diff options
Diffstat (limited to 'drivers/iio/adc/ad4000.c')
-rw-r--r-- | drivers/iio/adc/ad4000.c | 722 |
1 files changed, 722 insertions, 0 deletions
diff --git a/drivers/iio/adc/ad4000.c b/drivers/iio/adc/ad4000.c new file mode 100644 index 000000000000..6ea491245084 --- /dev/null +++ b/drivers/iio/adc/ad4000.c @@ -0,0 +1,722 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * AD4000 SPI ADC driver + * + * Copyright 2024 Analog Devices Inc. + */ +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/byteorder/generic.h> +#include <linux/cleanup.h> +#include <linux/device.h> +#include <linux/err.h> +#include <linux/math.h> +#include <linux/module.h> +#include <linux/mod_devicetable.h> +#include <linux/gpio/consumer.h> +#include <linux/regulator/consumer.h> +#include <linux/spi/spi.h> +#include <linux/units.h> +#include <linux/util_macros.h> +#include <linux/iio/iio.h> + +#include <linux/iio/buffer.h> +#include <linux/iio/triggered_buffer.h> +#include <linux/iio/trigger_consumer.h> + +#define AD4000_READ_COMMAND 0x54 +#define AD4000_WRITE_COMMAND 0x14 + +#define AD4000_CONFIG_REG_DEFAULT 0xE1 + +/* AD4000 Configuration Register programmable bits */ +#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ +#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ + +#define AD4000_SCALE_OPTIONS 2 + +#define AD4000_TQUIET1_NS 190 +#define AD4000_TQUIET2_NS 60 +#define AD4000_TCONV_NS 320 + +#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \ +{ \ + .type = IIO_VOLTAGE, \ + .indexed = 1, \ + .differential = 1, \ + .channel = 0, \ + .channel2 = 1, \ + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ + BIT(IIO_CHAN_INFO_SCALE), \ + .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ + .scan_type = { \ + .sign = _sign, \ + .realbits = _real_bits, \ + .storagebits = _storage_bits, \ + .shift = _storage_bits - _real_bits, \ + .endianness = IIO_BE, \ + }, \ +} + +#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ + __AD4000_DIFF_CHANNEL((_sign), (_real_bits), \ + ((_real_bits) > 16 ? 32 : 16), (_reg_access)) + +#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\ +{ \ + .type = IIO_VOLTAGE, \ + .indexed = 1, \ + .channel = 0, \ + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ + BIT(IIO_CHAN_INFO_SCALE) | \ + BIT(IIO_CHAN_INFO_OFFSET), \ + .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ + .scan_type = { \ + .sign = _sign, \ + .realbits = _real_bits, \ + .storagebits = _storage_bits, \ + .shift = _storage_bits - _real_bits, \ + .endianness = IIO_BE, \ + }, \ +} + +#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ + __AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \ + ((_real_bits) > 16 ? 32 : 16), (_reg_access)) + +static const char * const ad4000_power_supplies[] = { + "vdd", "vio" +}; + +enum ad4000_sdi { + AD4000_SDI_MOSI, + AD4000_SDI_VIO, + AD4000_SDI_CS, + AD4000_SDI_GND, +}; + +/* maps adi,sdi-pin property value to enum */ +static const char * const ad4000_sdi_pin[] = { + [AD4000_SDI_MOSI] = "sdi", + [AD4000_SDI_VIO] = "high", + [AD4000_SDI_CS] = "cs", + [AD4000_SDI_GND] = "low", +}; + +/* Gains stored as fractions of 1000 so they can be expressed by integers. */ +static const int ad4000_gains[] = { + 454, 909, 1000, 1900, +}; + +struct ad4000_chip_info { + const char *dev_name; + struct iio_chan_spec chan_spec; + struct iio_chan_spec reg_access_chan_spec; + bool has_hardware_gain; +}; + +static const struct ad4000_chip_info ad4000_chip_info = { + .dev_name = "ad4000", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4001_chip_info = { + .dev_name = "ad4001", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), +}; + +static const struct ad4000_chip_info ad4002_chip_info = { + .dev_name = "ad4002", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4003_chip_info = { + .dev_name = "ad4003", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4004_chip_info = { + .dev_name = "ad4004", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4005_chip_info = { + .dev_name = "ad4005", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), +}; + +static const struct ad4000_chip_info ad4006_chip_info = { + .dev_name = "ad4006", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4007_chip_info = { + .dev_name = "ad4007", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4008_chip_info = { + .dev_name = "ad4008", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), +}; + +static const struct ad4000_chip_info ad4010_chip_info = { + .dev_name = "ad4010", + .