summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--arch/arm/crypto/Kconfig10
-rw-r--r--arch/arm/crypto/Makefile2
-rw-r--r--arch/arm/crypto/blake2b-neon-core.S347
-rw-r--r--arch/arm/crypto/blake2b-neon-glue.c105
4 files changed, 464 insertions, 0 deletions
diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
index 281c829c12d0..2b575792363e 100644
--- a/arch/arm/crypto/Kconfig
+++ b/arch/arm/crypto/Kconfig
@@ -71,6 +71,16 @@ config CRYPTO_BLAKE2S_ARM
slower than the NEON implementation of BLAKE2b. (There is no NEON
implementation of BLAKE2s, since NEON doesn't really help with it.)
+config CRYPTO_BLAKE2B_NEON
+ tristate "BLAKE2b digest algorithm (ARM NEON)"
+ depends on KERNEL_MODE_NEON
+ select CRYPTO_BLAKE2B
+ help
+ BLAKE2b digest algorithm optimized with ARM NEON instructions.
+ On ARM processors that have NEON support but not the ARMv8
+ Crypto Extensions, typically this BLAKE2b implementation is
+ much faster than SHA-2 and slightly faster than SHA-1.
+
config CRYPTO_AES_ARM
tristate "Scalar AES cipher for ARM"
select CRYPTO_ALGAPI
diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
index 5ad1e985a718..8f26c454ea12 100644
--- a/arch/arm/crypto/Makefile
+++ b/arch/arm/crypto/Makefile
@@ -10,6 +10,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
obj-$(CONFIG_CRYPTO_BLAKE2S_ARM) += blake2s-arm.o
+obj-$(CONFIG_CRYPTO_BLAKE2B_NEON) += blake2b-neon.o
obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha-neon.o
obj-$(CONFIG_CRYPTO_POLY1305_ARM) += poly1305-arm.o
obj-$(CONFIG_CRYPTO_NHPOLY1305_NEON) += nhpoly1305-neon.o
@@ -31,6 +32,7 @@ sha256-arm-y := sha256-core.o sha256_glue.o $(sha256-arm-neon-y)
sha512-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha512-neon-glue.o
sha512-arm-y := sha512-core.o sha512-glue.o $(sha512-arm-neon-y)
blake2s-arm-y := blake2s-core.o blake2s-glue.o
+blake2b-neon-y := blake2b-neon-core.o blake2b-neon-glue.o
sha1-arm-ce-y := sha1-ce-core.o sha1-ce-glue.o
sha2-arm-ce-y := sha2-ce-core.o sha2-ce-glue.o
aes-arm-ce-y := aes-ce-core.o aes-ce-glue.o
diff --git a/arch/arm/crypto/blake2b-neon-core.S b/arch/arm/crypto/blake2b-neon-core.S
new file mode 100644
index 000000000000..0406a186377f
--- /dev/null
+++ b/arch/arm/crypto/blake2b-neon-core.S
@@ -0,0 +1,347 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * BLAKE2b digest algorithm, NEON accelerated
+ *
+ * Copyright 2020 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@google.com>
+ */
+
+#include <linux/linkage.h>
+
+ .text
+ .fpu neon
+
+ // The arguments to blake2b_compress_neon()
+ STATE .req r0
+ BLOCK .req r1
+ NBLOCKS .req r2
+ INC .req r3
+
+ // Pointers to the rotation tables
+ ROR24_TABLE .req r4
+ ROR16_TABLE .req r5
+
+ // The original stack pointer
+ ORIG_SP .req r6
+
+ // NEON registers which contain the message words of the current block.
+ // M_0-M_3 are occasionally used for other purposes too.
+ M_0 .req d16
+ M_1 .req d17
+ M_2 .req d18
+ M_3 .req d19
+ M_4 .req d20
+ M_5 .req d21
+ M_6 .req d22
+ M_7 .req d23
+ M_8 .req d24
+ M_9 .req d25
+ M_10 .req d26
+ M_11 .req d27
+ M_12 .req d28
+ M_13 .req d29
+ M_14 .req d30
+ M_15 .req d31
+
+ .align 4
+ // Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8
+ // instruction. This is the most efficient way to implement these
+ // rotation amounts with NEON. (On Cortex-A53 it's the same speed as
+ // vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.)
