summaryrefslogtreecommitdiff
path: root/lib/zstd
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2021-11-13 15:32:30 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2021-11-13 15:32:30 -0800
commitc8c109546a19613d323a319d0c921cb1f317e629 (patch)
tree5cf721ff53b9caba1162065cd16071e5226d40db /lib/zstd
parentccfff0a2bd2a30de130b5623d242ddecd0272bc2 (diff)
parent0a8ea235837cc39f27c45689930aa97ae91d5953 (diff)
Merge tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux
Pull zstd update from Nick Terrell: "Update to zstd-1.4.10. Add myself as the maintainer of zstd and update the zstd version in the kernel, which is now 4 years out of date, to a much more recent zstd release. This includes bug fixes, much more extensive fuzzing, and performance improvements. And generates the kernel zstd automatically from upstream zstd, so it is easier to keep the zstd verison up to date, and we don't fall so far out of date again. This includes 5 commits that update the zstd library version: - Adds a new kernel-style wrapper around zstd. This wrapper API is functionally equivalent to the subset of the current zstd API that is currently used. The wrapper API changes to be kernel style so that the symbols don't collide with zstd's symbols. The update to zstd-1.4.10 maintains the same API and preserves the semantics, so that none of the callers need to be updated. All callers are updated in the commit, because there are zero functional changes. - Adds an indirection for `lib/decompress_unzstd.c` so it doesn't depend on the layout of `lib/zstd/` to include every source file. This allows the next patch to be automatically generated. - Imports the zstd-1.4.10 source code. This commit is automatically generated from upstream zstd (https://github.com/facebook/zstd). - Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`. - Fixes a newly added build warning for clang. The discussion around this patchset has been pretty long, so I've included a FAQ-style summary of the history of the patchset, and why we are taking this approach. Why do we need to update? ------------------------- The zstd version in the kernel is based off of zstd-1.3.1, which is was released August 20, 2017. Since then zstd has seen many bug fixes and performance improvements. And, importantly, upstream zstd is continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to older versions. So the only way to sanely get these fixes is to keep up to date with upstream zstd. There are no known security issues that affect the kernel, but we need to be able to update in case there are. And while there are no known security issues, there are relevant bug fixes. For example the problem with large kernel decompression has been fixed upstream for over 2 years [1] Additionally the performance improvements for kernel use cases are significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz: - BtrFS zstd compression at levels 1 and 3 is 5% faster - BtrFS zstd decompression+read is 15% faster - SquashFS zstd decompression+read is 15% faster - F2FS zstd compression+write at level 3 is 8% faster - F2FS zstd decompression+read is 20% faster - ZRAM decompression+read is 30% faster - Kernel zstd decompression is 35% faster - Initramfs zstd decompression+build is 5% faster On top of this, there are significant performance improvements coming down the line in the next zstd release, and the new automated update patch generation will allow us to pull them easily. How is the update patch generated? ---------------------------------- The first two patches are preparation for updating the zstd version. Then the 3rd patch in the series imports upstream zstd into the kernel. This patch is automatically generated from upstream. A script makes the necessary changes and imports it into the kernel. The changes are: - Replace all libc dependencies with kernel replacements and rewrite includes. - Remove unncessary portability macros like: #if defined(_MSC_VER). - Use the kernel xxhash instead of bundling it. This automation gets tested every commit by upstream's continuous integration. When we cut a new zstd release, we will submit a patch to the kernel to update the zstd version in the kernel. The automated process makes it easy to keep the kernel version of zstd up to date. The current zstd in the kernel shares the guts of the code, but has a lot of API and minor changes to work in the kernel. This is because at the time upstream zstd was not ready to be used in the kernel envrionment as-is. But, since then upstream zstd has evolved to support being used in the kernel as-is. Why are we updating in one big patch? ------------------------------------- The 3rd patch in the series is very large. This is because it is restructuring the code, so it both deletes the existing zstd, and re-adds the new structure. Future updates will be directly proportional to the changes in upstream zstd since the last import. They will admittidly be large, as zstd is an actively developed project, and has hundreds of commits between every release. However, there is no other great alternative. One option ruled out is to replay every upstream zstd commit. This is not feasible for several reasons: - There are over 3500 upstream commits since the zstd version in the kernel. - The