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), + .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), +}; + +static const struct ad4000_chip_info ad4011_chip_info = { + .dev_name = "ad4011", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), +}; + +static const struct ad4000_chip_info ad4020_chip_info = { + .dev_name = "ad4020", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info ad4021_chip_info = { + .dev_name = "ad4021", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info ad4022_chip_info = { + .dev_name = "ad4022", + .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), +}; + +static const struct ad4000_chip_info adaq4001_chip_info = { + .dev_name = "adaq4001", + .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), + .has_hardware_gain = true, +}; + +static const struct ad4000_chip_info adaq4003_chip_info = { + .dev_name = "adaq4003", + .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), + .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), + .has_hardware_gain = true, +}; + +struct ad4000_state { + struct spi_device *spi; + struct gpio_desc *cnv_gpio; + struct spi_transfer xfers[2]; + struct spi_message msg; + struct mutex lock; /* Protect read modify write cycle */ + int vref_mv; + enum ad4000_sdi sdi_pin; + bool span_comp; + u16 gain_milli; + int scale_tbl[AD4000_SCALE_OPTIONS][2]; + + /* + * DMA (thus cache coherency maintenance) requires the transfer buffers + * to live in their own cache lines. + */ + struct { + union { + __be16 sample_buf16; + __be32 sample_buf32; + } data; + s64 timestamp __aligned(8); + } scan __aligned(IIO_DMA_MINALIGN); + u8 tx_buf[2]; + u8 rx_buf[2]; +}; + +static void ad4000_fill_scale_tbl(struct ad4000_state *st, + struct iio_chan_spec const *chan) +{ + int val, tmp0, tmp1; + int scale_bits; + u64 tmp2; + + /* + * ADCs that output two's complement code have one less bit to express + * voltage magnitude. + */ + if (chan->scan_type.sign == 's') + scale_bits = chan->scan_type.realbits - 1; + else + scale_bits = chan->scan_type.realbits; + + /* + * The gain is stored as a fraction of 1000 and, as we need to + * divide vref_mv by the gain, we invert the gain/1000 fraction. + * Also multiply by an extra MILLI to preserve precision. + * Thus, we have MILLI * MILLI equals MICRO as fraction numerator. + */ + val = mult_frac(st->vref_mv, MICRO, st->gain_milli); + + /* Would multiply by NANO here but we multiplied by extra MILLI */ + tmp2 = shift_right((u64)val * MICRO, scale_bits); + tmp0 = div_s64_rem(tmp2, NANO, &tmp1); + + /* Store scale for when span compression is disabled */ + st->scale_tbl[0][0] = tmp0; /* Integer part */ + st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */ + + /* Store scale for when span compression is enabled */ + st->scale_tbl[1][0] = tmp0; + + /* The integer part is always zero so don't bother to divide it. */ + if (chan->differential) + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5); + else + st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10); +} + +static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) +{ + st->tx_buf[0] = AD4000_WRITE_COMMAND; + st->tx_buf[1] = val; + return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf)); +} + +static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) +{ + struct spi_transfer t = { + .tx_buf = st->tx_buf, + .rx_buf = st->rx_buf, + .len = 2, + }; + int ret; + + st->tx_buf[0] = AD4000_READ_COMMAND; + ret = spi_sync_transfer(st->spi, &t, 1); + if (ret < 0) + return ret; + + *val = st->rx_buf[1]; + return ret; +} + +static int ad4000_convert_and_acquire(struct ad4000_state *st) +{ + int ret; + + /* + * In 4-wire mode, the CNV line is held high