summaryrefslogtreecommitdiff
path: root/kernel/kcov.c
AgeCommit message (Collapse)Author
2019-12-04kcov: remote coverage supportAndrey Konovalov
Patch series " kcov: collect coverage from usb and vhost", v3. This patchset extends kcov to allow collecting coverage from backgound kernel threads. This extension requires custom annotations for each of the places where coverage collection is desired. This patchset implements this for hub events in the USB subsystem and for vhost workers. See the first patch description for details about the kcov extension. The other two patches apply this kcov extension to USB and vhost. Examples of other subsystems that might potentially benefit from this when custom annotations are added (the list is based on process_one_work() callers for bugs recently reported by syzbot): 1. fs: writeback wb_workfn() worker, 2. net: addrconf_dad_work()/addrconf_verify_work() workers, 3. net: neigh_periodic_work() worker, 4. net/p9: p9_write_work()/p9_read_work() workers, 5. block: blk_mq_run_work_fn() worker. These patches have been used to enable coverage-guided USB fuzzing with syzkaller for the last few years, see the details here: https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md This patchset has been pushed to the public Linux kernel Gerrit instance: https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524 This patch (of 3): Add background thread coverage collection ability to kcov. With KCOV_ENABLE coverage is collected only for syscalls that are issued from the current process. With KCOV_REMOTE_ENABLE it's possible to collect coverage for arbitrary parts of the kernel code, provided that those parts are annotated with kcov_remote_start()/kcov_remote_stop(). This allows to collect coverage from two types of kernel background threads: the global ones, that are spawned during kernel boot in a limited number of instances (e.g. one USB hub_event() worker thread is spawned per USB HCD); and the local ones, that are spawned when a user interacts with some kernel interface (e.g. vhost workers). To enable collecting coverage from a global background thread, a unique global handle must be assigned and passed to the corresponding kcov_remote_start() call. Then a userspace process can pass a list of such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the kcov_remote_arg struct. This will attach the used kcov device to the code sections, that are referenced by those handles. Since there might be many local background threads spawned from different userspace processes, we can't use a single global handle per annotation. Instead, the userspace process passes a non-zero handle through the common_handle field of the kcov_remote_arg struct. This common handle gets saved to the kcov_handle field in the current task_struct and needs to be passed to the newly spawned threads via custom annotations. Those threads should in turn be annotated with kcov_remote_start()/kcov_remote_stop(). Internally kcov stores handles as u64 integers. The top byte of a handle is used to denote the id of a subsystem that this handle belongs to, and the lower 4 bytes are used to denote the id of a thread instance within that subsystem. A reserved value 0 is used as a subsystem id for common handles as they don't belong to a particular subsystem. The bytes 4-7 are currently reserved and must be zero. In the future the number of bytes used for the subsystem or handle ids might be increased. When a particular userspace process collects coverage by via a common handle, kcov will collect coverage for each code section that is annotated to use the common handle obtained as kcov_handle from the current task_struct. However non common handles allow to collect coverage selectively from different subsystems. Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: David Windsor <dwindsor@gmail.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Anders Roxell <anders.roxell@linaro.org> Cc: Alexander Potapenko <glider@google.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-07kcov: convert kcov.refcount to refcount_tElena Reshetova
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable kcov.refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. **Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the kcov.refcount it might make a difference in following places: - kcov_put(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Link: http://lkml.kernel.org/r/1547634429-772-1-git-send-email-elena.reshetova@intel.com Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Suggested-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-07kcov: no need to check return value of debugfs_create functionsGreg Kroah-Hartman
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. Link: http://lkml.kernel.org/r/20190122152151.16139-46-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Anders Roxell <anders.roxell@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04kernel/kcov.c: mark write_comp_data() as notraceAnders Roxell