+.Lror24_table:
+ .byte 3, 4, 5, 6, 7, 0, 1, 2
+.Lror16_table:
+ .byte 2, 3, 4, 5, 6, 7, 0, 1
+ // The BLAKE2b initialization vector
+.Lblake2b_IV:
+ .quad 0x6a09e667f3bcc908, 0xbb67ae8584caa73b
+ .quad 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1
+ .quad 0x510e527fade682d1, 0x9b05688c2b3e6c1f
+ .quad 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
+
+// Execute one round of BLAKE2b by updating the state matrix v[0..15] in the
+// NEON registers q0-q7. The message block is in q8..q15 (M_0-M_15). The stack
+// pointer points to a 32-byte aligned buffer containing a copy of q8 and q9
+// (M_0-M_3), so that they can be reloaded if they are used as temporary
+// registers. The macro arguments s0-s15 give the order in which the message
+// words are used in this round. 'final' is 1 if this is the final round.
+.macro _blake2b_round s0, s1, s2, s3, s4, s5, s6, s7, \
+ s8, s9, s10, s11, s12, s13, s14, s15, final=0
+
+ // Mix the columns:
+ // (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]),
+ // (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]).
+
+ // a += b + m[blake2b_sigma[r][2*i + 0]];
+ vadd.u64 q0, q0, q2
+ vadd.u64 q1, q1, q3
+ vadd.u64 d0, d0, M_\s0
+ vadd.u64 d1, d1, M_\s2
+ vadd.u64 d2, d2, M_\s4
+ vadd.u64 d3, d3, M_\s6
+
+ // d = ror64(d ^ a, 32);
+ veor q6, q6, q0
+ veor q7, q7, q1
+ vrev64.32 q6, q6
+ vrev64.32 q7, q7
+
+ // c += d;
+ vadd.u64 q4, q4, q6
+ vadd.u64 q5, q5, q7
+
+ // b = ror64(b ^ c, 24);
+ vld1.8 {M_0}, [ROR24_TABLE, :64]
+ veor q2, q2, q4
+ veor q3, q3, q5
+ vtbl.8 d4, {d4}, M_0
+ vtbl.8 d5, {d5}, M_0
+ vtbl.8 d6, {d6}, M_0
+ vtbl.8 d7, {d7}, M_0
+
+ // a += b + m[blake2b_sigma[r][2*i + 1]];
+ //
+ // M_0 got clobbered above, so we have to reload it if any of the four
+ // message words this step needs happens to be M_0. Otherwise we don't
+ // need to reload it here, as it will just get clobbered again below.
+.if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0
+ vld1.8 {M_0}, [sp, :64]
+.endif
+ vadd.u64 q0, q0, q2
+ vadd.u64 q1, q1, q3
+ vadd.u64 d0, d0, M_\s1
+ vadd.u64 d1, d1, M_\s3
+ vadd.u64 d2, d2, M_\s5
+ vadd.u64 d3, d3, M_\s7
+
+ // d = ror64(d ^ a, 16);
+ vld1.8 {M_0}, [ROR16_TABLE, :64]
+ veor q6, q6, q0
+ veor q7, q7, q1
+ vtbl.8 d12, {d12}, M_0
+ vtbl.8 d13, {d13}, M_0
+ vtbl.8 d14, {d14}, M_0
+ vtbl.8 d15, {d15}, M_0
+
+ // c += d;
+ vadd.u64 q4, q4, q6
+ vadd.u64 q5, q5, q7
+
+ // b = ror64(b ^ c, 63);
+ //
+ // This rotation amount isn't a multiple of 8, so it has to be
+ // implemented using a pair of shifts, which requires temporary
+ // registers. Use q8-q9 (M_0-M_3) for this, and reload them afterwards.
+ veor q8, q2, q4
+ veor q9, q3, q5
+ vshr.u64 q2, q8, #63
+ vshr.u64 q3, q9, #63
+ vsli.u64 q2, q8, #1
+ vsli.u64 q3, q9, #1
+ vld1.8 {q8-q9}, [sp, :256]
+
+ // Mix the diagonals:
+ // (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]),
+ // (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]).
+ //
+ // There are two possible ways to do this: use 'vext' instructions to
+ // shift the rows of the matrix so that the diagonals become columns,
+ // and undo it afterwards; or just use 64-bit operations on 'd'
+ // registers instead of 128-bit operations on 'q' registers. We use the
+ // latter approach, as it performs much better on Cortex-A7.