for the entire conversion + * and acquisition process. In other modes, the CNV GPIO is optional + * and, if provided, replaces controller CS. If CNV GPIO is not defined + * gpiod_set_value_cansleep() has no effect. + */ + gpiod_set_value_cansleep(st->cnv_gpio, 1); + ret = spi_sync(st->spi, &st->msg); + gpiod_set_value_cansleep(st->cnv_gpio, 0); + + return ret; +} + +static int ad4000_single_conversion(struct iio_dev *indio_dev, + const struct iio_chan_spec *chan, int *val) +{ + struct ad4000_state *st = iio_priv(indio_dev); + u32 sample; + int ret; + + ret = ad4000_convert_and_acquire(st); + if (ret < 0) + return ret; + + if (chan->scan_type.storagebits > 16) + sample = be32_to_cpu(st->scan.data.sample_buf32); + else + sample = be16_to_cpu(st->scan.data.sample_buf16); + + sample >>= chan->scan_type.shift; + + if (chan->scan_type.sign == 's') + *val = sign_extend32(sample, chan->scan_type.realbits - 1); + + return IIO_VAL_INT; +} + +static int ad4000_read_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, int *val, + int *val2, long info) +{ + struct ad4000_state *st = iio_priv(indio_dev); + + switch (info) { + case IIO_CHAN_INFO_RAW: + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) + return ad4000_single_conversion(indio_dev, chan, val); + unreachable(); + case IIO_CHAN_INFO_SCALE: + *val = st->scale_tbl[st->span_comp][0]; + *val2 = st->scale_tbl[st->span_comp][1]; + return IIO_VAL_INT_PLUS_NANO; + case IIO_CHAN_INFO_OFFSET: + *val = 0; + if (st->span_comp) + *val = mult_frac(st->vref_mv, 1, 10); + + return IIO_VAL_INT; + default: + return -EINVAL; + } +} + +static int ad4000_read_avail(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, + const int **vals, int *type, int *length, + long info) +{ + struct ad4000_state *st = iio_priv(indio_dev); + + switch (info) { + case IIO_CHAN_INFO_SCALE: + *vals = (int *)st->scale_tbl; + *length = AD4000_SCALE_OPTIONS * 2; + *type = IIO_VAL_INT_PLUS_NANO; + return IIO_AVAIL_LIST; + default: + return -EINVAL; + } +} + +static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, long mask) +{ + switch (mask) { + case IIO_CHAN_INFO_SCALE: + return IIO_VAL_INT_PLUS_NANO; + default: + return IIO_VAL_INT_PLUS_MICRO; + } +} + +static int ad4000_write_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, int val, int val2, + long mask) +{ + struct ad4000_state *st = iio_priv(indio_dev); + unsigned int reg_val; + bool span_comp_en; + int ret; + + switch (mask) { + case IIO_CHAN_INFO_SCALE: + iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { + guard(mutex)(&st->lock); + + ret = ad4000_read_reg(st, ®_val); + if (ret < 0) + return ret; + + span_comp_en = val2 == st->scale_tbl[1][1]; + reg_val &= ~AD4000_CFG_SPAN_COMP; + reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); + + ret = ad4000_write_reg(st, reg_val); + if (ret < 0) + return ret; + + st->span_comp = span_comp_en; + return 0; + } + unreachable(); + default: + return -EINVAL; + } +} + +static irqreturn_t ad4000_trigger_handler(int irq, void *p) +{ + struct iio_poll_func *pf = p; + struct iio_dev *indio_dev = pf->indio_dev; + struct ad4000_state *st = iio_priv(indio_dev); + int ret; + + ret = ad4000_convert_and_acquire(st); + if (ret < 0) + goto err_out; + + iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp); + +err_out: + iio_trigger_notify_done(indio_dev->trig); + return IRQ_HANDLED; +} + +static const struct iio_info ad4000_reg_access_info = { + .read_raw = &ad4000_read_raw, + .read_avail = &ad4000_read_avail, + .write_raw = &ad4000_write_raw, + .write_raw_get_fmt = &ad4000_write_raw_get_fmt, +}; + +static const struct iio_info ad4000_info = { + .read_raw = &ad4000_read_raw, +}; + +/* + * This executes a data sample transfer for when the device connections are + * in "3-wire" mode, selected when the adi,sdi-pin device tree property is + * absent or set to "high". In this connection mode, the ADC SDI pin is + * connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI + * controller CS or to a GPIO. + * AD4000 series of devices initiate conversions on the rising edge of CNV pin. + * + * If