for writing pages back to network storage. [davem@davemloft.net: Use sk_gfp_atomic only when necessary] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-23tcp: dont drop MTU reduction indicationsEric Dumazet
ICMP messages generated in output path if frame length is bigger than mtu are actually lost because socket is owned by user (doing the xmit) One example is the ipgre_tunnel_xmit() calling icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); We had a similar case fixed in commit a34a101e1e6 (ipv6: disable GSO on sockets hitting dst_allfrag). Problem of such fix is that it relied on retransmit timers, so short tcp sessions paid a too big latency increase price. This patch uses the tcp_release_cb() infrastructure so that MTU reduction messages (ICMP messages) are not lost, and no extra delay is added in TCP transmits. Reported-by: Maciej Żenczykowski <maze@google.com> Diagnosed-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Tore Anderson <tore@fud.no> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-20tcp: improve latencies of timer triggered eventsEric Dumazet
Modern TCP stack highly depends on tcp_write_timer() having a small latency, but current implementation doesn't exactly meet the expectations. When a timer fires but finds the socket is owned by the user, it rearms itself for an additional delay hoping next run will be more successful. tcp_write_timer() for example uses a 50ms delay for next try, and it defeats many attempts to get predictable TCP behavior in term of latencies. Use the recently introduced tcp_release_cb(), so that the user owning the socket will call various handlers right before socket release. This will permit us to post a followup patch to address the tcp_tso_should_defer() syndrome (some deferred packets have to wait RTO timer to be transmitted, while cwnd should allow us to send them sooner) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Cc: John Heffner <johnwheffner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open client - cookie-less modeYuchung Cheng
In trusted networks, e.g., intranet, data-center, the client does not need to use Fast Open cookie to mitigate DoS attacks. In cookie-less mode, sendmsg() with MSG_FASTOPEN flag will send SYN-data regardless of cookie availability. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open client - detecting SYN-data dropsYuchung Cheng
On paths with firewalls dropping SYN with data or experimental TCP options, Fast Open connections will have experience SYN timeout and bad performance. The solution is to track such incidents in the cookie cache and disables Fast Open temporarily. Since only the original SYN includes data and/or Fast Open option, the SYN-ACK has some tell-tale sign (tcp_rcv_fastopen_synack()) to detect such drops. If a path has recurring Fast Open SYN drops, Fast Open is disabled for 2^(recurring_losses) minutes starting from four minutes up to roughly one and half day. sendmsg with MSG_FASTOPEN flag will succeed but it behaves as connect() then write(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open client - sending SYN-dataYuchung Cheng
This patch implements sending SYN-data in tcp_connect(). The data is from tcp_sendmsg() with flag MSG_FASTOPEN (implemented in a later patch). The length of the cookie in tcp_fastopen_req, init'd to 0, controls the type of the SYN. If the cookie is not cached (len==0), the host sends data-less SYN with Fast Open cookie request option to solicit a cookie from the remote. If cookie is not available (len > 0), the host sends a SYN-data with Fast Open cookie option. If cookie length is negative, the SYN will not include any Fast Open option (for fall back operations). To deal with middleboxes that may drop SYN with data or experimental TCP option, the SYN-data is only sent once. SYN retransmits do not include data or Fast Open options. The connection will fall back to regular TCP handshake. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open baseYuchung Cheng
This patch impelements the common code for both the client and server. 1. TCP Fast Open option processing. Since Fast Open does not have an option number assigned by IANA yet, it shares the experiment option code 254 by implementing draft-ietf-tcpm-experimental-options with a 16 bits magic number 0xF989. This enables global experiments without clashing the scarce(2) experimental options available for TCP. When the draft status becomes standard (maybe), the client should switch to the new option number assigned while the server supports both numbers for transistion. 2. The new sysctl tcp_fastopen 3. A place holder init function Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-13tcp: add LAST_ACK as a valid state for TSQEric Dumazet
