Age | Commit message (Collapse) | Author |
|
On the x86-64 architecture even a failing cmpxchg grants exclusive
access to the cacheline, making it preferable to retry the failed op
immediately instead of stalling with the pause instruction.
To illustrate the impact, below are benchmark results obtained by
running various will-it-scale tests on top of the 6.2-rc3 kernel and
Cascade Lake (2 sockets * 24 cores * 2 threads) CPU.
All results in ops/s. Note there is some variance in re-runs, but the
code is consistently faster when contention is present.
open3 ("Same file open/close"):
proc stock no-pause
1 805603 814942 (+%1)
2 1054980 1054781 (-0%)
8 1544802 1822858 (+18%)
24 1191064 2199665 (+84%)
48 851582 1469860 (+72%)
96 609481 1427170 (+134%)
fstat2 ("Same file fstat"):
proc stock no-pause
1 3013872 3047636 (+1%)
2 4284687 4400421 (+2%)
8 3257721 5530156 (+69%)
24 2239819 5466127 (+144%)
48 1701072 5256609 (+209%)
96 1269157 6649326 (+423%)
Additionally, a kernel with a private patch to help access() scalability:
access2 ("Same file access"):
proc stock patched patched
+nopause
24 2378041 2005501 5370335 (-15% / +125%)
That is, fixing the problems in access itself *reduces* scalability
after the cacheline ping-pong only happens in lockref with the pause
instruction.
Note that fstat and access benchmarks are not currently integrated into
will-it-scale, but interested parties can find them in pull requests to
said project.
Code at hand has a rather tortured history. First modification showed
up in commit d472d9d98b46 ("lockref: Relax in cmpxchg loop"), written
with Itanium in mind. Later it got patched up to use an arch-dependent
macro to stop doing it on s390 where it caused a significant regression.
Said macro had undergone revisions and was ultimately eliminated later,
going back to cpu_relax.
While I intended to only remove cpu_relax for x86-64, I got the
following comment from Linus:
I would actually prefer just removing it entirely and see if
somebody else hollers. You have the numbers to prove it hurts on
real hardware, and I don't think we have any numbers to the
contrary.
So I think it's better to trust the numbers and remove it as a
failure, than say "let's just remove it on x86-64 and leave
everybody else with the potentially broken code"
Additionally, Will Deacon (maintainer of the arm64 port, one of the
architectures previously benchmarked):
So, from the arm64 side of the fence, I'm perfectly happy just
removing the cpu_relax() calls from lockref.
As such, come back full circle in history and whack it altogether.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/all/CAGudoHHx0Nqg6DE70zAVA75eV-HXfWyhVMWZ-aSeOofkA_=WdA@mail.gmail.com/
Acked-by: Tony Luck <tony.luck@intel.com> # ia64
Acked-by: Nicholas Piggin <npiggin@gmail.com> # powerpc
Acked-by: Will Deacon <will@kernel.org> # arm64
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Looking at the conditional lock acquire functions in the kernel due to
the new sparse support (see commit 4a557a5d1a61 "sparse: introduce
conditional lock acquire function attribute"), it became obvious that
the lockref code has a couple of them, but they don't match the usual
naming convention for the other ones, and their return value logic is
also reversed.
In the other very similar places, the naming pattern is '*_and_lock()'
(eg 'atomic_put_and_lock()' and 'refcount_dec_and_lock()'), and the
function returns true when the lock is taken.
The lockref code is superficially very similar to the refcount code,
only with the special "atomic wrt the embedded lock" semantics. But
instead of the '*_and_lock()' naming it uses '*_or_lock()'.
And instead of returning true in case it took the lock, it returns true
if it *didn't* take the lock.
Now, arguably the reflock code is quite logical: it really is a "either
decrement _or_ lock" kind of situation - and the return value is about
whether the operation succeeded without any special care needed.
So despite the similarities, the differences do make some sense, and
maybe it's not worth trying to unify the different conditional locking
primitives in this area.
But while looking at this all, it did become obvious that the
'lockref_get_or_lock()' function hasn't actually had any users for
almost a decade.