the CNV pin is connected to an SPI controller CS line (which is by default + * active low), the ADC readings would have a latency (delay) of one read. + * Moreover, since we also do ADC sampling for filling the buffer on triggered + * buffer mode, the timestamps of buffer readings would be disarranged. + * To prevent the read latency and reduce the time discrepancy between the + * sample read request and the time of actual sampling by the ADC, do a + * preparatory transfer to pulse the CS/CNV line. + */ +static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st, + const struct iio_chan_spec *chan) +{ + unsigned int cnv_pulse_time = AD4000_TCONV_NS; + struct spi_transfer *xfers = st->xfers; + + xfers[0].cs_change = 1; + xfers[0].cs_change_delay.value = cnv_pulse_time; + xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; + + xfers[1].rx_buf = &st->scan.data; + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); + xfers[1].delay.value = AD4000_TQUIET2_NS; + xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS; + + spi_message_init_with_transfers(&st->msg, st->xfers, 2); + + return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); +} + +/* + * This executes a data sample transfer for when the device connections are + * in "4-wire" mode, selected when the adi,sdi-pin device tree property is + * set to "cs". In this connection mode, the controller CS pin is connected to + * ADC SDI pin and a GPIO is connected to ADC CNV pin. + * The GPIO connected to ADC CNV pin is set outside of the SPI transfer. + */ +static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st, + const struct iio_chan_spec *chan) +{ + unsigned int cnv_to_sdi_time = AD4000_TCONV_NS; + struct spi_transfer *xfers = st->xfers; + + /* + * Dummy transfer to cause enough delay between CNV going high and SDI + * going low. + */ + xfers[0].cs_off = 1; + xfers[0].delay.value = cnv_to_sdi_time; + xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS; + + xfers[1].rx_buf = &st->scan.data; + xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); + + spi_message_init_with_transfers(&st->msg, st->xfers, 2); + + return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); +} + +static int ad4000_config(struct ad4000_state *st) +{ + unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT; + + if (device_property_present(&st->spi->dev, "adi,high-z-input")) + reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1); + + return ad4000_write_reg(st, reg_val); +} + +static int ad4000_probe(struct spi_device *spi) +{ + const struct ad4000_chip_info *chip; + struct device *dev = &spi->dev; + struct iio_dev *indio_dev; + struct ad4000_state *st; + int gain_idx, ret; + + indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); + if (!indio_dev) + return -ENOMEM; + + chip = spi_get_device_match_data(spi); + if (!chip) + return -EINVAL; + + st = iio_priv(indio_dev); + st->spi = spi; + + ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies), + ad4000_power_supplies); + if (ret) + return dev_err_probe(dev, ret, "Failed to enable power supplies\n"); + + ret = devm_regulator_get_enable_read_voltage(dev, "ref"); + if (ret < 0) + return dev_err_probe(dev, ret, + "Failed to get ref regulator reference\n"); + st->vref_mv = ret / 1000; + + st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH); + if (IS_ERR(st->cnv_gpio)) + return dev_err_probe(dev, PTR_ERR(st->cnv_gpio), + "Failed to get CNV GPIO"); + + ret = device_property_match_property_string(dev, "adi,sdi-pin", + ad4000_sdi_pin, + ARRAY_SIZE(ad4000_sdi_pin)); + if (ret < 0 && ret != -EINVAL) + return dev_err_probe(dev, ret, + "getting adi,sdi-pin property failed\n"); + + /* Default to usual SPI connections if pin properties are not present */ + st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret; + switch (st->sdi_pin) { + case AD4000_SDI_MOSI: + indio_dev->info = &ad4000_reg_access_info; + indio_dev->channels = &chip->reg_access_chan_spec; + + /* + * In "3-wire mode", the ADC SDI line must be kept high when + * data is not being clocked out of the controller. + * Request