automation to automatically generate the kernel update was only added recently, so older commits cannot easily be imported. - Not every upstream zstd commit builds. - Only zstd releases are "supported", and individual commits may have bugs that were fixed before a release. Another option to reduce the patch size would be to first reorganize to the new file structure, and then apply the patch. However, the current kernel zstd is formatted with clang-format to be more "kernel-like". But, the new method imports zstd as-is, without additional formatting, to allow for closer correlation with upstream, and easier debugging. So the patch wouldn't be any smaller. It also doesn't make sense to import upstream zstd commit by commit going forward. Upstream zstd doesn't support production use cases running of the development branch. We have a lot of post-commit fuzzing that catches many bugs, so indiviudal commits may be buggy, but fixed before a release. So going forward, I intend to import every (important) zstd release into the Kernel. So, while it isn't ideal, updating in one big patch is the only patch I see forward. Who is responsible for this code? --------------------------------- I am. This patchset adds me as the maintainer for zstd. Previously, there was no tree for zstd patches. Because of that, there were several patches that either got ignored, or took a long time to merge, since it wasn't clear which tree should pick them up. I'm officially stepping up as maintainer, and setting up my tree as the path through which zstd patches get merged. I'll make sure that patches to the kernel zstd get ported upstream, so they aren't erased when the next version update happens. How is this code tested? ------------------------ I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS, Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and aarch64. I checked both performance and correctness. Also, thanks to many people in the community who have tested these patches locally. Lastly, this code will bake in linux-next before being merged into v5.16. Why update to zstd-1.4.10 when zstd-1.5.0 has been released? ------------------------------------------------------------ This patchset has been outstanding since 2020, and zstd-1.4.10 was the latest release when it was created. Since the update patch is automatically generated from upstream, I could generate it from zstd-1.5.0. However, there were some large stack usage regressions in zstd-1.5.0, and are only fixed in the latest development branch. And the latest development branch contains some new code that needs to bake in the fuzzer before I would feel comfortable releasing to the kernel. Once this patchset has been merged, and we've released zstd-1.5.1, we can update the kernel to zstd-1.5.1, and exercise the update process. You may notice that zstd-1.4.10 doesn't exist upstream. This release is an artifical release based off of zstd-1.4.9, with some fixes for the kernel backported from the development branch. I will tag the zstd-1.4.10 release after this patchset is merged, so the Linux Kernel is running a known version of zstd that can be debugged upstream. Why was a wrapper API added? ---------------------------- The first versions of this patchset migrated the kernel to the upstream zstd API. It first added a shim API that supported the new upstream API with the old code, then updated callers to use the new shim API, then transitioned to the new code and deleted the shim API. However, Cristoph Hellwig suggested that we transition to a kernel style API, and hide zstd's upstream API behind that. This is because zstd's upstream API is supports many other use cases, and does not follow the kernel style guide, while the kernel API is focused on the kernel's use cases, and follows the kernel style guide. Where is the previous discussion? --------------------------------- Links for the discussions of the previous versions of the patch set below. The largest changes in the design of the patchset are driven by the discussions in v11, v5, and v1. Sorry for the mix of links, I couldn't find most of the the threads on lkml.org" Link: https://lkml.org/lkml/2020/9/29/27 [1] Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12] Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11] Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10] Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9] Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8] Link: https://lkml.org/lkml/2020/12/3/1195 [v7] Link: https://lkml.org/lkml/2020/12/2/1245 [v6] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5] Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4] Link: https://lkml.org/lkml/2020/9/23/1074 [v3] Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1] Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf> * tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux: lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical MAINTAINERS: Add maintainer entry for zstd lib: zstd: Upgrade to latest upstream zstd version 1.4.10 lib: zstd: Add decompress_sources.h for decompress_unzstd lib: zstd: Add kernel-specific API
Diffstat (limited to 'lib/zstd')
-rw-r--r--lib/zstd/Makefile46
-rw-r--r--lib/zstd/bitstream.h380
-rw-r--r--lib/zstd/common/bitstream.h437
