Age | Commit message (Collapse) | Author |
|
This slightly optimizes the kernel/configs.c build.
bin2c is not very efficient because it converts a data file into a huge
array to embed it into a *.c file.
Instead, we can use the .incbin directive.
Also, this simplifies the code; Makefile is cleaner, and the way to get
the offset/size of the config_data.gz is more straightforward.
I used the "asm" statement in *.c instead of splitting it into *.S
because MODULE_* tags are not supported in *.S files.
I also cleaned up kernel/.gitignore; "config_data.gz" is unneeded
because the top-level .gitignore takes care of the "*.gz" pattern.
[yamada.masahiro@socionext.com: v2]
Link: http://lkml.kernel.org/r/1550108893-21226-1-git-send-email-yamada.masahiro@socionext.com
Link: http://lkml.kernel.org/r/1549941160-8084-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Popov <alex.popov@linux.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
filechk_* rules often consist of multiple 'echo' lines. They must be
surrounded with { } or ( ) to work correctly. Otherwise, only the
string from the last 'echo' would be written into the target.
Let's take care of that in the 'filechk' in scripts/Kbuild.include
to clean up filechk_* rules.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
ssh://gitolite.kernel.org:/pub/scm/linux/kernel/git/arnd/playground
Pull y2038 updates from Arnd Bergmann:
"More syscalls and cleanups
This concludes the main part of the system call rework for 64-bit
time_t, which has spread over most of year 2018, the last six system
calls being
- ppoll
- pselect6
- io_pgetevents
- recvmmsg
- futex
- rt_sigtimedwait
As before, nothing changes for 64-bit architectures, while 32-bit
architectures gain another entry point that differs only in the layout
of the timespec structure. Hopefully in the next release we can wire
up all 22 of those system calls on all 32-bit architectures, which
gives us a baseline version for glibc to start using them.
This does not include the clock_adjtime, getrusage/waitid, and
getitimer/setitimer system calls. I still plan to have new versions of
those as well, but they are not required for correct operation of the
C library since they can be emulated using the old 32-bit time_t based
system calls.
Aside from the system calls, there are also a few cleanups here,
removing old kernel internal interfaces that have become unused after
all references got removed. The arch/sh cleanups are part of this,
there were posted several times over the past year without a reaction
from the maintainers, while the corresponding changes made it into all
other architectures"
* tag 'y2038-for-4.21' of ssh://gitolite.kernel.org:/pub/scm/linux/kernel/git/arnd/playground:
timekeeping: remove obsolete time accessors
vfs: replace current_kernel_time64 with ktime equivalent
timekeeping: remove timespec_add/timespec_del
timekeeping: remove unused {read,update}_persistent_clock
sh: remove board_time_init() callback
sh: remove unused rtc_sh_get/set_time infrastructure
sh: sh03: rtc: push down rtc class ops into driver
sh: dreamcast: rtc: push down rtc class ops into driver
y2038: signal: Add compat_sys_rt_sigtimedwait_time64
y2038: signal: Add sys_rt_sigtimedwait_time32
y2038: socket: Add compat_sys_recvmmsg_time64
y2038: futex: Add support for __kernel_timespec
y2038: futex: Move compat implementation into futex.c
io_pgetevents: use __kernel_timespec
pselect6: use __kernel_timespec
ppoll: use __kernel_timespec
signal: Add restore_user_sigmask()
signal: Add set_user_sigmask()
|
|
We are going to share the compat_sys_futex() handler between 64-bit
architectures and 32-bit architectures that need to deal with both 32-bit
and 64-bit time_t, and this is easier if both entry points are in the
same file.
In fact, most other system call handlers do the same thing these days, so
let's follow the trend here and merge all of futex_compat.c into futex.c.
In the process, a few minor changes have to be done to make sure everything
still makes sense: handle_futex_death() and futex_cmpxchg_enabled() become
local symbol, and the compat version of the fetch_robust_entry() function
gets renamed to compat_fetch_robust_entry() to avoid a symbol clash.
This is intended as a purely cosmetic patch, no behavior should
change.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Remove the CONFIG_AUDIT_WATCH and CONFIG_AUDIT_TREE config options since
they are both dependent on CONFIG_AUDITSYSCALL and force
CONFIG_FSNOTIFY.
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/
https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Commit 8370edea81e3 ("bin2c: move bin2c in scripts/basic") moved bin2c
to the scripts/basic/ directory, incorrectly stating "Kexec wants to
use bin2c and it wants to use it really early in the build process.
See arch/x86/purgatory/ code in later patches."
Commit bdab125c9301 ("Revert "kexec/purgatory: Add clean-up for
purgatory directory"") and commit d6605b6bbee8 ("x86/build: Remove
unnecessary preparation for purgatory") removed the redundant
purgatory build magic entirely.
That means that the move of bin2c was unnecessary in the first place.
fixdep is the only host program that deserves to sit in the
scripts/basic/ directory.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Currently the code is split over various files with dma- prefixes in the
lib/ and drives/base directories, and the number of files keeps growing.
Move them into a single directory to keep the code together and remove
the file name prefixes. To match the irq infrastructure this directory
is placed under the kernel/ directory.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull restartable sequence support from Thomas Gleixner:
"The restartable sequences syscall (finally):
After a lot of back and forth discussion and massive delays caused by
the speculative distraction of maintainers, the core set of
restartable sequences has finally reached a consensus.