+
+ // a += b + m[blake2b_sigma[r][2*i + 0]];
+ vadd.u64 d0, d0, d5
+ vadd.u64 d1, d1, d6
+ vadd.u64 d2, d2, d7
+ vadd.u64 d3, d3, d4
+ vadd.u64 d0, d0, M_\s8
+ vadd.u64 d1, d1, M_\s10
+ vadd.u64 d2, d2, M_\s12
+ vadd.u64 d3, d3, M_\s14
+
+ // d = ror64(d ^ a, 32);
+ veor d15, d15, d0
+ veor d12, d12, d1
+ veor d13, d13, d2
+ veor d14, d14, d3
+ vrev64.32 d15, d15
+ vrev64.32 d12, d12
+ vrev64.32 d13, d13
+ vrev64.32 d14, d14
+
+ // c += d;
+ vadd.u64 d10, d10, d15
+ vadd.u64 d11, d11, d12
+ vadd.u64 d8, d8, d13
+ vadd.u64 d9, d9, d14
+
+ // b = ror64(b ^ c, 24);
+ vld1.8 {M_0}, [ROR24_TABLE, :64]
+ veor d5, d5, d10
+ veor d6, d6, d11
+ veor d7, d7, d8
+ veor d4, d4, d9
+ vtbl.8 d5, {d5}, M_0
+ vtbl.8 d6, {d6}, M_0
+ vtbl.8 d7, {d7}, M_0
+ vtbl.8 d4, {d4}, M_0
+
+ // a += b + m[blake2b_sigma[r][2*i + 1]];
+.if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0
+ vld1.8 {M_0}, [sp, :64]
+.endif
+ vadd.u64 d0, d0, d5
+ vadd.u64 d1, d1, d6
+ vadd.u64 d2, d2, d7
+ vadd.u64 d3, d3, d4
+ vadd.u64 d0, d0, M_\s9
+ vadd.u64 d1, d1, M_\s11
+ vadd.u64 d2, d2, M_\s13
+ vadd.u64 d3, d3, M_\s15
+
+ // d = ror64(d ^ a, 16);
+ vld1.8 {M_0}, [ROR16_TABLE, :64]
+ veor d15, d15, d0
+ veor d12, d12, d1
+ veor d13, d13, d2
+ veor d14, d14, d3
+ vtbl.8 d12, {d12}, M_0
+ vtbl.8 d13, {d13}, M_0
+ vtbl.8 d14, {d14}, M_0
+ vtbl.8 d15, {d15}, M_0
+
+ // c += d;
+ vadd.u64 d10, d10, d15
+ vadd.u64 d11, d11, d12
+ vadd.u64 d8, d8, d13
+ vadd.u64 d9, d9, d14
+
+ // b = ror64(b ^ c, 63);
+ veor d16, d4, d9
+ veor d17, d5, d10
+ veor d18, d6, d11
+ veor d19, d7, d8
+ vshr.u64 q2, q8, #63
+ vshr.u64 q3, q9, #63
+ vsli.u64 q2, q8, #1
+ vsli.u64 q3, q9, #1
+ // Reloading q8-q9 can be skipped on the final round.
+.if ! \final
+ vld1.8 {q8-q9}, [sp, :256]
+.endif
+.endm
+
+//
+// void blake2b_compress_neon(struct blake2b_state *state,
+// const u8 *block, size_t nblocks, u32 inc);
+//
+// Only the first three fields of struct blake2b_state are used:
+// u64 h[8]; (inout)
+// u64 t[2]; (inout)
+// u64 f[2]; (in)
+//
+ .align 5
+ENTRY(blake2b_compress_neon)
+ push {r4-r10}
+
+ // Allocate a 32-byte stack buffer that is 32-byte aligned.