-rw-r--r--lib/zstd/common/compiler.h170
-rw-r--r--lib/zstd/common/cpu.h194
-rw-r--r--lib/zstd/common/debug.c24
-rw-r--r--lib/zstd/common/debug.h101
-rw-r--r--lib/zstd/common/entropy_common.c357
-rw-r--r--lib/zstd/common/error_private.c56
-rw-r--r--lib/zstd/common/error_private.h66
-rw-r--r--lib/zstd/common/fse.h710
-rw-r--r--lib/zstd/common/fse_decompress.c390
-rw-r--r--lib/zstd/common/huf.h356
-rw-r--r--lib/zstd/common/mem.h259
-rw-r--r--lib/zstd/common/zstd_common.c83
-rw-r--r--lib/zstd/common/zstd_deps.h125
-rw-r--r--lib/zstd/common/zstd_internal.h450
-rw-r--r--lib/zstd/compress.c3485
-rw-r--r--lib/zstd/compress/fse_compress.c625
-rw-r--r--lib/zstd/compress/hist.c165
-rw-r--r--lib/zstd/compress/hist.h75
-rw-r--r--lib/zstd/compress/huf_compress.c905
-rw-r--r--lib/zstd/compress/zstd_compress.c5109
-rw-r--r--lib/zstd/compress/zstd_compress_internal.h1188
-rw-r--r--lib/zstd/compress/zstd_compress_literals.c158
-rw-r--r--lib/zstd/compress/zstd_compress_literals.h29
-rw-r--r--lib/zstd/compress/zstd_compress_sequences.c439
-rw-r--r--lib/zstd/compress/zstd_compress_sequences.h54
-rw-r--r--lib/zstd/compress/zstd_compress_superblock.c850
-rw-r--r--lib/zstd/compress/zstd_compress_superblock.h32
-rw-r--r--lib/zstd/compress/zstd_cwksp.h482
-rw-r--r--lib/zstd/compress/zstd_double_fast.c519
-rw-r--r--lib/zstd/compress/zstd_double_fast.h32
-rw-r--r--lib/zstd/compress/zstd_fast.c496
-rw-r--r--lib/zstd/compress/zstd_fast.h31
-rw-r--r--lib/zstd/compress/zstd_lazy.c1414
-rw-r--r--lib/zstd/compress/zstd_lazy.h81
-rw-r--r--lib/zstd/compress/zstd_ldm.c686
-rw-r--r--lib/zstd/compress/zstd_ldm.h110
-rw-r--r--lib/zstd/compress/zstd_ldm_geartab.h103
-rw-r--r--lib/zstd/compress/zstd_opt.c1346
-rw-r--r--lib/zstd/compress/zstd_opt.h50
-rw-r--r--lib/zstd/decompress.c2531
-rw-r--r--lib/zstd/decompress/huf_decompress.c1206
-rw-r--r--lib/zstd/decompress/zstd_ddict.c241
-rw-r--r--lib/zstd/decompress/zstd_ddict.h44
-rw-r--r--lib/zstd/decompress/zstd_decompress.c2085
-rw-r--r--lib/zstd/decompress/zstd_decompress_block.c1540
-rw-r--r--lib/zstd/decompress/zstd_decompress_block.h62
-rw-r--r--lib/zstd/decompress/zstd_decompress_internal.h202
-rw-r--r--lib/zstd/decompress_sources.h28
-rw-r--r--lib/zstd/entropy_common.c243
-rw-r--r--lib/zstd/error_private.h53
-rw-r--r--lib/zstd/fse.h575
-rw-r--r--lib/zstd/fse_compress.c795
-rw-r--r--lib/zstd/fse_decompress.c325
-rw-r--r--lib/zstd/huf.h212
-rw-r--r--lib/zstd/huf_compress.c773
-rw-r--r--lib/zstd/huf_decompress.c960
-rw-r--r--lib/zstd/mem.h151
-rw-r--r--lib/zstd/zstd_common.c75
-rw-r--r--lib/zstd/zstd_compress_module.c160
-rw-r--r--lib/zstd/zstd_decompress_module.c105
-rw-r--r--lib/zstd/zstd_internal.h273
-rw-r--r--lib/zstd/zstd_opt.h1014
65 files changed, 24471 insertions, 11850 deletions
diff --git a/lib/zstd/Makefile b/lib/zstd/Makefile
index f5d778e7e5c7..65218ec5b8f2 100644
--- a/lib/zstd/Makefile
+++ b/lib/zstd/Makefile
@@ -1,10 +1,46 @@
-# SPDX-License-Identifier: GPL-2.0-only
+# SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+# ################################################################
+# Copyright (c) Facebook, Inc.
+# All rights reserved.
+#
+# This source code is licensed under both the BSD-style license (found in the
+# LICENSE file in the root directory of this source tree) and the GPLv2 (found
+# in the COPYING file in the root directory of this source tree).
+# You may select, at your option, one of the above-listed licenses.
+# ################################################################
obj-$(CONFIG_ZSTD_COMPRESS) += zstd_compress.o
obj-$(CONFIG_ZSTD_DECOMPRESS) += zstd_decompress.o
ccflags-y += -O3
-zstd_compress-y := fse_compress.o huf_compress.o compress.o \
- entropy_common.o fse_decompress.o zstd_common.o
-zstd_decompress-y := huf_decompress.o decompress.o \
- entropy_common.o fse_decompress.o zstd_common.o
+zstd_compress-y := \
+ zstd_compress_module.o \
+ common/debug.o \
+ common/entropy_common.o \
+ common/error_private.o \
+ common/fse_decompress.o \
+ common/zstd_common.o \
+ compress/fse_compress.o \
+ compress/hist.o \
+ compress/huf_compress.o \
+ compress/zstd_compress.o \
+ compress/zstd_compress_literals.o \
+ compress/zstd_compress_sequences.o \
+ compress/zstd_compress_superblock.o \
+ compress/zstd_double_fast.o \
+ compress/zstd_fast.o \
+ compress/zstd_lazy.o \
+ compress/zstd_ldm.o \
+ compress/zstd_opt.o \
+
+zstd_decompress-y := \
+ zstd_decompress_module.o \
+ common/debug.o \
+ common/entropy_common.o \
+ common/error_private.o \
+ common/fse_decompress.o \
+ common/zstd_common.o \
+ decompress/huf_decompress.o \
+ decompress/zstd_ddict.o \
+ decompress/zstd_decompress.o \
+ decompress/zstd_decompress_block.o \
diff --git a/lib/zstd/bitstream.h b/lib/zstd/bitstream.h
deleted file mode 100644
index 5d6343c1a909..000000000000
--- a/lib/zstd/bitstream.h
+++ /dev/null
@@ -1,380 +0,0 @@
-/*
- * bitstream
- * Part of FSE library
- * header file (to include)
- * Copyright (C) 2013-2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-#ifndef BITSTREAM_H_MODULE
-#define BITSTREAM_H_MODULE
-
-/*
-* This API consists of small unitary functions, which must be inlined for best performance.
-* Since link-time-optimization is not available for all compilers,
-* these functions are defined into a .h to be included.
