Age | Commit message (Collapse) | Author |
|
Creates an anon_inode_getfile_fmode() function that works similarly to
anon_inode_getfile() with the addition of being able to set the fmode
member.
Signed-off-by: Dawid Osuchowski <linux@osuchow.ski>
Link: https://lore.kernel.org/r/20240426075854.4723-1-linux@osuchow.ski
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.
The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it. Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.
A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory. In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.
The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption. In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.
Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).
guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs. But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.
The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d8589c ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.
Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
the same memory attributes introduced here
- SNP and TDX support
There are two non-KVM patches buried in the middle of this series:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
|
|
Introduce an ioctl(), KVM_CREATE_GUEST_MEMFD, to allow creating file-based
memory that is tied to a specific KVM virtual machine and whose primary
purpose is to serve guest memory.
A guest-first memory subsystem allows for optimizations and enhancements
that are kludgy or outright infeasible to implement/support in a generic
memory subsystem. With guest_memfd, guest protections and mapping sizes
are fully decoupled from host userspace mappings. E.g. KVM currently
doesn't support mapping memory as writable in the guest without it also
being writable in host userspace, as KVM's ABI uses VMA protections to
define the allow guest protection. Userspace can fudge this by
establishing two mappings, a writable mapping for the guest and readable
one for itself, but that’s suboptimal on multiple fronts.
Similarly, KVM currently requires the guest mapping size to be a strict
subset of the host userspace mapping size, e.g. KVM doesn’t support
creating a 1GiB guest mapping unless userspace also has a 1GiB guest
mapping. Decoupling the mappings sizes would allow userspace to precisely
map only what is needed without impacting guest performance, e.g. to
harden against unintentional accesses to guest memory.
Decoupling guest and userspace mappings may also allow for a cleaner
alternative to high-granularity mappings for HugeTLB, which has reached a
bit of an impasse and is unlikely to ever be merged.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to mmap() guest memory).
More immediately, being able to map memory into KVM guests without mapping
said memory into the host is critical for Confidential VMs (CoCo VMs), the
initial use case for guest_memfd. While AMD's SEV and Intel's TDX prevent
untrusted software from reading guest private data by encrypting guest
memory with a key that isn't usable by the untrusted host, projects such
as Protected KVM (pKVM) provide confidentiality and integrity *without*
relying on memory encryption. And with SEV-SNP and TDX, accessing guest
private memory can be fatal to the host, i.e. KVM must be prevent host
userspace from accessing guest memory irrespective of hardware behavior.
Attempt #1 to support CoCo VMs was to add a VMA flag to mark memory as
being mappable only by KVM (or a similarly enlightened kernel subsystem).
That approach was abandoned largely due to it needing to play games with
PROT_NONE to prevent userspace from accessing guest memory.
Attempt #2 to was to usurp PG_hwpoison to prevent the host from mapping
guest private memory into userspace, but that approach failed to meet
several requirements for software-based CoCo VMs, e.g. pKVM, as the kernel
wouldn't easily be able to enforce a 1:1 page:guest association, let alone
a 1:1 pfn:gfn mapping. And using PG_hwpoison does not work for memory
that isn't backed by 'struct page', e.g. if devices gain support for
exposing encrypted memory regions to guests.
Attempt #3 was to extend the memfd() syscall and wrap shmem to provide
dedicated file-based guest memory. That approach made it as far as v10
before feedback from Hugh Dickins and Christian Brauner (and others) led
to it demise.
Hugh's objection was that piggybacking shmem made no sense for KVM's use
case as KVM didn't actually *want* the features provided by shmem. I.e.
KVM was using memfd() and shmem to avoid having to manage memory directly,
not because memfd() and shmem were the optimal solution, e.g. things like
read/write/mmap in shmem were dead weight.
Christian pointed out flaws with implementing a partial overlay (wrapping
only _some_ of shmem), e.g. poking at inode_operations or super_operations
would show shmem stuff, but address_space_operations and file_operations
would show KVM's overlay. Paraphrashing heavily, Christian suggested KVM
stop being lazy and create a proper API.