the SPI controller to make MOSI idle high. + */ + spi->mode |= SPI_MOSI_IDLE_HIGH; + ret = spi_setup(spi); + if (ret < 0) + return ret; + + ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); + if (ret) + return ret; + + ret = ad4000_config(st); + if (ret < 0) + return dev_err_probe(dev, ret, "Failed to config device\n"); + + break; + case AD4000_SDI_VIO: + indio_dev->info = &ad4000_info; + indio_dev->channels = &chip->chan_spec; + ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); + if (ret) + return ret; + + break; + case AD4000_SDI_CS: + indio_dev->info = &ad4000_info; + indio_dev->channels = &chip->chan_spec; + ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels); + if (ret) + return ret; + + break; + case AD4000_SDI_GND: + return dev_err_probe(dev, -EPROTONOSUPPORT, + "Unsupported connection mode\n"); + + default: + return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n"); + } + + indio_dev->name = chip->dev_name; + indio_dev->num_channels = 1; + + devm_mutex_init(dev, &st->lock); + + st->gain_milli = 1000; + if (chip->has_hardware_gain) { + ret = device_property_read_u16(dev, "adi,gain-milli", + &st->gain_milli); + if (!ret) { + /* Match gain value from dt to one of supported gains */ + gain_idx = find_closest(st->gain_milli, ad4000_gains, + ARRAY_SIZE(ad4000_gains)); + st->gain_milli = ad4000_gains[gain_idx]; + } else { + return dev_err_probe(dev, ret, + "Failed to read gain property\n"); + } + } + + ad4000_fill_scale_tbl(st, indio_dev->channels); + + ret = devm_iio_triggered_buffer_setup(dev, indio_dev, + &iio_pollfunc_store_time, + &ad4000_trigger_handler, NULL); + if (ret) + return ret; + + return devm_iio_device_register(dev, indio_dev); +} + +static const struct spi_device_id ad4000_id[] = { + { "ad4000", (kernel_ulong_t)&ad4000_chip_info }, + { "ad4001", (kernel_ulong_t)&ad4001_chip_info }, + { "ad4002", (kernel_ulong_t)&ad4002_chip_info }, + { "ad4003", (kernel_ulong_t)&ad4003_chip_info }, + { "ad4004", (kernel_ulong_t)&ad4004_chip_info }, + { "ad4005", (kernel_ulong_t)&ad4005_chip_info }, + { "ad4006", (kernel_ulong_t)&ad4006_chip_info }, + { "ad4007", (kernel_ulong_t)&ad4007_chip_info }, + { "ad4008", (kernel_ulong_t)&ad4008_chip_info }, + { "ad4010", (kernel_ulong_t)&ad4010_chip_info }, + { "ad4011", (kernel_ulong_t)&ad4011_chip_info }, + { "ad4020", (kernel_ulong_t)&ad4020_chip_info }, + { "ad4021", (kernel_ulong_t)&ad4021_chip_info }, + { "ad4022", (kernel_ulong_t)&ad4022_chip_info }, + { "adaq4001", (kernel_ulong_t)&adaq4001_chip_info }, + { "adaq4003", (kernel_ulong_t)&adaq4003_chip_info }, + { } +}; +MODULE_DEVICE_TABLE(spi, ad4000_id); + +static const struct of_device_id ad4000_of_match[] = { + { .compatible = "adi,ad4000", .data = &ad4000_chip_info }, + { .compatible = "adi,ad4001", .data = &ad4001_chip_info }, + { .compatible = "adi,ad4002", .data = &ad4002_chip_info }, + { .compatible = "adi,ad4003", .data = &ad4003_chip_info }, + { .compatible = "adi,ad4004", .data = &ad4004_chip_info }, + { .compatible = "adi,ad4005", .data = &ad4005_chip_info }, + { .compatible = "adi,ad4006", .data = &ad4006_chip_info }, + { .compatible = "adi,ad4007", .data = &ad4007_chip_info }, + { .compatible = "adi,ad4008", .data = &ad4008_chip_info }, + { .compatible = "adi,ad4010", .data = &ad4010_chip_info }, + { .compatible = "adi,ad4011", .data = &ad4011_chip_info }, + { .compatible = "adi,ad4020", .data = &ad4020_chip_info }, + { .compatible = "adi,ad4021", .data = &ad4021_chip_info }, + { .compatible = "adi,ad4022", .data = &ad4022_chip_info }, + { .compatible = "adi,adaq4001", .data = &adaq4001_chip_info }, + { .compatible = "adi,adaq4003", .data = &adaq4003_chip_info }, + { } +}; +MODULE_DEVICE_TABLE(of, ad4000_of_match); + +static struct spi_driver ad4000_driver = { + .driver = { + .name = "ad4000", + .of_match_table = ad4000_of_match, + }, + .probe = ad4000_probe, + .id_table = ad4000_id, +}; +module_spi_driver(ad4000_driver); + +MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>"); +MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver"); +MODULE_LICENSE("GPL"); |