-*/
-
-/*-****************************************
-* Dependencies
-******************************************/
-#include "error_private.h" /* error codes and messages */
-#include "mem.h" /* unaligned access routines */
-
-/*=========================================
-* Target specific
-=========================================*/
-#define STREAM_ACCUMULATOR_MIN_32 25
-#define STREAM_ACCUMULATOR_MIN_64 57
-#define STREAM_ACCUMULATOR_MIN ((U32)(ZSTD_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
-
-/*-******************************************
-* bitStream encoding API (write forward)
-********************************************/
-/* bitStream can mix input from multiple sources.
-* A critical property of these streams is that they encode and decode in **reverse** direction.
-* So the first bit sequence you add will be the last to be read, like a LIFO stack.
-*/
-typedef struct {
- size_t bitContainer;
- int bitPos;
- char *startPtr;
- char *ptr;
- char *endPtr;
-} BIT_CStream_t;
-
-ZSTD_STATIC size_t BIT_initCStream(BIT_CStream_t *bitC, void *dstBuffer, size_t dstCapacity);
-ZSTD_STATIC void BIT_addBits(BIT_CStream_t *bitC, size_t value, unsigned nbBits);
-ZSTD_STATIC void BIT_flushBits(BIT_CStream_t *bitC);
-ZSTD_STATIC size_t BIT_closeCStream(BIT_CStream_t *bitC);
-
-/* Start with initCStream, providing the size of buffer to write into.
-* bitStream will never write outside of this buffer.
-* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
-*
-* bits are first added to a local register.
-* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
-* Writing data into memory is an explicit operation, performed by the flushBits function.
-* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
-* After a flushBits, a maximum of 7 bits might still be stored into local register.
-*
-* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
-*
-* Last operation is to close the bitStream.
-* The function returns the final size of CStream in bytes.
-* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
-*/
-
-/*-********************************************
-* bitStream decoding API (read backward)
-**********************************************/
-typedef struct {
- size_t bitContainer;
- unsigned bitsConsumed;
- const char *ptr;
- const char *start;
-} BIT_DStream_t;
-
-typedef enum {
- BIT_DStream_unfinished = 0,
- BIT_DStream_endOfBuffer = 1,
- BIT_DStream_completed = 2,
- BIT_DStream_overflow = 3
-} BIT_DStream_status; /* result of BIT_reloadDStream() */
-/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
-
-ZSTD_STATIC size_t BIT_initDStream(BIT_DStream_t *bitD, const void *srcBuffer, size_t srcSize);
-ZSTD_STATIC size_t BIT_readBits(BIT_DStream_t *bitD, unsigned nbBits);
-ZSTD_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t *bitD);
-ZSTD_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t *bitD);
-
-/* Start by invoking BIT_initDStream().
-* A chunk of the bitStream is then stored into a local register.
-* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
-* You can then retrieve bitFields stored into the local register, **in reverse order**.
-* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
-* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
-* Otherwise, it can be less than that, so proceed accordingly.
-* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
-*/
-
-/*-****************************************
-* unsafe API
-******************************************/
-ZSTD_STATIC void BIT_addBitsFast(BIT_CStream_t *bitC, size_t value, unsigned nbBits);
-/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
-
-ZSTD_STATIC void BIT_flushBitsFast(BIT_CStream_t *bitC);
-/* unsafe version; does not check buffer overflow */
-
-ZSTD_STATIC size_t BIT_readBitsFast(BIT_DStream_t *bitD, unsigned nbBits);
-/* faster, but works only if nbBits >= 1 */
-
-/*-**************************************************************
-* Internal functions
-****************************************************************/
-ZSTD_STATIC unsigned BIT_highbit32(register U32 val) { return 31 - __builtin_clz(val); }
-
-/*===== Local Constants =====*/
-static const unsigned BIT_mask[] = {0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF,
- 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
- 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF}; /* up to 26 bits */
-
-/*-**************************************************************
-* bitStream encoding
-****************************************************************/
-/*! BIT_initCStream() :
- * `dstCapacity` must be > sizeof(void*)
- * @return : 0 if success,
- otherwise an error code (can be tested using ERR_isError() ) */
-ZSTD_STATIC size_t BIT_initCStream(BIT_CStream_t *bitC, void *startPtr, size_t dstCapacity)
-{
- bitC->bitContainer = 0;
- bitC->bitPos = 0;
- bitC->startPtr = (char *)startPtr;
- bitC->ptr = bitC->startPtr;
- bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->ptr);
- if (dstCapacity <= sizeof(bitC->ptr))
- return ERROR(dstSize_tooSmall);
- return 0;
-}
-
-/*! BIT_addBits() :
- can add up to 26 bits into `bitC`.
- Does not check for register overflow ! */
-ZSTD_STATIC void BIT_addBits(BIT_CStream_t *bitC, size_t value, unsigned nbBits)
-{
- bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
- bitC->bitPos += nbBits;
-}
-
-/*! BIT_addBitsFast() :
- * works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
-ZSTD_STATIC void BIT_addBitsFast(BIT_CStream_t *bitC, size_t value, unsigned nbBits)
-{
- bitC->bitContainer |= value << bitC->bitPos;
- bitC->bitPos += nbBits;
-}
-
-/*! BIT_flushBitsFast() :
- * unsafe version; does not check buffer overflow */
-ZSTD_STATIC void BIT_flushBitsFast(BIT_CStream_t *bitC)
-{
- size_t const nbBytes = bitC->bitPos >> 3;
- ZSTD_writeLEST(bitC->ptr, bitC->bitContainer);
- bitC->ptr += nbBytes;
- bitC->bitPos &= 7;
- bitC->bitContainer >>= nbBytes * 8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
-}
-
-/*! BIT_flushBits() :
- * safe version; check for buffer overflow, and prevents it.