Since __sanitizer_cov_trace_const_cmp4 is marked as notrace, the function called from __sanitizer_cov_trace_const_cmp4 shouldn't be traceable either. ftrace_graph_caller() gets called every time func write_comp_data() gets called if it isn't marked 'notrace'. This is the backtrace from gdb: #0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179 #1 0xffffff8010201920 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:151 #2 0xffffff8010439714 in write_comp_data (type=5, arg1=0, arg2=0, ip=18446743524224276596) at ../kernel/kcov.c:116 #3 0xffffff8010439894 in __sanitizer_cov_trace_const_cmp4 (arg1=<optimized out>, arg2=<optimized out>) at ../kernel/kcov.c:188 #4 0xffffff8010201874 in prepare_ftrace_return (self_addr=18446743524226602768, parent=0xffffff801014b918, frame_pointer=18446743524223531344) at ./include/generated/atomic-instrumented.h:27 #5 0xffffff801020194c in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:182 Rework so that write_comp_data() that are called from __sanitizer_cov_trace_*_cmp*() are marked as 'notrace'. Commit 903e8ff86753 ("kernel/kcov.c: mark funcs in __sanitizer_cov_trace_pc() as notrace") missed to mark write_comp_data() as 'notrace'. When that patch was created gcc-7 was used. In lib/Kconfig.debug config KCOV_ENABLE_COMPARISONS depends on $(cc-option,-fsanitize-coverage=trace-cmp) That code path isn't hit with gcc-7. However, it were that with gcc-8. Link: http://lkml.kernel.org/r/20181206143011.23719-1-anders.roxell@linaro.org Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Co-developed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30kernel/kcov.c: mark funcs in __sanitizer_cov_trace_pc() as notraceAnders Roxell
Since __sanitizer_cov_trace_pc() is marked as notrace, function calls in __sanitizer_cov_trace_pc() shouldn't be traced either. ftrace_graph_caller() gets called for each function that isn't marked 'notrace', like canonicalize_ip(). This is the call trace from a run: [ 139.644550] ftrace_graph_caller+0x1c/0x24 [ 139.648352] canonicalize_ip+0x18/0x28 [ 139.652313] __sanitizer_cov_trace_pc+0x14/0x58 [ 139.656184] sched_clock+0x34/0x1e8 [ 139.659759] trace_clock_local+0x40/0x88 [ 139.663722] ftrace_push_return_trace+0x8c/0x1f0 [ 139.667767] prepare_ftrace_return+0xa8/0x100 [ 139.671709] ftrace_graph_caller+0x1c/0x24 Rework so that check_kcov_mode() and canonicalize_ip() that are called from __sanitizer_cov_trace_pc() are also marked as notrace. Link: http://lkml.kernel.org/r/20181128081239.18317-1-anders.roxell@linaro.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signen-off-by: Anders Roxell <anders.roxell@linaro.org> Co-developed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15sched/core / kcov: avoid kcov_area during task switchMark Rutland
During a context switch, we first switch_mm() to the next task's mm, then switch_to() that new task. This means that vmalloc'd regions which had previously been faulted in can transiently disappear in the context of the prev task. Functions instrumented by KCOV may try to access a vmalloc'd kcov_area during this window, and as the fault handling code is instrumented, this results in a recursive fault. We must avoid accessing any kcov_area during this window. We can do so with a new flag in kcov_mode, set prior to switching the mm, and cleared once the new task is live. Since task_struct::kcov_mode isn't always a specific enum kcov_mode value, this is made an unsigned int. The manipulation is hidden behind kcov_{prepare,finish}_switch() helpers, which are empty for !CONFIG_KCOV kernels. The code uses macros because I can't use static inline functions without a circular include dependency between <linux/sched.h> and <linux/kcov.h>, since the definition of task_struct uses things defined in <linux/kcov.h> Link: http://lkml.kernel.org/r/20180504135535.53744-4-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15kcov: prefault the kcov_areaMark Rutland
On many architectures the vmalloc area is lazily faulted in upon first access. This is problematic for KCOV, as __sanitizer_cov_trace_pc accesses the (vmalloc'd) kcov_area, and fault handling code may be instrumented. If an access to kcov_area faults, this will result in mutual recursion through the fault handling code and __sanitizer_cov_trace_pc(), eventually leading to stack corruption and/or overflow. We can avoid this by faulting in the kcov_area before __sanitizer_cov_trace_pc() is permitted to access it. Once it has been faulted in, it will remain present in the process page tables, and will not fault again. [akpm@linux-foundation.org: code cleanup] [akpm@linux-foundation.org: add comment explaining kcov_fault_in_area()] [akpm@linux-foundation.org: fancier code comment from Mark] Link: http://lkml.kernel.org/r/20180504135535.53744-3-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15kcov: ensure irq code sees a valid areaMark Rutland