Socket state LAST_ACK should allow TSQ to send additional frames, or else we rely on incoming ACKS or timers to send them. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Mahesh Bandewar <maheshb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11tcp: TCP Small QueuesEric Dumazet
This introduce TSQ (TCP Small Queues) TSQ goal is to reduce number of TCP packets in xmit queues (qdisc & device queues), to reduce RTT and cwnd bias, part of the bufferbloat problem. sk->sk_wmem_alloc not allowed to grow above a given limit, allowing no more than ~128KB [1] per tcp socket in qdisc/dev layers at a given time. TSO packets are sized/capped to half the limit, so that we have two TSO packets in flight, allowing better bandwidth use. As a side effect, setting the limit to 40000 automatically reduces the standard gso max limit (65536) to 40000/2 : It can help to reduce latencies of high prio packets, having smaller TSO packets. This means we divert sock_wfree() to a tcp_wfree() handler, to queue/send following frames when skb_orphan() [2] is called for the already queued skbs. Results on my dev machines (tg3/ixgbe nics) are really impressive, using standard pfifo_fast, and with or without TSO/GSO. Without reduction of nominal bandwidth, we have reduction of buffering per bulk sender : < 1ms on Gbit (instead of 50ms with TSO) < 8ms on 100Mbit (instead of 132 ms) I no longer have 4 MBytes backlogged in qdisc by a single netperf session, and both side socket autotuning no longer use 4 Mbytes. As skb destructor cannot restart xmit itself ( as qdisc lock might be taken at this point ), we delegate the work to a tasklet. We use one tasklest per cpu for performance reasons. If tasklet finds a socket owned by the user, it sets TSQ_OWNED flag. This flag is tested in a new protocol method called from release_sock(), to eventually send new segments. [1] New /proc/sys/net/ipv4/tcp_limit_output_bytes tunable [2] skb_orphan() is usually called at TX completion time, but some drivers call it in their start_xmit() handler. These drivers should at least use BQL, or else a single TCP session can still fill the whole NIC TX ring, since TSQ will have no effect. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Dave Taht <dave.taht@bufferbloat.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-06-04tcp: tcp_make_synack() consumes dst parameterEric Dumazet
tcp_make_synack() clones the dst, and callers release it. We can avoid two atomic operations per SYNACK if tcp_make_synack() consumes dst instead of cloning it. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-06-04tcp: tcp_make_synack() can use alloc_skb()Eric Dumazet
There is no value using sock_wmalloc() in tcp_make_synack(). A listener socket only sends SYNACK packets, they are not queued in a socket queue, only in Qdisc and device layers, so the number of in flight packets is limited in these layers. We used sock_wmalloc() with the %force parameter set to 1 to ignore socket limits anyway. This patch removes two atomic operations per SYNACK packet. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-17tcp: bool conversionsEric Dumazet
bool conversions where possible. __inline__ -> inline space cleanups Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-16net: ipv4 and ipv6: Convert printk(KERN_DEBUG to pr_debugJoe Perches
Use the current debugging style and enable dynamic_debug. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-15net: Convert net_ratelimit uses to net_<level>_ratelimitedJoe Perches
Standardize the net core ratelimited logging functions. Coalesce formats, align arguments. Change a printk then vprintk sequence to use printf extension %pV. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-02tcp: early retransmit: delayed fast retransmitYuchung Cheng
Implementing the advanced early retransmit (sysctl_tcp_early_retrans==2). Delays the fast retransmit by an interval of RTT/4. We borrow the RTO timer to implement the delay. If we receive another ACK or send a new packet, the timer is cancelled and restored to original RTO value offset by time elapsed. When the delayed-ER timer fires, we enter fast recovery and perform fast retransmit. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27ipv6: RTAX_FEATURE_ALLFRAG causes inefficient TCP segment sizingEric Dumazet