- * note : does not signal buffer overflow. This will be revealed later on using BIT_closeCStream() */
-ZSTD_STATIC void BIT_flushBits(BIT_CStream_t *bitC)
-{
- size_t const nbBytes = bitC->bitPos >> 3;
- ZSTD_writeLEST(bitC->ptr, bitC->bitContainer);
- bitC->ptr += nbBytes;
- if (bitC->ptr > bitC->endPtr)
- bitC->ptr = bitC->endPtr;
- bitC->bitPos &= 7;
- bitC->bitContainer >>= nbBytes * 8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
-}
-
-/*! BIT_closeCStream() :
- * @return : size of CStream, in bytes,
- or 0 if it could not fit into dstBuffer */
-ZSTD_STATIC size_t BIT_closeCStream(BIT_CStream_t *bitC)
-{
- BIT_addBitsFast(bitC, 1, 1); /* endMark */
- BIT_flushBits(bitC);
-
- if (bitC->ptr >= bitC->endPtr)
- return 0; /* doesn't fit within authorized budget : cancel */
-
- return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
-}
-
-/*-********************************************************
-* bitStream decoding
-**********************************************************/
-/*! BIT_initDStream() :
-* Initialize a BIT_DStream_t.
-* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
-* `srcSize` must be the *exact* size of the bitStream, in bytes.
-* @return : size of stream (== srcSize) or an errorCode if a problem is detected
-*/
-ZSTD_STATIC size_t BIT_initDStream(BIT_DStream_t *bitD, const void *srcBuffer, size_t srcSize)
-{
- if (srcSize < 1) {
- memset(bitD, 0, sizeof(*bitD));
- return ERROR(srcSize_wrong);
- }
-
- if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
- bitD->start = (const char *)srcBuffer;
- bitD->ptr = (const char *)srcBuffer + srcSize - sizeof(bitD->bitContainer);
- bitD->bitContainer = ZSTD_readLEST(bitD->ptr);
- {
- BYTE const lastByte = ((const BYTE *)srcBuffer)[srcSize - 1];
- bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
- if (lastByte == 0)
- return ERROR(GENERIC); /* endMark not present */
- }
- } else {
- bitD->start = (const char *)srcBuffer;
- bitD->ptr = bitD->start;
- bitD->bitContainer = *(const BYTE *)(bitD->start);
- switch (srcSize) {
- case 7: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[6]) << (sizeof(bitD->bitContainer) * 8 - 16);
- fallthrough;
- case 6: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[5]) << (sizeof(bitD->bitContainer) * 8 - 24);
- fallthrough;
- case 5: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[4]) << (sizeof(bitD->bitContainer) * 8 - 32);
- fallthrough;
- case 4: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[3]) << 24;
- fallthrough;
- case 3: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[2]) << 16;
- fallthrough;
- case 2: bitD->bitContainer += (size_t)(((const BYTE *)(srcBuffer))[1]) << 8;
- fallthrough;
- default:;
- }
- {
- BYTE const lastByte = ((const BYTE *)srcBuffer)[srcSize - 1];
- bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
- if (lastByte == 0)
- return ERROR(GENERIC); /* endMark not present */
- }
- bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize) * 8;
- }
-
- return srcSize;
-}
-
-ZSTD_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start) { return bitContainer >> start; }
-
-ZSTD_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits) { return (bitContainer >> start) & BIT_mask[nbBits]; }
-
-ZSTD_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits) { return bitContainer & BIT_mask[nbBits]; }
-
-/*! BIT_lookBits() :
- * Provides next n bits from local register.
- * local register is not modified.
- * On 32-bits, maxNbBits==24.
- * On 64-bits, maxNbBits==56.
- * @return : value extracted
- */
-ZSTD_STATIC size_t BIT_lookBits(const BIT_DStream_t *bitD, U32 nbBits)
-{
- U32 const bitMask = sizeof(bitD->bitContainer) * 8 - 1;
- return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask - nbBits) & bitMask);
-}
-
-/*! BIT_lookBitsFast() :
-* unsafe version; only works only if nbBits >= 1 */
-ZSTD_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t *bitD, U32 nbBits)
-{
- U32 const bitMask = sizeof(bitD->bitContainer) * 8 - 1;
- return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask + 1) - nbBits) & bitMask);
-}
-
-ZSTD_STATIC void BIT_skipBits(BIT_DStream_t *bitD, U32 nbBits) { bitD->bitsConsumed += nbBits; }
-
-/*! BIT_readBits() :
- * Read (consume) next n bits from local register and update.
- * Pay attention to not read more than nbBits contained into local register.
- * @return : extracted value.