It comes with the basic non disputed core implementation along with
support for arm, powerpc and x86 and a full set of selftests
It was exposed to linux-next earlier this week, so it does not fully
comply with the merge window requirements, but there is really no
point to drag it out for yet another cycle"
* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq/selftests: Provide Makefile, scripts, gitignore
rseq/selftests: Provide parametrized tests
rseq/selftests: Provide basic percpu ops test
rseq/selftests: Provide basic test
rseq/selftests: Provide rseq library
selftests/lib.mk: Introduce OVERRIDE_TARGETS
powerpc: Wire up restartable sequences system call
powerpc: Add syscall detection for restartable sequences
powerpc: Add support for restartable sequences
x86: Wire up restartable sequence system call
x86: Add support for restartable sequences
arm: Wire up restartable sequences system call
arm: Add syscall detection for restartable sequences
arm: Add restartable sequences support
rseq: Introduce restartable sequences system call
uapi/headers: Provide types_32_64.h
|
|
Expose a new system call allowing each thread to register one userspace
memory area to be used as an ABI between kernel and user-space for two
purposes: user-space restartable sequences and quick access to read the
current CPU number value from user-space.
* Restartable sequences (per-cpu atomics)
Restartables sequences allow user-space to perform update operations on
per-cpu data without requiring heavy-weight atomic operations.
The restartable critical sections (percpu atomics) work has been started
by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
critical sections. [1] [2] The re-implementation proposed here brings a
few simplifications to the ABI which facilitates porting to other
architectures and speeds up the user-space fast path.
Here are benchmarks of various rseq use-cases.
Test hardware:
arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
The following benchmarks were all performed on a single thread.
* Per-CPU statistic counter increment
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 344.0 31.4 11.0
x86-64: 15.3 2.0 7.7
* LTTng-UST: write event 32-bit header, 32-bit payload into tracer
per-cpu buffer
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 2502.0 2250.0 1.1
x86-64: 117.4 98.0 1.2
* liburcu percpu: lock-unlock pair, dereference, read/compare word
getcpu+atomic (ns/op) rseq (ns/op) speedup
arm32: 751.0 128.5 5.8
x86-64: 53.4 28.6 1.9
* jemalloc memory allocator adapted to use rseq
Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
rseq 2016 implementation):
The production workload response-time has 1-2% gain avg. latency, and
the P99 overall latency drops by 2-3%.
* Reading the current CPU number
Speeding up reading the current CPU number on which the caller thread is
running is done by keeping the current CPU number up do date within the
cpu_id field of the memory area registered by the thread. This is done
by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
current thread. Upon return to user-space, a notify-resume handler
updates the current CPU value within the registered user-space memory
area. User-space can then read the current CPU number directly from
memory.
Keeping the current cpu id in a memory area shared between kernel and
user-space is an improvement over current mechanisms available to read
the current CPU number, which has the following benefits over
alternative approaches:
- 35x speedup on ARM vs system call through glibc
- 20x speedup on x86 compared to calling glibc, which calls vdso
executing a "lsl" instruction,
- 14x speedup on x86 compared to inlined "lsl" instruction,
- Unlike vdso approaches, this cpu_id value can be read from an inline
assembly, which makes it a useful building block for restartable
sequences.
- The approach of reading the cpu id through memory mapping shared
between kernel and user-space is portable (e.g. ARM), which is not the
case for the lsl-based x86 vdso.
On x86, yet another possible approach would be to use the gs segment
selector to point to user-space per-cpu data. This approach performs
similarly to the cpu id cache, but it has two disadvantages: it is
not portable, and it is incompatible with existing applications already
using the gs segment selector for other purposes.
Benchmarking various approaches for reading the current CPU number:
ARMv7 Processor rev 4 (v7l)
Machine model: Cubietruck
- Baseline (empty loop): 8.4 ns
- Read CPU from rseq cpu_id: 16.7 ns
- Read CPU from rseq cpu_id (lazy register): 19.8 ns
- glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns
- getcpu system call: 234.9 ns
x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
- Baseline (empty loop): 0.8 ns
- Read CPU from rseq cpu_id: 0.8 ns
- Read CPU from rseq cpu_id (lazy register): 0.8 ns
- Read using gs segment selector: 0.8 ns
- "lsl" inline assembly: 13.0 ns
- glibc 2.19-0ubuntu6 getcpu: 16.6 ns
- getcpu system call: 53.9 ns
- Speed (benchmark taken on v8 of patchset)
Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
expectations, that enabling CONFIG_RSEQ slightly accelerates the
scheduler:
Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
restartable sequences series applied.
* CONFIG_RSEQ=n
avg.: 41.37 s
std.dev.: 0.36 s
* CONFIG_RSEQ=y
avg.: 40.46 s
std.dev.: 0.33 s
- Size
On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
567 bytes, and the data size increase of vmlinux is 5696 bytes.
[1] https://lwn.net/Articles/650333/
[2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
|
|
Currently, kernel/memremap.c contains generic code for supporting
memremap() (CONFIG_HAS_IOMEM) and devm_memremap_pages()
(CONFIG_ZONE_DEVICE). This causes ongoing build maintenance problems as
additions to memremap.c, especially for the ZONE_DEVICE case, need to be
careful about being placed in ifdef guards. Remove the need for these
ifdef guards by moving the ZONE_DEVICE support functions to their own
compilation unit.
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Support in-kernel fault-injection framework via debugfs.