Quoting Tore Anderson from : https://bugzilla.kernel.org/show_bug.cgi?id=42572 When RTAX_FEATURE_ALLFRAG is set on a route, the effective TCP segment size does not take into account the size of the IPv6 Fragmentation header that needs to be included in outbound packets, causing every transmitted TCP segment to be fragmented across two IPv6 packets, the latter of which will only contain 8 bytes of actual payload. RTAX_FEATURE_ALLFRAG is typically set on a route in response to receving a ICMPv6 Packet Too Big message indicating a Path MTU of less than 1280 bytes. 1280 bytes is the minimum IPv6 MTU, however ICMPv6 PTBs with MTU < 1280 are still valid, in particular when an IPv6 packet is sent to an IPv4 destination through a stateless translator. Any ICMPv4 Need To Fragment packets originated from the IPv4 part of the path will be translated to ICMPv6 PTB which may then indicate an MTU of less than 1280. The Linux kernel refuses to reduce the effective MTU to anything below 1280 bytes, instead it sets it to exactly 1280 bytes, and RTAX_FEATURE_ALLFRAG is also set. However, the TCP segment size appears to be set to 1240 bytes (1280 Path MTU - 40 bytes of IPv6 header), instead of 1232 (additionally taking into account the 8 bytes required by the IPv6 Fragmentation extension header). This in turn results in rather inefficient transmission, as every transmitted TCP segment now is split in two fragments containing 1232+8 bytes of payload. After this patch, all the outgoing packets that includes a Fragmentation header all are "atomic" or "non-fragmented" fragments, i.e., they both have Offset=0 and More Fragments=0. With help from David S. Miller Reported-by: Tore Anderson <tore@fud.no> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Tom Herbert <therbert@google.com> Tested-by: Tore Anderson <tore@fud.no> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Fix merge between commit 3adadc08cc1e ("net ax25: Reorder ax25_exit to remove races") and commit 0ca7a4c87d27 ("net ax25: Simplify and cleanup the ax25 sysctl handling") The former moved around the sysctl register/unregister calls, the later simply removed them. With help from Stephen Rothwell. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-21tcp: Repair socket queuesPavel Emelyanov
Reading queues under repair mode is done with recvmsg call. The queue-under-repair set by TCP_REPAIR_QUEUE option is used to determine which queue should be read. Thus both send and receive queue can be read with this. Caller must pass the MSG_PEEK flag. Writing to queues is done with sendmsg call and yet again -- the repair-queue option can be used to push data into the receive queue. When putting an skb into receive queue a zero tcp header is appented to its head to address the tcp_hdr(skb)->syn and the ->fin checks by the (after repair) tcp_recvmsg. These flags flags are both set to zero and that's why. The fin cannot be met in the queue while reading the source socket, since the repair only works for closed/established sockets and queueing fin packet always changes its state. The syn in the queue denotes that the respective skb's seq is "off-by-one" as compared to the actual payload lenght. Thus, at the rcv queue refill we can just drop this flag and set the skb's sequences to precice values. When the repair mode is turned off, the write queue seqs are updated so that the whole queue is considered to be 'already sent, waiting for ACKs' (write_seq = snd_nxt <= snd_una). From the protocol POV the send queue looks like it was sent, but the data between the write_seq and snd_nxt is lost in the network. This helps to avoid another sockoption for setting the snd_nxt sequence. Leaving the whole queue in a 'not yet sent' state (as it will be after sendmsg-s) will not allow to receive any acks from the peer since the ack_seq will be after the snd_nxt. Thus even the ack for the window probe will be dropped and the connection will be 'locked' with the zero peer window. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-21tcp: Initial repair modePavel Emelyanov
This includes (according the the previous description): * TCP_REPAIR sockoption This one just puts the socket in/out of the repair mode. Allowed for CAP_NET_ADMIN and for closed/establised sockets only. When repair mode is turned off and the socket happens to be in the established state the window probe is sent to the peer to 'unlock' the connection. * TCP_REPAIR_QUEUE sockoption This one sets the queue which we're about to repair. The 'no-queue' is set by default. * TCP_QUEUE_SEQ socoption Sets the write_seq/rcv_nxt of a selected repaired queue. Allowed for TCP_CLOSE-d sockets only. When the socket changes its state the other seq-s are changed by the kernel according to the protocol rules (most of the existing code is actually reused). * Ability to forcibly bind a socket to a port The sk->sk_reuse is set to SK_FORCE_REUSE. * Immediate connect modification The connect syscall initializes the connection, then directly jumps to the code which finalizes it. * Silent close modification The close just aborts the connection (similar to SO_LINGER with 0 time) but without sending any FIN/RST-s to peer. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-21tcp: Move code aroundPavel Emelyanov
This is just the preparation patch, which makes the needed for TCP repair code ready for use. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>