The only user it ever had was the shortlived 'd_rcu_to_refcount()'
function, and it got removed and replaced with 'lockref_get_not_dead()'
back in 2013 in commits 0d98439ea3c6 ("vfs: use lockred 'dead' flag to
mark unrecoverably dead dentries") and e5c832d55588 ("vfs: fix dentry
RCU to refcounting possibly sleeping dput()")
In fact, that single use was removed less than a week after the whole
function was introduced in commit b3abd80250c1 ("lockref: add
'lockref_get_or_lock() helper") so this function has been around for a
decade, but only had a user for six days.
Let's just put this mis-designed and unused function out of its misery.
We can think about the naming and semantic oddities of the remaining
'lockref_put_or_lock()' later, but at least that function has users.
And while the naming is different and the return value doesn't match,
that function matches the whole '{atomic,refcount}_dec_and_test()'
pattern much better (ie the magic happens when the count goes down to
zero, not when it is incremented from zero).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use try_cmpxchg64 instead of cmpxchg64 in CMPXCHG_LOOP macro.
x86 CMPXCHG instruction returns success in ZF flag, so this
change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg). The main loop of lockref_get improves from:
13: 48 89 c1 mov %rax,%rcx
16: 48 c1 f9 20 sar $0x20,%rcx
1a: 83 c1 01 add $0x1,%ecx
1d: 48 89 ce mov %rcx,%rsi
20: 89 c1 mov %eax,%ecx
22: 48 89 d0 mov %rdx,%rax
25: 48 c1 e6 20 shl $0x20,%rsi
29: 48 09 f1 or %rsi,%rcx
2c: f0 48 0f b1 4d 00 lock cmpxchg %rcx,0x0(%rbp)
32: 48 39 d0 cmp %rdx,%rax
35: 75 17 jne 4e <lockref_get+0x4e>
to:
13: 48 89 ca mov %rcx,%rdx
16: 48 c1 fa 20 sar $0x20,%rdx
1a: 83 c2 01 add $0x1,%edx
1d: 48 89 d6 mov %rdx,%rsi
20: 89 ca mov %ecx,%edx
22: 48 c1 e6 20 shl $0x20,%rsi
26: 48 09 f2 or %rsi,%rdx
29: f0 48 0f b1 55 00 lock cmpxchg %rdx,0x0(%rbp)
2f: 75 02 jne 33 <lockref_get+0x33>
[ Michael Ellerman and Mark Rutland confirm that code generation on
powerpc and arm64 respectively is also ok, even though they do not
have a native arch_try_cmpxchg() implementation, and rely on the
default fallback case - Linus ]
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: paulmck@linux.vnet.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The lockref cmpxchg loop is unbound as long as the spinlock is not
taken. Depending on the hardware implementation of compare-and-swap
a high number of loop retries might happen.
Add an upper bound to the loop to force the fallback to spinlocks
after some time. A retry value of 100 should not impact any hardware
that does not have this issue.
With the retry limit the performance of an open-close testcase
improved between 60-70% on ThunderX2.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jan Glauber <jglauber@marvell.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Put a lockref unless the lockref is dead or its count would become zero.
This is the same as lockref_put_or_lock except that the lock is never
left held.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
With the s390 special case of a yielding cpu_relax() implementation gone,
we can now remove all users of cpu_relax_lowlatency() and replace them
with cpu_relax().
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Noam Camus <noamc@ezchip.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1477386195-32736-5-git-send-email-borntraeger@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
cmpxchg64_relaxed() is now defined by linux/atomic.h, so we can
remove our local definition from the lockref code.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1438880084-18856-5-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With the new standardized functions, we can replace all
ACCESS_ONCE() calls across relevant locking - this includes
lockref and seqlock while at it.
ACCESS_ONCE() does not work reliably on non-scalar types.
For example gcc 4.6 and 4.7 might remove the volatile tag
for such accesses during the SRA (scalar replacement of
aggregates) step:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
Update the new calls regardless of if it is a scalar type,
this is cleaner than having three alternatives.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1424662301.6539.18.camel@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We can be more aggressive about this, if we are clever and careful. This is subtle.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The arch_mutex_cpu_relax() function, introduced by 34b133f, is
hacky and ugly. It was added a few years ago to address the fact
that common cpu_relax() calls include yielding on s390, and thus
impact the optimistic spinning functionality of mutexes. Nowadays
we use this function well beyond mutexes: rwsem, qrwlock, mcs and
lockref. Since the macro that defines the call is in the mutex header,
any users must include mutex.h and the naming is misleading as well.