This allows you to inject a conditional error to specified
function using debugfs interfaces.
Here is the result of test script described in
Documentation/fault-injection/fault-injection.txt
===========
# ./test_fail_function.sh
1+0 records in
1+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0227404 s, 46.1 MB/s
btrfs-progs v4.4
See http://btrfs.wiki.kernel.org for more information.
Label: (null)
UUID: bfa96010-12e9-4360-aed0-42eec7af5798
Node size: 16384
Sector size: 4096
Filesystem size: 1001.00MiB
Block group profiles:
Data: single 8.00MiB
Metadata: DUP 58.00MiB
System: DUP 12.00MiB
SSD detected: no
Incompat features: extref, skinny-metadata
Number of devices: 1
Devices:
ID SIZE PATH
1 1001.00MiB /dev/loop2
mount: mount /dev/loop2 on /opt/tmpmnt failed: Cannot allocate memory
SUCCESS!
===========
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The entire file is now conditionally compiled only when CONFIG_MODULES is
enabled, and this this is a bool. Just move this conditional to the
Makefile as its easier to read this way.
Link: http://lkml.kernel.org/r/20170810180618.22457-5-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Jessica Yu <jeyu@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Michal Marek <mmarek@suse.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Daniel Mentz <danielmentz@google.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "kmod: few code cleanups to split out umh code"
The usermode helper has a provenance from the old usb code which first
required a usermode helper. Eventually this was shoved into kmod.c and
the kernel's modprobe calls was converted over eventually to share the
same code. Over time the list of usermode helpers in the kernel has grown
-- so kmod is just but one user of the API.
This series is a simple logical cleanup which acknowledges the code
evolution of the usermode helper and shoves the UMH API into its own
dedicated file. This way users of the API can later just include umh.h
instead of kmod.h.
Note despite the diff state the first patch really is just a code shove,
no functional changes are done there. I did use git format-patch -M to
generate the patch, but in the end the split was not enough for git to
consider it a rename hence the large diffstat.
I've put this through 0-day and it gives me their machine compilation
blessings with all tests as OK.
This patch (of 4):
There's a slew of usermode helper users and kmod is just one of them.
Split out the usermode helper code into its own file to keep the logic and
focus split up.
This change provides no functional changes.
Link: http://lkml.kernel.org/r/20170810180618.22457-2-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Jessica Yu <jeyu@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Michal Marek <mmarek@suse.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Daniel Mentz <danielmentz@google.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built
from all runqueues for which current thread's mm is the same as the
thread calling sys_membarrier. It executes faster than the non-expedited
variant (no blocking). It also works on NOHZ_FULL configurations.
Scheduler-wise, it requires a memory barrier before and after context
switching between processes (which have different mm). The memory
barrier before context switch is already present. For the barrier after
context switch:
* Our TSO archs can do RELEASE without being a full barrier. Look at
x86 spin_unlock() being a regular STORE for example. But for those
archs, all atomics imply smp_mb and all of them have atomic ops in
switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full
barrier.
* From all weakly ordered machines, only ARM64 and PPC can do RELEASE,
the rest does indeed do smp_mb(), so there the spin_unlock() is a full
barrier and we're good.
* ARM64 has a very heavy barrier in switch_to(), which suffices.
* PPC just removed its barrier from switch_to(), but appears to be
talking about adding something to switch_mm(). So add a
smp_mb__after_unlock_lock() for now, until this is settled on the PPC
side.
Changes since v3:
- Properly document the memory barriers provided by each architecture.
Changes since v2:
- Address comments from Peter Zijlstra,
- Add smp_mb__after_unlock_lock() after finish_lock_switch() in
finish_task_switch() to add the memory barrier we need after storing
to rq->curr. This is much simpler than the previous approach relying
on atomic_dec_and_test() in mmdrop(), which actually added a memory
barrier in the common case of switching between userspace processes.
- Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full
kernel, rather than having the whole membarrier system call returning
-ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full.
Adapt the CMD_QUERY mask accordingly.
Changes since v1:
- move membarrier code under kernel/sched/ because it uses the
scheduler runqueue,
- only add the barrier when we switch from a kernel thread. The case
where we switch from a user-space thread is already handled by
the atomic_dec_and_test() in mmdrop().
- add a comment to mmdrop() documenting the requirement on the implicit
memory barrier.
CC: Peter Zijlstra <peterz@infradead.org>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Boqun Feng <boqun.feng@gmail.com>
CC: Andrew Hunter <ahh@google.com>
CC: Maged Michael <maged.michael@gmail.com>
CC: gromer@google.com
CC: Avi Kivity <avi@scylladb.com>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Dave Watson <davejwatson@fb.com>
|
|
Split SOFTLOCKUP_DETECTOR from LOCKUP_DETECTOR, and split
HARDLOCKUP_DETECTOR_PERF from HARDLOCKUP_DETECTOR.
LOCKUP_DETECTOR implies the general boot, sysctl, and programming
interfaces for the lockup detectors.
An architecture that wants to use a hard lockup detector must define
HAVE_HARDLOCKUP_DETECTOR_PERF or HAVE_HARDLOCKUP_DETECTOR_ARCH.
Alternatively an arch can define HAVE_NMI_WATCHDOG, which provides the
minimum arch_touch_nmi_watchdog, and it otherwise does its own thing and
does not implement the LOCKUP_DETECTOR interfaces.
sparc is unusual in that it has started to implement some of the
interfaces, but not fully yet. It should probably be converted to a full
HAVE_HARDLOCKUP_DETECTOR_ARCH.