Patch series "kcov: fix unexpected faults". These patches fix a few issues where KCOV code could trigger recursive faults, discovered while debugging a patch enabling KCOV for arch/arm: * On CONFIG_PREEMPT kernels, there's a small race window where __sanitizer_cov_trace_pc() can see a bogus kcov_area. * Lazy faulting of the vmalloc area can cause mutual recursion between fault handling code and __sanitizer_cov_trace_pc(). * During the context switch, switching the mm can cause the kcov_area to be transiently unmapped. These are prerequisites for enabling KCOV on arm, but the issues themsevles are generic -- we just happen to avoid them by chance rather than design on x86-64 and arm64. This patch (of 3): For kernels built with CONFIG_PREEMPT, some C code may execute before or after the interrupt handler, while the hardirq count is zero. In these cases, in_task() can return true. A task can be interrupted in the middle of a KCOV_DISABLE ioctl while it resets the task's kcov data via kcov_task_init(). Instrumented code executed during this period will call __sanitizer_cov_trace_pc(), and as in_task() returns true, will inspect t->kcov_mode before trying to write to t->kcov_area. In kcov_init_task() we update t->kcov_{mode,area,size} with plain stores, which may be re-ordered, torn, etc. Thus __sanitizer_cov_trace_pc() may see bogus values for any of these fields, and may attempt to write to memory which is not mapped. Let's avoid this by using WRITE_ONCE() to set t->kcov_mode, with a barrier() to ensure this is ordered before we clear t->kov_{area,size}. This ensures that any code execute while kcov_init_task() is preempted will either see valid values for t->kcov_{area,size}, or will see that t->kcov_mode is KCOV_MODE_DISABLED, and bail out without touching t->kcov_area. Link: http://lkml.kernel.org/r/20180504135535.53744-2-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06kcov: detect double association with a single taskDmitry Vyukov
Currently KCOV_ENABLE does not check if the current task is already associated with another kcov descriptor. As the result it is possible to associate a single task with more than one kcov descriptor, which later leads to a memory leak of the old descriptor. This relation is really meant to be one-to-one (task has only one back link). Extend validation to detect such misuse. Link: http://lkml.kernel.org/r/20180122082520.15716-1-dvyukov@google.com Fixes: 5c9a8750a640 ("kernel: add kcov code coverage") Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Shankara Pailoor <sp3485@columbia.edu> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: syzbot <syzkaller@googlegroups.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-12-14kcov: fix comparison callback signatureDmitry Vyukov
Fix a silly copy-paste bug. We truncated u32 args to u16. Link: http://lkml.kernel.org/r/20171207101134.107168-1-dvyukov@google.com Fixes: ded97d2c2b2c ("kcov: support comparison operands collection") Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: syzkaller@googlegroups.com Cc: Alexander Potapenko <glider@google.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17kcov: support comparison operands collectionVictor Chibotaru
Enables kcov to collect comparison operands from instrumented code. This is done by using Clang's -fsanitize=trace-cmp instrumentation (currently not available for GCC). The comparison operands help a lot in fuzz testing. E.g. they are used in Syzkaller to cover the interiors of conditional statements with way less attempts and thus make previously unreachable code reachable. To allow separate collection of coverage and comparison operands two different work modes are implemented. Mode selection is now done via a KCOV_ENABLE ioctl call with corresponding argument value. Link: http://lkml.kernel.org/r/20171011095459.70721-1-glider@google.com Signed-off-by: Victor Chibotaru <tchibo@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Kees Cook <keescook@chromium.org> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: <syzkaller@googlegroups.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17kcov: remove pointless current != NULL checkAndrey Ryabinin
__sanitizer_cov_trace_pc() is a hot code, so it's worth to remove pointless '!current' check. Current is never NULL. Link: http://lkml.kernel.org/r/20170929162221.32500-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-08kcov: support compat processesDmitry Vyukov
Support compat processes in KCOV by providing compat_ioctl callback. Compat mode uses the same ioctl callback: we have 2 commands that do not use the argument and 1 that already checks that the arg does not overflow INT_MAX. This allows to use KCOV-guided fuzzing in compat processes. Link: http://lkml.kernel.org/r/20170823100553.55812-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: <syzkaller@googlegroups.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08kcov: simplify interrupt checkDmitry Vyukov