Link: https://lore.kernel.org/all/20201020061859.18385-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210416154106.23721-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210824005248.200037-1-seanjc@google.com
Link: https://lore.kernel.org/all/20211111141352.26311-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/20221202061347.1070246-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/ff5c5b97-acdf-9745-ebe5-c6609dd6322e@google.com
Link: https://lore.kernel.org/all/20230418-anfallen-irdisch-6993a61be10b@brauner
Link: https://lore.kernel.org/all/ZEM5Zq8oo+xnApW9@google.com
Link: https://lore.kernel.org/linux-mm/20230306191944.GA15773@monkey
Link: https://lore.kernel.org/linux-mm/ZII1p8ZHlHaQ3dDl@casper.infradead.org
Cc: Fuad Tabba <tabba@google.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerley Tng <ackerleytng@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Maciej Szmigiero <mail@maciej.szmigiero.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Quentin Perret <qperret@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Wang <wei.w.wang@intel.com>
Cc: Liam Merwick <liam.merwick@oracle.com>
Cc: Isaku Yamahata <isaku.yamahata@gmail.com>
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Co-developed-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-17-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The call to the inode_init_security_anon() LSM hook is not the sole
reason to use anon_inode_getfile_secure() or anon_inode_getfd_secure().
For example, the functions also allow one to create a file with non-zero
size, without needing a full-blown filesystem. In this case, you don't
need a "secure" version, just unique inodes; the current name of the
functions is confusing and does not explain well the difference with
the more "standard" anon_inode_getfile() and anon_inode_getfd().
Of course, there is another side of the coin; neither io_uring nor
userfaultfd strictly speaking need distinct inodes, and it is not
that clear anymore that anon_inode_create_get{file,fd}() allow the LSM
to intercept and block the inode's creation. If one was so inclined,
anon_inode_getfile_secure() and anon_inode_getfd_secure() could be kept,
using the shared inode or a new one depending on CONFIG_SECURITY.
However, this is probably overkill, and potentially a cause of bugs in
different configurations. Therefore, just add a comment to io_uring
and userfaultfd explaining the choice of the function.
While at it, remove the export for what is now anon_inode_create_getfd().
There is no in-tree module that uses it, and the old name is gone anyway.
If anybody actually needs the symbol, they can ask or they can just use
anon_inode_create_getfile(), which will be exported very soon for use
in KVM.
Suggested-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
__read_mostly predates __ro_after_init. Many variables which are marked
__read_mostly should have been __ro_after_init from day 1.
Also, mark some stuff as "const" and "__init" while I'm at it.
[akpm@linux-foundation.org: revert sysctl_nr_open_min, sysctl_nr_open_max changes due to arm warning]
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/4f6bb9c0-abba-4ee4-a7aa-89265e886817@p183
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Extending the secure anonymous inode support to other subsystems
requires that we have a secure anon_inode_getfile() variant in
addition to the existing secure anon_inode_getfd() variant.
Thankfully we can reuse the existing __anon_inode_getfile() function
and just wrap it with the proper arguments.
Acked-by: Mickaël Salaün <mic@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Commit e7e832ce6fa7 ("fs: add LSM-supporting anon-inode interface") adds
more kerneldoc description, but also a few new warnings on
anon_inode_getfd_secure() due to missing parameter descriptions.
Rephrase to appropriate kernel-doc for anon_inode_getfd_secure().
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
This change adds a new function, anon_inode_getfd_secure, that creates
anonymous-node file with individual non-S_PRIVATE inode to which security
modules can apply policy. Existing callers continue using the original
singleton-inode kind of anonymous-inode file. We can transition anonymous
inode users to the new kind of anonymous inode in individual patches for
the sake of bisection and review.
The new function accepts an optional context_inode parameter that callers
can use to provide additional contextual information to security modules.
For example, in case of userfaultfd, the created inode is a 'logical child'
of the context_inode (userfaultfd inode of the parent process) in the sense
that it provides the security context required during creation of the child
process' userfaultfd inode.
Signed-off-by: Daniel Colascione <dancol@google.com>
[LG: Delete obsolete comments to alloc_anon_inode()]
[LG: Add context_inode description in comments to anon_inode_getfd_secure()]
[LG: Remove definition of anon_inode_getfile_secure() as there are no callers]
[LG: Make __anon_inode_getfile() static]
[LG: Use correct error cast in __anon_inode_getfile()]
[LG: Fix error handling in __anon_inode_getfile()]
Signed-off-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs mount updates from Al Viro:
"The first part of mount updates.