[npiggin@gmail.com: fix]
Link: http://lkml.kernel.org/r/20170617223522.66c0ad88@roar.ozlabs.ibm.com
Link: http://lkml.kernel.org/r/20170616065715.18390-4-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Don Zickus <dzickus@redhat.com>
Reviewed-by: Babu Moger <babu.moger@oracle.com>
Tested-by: Babu Moger <babu.moger@oracle.com> [sparc]
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and
reuse crashkernel parameter for fadump", v4.
Traditionally, kdump is used to save vmcore in case of a crash. Some
architectures like powerpc can save vmcore using architecture specific
support instead of kexec/kdump mechanism. Such architecture specific
support also needs to reserve memory, to be used by dump capture kernel.
crashkernel parameter can be a reused, for memory reservation, by such
architecture specific infrastructure.
This patchset removes dependency with CONFIG_KEXEC for crashkernel
parameter and vmcoreinfo related code as it can be reused without kexec
support. Also, crashkernel parameter is reused instead of
fadump_reserve_mem to reserve memory for fadump.
The first patch moves crashkernel parameter parsing and vmcoreinfo
related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The
second patch reuses the definitions of append_elf_note() & final_note()
functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch
removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump)
in powerpc. The next patch reuses crashkernel parameter for reserving
memory for fadump, instead of the fadump_reserve_mem parameter. This
has the advantage of using all syntaxes crashkernel parameter supports,
for fadump as well. The last patch updates fadump kernel documentation
about use of crashkernel parameter.
This patch (of 5):
Traditionally, kdump is used to save vmcore in case of a crash. Some
architectures like powerpc can save vmcore using architecture specific
support instead of kexec/kdump mechanism. Such architecture specific
support also needs to reserve memory, to be used by dump capture kernel.
crashkernel parameter can be a reused, for memory reservation, by such
architecture specific infrastructure.
But currently, code related to vmcoreinfo and parsing of crashkernel
parameter is built under CONFIG_KEXEC_CORE. This patch introduces
CONFIG_CRASH_CORE and moves the above mentioned code under this config,
allowing code reuse without dependency on CONFIG_KEXEC. There is no
functional change with this patch.
Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
They're growing to be too many and planned to get split further. Move
them under their own directory.
kernel/cgroup.c -> kernel/cgroup/cgroup.c
kernel/cgroup_freezer.c -> kernel/cgroup/freezer.c
kernel/cgroup_pids.c -> kernel/cgroup/pids.c
kernel/cpuset.c -> kernel/cgroup/cpuset.c
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Acked-by: Zefan Li <lizefan@huawei.com>
|
|
Merge more updates from Andrew Morton:
- a few misc things
- kexec updates
- DMA-mapping updates to better support networking DMA operations
- IPC updates
- various MM changes to improve DAX fault handling
- lots of radix-tree changes, mainly to the test suite. All leading up
to reimplementing the IDA/IDR code to be a wrapper layer over the
radix-tree. However the final trigger-pulling patch is held off for
4.11.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
radix tree test suite: delete unused rcupdate.c
radix tree test suite: add new tag check
radix-tree: ensure counts are initialised
radix tree test suite: cache recently freed objects
radix tree test suite: add some more functionality
idr: reduce the number of bits per level from 8 to 6
rxrpc: abstract away knowledge of IDR internals
tpm: use idr_find(), not idr_find_slowpath()
idr: add ida_is_empty
radix tree test suite: check multiorder iteration
radix-tree: fix replacement for multiorder entries
radix-tree: add radix_tree_split_preload()
radix-tree: add radix_tree_split
radix-tree: add radix_tree_join
radix-tree: delete radix_tree_range_tag_if_tagged()
radix-tree: delete radix_tree_locate_item()
radix-tree: improve multiorder iterators
btrfs: fix race in btrfs_free_dummy_fs_info()
radix-tree: improve dump output
radix-tree: make radix_tree_find_next_bit more useful
...
|
|
Separate hardlockup code from watchdog.c and move it to watchdog_hld.c.
It is mostly straight forward. Remove everything inside
CONFIG_HARDLOCKUP_DETECTORS. This code will go to file watchdog_hld.c.
Also update the makefile accordigly.
Link: http://lkml.kernel.org/r/1478034826-43888-3-git-send-email-babu.moger@oracle.com
Signed-off-by: Babu Moger <babu.moger@oracle.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Josh Hunt <johunt@akamai.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The build system stopped generating ikconfig.h in v2.6.8. Remove an entry
for it in dontdiff. There's also a reference to it in a small comment.
Remove that comment too, as it is of little help in any case.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Limit per userns sysctls to only be opened for write by a holder
of CAP_SYS_RESOURCE.