This patch (i) renames the call to cpu_relax_lowlatency ("relax, but
only if you can do it with very low latency") and (ii) defines it in
each arch's asm/processor.h local header, just like for regular cpu_relax
functions. On all archs, except s390, cpu_relax_lowlatency is simply cpu_relax,
and thus we can take it out of mutex.h. While this can seem redundant,
I believe it is a good choice as it allows us to move out arch specific
logic from generic locking primitives and enables future(?) archs to
transparently define it, similarly to System Z.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharat Bhushan <r65777@freescale.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Joseph Myers <joseph@codesourcery.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Stratos Karafotis <stratosk@semaphore.gr>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Kulikov <segoon@openwall.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wolfram Sang <wsa@the-dreams.de>
Cc: adi-buildroot-devel@lists.sourceforge.net
Cc: linux390@de.ibm.com
Cc: linux-alpha@vger.kernel.org
Cc: linux-am33-list@redhat.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-cris-kernel@axis.com
Cc: linux-hexagon@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux@lists.openrisc.net
Cc: linux-m32r-ja@ml.linux-m32r.org
Cc: linux-m32r@ml.linux-m32r.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-metag@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1404079773.2619.4.camel@buesod1.americas.hpqcorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
arch_mutex_cpu_relax is already conditionally defined in mutex.h, so
simply include that header rather than replicate the code here.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Avoid the fragile Kconfig construct guestimating spinlock_t sizes; use a
friendly compile-time test to determine this.
[kirill.shutemov@linux.intel.com: drop CONFIG_CMPXCHG_LOCKREF]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-nmw
Pull gfs2 updates from Steven Whitehouse:
"The main feature of interest this time is quota updates. There are
some clean ups and some patches to use the new generic lru list code.
There is still plenty of scope for some further changes in due course -
faster lookups of quota structures is very much on the todo list.
Also, a start has been made towards the more tricky issue of using the
generic lru code with glocks, but that will have to be completed in a
subsequent merge window.
The other, more minor feature, is that there have been a number of
performance patches which relate to block allocation. In particular
they will improve performance when the disk is nearly full"
* tag 'gfs2-merge-window' of git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-nmw:
GFS2: Use generic list_lru for quota
GFS2: Rename quota qd_lru_lock qd_lock
GFS2: Use reflink for quota data cache
GFS2: Use lockref for glocks
GFS2: Protect quota sync generation
GFS2: Inline qd_trylock into gfs2_quota_unlock
GFS2: Make two similar quota code fragments into a function
GFS2: Remove obsolete quota tunable
GFS2: Move gfs2_icbit_munge into quota.c
GFS2: Speed up starting point selection for block allocation
GFS2: Add allocation parameters structure
GFS2: Clean up reservation removal
GFS2: fix dentry leaks
GFS2: new function gfs2_rbm_incr
GFS2: Introduce rbm field bii
GFS2: Do not reset flags on active reservations
GFS2: introduce bi_blocks for optimization
GFS2: optimize rbm_from_block wrt bi_start
GFS2: d_splice_alias() can't return error
|
|
Currently glocks have an atomic reference count and also a spinlock
which covers various internal fields, such as the state. This intent of
this patch is to replace the spinlock and the atomic reference count
with a lockref structure. This contains a spinlock which we can continue
to use as before, and a reference counter which is used in conjuction
with the spinlock to replace the previous atomic counter.
As a result of this there are some new rules for reference counting on
glocks. We need to distinguish between reference count changes under
gl_spin (which are now just increment or decrement of the new counter,
provided the count cannot hit zero) and those which are outside of
gl_spin, but which now take gl_spin internally.
The conversion is relatively straight forward. There is probably some
further clean up which can be done, but the priority at this stage is to
make the change in as simple a manner as possible.
A consequence of this change is that the reference count is being
decoupled from the lru list processing. This should allow future
adoption of the lru_list code with glocks in due course.
The reason for using the "dead" state and not just relying on 0 being
the "invalid state" is so that in due course 0 ref counts can be
allowable. The intent is to eventually be able to remove the ref count
changes which are currently hidden away in state_change().
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
Make use of arch_mutex_cpu_relax() so architectures can override the
default cpu_relax() semantics.