Convert filesystems to use the new mount API"
* 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
mnt_init(): call shmem_init() unconditionally
constify ksys_mount() string arguments
don't bother with registering rootfs
init_rootfs(): don't bother with init_ramfs_fs()
vfs: Convert smackfs to use the new mount API
vfs: Convert selinuxfs to use the new mount API
vfs: Convert securityfs to use the new mount API
vfs: Convert apparmorfs to use the new mount API
vfs: Convert openpromfs to use the new mount API
vfs: Convert xenfs to use the new mount API
vfs: Convert gadgetfs to use the new mount API
vfs: Convert oprofilefs to use the new mount API
vfs: Convert ibmasmfs to use the new mount API
vfs: Convert qib_fs/ipathfs to use the new mount API
vfs: Convert efivarfs to use the new mount API
vfs: Convert configfs to use the new mount API
vfs: Convert binfmt_misc to use the new mount API
convenience helper: get_tree_single()
convenience helper get_tree_nodev()
vfs: Kill sget_userns()
...
|
|
Convert the anon_inodes filesystem to the new internal mount API as the old
one will be obsoleted and removed. This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Once upon a time we used to set ->d_name of e.g. pipefs root
so that d_path() on pipes would work. These days it's
completely pointless - dentries of pipes are not even connected
to pipefs root. However, mount_pseudo() had set the root
dentry name (passed as the second argument) and callers
kept inventing names to pass to it. Including those that
didn't *have* any non-root dentries to start with...
All of that had been pointless for about 8 years now; it's
time to get rid of that cargo-culting...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... so that it could set both ->f_flags and ->f_mode, without callers
having to set ->f_flags manually.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently we allocated anon_inode_inode in anon_inodefs_mount. This is
somewhat fragile as if that function ever gets called again, it will
overwrite anon_inode_inode pointer. So move the initialization of
anon_inode_inode to anon_inode_init().
Signed-off-by: Jan Kara <jack@suse.cz>
[ Further simplified on suggestion from Dave Jones ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The previous commit removed the register_filesystem() call and the
associated error handling, but left the label for the error path that no
longer exists. Remove that too.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
anon_inodefs filesystem is a kernel internal filesystem userspace
shouldn't mess with. Remove registration of it so userspace cannot
even try to mount it (which would fail anyway because the filesystem is
MS_NOUSER).
This fixes an oops triggered by trinity when it tried mounting
anon_inodefs which overwrote anon_inode_inode pointer while other CPU
has been in anon_inode_getfile() between ihold() and d_instantiate().
Thus effectively creating dentry pointing to an inode without holding a
reference to it.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
it's a seriously misguided API, now fortunately without users.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Introduce a new lib function anon_inode_getfile_private(), it creates a new file
instance by hooking it up to an anonymous inode, and a dentry that describe the
"class" of the file, similar to anon_inode_getfile(), but each file holds a
single inode. Furthermore, anyone who wants to create a private anon file will
benefit from this change.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Allocating a file structure in function get_empty_filp() might fail because
of several reasons:
- not enough memory for file structures
- operation is not allowed
- user is over its limit
Currently the function returns NULL in all cases and we loose the exact
reason of the error. All callers of get_empty_filp() assume that the function
can fail with ENFILE only.
Return error through pointer. Change all callers to preserve this error code.
[AV: cleaned up a bit, carved the get_empty_filp() part out into a separate commit
(things remaining here deal with alloc_file()), removed pipe(2) behaviour change]
Signed-off-by: Anatol Pomozov <anatol.pomozov@gmail.com>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Workloads using pipes and sockets hit inode_sb_list_lock contention.
superblock s_inodes list is needed for quota, dirty, pagecache and
fsnotify management. pipe/anon/socket fs are clearly not candidates for
these.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
For a number of file systems that don't have a mount point (e.g. sockfs
and pipefs), they are not marked as long term. Therefore in
mntput_no_expire, all locks in vfs_mount lock are taken instead of just
local cpu's lock to aggregate reference counts when we release
reference to file objects. In fact, only local lock need to have been
taken to update ref counts as these file systems are in no danger of
going away until we are ready to unregister them.