Add all of the necessary boilerplate for having per user namespace
sysctls.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
CONFIG_MIPS32_N32=y but CONFIG_BINFMT_ELF disabled results in the
following linker errors:
arch/mips/built-in.o: In function `elf_core_dump':
binfmt_elfn32.c:(.text+0x23dbc): undefined reference to `elf_core_extra_phdrs'
binfmt_elfn32.c:(.text+0x246e4): undefined reference to `elf_core_extra_data_size'
binfmt_elfn32.c:(.text+0x248d0): undefined reference to `elf_core_write_extra_phdrs'
binfmt_elfn32.c:(.text+0x24ac4): undefined reference to `elf_core_write_extra_data'
CONFIG_MIPS32_O32=y but CONFIG_BINFMT_ELF disabled results in the following
linker errors:
arch/mips/built-in.o: In function `elf_core_dump':
binfmt_elfo32.c:(.text+0x28a04): undefined reference to `elf_core_extra_phdrs'
binfmt_elfo32.c:(.text+0x29330): undefined reference to `elf_core_extra_data_size'
binfmt_elfo32.c:(.text+0x2951c): undefined reference to `elf_core_write_extra_phdrs'
binfmt_elfo32.c:(.text+0x29710): undefined reference to `elf_core_write_extra_data'
This is because binfmt_elfn32 and binfmt_elfo32 are using symbols from
elfcore but for these configurations elfcore will not be built.
Fixed by making elfcore selectable by a separate config symbol which
unlike the current mechanism can also be used from other directories
than kernel/, then having each flavor of ELF that relies on elfcore.o,
select it in Kconfig, including CONFIG_MIPS32_N32 and CONFIG_MIPS32_O32
which fixes this issue.
Link: http://lkml.kernel.org/r/20160520141705.GA1913@linux-mips.org
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: "Maciej W. Rozycki" <macro@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The file cgroup-debug.c had been removed from commit fe6934354f8e
(cgroups: move the cgroup debug subsys into cgroup.c to access internal state).
Remain the CFLAGS_REMOVE_cgroup-debug.o = $(CC_FLAGS_FTRACE)
useless in kernel/Makefile.
Signed-off-by: Li Bin <huawei.libin@huawei.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Here is an implementation of a new system call, sys_membarrier(), which
executes a memory barrier on all threads running on the system. It is
implemented by calling synchronize_sched(). It can be used to
distribute the cost of user-space memory barriers asymmetrically by
transforming pairs of memory barriers into pairs consisting of
sys_membarrier() and a compiler barrier. For synchronization primitives
that distinguish between read-side and write-side (e.g. userspace RCU
[1], rwlocks), the read-side can be accelerated significantly by moving
the bulk of the memory barrier overhead to the write-side.
The existing applications of which I am aware that would be improved by
this system call are as follows:
* Through Userspace RCU library (http://urcu.so)
- DNS server (Knot DNS) https://www.knot-dns.cz/
- Network sniffer (http://netsniff-ng.org/)
- Distributed object storage (https://sheepdog.github.io/sheepdog/)
- User-space tracing (http://lttng.org)
- Network storage system (https://www.gluster.org/)
- Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf)
- Financial software (https://lkml.org/lkml/2015/3/23/189)
Those projects use RCU in userspace to increase read-side speed and
scalability compared to locking. Especially in the case of RCU used by
libraries, sys_membarrier can speed up the read-side by moving the bulk of
the memory barrier cost to synchronize_rcu().
* Direct users of sys_membarrier
- core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198)
Microsoft core dotnet GC developers are planning to use the mprotect()
side-effect of issuing memory barriers through IPIs as a way to implement
Windows FlushProcessWriteBuffers() on Linux. They are referring to
sys_membarrier in their github thread, specifically stating that
sys_membarrier() is what they are looking for.
To explain the benefit of this scheme, let's introduce two example threads:
Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
Thread B (frequent, e.g. executing liburcu
rcu_read_lock()/rcu_read_unlock())
In a scheme where all smp_mb() in thread A are ordering memory accesses
with respect to smp_mb() present in Thread B, we can change each
smp_mb() within Thread A into calls to sys_membarrier() and each
smp_mb() within Thread B into compiler barriers "barrier()".
Before the change, we had, for each smp_mb() pairs:
Thread A Thread B
previous mem accesses previous mem accesses
smp_mb() smp_mb()
following mem accesses following mem accesses
After the change, these pairs become:
Thread A Thread B
prev mem accesses prev mem accesses
sys_membarrier() barrier()
follow mem accesses follow mem accesses
As we can see, there are two possible scenarios: either Thread B memory
accesses do not happen concurrently with Thread A accesses (1), or they
do (2).
1) Non-concurrent Thread A vs Thread B accesses:
Thread A Thread B
prev mem accesses
sys_membarrier()
follow mem accesses
prev mem accesses
barrier()
follow mem accesses
In this case, thread B accesses will be weakly ordered. This is OK,
because at that point, thread A is not particularly interested in
ordering them with respect to its own accesses.
2) Concurrent Thread A vs Thread B accesses
Thread A Thread B
prev mem accesses prev mem accesses
sys_membarrier() barrier()
follow mem accesses follow mem accesses
In this case, thread B accesses, which are ensured to be in program
order thanks to the compiler barrier, will be "upgraded" to full
smp_mb() by synchronize_sched().
* Benchmarks
On Intel Xeon E5405 (8 cores)
(one thread is calling sys_membarrier, the other 7 threads are busy
looping)
1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call.
* User-space user of this system call: Userspace RCU library
Both the signal-based and the sys_membarrier userspace RCU schemes
permit us to remove the memory barrier from the userspace RCU
rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
accelerating them. These memory barriers are replaced by compiler
barriers on the read-side, and all matching memory barriers on the
write-side are turned into an invocation of a memory barrier on all
active threads in the process. By letting the kernel perform this
synchronization rather than dumbly sending a signal to every process
threads (as we currently do), we diminish the number of unnecessary wake
ups and only issue the memory barriers on active threads. Non-running
threads do not need to execute such barrier anyway, because these are
implied by the scheduler context switches.