in_interrupt() semantics are confusing and wrong for most users as it also returns true when bh is disabled. Thus we open coded a proper check for interrupts in __sanitizer_cov_trace_pc() with a lengthy explanatory comment. Use the new in_task() predicate instead. Link: http://lkml.kernel.org/r/20170321091026.139655-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: James Morse <james.morse@arm.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-20kcov: make kcov work properly with KASLR enabledAlexander Popov
Subtract KASLR offset from the kernel addresses reported by kcov. Tested on x86_64 and AArch64 (Hikey LeMaker). Link: http://lkml.kernel.org/r/1481417456-28826-3-git-send-email-alex.popov@linux.com Signed-off-by: Alexander Popov <alex.popov@linux.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh@kernel.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Jon Masters <jcm@redhat.com> Cc: David Daney <david.daney@cavium.com> Cc: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Nicolai Stange <nicstange@gmail.com> Cc: James Morse <james.morse@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: syzkaller <syzkaller@googlegroups.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-14kcov: add more missing includesKefeng Wang
It is fragile that some definitions acquired via transitive dependencies, as shown in below: atomic_* (<linux/atomic.h>) ENOMEM/EN* (<linux/errno.h>) EXPORT_SYMBOL (<linux/export.h>) device_initcall (<linux/init.h>) preempt_* (<linux/preempt.h>) Include them to prevent possible issues. Link: http://lkml.kernel.org/r/1481163221-40170-1-git-send-email-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Suggested-by: Mark Rutland <mark.rutland@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-07kcov: add missing #include <linux/sched.h>Kefeng Wang
In __sanitizer_cov_trace_pc we use task_struct and fields within it, but as we haven't included <linux/sched.h>, it is not guaranteed to be defined. While we usually happen to acquire the definition through a transitive include, this is fragile (and hasn't been true in the past, causing issues with backports). Include <linux/sched.h> to avoid any fragility. [mark.rutland@arm.com: rewrote changelog] Link: http://lkml.kernel.org/r/1481007384-27529-1-git-send-email-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27kcov: properly check if we are in an interruptAndrey Konovalov
in_interrupt() returns a nonzero value when we are either in an interrupt or have bh disabled via local_bh_disable(). Since we are interested in only ignoring coverage from actual interrupts, do a proper check instead of just calling in_interrupt(). As a result of this change, kcov will start to collect coverage from within local_bh_disable()/local_bh_enable() sections. Link: http://lkml.kernel.org/r/1476115803-20712-1-git-send-email-andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Cc: Nicolai Stange <nicstange@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Kees Cook <keescook@chromium.org> Cc: James Morse <james.morse@arm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-15kernel/kcov: unproxify debugfs file's fopsNicolai Stange
Since commit 49d200deaa68 ("debugfs: prevent access to removed files' private data"), a debugfs file's file_operations methods get proxied through lifetime aware wrappers. However, only a certain subset of the file_operations members is supported by debugfs and ->mmap isn't among them -- it appears to be NULL from the VFS layer's perspective. This behaviour breaks the /sys/kernel/debug/kcov file introduced concurrently with commit 5c9a8750a640 ("kernel: add kcov code coverage"). Since that file never gets removed, there is no file removal race and thus, a lifetime checking proxy isn't needed. Avoid the proxying for /sys/kernel/debug/kcov by creating it via debugfs_create_file_unsafe() rather than debugfs_create_file(). Fixes: 49d200deaa68 ("debugfs: prevent access to removed files' private data") Fixes: 5c9a8750a640 ("kernel: add kcov code coverage") Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Nicolai Stange <nicstange@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-28kcov: don't profile branches in kcovAndrey Ryabinin
Profiling 'if' statements in __sanitizer_cov_trace_pc() leads to unbound recursion and crash: __sanitizer_cov_trace_pc() -> ftrace_likely_update -> __sanitizer_cov_trace_pc() ... Define DISABLE_BRANCH_PROFILING to disable this tracer. Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28kcov: don't trace the code coverage codeJames Morse
Kcov causes the compiler to add a call to __sanitizer_cov_trace_pc() in every basic block. Ftrace patches in a call to _mcount() to each function it has annotated. Letting these mechanisms annotate each other is a bad thing. Break the loop by adding 'notrace' to __sanitizer_cov_trace_pc() so that ftrace won't try to patch this code. This patch lets arm64 with KCOV and STACK_TRACER boot. Signed-off-by: James Morse <james.morse@arm.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22kernel: add kcov code coverageDmitry Vyukov
kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>