The attached patch marks file systems using kern_mount without
mount point as long term. The contentions of vfs_mount lock
is now eliminated. Before un-registering such file system,
kern_unmount should be called to remove the long term flag and
make the mount point ready to be freed.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Instead of splitting refcount between (per-cpu) mnt_count
and (SMP-only) mnt_longrefs, make all references contribute
to mnt_count again and keep track of how many are longterm
ones.
Accounting rules for longterm count:
* 1 for each fs_struct.root.mnt
* 1 for each fs_struct.pwd.mnt
* 1 for having non-NULL ->mnt_ns
* decrement to 0 happens only under vfsmount lock exclusive
That allows nice common case for mntput() - since we can't drop the
final reference until after mnt_longterm has reached 0 due to the rules
above, mntput() can grab vfsmount lock shared and check mnt_longterm.
If it turns out to be non-zero (which is the common case), we know
that this is not the final mntput() and can just blindly decrement
percpu mnt_count. Otherwise we grab vfsmount lock exclusive and
do usual decrement-and-check of percpu mnt_count.
For fs_struct.c we have mnt_make_longterm() and mnt_make_shortterm();
namespace.c uses the latter in places where we don't already hold
vfsmount lock exclusive and opencodes a few remaining spots where
we need to manipulate mnt_longterm.
Note that we mostly revert the code outside of fs/namespace.c back
to what we used to have; in particular, normal code doesn't need
to care about two kinds of references, etc. And we get to keep
the optimization Nick's variant had bought us...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (41 commits)
fs: add documentation on fallocate hole punching
Gfs2: fail if we try to use hole punch
Btrfs: fail if we try to use hole punch
Ext4: fail if we try to use hole punch
Ocfs2: handle hole punching via fallocate properly
XFS: handle hole punching via fallocate properly
fs: add hole punching to fallocate
vfs: pass struct file to do_truncate on O_TRUNC opens (try #2)
fix signedness mess in rw_verify_area() on 64bit architectures
fs: fix kernel-doc for dcache::prepend_path
fs: fix kernel-doc for dcache::d_validate
sanitize ecryptfs ->mount()
switch afs
move internal-only parts of ncpfs headers to fs/ncpfs
switch ncpfs
switch 9p
pass default dentry_operations to mount_pseudo()
switch hostfs
switch affs
switch configfs
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
Documentation/trace/events.txt: Remove obsolete sched_signal_send.
writeback: fix global_dirty_limits comment runtime -> real-time
ppc: fix comment typo singal -> signal
drivers: fix comment typo diable -> disable.
m68k: fix comment typo diable -> disable.
wireless: comment typo fix diable -> disable.
media: comment typo fix diable -> disable.
remove doc for obsolete dynamic-printk kernel-parameter
remove extraneous 'is' from Documentation/iostats.txt
Fix spelling milisec -> ms in snd_ps3 module parameter description
Fix spelling mistakes in comments
Revert conflicting V4L changes
i7core_edac: fix typos in comments
mm/rmap.c: fix comment
sound, ca0106: Fix assignment to 'channel'.
hrtimer: fix a typo in comment
init/Kconfig: fix typo
anon_inodes: fix wrong function name in comment
fix comment typos concerning "consistent"
poll: fix a typo in comment
...
Fix up trivial conflicts in:
- drivers/net/wireless/iwlwifi/iwl-core.c (moved to iwl-legacy.c)
- fs/ext4/ext4.h
Also fix missed 'diabled' typo in drivers/net/bnx2x/bnx2x.h while at it.
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The problem that this patch aims to fix is vfsmount refcounting scalability.
We need to take a reference on the vfsmount for every successful path lookup,
which often go to the same mount point.
The fundamental difficulty is that a "simple" reference count can never be made
scalable, because any time a reference is dropped, we must check whether that
was the last reference. To do that requires communication with all other CPUs
that may have taken a reference count.
We can make refcounts more scalable in a couple of ways, involving keeping
distributed counters, and checking for the global-zero condition less
frequently.
- check the global sum once every interval (this will delay zero detection
for some interval, so it's probably a showstopper for vfsmounts).