This is especially useful for s390, where cpu_relax() means that we
yield() the current (virtual) cpu and therefore is very expensive,
and would contradict the whole purpose of the lockless cmpxchg loop.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
The 64-bit cmpxchg operation on the lockref is ordered by virtue of
hazarding between the cmpxchg operation and the reference count
manipulation. On weakly ordered memory architectures (such as ARM), it
can be of great benefit to omit the barrier instructions where they are
not needed.
This patch moves the lockless lockref code over to a cmpxchg64_relaxed
operation, which doesn't provide barrier semantics. If the operation
isn't defined, we simply #define it as the usual 64-bit cmpxchg macro.
Cc: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The cmpxchg() function tends not to support 64-bit arguments on 32-bit
architectures. This could be either due to use of unsigned long
arguments (like on ARM) or lack of instruction support (cmpxchgq on
x86). However, these architectures may implement a specific cmpxchg64()
function to provide 64-bit cmpxchg support instead.
Since the lockref code requires a 64-bit cmpxchg and relies on the
architecture selecting ARCH_USE_CMPXCHG_LOCKREF, move to using cmpxchg64
instead of cmpxchg and allow 32-bit architectures to make use of the
lockless lockref implementation.
Cc: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The only actual current lockref user (dcache) uses zero reference counts
even for perfectly live dentries, because it's a cache: there may not be
any users, but that doesn't mean that we want to throw away the dentry.
At the same time, the dentry cache does have a notion of a truly "dead"
dentry that we must not even increment the reference count of, because
we have pruned it and it is not valid.
Currently that distinction is not visible in the lockref itself, and the
dentry cache validation uses "lockref_get_or_lock()" to either get a new
reference to a dentry that already had existing references (and thus
cannot be dead), or get the dentry lock so that we can then verify the
dentry and increment the reference count under the lock if that
verification was successful.
That's all somewhat complicated.
This adds the concept of being "dead" to the lockref itself, by simply
using a count that is negative. This allows a usage scenario where we
can increment the refcount of a dentry without having to validate it,
and pushing the special "we killed it" case into the lockref code.
The dentry code itself doesn't actually use this yet, and it's probably
too late in the merge window to do that code (the dentry_kill() code
with its "should I decrement the count" logic really is pretty complex
code), but let's introduce the concept at the lockref level now.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The code got rewritten, but the comments got copied as-is from older
versions, and as a result the argument name in the comment didn't
actually match the code any more.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While we are likley to succeed and break out of this loop, it isn't
guaranteed. We should be power and thread friendly if we do have to
go around for a second (or third, or more) attempt.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of taking the spinlock, the lockless versions atomically check
that the lock is not taken, and do the reference count update using a
cmpxchg() loop. This is semantically identical to doing the reference
count update protected by the lock, but avoids the "wait for lock"
contention that you get when accesses to the reference count are
contended.
Note that a "lockref" is absolutely _not_ equivalent to an atomic_t.
Even when the lockref reference counts are updated atomically with
cmpxchg, the fact that they also verify the state of the spinlock means
that the lockless updates can never happen while somebody else holds the
spinlock.
So while "lockref_put_or_lock()" looks a lot like just another name for
"atomic_dec_and_lock()", and both optimize to lockless updates, they are
fundamentally different: the decrement done by atomic_dec_and_lock() is
truly independent of any lock (as long as it doesn't decrement to zero),
so a locked region can still see the count change.
The lockref structure, in contrast, really is a *locked* reference
count. If you hold the spinlock, the reference count will be stable and
you can modify the reference count without using atomics, because even
the lockless updates will see and respect the state of the lock.
In order to enable the cmpxchg lockless code, the architecture needs to
do three things:
(1) Make sure that the "arch_spinlock_t" and an "unsigned int" can fit
in an aligned u64, and have a "cmpxchg()" implementation that works
on such a u64 data type.
(2) define a helper function to test for a spinlock being unlocked
("arch_spin_value_unlocked()")
(3) select the "ARCH_USE_CMPXCHG_LOCKREF" config variable in its
Kconfig file.
This enables it for x86-64 (but not 32-bit, we'd need to make sure
cmpxchg() turns into the proper cmpxchg8b in order to enable it for
32-bit mode).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
They aren't very good to inline, since they already call external
functions (the spinlock code), and we're going to create rather more
complicated versions of them that can do the reference count updates
locklessly.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|