- */
-ZSTD_STATIC size_t BIT_readBits(BIT_DStream_t *bitD, U32 nbBits)
-{
- size_t const value = BIT_lookBits(bitD, nbBits);
- BIT_skipBits(bitD, nbBits);
- return value;
-}
-
-/*! BIT_readBitsFast() :
-* unsafe version; only works only if nbBits >= 1 */
-ZSTD_STATIC size_t BIT_readBitsFast(BIT_DStream_t *bitD, U32 nbBits)
-{
- size_t const value = BIT_lookBitsFast(bitD, nbBits);
- BIT_skipBits(bitD, nbBits);
- return value;
-}
-
-/*! BIT_reloadDStream() :
-* Refill `bitD` from buffer previously set in BIT_initDStream() .
-* This function is safe, it guarantees it will not read beyond src buffer.
-* @return : status of `BIT_DStream_t` internal register.
- if status == BIT_DStream_unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
-ZSTD_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t *bitD)
-{
- if (bitD->bitsConsumed > (sizeof(bitD->bitContainer) * 8)) /* should not happen => corruption detected */
- return BIT_DStream_overflow;
-
- if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
- bitD->ptr -= bitD->bitsConsumed >> 3;
- bitD->bitsConsumed &= 7;
- bitD->bitContainer = ZSTD_readLEST(bitD->ptr);
- return BIT_DStream_unfinished;
- }
- if (bitD->ptr == bitD->start) {
- if (bitD->bitsConsumed < sizeof(bitD->bitContainer) * 8)
- return BIT_DStream_endOfBuffer;
- return BIT_DStream_completed;
- }
- {
- U32 nbBytes = bitD->bitsConsumed >> 3;
- BIT_DStream_status result = BIT_DStream_unfinished;
- if (bitD->ptr - nbBytes < bitD->start) {
- nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
- result = BIT_DStream_endOfBuffer;
- }
- bitD->ptr -= nbBytes;
- bitD->bitsConsumed -= nbBytes * 8;
- bitD->bitContainer = ZSTD_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
- return result;
- }
-}
-
-/*! BIT_endOfDStream() :
-* @return Tells if DStream has exactly reached its end (all bits consumed).
-*/
-ZSTD_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t *DStream)
-{
- return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer) * 8));
-}
-
-#endif /* BITSTREAM_H_MODULE */
diff --git a/lib/zstd/common/bitstream.h b/lib/zstd/common/bitstream.h
new file mode 100644
index 000000000000..28248abe8612
--- /dev/null
+++ b/lib/zstd/common/bitstream.h
@@ -0,0 +1,437 @@
+/* ******************************************************************
+ * bitstream
+ * Part of FSE library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+/*
+* This API consists of small unitary functions, which must be inlined for best performance.
+* Since link-time-optimization is not available for all compilers,
+* these functions are defined into a .h to be included.
+*/
+
+/*-****************************************
+* Dependencies
+******************************************/
+#include "mem.h" /* unaligned access routines */
+#include "compiler.h" /* UNLIKELY() */
+#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
+#include "error_private.h" /* error codes and messages */
+
+
+/*=========================================
+* Target specific
+=========================================*/
+
+#define STREAM_ACCUMULATOR_MIN_32 25
+#define STREAM_ACCUMULATOR_MIN_64 57
+#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
+
+
+/*-******************************************
+* bitStream encoding API (write forward)
+********************************************/
+/* bitStream can mix input from multiple sources.
+ * A critical property of these streams is that they encode and decode in **reverse** direction.
+ * So the first bit sequence you add will be the last to be read, like a LIFO stack.
+ */
+typedef struct {
+ size_t bitContainer;
+ unsigned bitPos;
+ char* startPtr;
+ char* ptr;
+ char* endPtr;
+} BIT_CStream_t;
+
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
+
+/* Start with initCStream, providing the size of buffer to write into.
+* bitStream will never write outside of this buffer.
+* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
+*
+* bits are first added to a local register.
+* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
+* Writing data into memory is an explicit operation, performed by the flushBits function.
+* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
+* After a flushBits, a maximum of 7 bits might still be stored into local register.
+*
+* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
+*
+* Last operation is to close the bitStream.
+* The function returns the final size of CStream in bytes.
+* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
+*/
+
+
+/*-********************************************
+* bitStream decoding API (read backward)
+**********************************************/
+typedef struct {
+ size_t bitContainer;
+ unsigned bitsConsumed;
+ const char* ptr;
+ const char* start;
+ const char* limitPtr;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+ BIT_DStream_endOfBuffer = 1,
+ BIT_DStream_completed = 2,
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+/* Start by invoking BIT_initDStream().
+* A chunk of the bitStream is then stored into a local register.
+* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+* You can then retrieve bitFields stored into the local register, **in reverse order**.
+* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
+* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
+* Otherwise, it can be less than that, so proceed accordingly.
+* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
+*/
+
+
+/*-****************************************
+* unsafe API
+******************************************/
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
+
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
+/* unsafe version; does not check buffer overflow */
+
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+* Internal functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (U32 val)
+{
+ assert(val != 0);
+ {
+# if (__GNUC__ >= 3) /* Use GCC Intrinsic */
+ return __builtin_clz (val) ^ 31;
+# else /* Software version */
+ static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
+ 11, 14, 16, 18, 22, 25, 3, 30,
+ 8, 12, 20, 28, 15, 17, 24, 7,
+ 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+# endif
+ }
+}
+
+/*===== Local Constants =====*/
+static const unsigned BIT_mask[] = {
+ 0, 1, 3, 7, 0xF, 0x1F,
+ 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
+ 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
+ 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
+ 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
+ 0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
+#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
+
+/*-**************************************************************
+* bitStream encoding
+****************************************************************/
+/*! BIT_initCStream() :
+ * `dstCapacity` must be > sizeof(size_t)
+ * @return : 0 if success,
+ * otherwise an error code (can be tested using ERR_isError()) */
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
+ void* startPtr, size_t dstCapacity)
+{
+ bitC->bitContainer = 0;
+ bitC->bitPos = 0;
+ bitC->startPtr = (char*)startPtr;
+ bitC->ptr = bitC->startPtr;
+ bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
+ if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
+ return 0;
+}
+
+/*! BIT_addBits() :
+ * can add up to 31 bits into `bitC`.
+ * Note : does not check for register overflow ! */
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
+ size_t value, unsigned nbBits)
+{
+ DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
+ assert(nbBits < BIT_MASK_SIZE);
+ assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
+ bitC->bitPos += nbBits;
+}
+
+/*! BIT_addBitsFast() :
+ * works only if `value` is _clean_,
+ * meaning all high bits above nbBits are 0 */
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
+ size_t value, unsigned nbBits)
+{
+ assert((value>>nbBits) == 0);
+ assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ bitC->bitContainer |= value << bitC->bitPos;
+ bitC->bitPos += nbBits;
+}
+
+/*! BIT_flushBitsFast() :
+ * assumption : bitContainer has not overflowed
+ * unsafe version; does not check buffer overflow */
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
+{
+ size_t const nbBytes = bitC->bitPos >> 3;
+ assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ assert(bitC->ptr <= bitC->endPtr);
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+ bitC->ptr += nbBytes;
+ bitC->bitPos &= 7;
+ bitC->bitContainer >>= nbBytes*8;
+}
+
+/*! BIT_flushBits() :
+ * assumption : bitContainer has not overflowed
+ * safe version; check for buffer overflow, and prevents it.
+ * note : does not signal buffer overflow.
+ * overflow will be revealed later on using BIT_closeCStream() */
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
+{
+ size_t const nbBytes = bitC->bitPos >> 3;
+ assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
+ assert(bitC->ptr <= bitC->endPtr);
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+ bitC->ptr += nbBytes;
+ if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
+ bitC->bitPos &= 7;
+ bitC->bitContainer >>= nbBytes*8;
+}
+
+/*! BIT_closeCStream() :
+ * @return : size of CStream, in bytes,
+ * or 0 if it could not fit into dstBuffer */
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
+{
+ BIT_addBitsFast(bitC, 1, 1); /* endMark */
+ BIT_flushBits(bitC);
+ if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
+ return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
+}
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*! BIT_initDStream() :
+ * Initialize a BIT_DStream_t.
+ * `bitD` : a pointer to an already allocated BIT_DStream_t structure.
+ * `srcSize` must be the *exact* size of the bitStream, in bytes.
+ * @return : size of stream (== srcSize), or an errorCode if a problem is detected
+ */
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+ if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+ bitD->start = (const char*)srcBuffer;
+ bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
+
+ if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+ } else {
+ bitD->ptr = bitD->start;
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
+ switch(srcSize)
+ {
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
+ ZSTD_FALLTHROUGH;
+
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
+ ZSTD_FALLTHROUGH;
+
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
+ ZSTD_FALLTHROUGH;
+
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
+ ZSTD_FALLTHROUGH;
+
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
+ ZSTD_FALLTHROUGH;
+
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
+ ZSTD_FALLTHROUGH;
+
+ default: break;
+ }
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
+ if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
+ }
+ bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
+ }
+
+ return srcSize;
+}
+
+MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
+{
+ return bitContainer >> start;
+}
+
+MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
+{
+ U32 const regMask = sizeof(bitContainer)*8 - 1;
+ /* if start > regMask, bitstream is corrupted, and result is undefined */
+ assert(nbBits < BIT_MASK_SIZE);
+ return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
+}
+
+MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
+{
+ assert(nbBits < BIT_MASK_SIZE);
+ return bitContainer & BIT_mask[nbBits];
+}
+
+/*! BIT_lookBits() :
+ * Provides next n bits from local register.
+ * local register is not modified.
+ * On 32-bits, maxNbBits==24.
+ * On 64-bits, maxNbBits==56.
+ * @return : value extracted */
+MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
+{
+ /* arbitrate between double-shift and shift+mask */
+#if 1
+ /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
+ * bitstream is likely corrupted, and result is undefined */
+ return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
+#else
+ /* this code path is slower on my os-x laptop */
+ U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
+ return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
+#endif
+}
+
+/*! BIT_lookBitsFast() :
+ * unsafe version; only works if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
+{
+ U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
+ assert(nbBits >= 1);
+ return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
+}
+
+MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+ bitD->bitsConsumed += nbBits;
+}
+
+/*! BIT_readBits() :
+ * Read (consume) next n bits from local register and update.