+ mov ORIG_SP, sp
+ sub ip, sp, #32
+ bic ip, ip, #31
+ mov sp, ip
+
+ adr ROR24_TABLE, .Lror24_table
+ adr ROR16_TABLE, .Lror16_table
+
+ mov ip, STATE
+ vld1.64 {q0-q1}, [ip]! // Load h[0..3]
+ vld1.64 {q2-q3}, [ip]! // Load h[4..7]
+.Lnext_block:
+ adr r10, .Lblake2b_IV
+ vld1.64 {q14-q15}, [ip] // Load t[0..1] and f[0..1]
+ vld1.64 {q4-q5}, [r10]! // Load IV[0..3]
+ vmov r7, r8, d28 // Copy t[0] to (r7, r8)
+ vld1.64 {q6-q7}, [r10] // Load IV[4..7]
+ adds r7, r7, INC // Increment counter
+ bcs .Lslow_inc_ctr
+ vmov.i32 d28[0], r7
+ vst1.64 {d28}, [ip] // Update t[0]
+.Linc_ctr_done:
+
+ // Load the next message block and finish initializing the state matrix
+ // 'v'. Fortunately, there are exactly enough NEON registers to fit the
+ // entire state matrix in q0-q7 and the entire message block in q8-15.
+ //
+ // However, _blake2b_round also needs some extra registers for rotates,
+ // so we have to spill some registers. It's better to spill the message
+ // registers than the state registers, as the message doesn't change.
+ // Therefore we store a copy of the first 32 bytes of the message block
+ // (q8-q9) in an aligned buffer on the stack so that they can be
+ // reloaded when needed. (We could just reload directly from the
+ // message buffer, but it's faster to use aligned loads.)
+ vld1.8 {q8-q9}, [BLOCK]!
+ veor q6, q6, q14 // v[12..13] = IV[4..5] ^ t[0..1]
+ vld1.8 {q10-q11}, [BLOCK]!
+ veor q7, q7, q15 // v[14..15] = IV[6..7] ^ f[0..1]
+ vld1.8 {q12-q13}, [BLOCK]!
+ vst1.8 {q8-q9}, [sp, :256]
+ mov ip, STATE
+ vld1.8 {q14-q15}, [BLOCK]!
+
+ // Execute the rounds. Each round is provided the order in which it
+ // needs to use the message words.
+ _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3
+ _blake2b_round 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4
+ _blake2b_round 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8
+ _blake2b_round 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13
+ _blake2b_round 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9
+ _blake2b_round 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11
+ _blake2b_round 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10
+ _blake2b_round 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5
+ _blake2b_round 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0
+ _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 \
+ final=1
+
+ // Fold the final state matrix into the hash chaining value:
+ //
+ // for (i = 0; i < 8; i++)
+ // h[i] ^= v[i] ^ v[i + 8];
+ //
+ vld1.64 {q8-q9}, [ip]! // Load old h[0..3]
+ veor q0, q0, q4 // v[0..1] ^= v[8..9]
+ veor q1, q1, q5 // v[2..3] ^= v[10..11]
+ vld1.64 {q10-q11}, [ip] // Load old h[4..7]
+ veor q2, q2, q6 // v[4..5] ^= v[12..13]
+ veor q3, q3, q7 // v[6..7] ^= v[14..15]
+ veor q0, q0, q8 // v[0..1] ^= h[0..1]
+ veor q1, q1, q9 // v[2..3] ^= h[2..3]
+ mov ip, STATE
+ subs NBLOCKS, NBLOCKS, #1 // nblocks--
+ vst1.64 {q0-q1}, [ip]! // Store new h[0..3]
+ veor q2, q2, q10 // v[4..5] ^= h[4..5]
+ veor q3, q3, q11 // v[6..7] ^= h[6..7]
+ vst1.64 {q2-q3}, [ip]! // Store new h[4..7]
+
+ // Advance to the next block, if there is one.
+ bne .Lnext_block // nblocks != 0?
+
+ mov sp, ORIG_SP
+ pop {r4-r10}
+ mov pc, lr
+
+.Lslow_inc_ctr:
+ // Handle the case where the counter overflowed its low 32 bits, by
+ // carrying the overflow bit into the full 128-bit counter.