Results in liburcu:
Operations in 10s, 6 readers, 2 writers:
memory barriers in reader: 1701557485 reads, 2202847 writes
signal-based scheme: 9830061167 reads, 6700 writes
sys_membarrier: 9952759104 reads, 425 writes
sys_membarrier (dyn. check): 7970328887 reads, 425 writes
The dynamic sys_membarrier availability check adds some overhead to
the read-side compared to the signal-based scheme, but besides that,
sys_membarrier slightly outperforms the signal-based scheme. However,
this non-expedited sys_membarrier implementation has a much slower grace
period than signal and memory barrier schemes.
Besides diminishing the number of wake-ups, one major advantage of the
membarrier system call over the signal-based scheme is that it does not
need to reserve a signal. This plays much more nicely with libraries,
and with processes injected into for tracing purposes, for which we
cannot expect that signals will be unused by the application.
An expedited version of this system call can be added later on to speed
up the grace period. Its implementation will likely depend on reading
the cpu_curr()->mm without holding each CPU's rq lock.
This patch adds the system call to x86 and to asm-generic.
[1] http://urcu.so
membarrier(2) man page:
MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2)
NAME
membarrier - issue memory barriers on a set of threads
SYNOPSIS
#include <linux/membarrier.h>
int membarrier(int cmd, int flags);
DESCRIPTION
The cmd argument is one of the following:
MEMBARRIER_CMD_QUERY
Query the set of supported commands. It returns a bitmask of
supported commands.
MEMBARRIER_CMD_SHARED
Execute a memory barrier on all threads running on the system.
Upon return from system call, the caller thread is ensured that
all running threads have passed through a state where all memory
accesses to user-space addresses match program order between
entry to and return from the system call (non-running threads
are de facto in such a state). This covers threads from all pro=E2=80=90
cesses running on the system. This command returns 0.
The flags argument needs to be 0. For future extensions.
All memory accesses performed in program order from each targeted
thread is guaranteed to be ordered with respect to sys_membarrier(). If
we use the semantic "barrier()" to represent a compiler barrier forcing
memory accesses to be performed in program order across the barrier,
and smp_mb() to represent explicit memory barriers forcing full memory
ordering across the barrier, we have the following ordering table for
each pair of barrier(), sys_membarrier() and smp_mb():
The pair ordering is detailed as (O: ordered, X: not ordered):
barrier() smp_mb() sys_membarrier()
barrier() X X O
smp_mb() X O O
sys_membarrier() O O O
RETURN VALUE
On success, these system calls return zero. On error, -1 is returned,
and errno is set appropriately. For a given command, with flags
argument set to 0, this system call is guaranteed to always return the
same value until reboot.
ERRORS
ENOSYS System call is not implemented.
EINVAL Invalid arguments.
Linux 2015-04-15 MEMBARRIER(2)
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Nicholas Miell <nmiell@comcast.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Pranith Kumar <bobby.prani@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Split kexec_file syscall related code to another file kernel/kexec_file.c
so that the #ifdef CONFIG_KEXEC_FILE in kexec.c can be dropped.
Sharing variables and functions are moved to kernel/kexec_internal.h per
suggestion from Vivek and Petr.
[akpm@linux-foundation.org: fix bisectability]
[akpm@linux-foundation.org: declare the various arch_kexec functions]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
|
|
Pull audit update from Paul Moore:
"This is one of the larger audit patchsets in recent history,
consisting of eight patches and almost 400 lines of changes.
The bulk of the patchset is the new "audit by executable"
functionality which allows admins to set an audit watch based on the
executable on disk. Prior to this, admins could only track an
application by PID, which has some obvious limitations.
Beyond the new functionality we also have some refcnt fixes and a few
minor cleanups"
* 'upstream' of git://git.infradead.org/users/pcmoore/audit:
fixup: audit: implement audit by executable
audit: implement audit by executable
audit: clean simple fsnotify implementation
audit: use macros for unset inode and device values
audit: make audit_del_rule() more robust
audit: fix uninitialized variable in audit_add_rule()
audit: eliminate unnecessary extra layer of watch parent references
audit: eliminate unnecessary extra layer of watch references
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:
"Highlights:
- PKCS#7 support added to support signed kexec, also utilized for
module signing. See comments in 3f1e1bea.
** NOTE: this requires linking against the OpenSSL library, which
must be installed, e.g. the openssl-devel on Fedora **
- Smack
- add IPv6 host labeling; ignore labels on kernel threads
- support smack labeling mounts which use binary mount data
- SELinux:
- add ioctl whitelisting (see
http://kernsec.org/files/lss2015/vanderstoep.pdf)
- fix mprotect PROT_EXEC regression caused by mm change
- Seccomp:
- add ptrace options for suspend/resume"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (57 commits)
PKCS#7: Add OIDs for sha224, sha284 and sha512 hash algos and use them
Documentation/Changes: Now need OpenSSL devel packages for module signing
scripts: add extract-cert and sign-file to .gitignore
modsign: Handle signing key in source tree
modsign: Use if_changed rule for extracting cert from module signing key
Move certificate handling to its own directory
sign-file: Fix warning about BIO_reset() return value
PKCS#7: Add MODULE_LICENSE() to test module
Smack - Fix build error with bringup unconfigured
sign-file: Document dependency on OpenSSL devel libraries
PKCS#7: Appropriately restrict authenticated attributes and content type
KEYS: Add a name for PKEY_ID_PKCS7
PKCS#7: Improve and export the X.509 ASN.1 time object decoder
modsign: Use extract-cert to process CONFIG_SYSTEM_TRUSTED_KEYS
extract-cert: Cope with multiple X.509 certificates in a single file
sign-file: Generate CMS message as signature instead of PKCS#7
PKCS#7: Support CMS messages also [RFC5652]
X.509: Change recorded SKID & AKID to not include Subject or Issuer
PKCS#7: Check content type and versions
MAINTAINERS: The keyrings mailing list has moved
...