- keep a local count and only taking the global sum when local reaches 0 (this
is difficult for vfsmounts, because we can't hold preempt off for the life of
a reference, so a counter would need to be per-thread or tied strongly to a
particular CPU which requires more locking).
- keep a local difference of increments and decrements, which allows us to sum
the total difference and hence find the refcount when summing all CPUs. Then,
keep a single integer "long" refcount for slow and long lasting references,
and only take the global sum of local counters when the long refcount is 0.
This last scheme is what I implemented here. Attached mounts and process root
and working directory references are "long" references, and everything else is
a short reference.
This allows scalable vfsmount references during path walking over mounted
subtrees and unattached (lazy umounted) mounts with processes still running
in them.
This results in one fewer atomic op in the fastpath: mntget is now just a
per-CPU inc, rather than an atomic inc; and mntput just requires a spinlock
and non-atomic decrement in the common case. However code is otherwise bigger
and heavier, so single threaded performance is basically a wash.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
Regardless of how much we possibly try to scale dcache, there is likely
always going to be some fundamental contention when adding or removing children
under the same parent. Pseudo filesystems do not seem need to have connected
dentries because by definition they are disconnected.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Clones an existing reference to inode; caller must already hold one.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This reverts commit a7cf4145bb86aaf85d4d4d29a69b50b688e2e49d.
|
|
anon_inode_mkinode() sets inode->i_mode = S_IRUSR | S_IWUSR; This means
that (inode->i_mode & S_IFMT) == 0. This trips up some SELinux code that
needs to determine if a given inode is a regular file, a directory, etc.
The easiest solution is to just make sure that the anon_inode also sets
S_IFREG.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Inotify was switched to use anon_inode instead of its own private filesystem
which only had one inode in commit c44dcc56d2b5c7 "switch inotify_user to
anon_inode"
The problem with this is that now the inotify inode is not a distinct inode
which can be managed by LSMs. userspace tools which use inotify were allowed
to use the inotify inode but may not have had permission to do read/write type
operations on the anon_inode. After looking at the anon_inode and its users
it looks like the best solution is to just mark the anon_inode as S_PRIVATE
so the security system will ignore it.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* pull ACC_MODE to fs.h; we have several copies all over the place
* nightmarish expression calculating f_mode by f_flags deserves a helper
too (OPEN_FMODE(flags))
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
It seems a couple places such as arch/ia64/kernel/perfmon.c and
drivers/infiniband/core/uverbs_main.c could use anon_inode_getfile()
instead of a private pseudo-fs + alloc_file(), if only there were a way
to get a read-only file. So provide this by having anon_inode_getfile()
create a read-only file if we pass O_RDONLY in flags.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Filesystems outside the regular namespace do not have to clear DCACHE_UNHASHED
in order to have a working /proc/$pid/fd/XXX. Nothing in proc prevents the
fd link from being used if its dentry is not in the hash.
Also, it does not get put into the dcache hash if DCACHE_UNHASHED is clear;
that depends on the filesystem calling d_add or d_rehash.
So delete the misleading comments and needless code.
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add a d_dname method for anon_inodes filesystem, the same way pipefs and
sockfs pseudo filesystems. This allows us to remove the DCACHE_UNHASHED
hack from anon_inodes.c (see next patch).
[AV: inumber is useless here, dropped from anon_inodefs_dname()]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... and have the caller grab both mnt and dentry; kill
leak in infiniband, while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Split the anonfd interface into a bare file pointer creation one, and a
file pointer creation plus install one.
There are cases, like the usage of eventfds inside other kernel
interfaces, where the file pointer created by anonfd needs to be used
inside the initialization of other structures.
As it is right now, as soon as anon_inode_getfd() returns, the kenrle can
race with userspace closing the newly installed file descriptor.
This patch, while keeping the old anon_inode_getfd(), introduces a new
anon_inode_getfile() (whose services are reused in anon_inode_getfd())
that allows to split the file creation phase and the fd install one.
Once all the kernel structures are initialized, the code can call the
proper fd_install().
Gregory manifested the need for something like this inside KVM.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
.set_page_dirty() is one of those a_ops that defaults to the
buffer implementation when not set. Therefore provide a dummy
function to make it do nothing.
(Uncovered by perfcounters fd's which can now be writable-mmap-ed.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Davide Libenzi <davidel@xmailserver.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|