+ vmov r9, r10, d29
+ adcs r8, r8, #0
+ adcs r9, r9, #0
+ adc r10, r10, #0
+ vmov d28, r7, r8
+ vmov d29, r9, r10
+ vst1.64 {q14}, [ip] // Update t[0] and t[1]
+ b .Linc_ctr_done
+ENDPROC(blake2b_compress_neon)
diff --git a/arch/arm/crypto/blake2b-neon-glue.c b/arch/arm/crypto/blake2b-neon-glue.c
new file mode 100644
index 000000000000..34d73200e7fa
--- /dev/null
+++ b/arch/arm/crypto/blake2b-neon-glue.c
@@ -0,0 +1,105 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * BLAKE2b digest algorithm, NEON accelerated
+ *
+ * Copyright 2020 Google LLC
+ */
+
+#include <crypto/internal/blake2b.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+
+#include <linux/module.h>
+#include <linux/sizes.h>
+
+#include <asm/neon.h>
+#include <asm/simd.h>
+
+asmlinkage void blake2b_compress_neon(struct blake2b_state *state,
+ const u8 *block, size_t nblocks, u32 inc);
+
+static void blake2b_compress_arch(struct blake2b_state *state,
+ const u8 *block, size_t nblocks, u32 inc)
+{
+ if (!crypto_simd_usable()) {
+ blake2b_compress_generic(state, block, nblocks, inc);
+ return;
+ }
+
+ do {
+ const size_t blocks = min_t(size_t, nblocks,
+ SZ_4K / BLAKE2B_BLOCK_SIZE);
+
+ kernel_neon_begin();
+ blake2b_compress_neon(state, block, blocks, inc);
+ kernel_neon_end();
+
+ nblocks -= blocks;
+ block += blocks * BLAKE2B_BLOCK_SIZE;
+ } while (nblocks);
+}
+
+static int crypto_blake2b_update_neon(struct shash_desc *desc,
+ const u8 *in, unsigned int inlen)
+{
+ return crypto_blake2b_update(desc, in, inlen, blake2b_compress_arch);
+}
+
+static int crypto_blake2b_final_neon(struct shash_desc *desc, u8 *out)
+{
+ return crypto_blake2b_final(desc, out, blake2b_compress_arch);
+}
+
+#define BLAKE2B_ALG(name, driver_name, digest_size) \
+ { \
+ .base.cra_name = name, \
+ .base.cra_driver_name = driver_name, \
+ .base.cra_priority = 200, \
+ .base.cra_flags = CRYPTO_ALG_OPTIONAL_KEY, \
+ .base.cra_blocksize = BLAKE2B_BLOCK_SIZE, \
+ .base.cra_ctxsize = sizeof(struct blake2b_tfm_ctx), \
+ .base.cra_module = THIS_MODULE, \
+ .digestsize = digest_size, \
+ .setkey = crypto_blake2b_setkey, \
+ .init = crypto_blake2b_init, \
+ .update = crypto_blake2b_update_neon, \
+ .final = crypto_blake2b_final_neon, \
+ .descsize = sizeof(struct blake2b_state), \
+ }
+
+static struct shash_alg blake2b_neon_algs[] = {
+ BLAKE2B_ALG("blake2b-160", "blake2b-160-neon", BLAKE2B_160_HASH_SIZE),
+ BLAKE2B_ALG("blake2b-256", "blake2b-256-neon", BLAKE2B_256_HASH_SIZE),
+ BLAKE2B_ALG("blake2b-384", "blake2b-384-neon", BLAKE2B_384_HASH_SIZE),
+ BLAKE2B_ALG("blake2b-512", "blake2b-512-neon", BLAKE2B_512_HASH_SIZE),
+};
+
+static int __init blake2b_neon_mod_init(void)
+{
+ if (!(elf_hwcap & HWCAP_NEON))
+ return -ENODEV;
+
+ return crypto_register_shashes(blake2b_neon_algs,
+ ARRAY_SIZE(blake2b_neon_algs));
+}
+
+static void __exit blake2b_neon_mod_exit(void)
+{
+ return crypto_unregister_shashes(blake2b_neon_algs,
+ ARRAY_SIZE(blake2b_neon_algs));
+}
+
+module_init(blake2b_neon_mod_init);
+module_exit(blake2b_neon_mod_exit);
+
+MODULE_DESCRIPTION("BLAKE2b digest algorithm, NEON accelerated");
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
+MODULE_ALIAS_CRYPTO("blake2b-160");
+MODULE_ALIAS_CRYPTO("blake2b-160-neon");
+MODULE_ALIAS_CRYPTO("blake2b-256");
+MODULE_ALIAS_CRYPTO("blake2b-256-neon");
+MODULE_ALIAS_CRYPTO("blake2b-384");
+MODULE_ALIAS_CRYPTO("blake2b-384-neon");
+MODULE_ALIAS_CRYPTO("blake2b-512");
+MODULE_ALIAS_CRYPTO("blake2b-512-neon");