|
|
Existing users of ioremap_cache() are mapping memory that is known in
advance to not have i/o side effects. These users are forced to cast
away the __iomem annotation, or otherwise neglect to fix the sparse
errors thrown when dereferencing pointers to this memory. Provide
memremap() as a non __iomem annotated ioremap_*() in the case when
ioremap is otherwise a pointer to cacheable memory. Empirically,
ioremap_<cacheable-type>() call sites are seeking memory-like semantics
(e.g. speculative reads, and prefetching permitted).
memremap() is a break from the ioremap implementation pattern of adding
a new memremap_<type>() for each mapping type and having silent
compatibility fall backs. Instead, the implementation defines flags
that are passed to the central memremap() and if a mapping type is not
supported by an arch memremap returns NULL.
We introduce a memremap prototype as a trivial wrapper of
ioremap_cache() and ioremap_wt(). Later, once all ioremap_cache() and
ioremap_wt() usage has been removed from drivers we teach archs to
implement arch_memremap() with the ability to strictly enforce the
mapping type.
Cc: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Move certificate handling out of the kernel/ directory and into a certs/
directory to get all the weird stuff in one place and move the generated
signing keys into this directory.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
|
|
Fix up the dependencies somewhat too, while we're at it.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Let the user explicitly provide a file containing trusted keys, instead of
just automatically finding files matching *.x509 in the build tree and
trusting whatever we find. This really ought to be an *explicit*
configuration, and the build rules for dealing with the files were
fairly painful too.
Fix applied from James Morris that removes an '=' from a macro definition
in kernel/Makefile as this is a feature that only exists from GNU make 3.82
onwards.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The current rule for generating signing_key.priv and signing_key.x509 is
a classic example of a bad rule which has a tendency to break parallel
make. When invoked to create *either* target, it generates the other
target as a side-effect that make didn't predict.
So let's switch to using a single file signing_key.pem which contains
both key and certificate. That matches what we do in the case of an
external key specified by CONFIG_MODULE_SIG_KEY anyway, so it's also
slightly cleaner.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Where an external PEM file or PKCS#11 URI is given, we can get the cert
from it for ourselves instead of making the user drop signing_key.x509
in place for us.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
This is to be used to audit by executable path rules, but audit watches should
be able to share this code eventually.
At the moment the audit watch code is a lot more complex. That code only
creates one fsnotify watch per parent directory. That 'audit_parent' in
turn has a list of 'audit_watches' which contain the name, ino, dev of
the specific object we care about. This just creates one fsnotify watch
per object we care about. So if you watch 100 inodes in /etc this code
will create 100 fsnotify watches on /etc. The audit_watch code will
instead create 1 fsnotify watch on /etc (the audit_parent) and then 100
individual watches chained from that fsnotify mark.
We should be able to convert the audit_watch code to do one fsnotify
mark per watch and simplify things/remove a whole lot of code. After
that conversion we should be able to convert the audit_fsnotify code to
support that hierarchy if the optimization is necessary.
Move the access to the entry for audit_match_signal() to the beginning of
the audit_del_rule() function in case the entry found is the same one passed
in. This will enable it to be used by audit_autoremove_mark_rule(),
kill_rules() and audit_remove_parent_watches().
This is a heavily modified and merged version of two patches originally
submitted by Eric Paris.
Cc: Peter Moody <peter@hda3.com>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
[PM: added a space after a declaration to keep ./scripts/checkpatch happy]
Signed-off-by: Paul Moore <pmoore@redhat.com>
|
|
Adds a new single-purpose PIDs subsystem to limit the number of
tasks that can be forked inside a cgroup. Essentially this is an
implementation of RLIMIT_NPROC that applies to a cgroup rather than a
process tree.
However, it should be noted that organisational operations (adding and
removing tasks from a PIDs hierarchy) will *not* be prevented. Rather,
the number of tasks in the hierarchy cannot exceed the limit through
forking. This is due to the fact that, in the unified hierarchy, attach
cannot fail (and it is not possible for a task to overcome its PIDs
cgroup policy limit by attaching to a child cgroup -- even if migrating
mid-fork it must be able to fork in the parent first).
PIDs are fundamentally a global resource, and it is possible to reach
PID exhaustion inside a cgroup without hitting any reasonable kmemcg
policy. Once you've hit PID exhaustion, you're only in a marginally
better state than OOM. This subsystem allows PID exhaustion inside a
cgroup to be prevented.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
It's a bug in our Makefile rules, make it show what the changing
certificate list was, and make it a warning so that people actually see
it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change default key details to be more obviously unspecified.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are a lot of embedded systems that run most or all of their
functionality in init, running as root:root. For these systems,
supporting multiple users is not necessary.
This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for
non-root users, non-root groups, and capabilities optional. It is enabled
under CONFIG_EXPERT menu.
When this symbol is not defined, UID and GID are zero in any possible case
and processes always have all capabilities.
The following syscalls are compiled out: setuid, setregid, setgid,
setreuid, setresuid, getresuid, setresgid, getresgid, setgroups,
getgroups, setfsuid, setfsgid, capget, capset.
Also, groups.c is compiled out completely.
In kernel/capability.c, capable function was moved in order to avoid
adding two ifdef blocks.
This change saves about 25 KB on a defconfig build. The most minimal
kernels have total text sizes in the high hundreds of kB rather than
low MB. (The 25k goes down a bit with allnoconfig, but not that much.
The kernel was booted in Qemu. All the common functionalities work.
Adding users/groups is not possible, failing with -ENOSYS.
Bloat-o-meter output:
add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650)
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security layer updates from James Morris:
"Highlights:
- Smack adds secmark support for Netfilter
- /proc/keys is now mandatory if CONFIG_KEYS=y
- TPM gets its own device class
- Added TPM 2.0 support
- Smack file hook rework (all Smack users should review this!)"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (64 commits)
cipso: don't use IPCB() to locate the CIPSO IP option
SELinux: fix error code in policydb_init()
selinux: add security in-core xattr support for pstore and debugfs
selinux: quiet the filesystem labeling behavior message
selinux: Remove unused function avc_sidcmp()
ima: /proc/keys is now mandatory
Smack: Repair netfilter dependency
X.509: silence asn1 compiler debug output
X.509: shut up about included cert for silent build
KEYS: Make /proc/keys unconditional if CONFIG_KEYS=y
MAINTAINERS: email update
tpm/tpm_tis: Add missing ifdef CONFIG_ACPI for pnp_acpi_device
smack: fix possible use after frees in task_security() callers
smack: Add missing logging in bidirectional UDS connect check
Smack: secmark support for netfilter
Smack: Rework file hooks
tpm: fix format string error in tpm-chip.c
char/tpm/tpm_crb: fix build error
smack: Fix a bidirectional UDS connect check typo
smack: introduce a special case for tmpfs in smack_d_instantiate()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
- The remaining patches for the z13 machine support: kernel build
option for z13, the cache synonym avoidance, SMT support,
compare-and-delay for spinloops and the CES5S crypto adapater.
- The ftrace support for function tracing with the gcc hotpatch option.
This touches common code Makefiles, Steven is ok with the changes.
- The hypfs file system gets an extension to access diagnose 0x0c data
in user space for performance analysis for Linux running under z/VM.
- The iucv hvc console gets wildcard spport for the user id filtering.
- The cacheinfo code is converted to use the generic infrastructure.
- Cleanup and bug fixes.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (42 commits)
s390/process: free vx save area when releasing tasks
s390/hypfs: Eliminate hypfs interval
s390/hypfs: Add diagnose 0c support
s390/cacheinfo: don't use smp_processor_id() in preemptible context
s390/zcrypt: fixed domain scanning problem (again)
s390/smp: increase maximum value of NR_CPUS to 512
s390/jump label: use different nop instruction
s390/jump label: add sanity checks
s390/mm: correct missing space when reporting user process faults
s390/dasd: cleanup profiling
s390/dasd: add locking for global_profile access
s390/ftrace: hotpatch support for function tracing
ftrace: let notrace function attribute disable hotpatching if necessary
ftrace: allow architectures to specify ftrace compile options
s390: reintroduce diag 44 calls for cpu_relax()
s390/zcrypt: Add support for new crypto express (CEX5S) adapter.
s390/zcrypt: Number of supported ap domains is not retrievable.
s390/spinlock: add compare-and-delay to lock wait loops
s390/tape: remove redundant if statement
s390/hvc_iucv: add simple wildcard matches to the iucv allow filter
...
|
|
If the kernel is compiled with function tracer support the -pg compile option
is passed to gcc to generate extra code into the prologue of each function.
This patch replaces the "open-coded" -pg compile flag with a CC_FLAGS_FTRACE
makefile variable which architectures can override if a different option
should be used for code generation.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Every kernel build that includes X.509 support prints out
a message like
- Including cert signing_key.x509
This may be useful for some cases, but when doing automated
build tests, it just means noise.
To hide the message, this uses '$(kecho)' for printing the
message, which means we still see it when building with V=1,
but not at the normal level or when building with 'make -s'.
Signed-off-by: Arnd Bergmann <arnd@arnd.de>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
This commit introduces code for the live patching core. It implements
an ftrace-based mechanism and kernel interface for doing live patching
of kernel and kernel module functions.
It represents the greatest common functionality set between kpatch and
kgraft and can accept patches built using either method.
This first version does not implement any consistency mechanism that
ensures that old and new code do not run together. In practice, ~90% of
CVEs are safe to apply in this way, since they simply add a conditional
check. However, any function change that can not execute safely with
the old version of the function can _not_ be safely applied in this
version.
[ jkosina@suse.cz: due to the number of contributions that got folded into
this original patch from Seth Jennings, add SUSE's copyright as well, as
discussed via e-mail ]
Signed-off-by: Seth Jennings <sjenning@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
All memory accounting and limiting has been switched over to the
lockless page counters. Bye, res_counter!
[akpm@linux-foundation.org: update Documentation/cgroups/memory.txt]
[mhocko@suse.cz: ditch the last remainings of res_counter]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|