+ * Pay attention to not read more than nbBits contained into local register.
+ * @return : extracted value. */
+MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
+{
+ size_t const value = BIT_lookBits(bitD, nbBits);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BIT_readBitsFast() :
+ * unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
+{
+ size_t const value = BIT_lookBitsFast(bitD, nbBits);
+ assert(nbBits >= 1);
+ BIT_skipBits(bitD, nbBits);
+ return value;
+}
+
+/*! BIT_reloadDStreamFast() :
+ * Similar to BIT_reloadDStream(), but with two differences:
+ * 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
+ * 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
+ * point you must use BIT_reloadDStream() to reload.
+ */
+MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
+{
+ if (UNLIKELY(bitD->ptr < bitD->limitPtr))
+ return BIT_DStream_overflow;
+ assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+}
+
+/*! BIT_reloadDStream() :
+ * Refill `bitD` from buffer previously set in BIT_initDStream() .
+ * This function is safe, it guarantees it will not read beyond src buffer.
+ * @return : status of `BIT_DStream_t` internal register.
+ * when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
+ return BIT_DStream_overflow;
+
+ if (bitD->ptr >= bitD->limitPtr) {
+ return BIT_reloadDStreamFast(bitD);
+ }
+ if (bitD->ptr == bitD->start) {
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+ return BIT_DStream_completed;
+ }
+ /* start < ptr < limitPtr */
+ { U32 nbBytes = bitD->bitsConsumed >> 3;
+ BIT_DStream_status result = BIT_DStream_unfinished;
+ if (bitD->ptr - nbBytes < bitD->start) {
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
+ result = BIT_DStream_endOfBuffer;
+ }
+ bitD->ptr -= nbBytes;
+ bitD->bitsConsumed -= nbBytes*8;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
+ return result;
+ }
+}
+
+/*! BIT_endOfDStream() :
+ * @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
+ */
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+
+#endif /* BITSTREAM_H_MODULE */
diff --git a/lib/zstd/common/compiler.h b/lib/zstd/common/compiler.h
new file mode 100644
index 000000000000..a1a051e4bce6
--- /dev/null
+++ b/lib/zstd/common/compiler.h
@@ -0,0 +1,170 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMPILER_H
+#define ZSTD_COMPILER_H
+
+/*-*******************************************************
+* Compiler specifics
+*********************************************************/
+/* force inlining */
+
+#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+# define INLINE_KEYWORD inline
+#else
+# define INLINE_KEYWORD
+#endif
+
+#define FORCE_INLINE_ATTR __attribute__((always_inline))
+
+
+/*
+ On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC).
+ This explictly marks such functions as __cdecl so that the code will still compile
+ if a CC other than __cdecl has been made the default.
+*/
+#define WIN_CDECL
+
+/*
+ * FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
+ * parameters. They must be inlined for the compiler to eliminate the constant
+ * branches.
+ */
+#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
+/*
+ * HINT_INLINE is used to help the compiler generate better code. It is *not*
+ * used for "templates", so it can be tweaked based on the compilers
+ * performance.
+ *
+ * gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
+ * always_inline attribute.
+ *
+ * clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
+ * attribute.
+ */
+#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
+# define HINT_INLINE static INLINE_KEYWORD
+#else
+# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
+#endif
+
+/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
+#define UNUSED_ATTR __attribute__((unused))
+
+/* force no inlining */
+#define FORCE_NOINLINE static __attribute__((__noinline__))
+
+
+/* target attribute */
+#ifndef __has_attribute
+ #define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
+#endif
+#define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
+
+/* Enable runtime BMI2 dispatch based on the CPU.
+ * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
+ */
+#ifndef DYNAMIC_BMI2
+ #if ((defined(__clang__) && __has_attribute(__target__)) \
+ || (defined(__GNUC__) \
+ && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
+ && (defined(__x86_64__) || defined(_M_X86)) \
+ && !defined(__BMI2__)
+ # define DYNAMIC_BMI2 1
+ #else
+ # define DYNAMIC_BMI2 0
+ #endif
+#endif
+
+/* prefetch
+ * can be disabled, by declaring NO_PREFETCH build macro */
+#if ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
+#elif defined(__aarch64__)
+# define PREFETCH_L1(ptr) __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr)))
+# define PREFETCH_L2(ptr) __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr)))
+#else
+# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
+# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
+#endif /* NO_PREFETCH */
+
+#define CACHELINE_SIZE 64
+
+#define PREFETCH_AREA(p, s) { \
+ const char* const _ptr = (const char*)(p); \
+ size_t const _size = (size_t)(s); \
+ size_t _pos; \
+ for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
+ PREFETCH_L2(_ptr + _pos); \
+ } \
+}
+
+/* vectorization
+ * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax */
+#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__)
+# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
+# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
+# else
+# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")")
+# endif
+#else
+# define DONT_VECTORIZE
+#endif
+
+/* Tell the compiler that a branch is likely or unlikely.
+ * Only use these macros if it causes the compiler to generate better code.
+ * If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc
+ * and clang, please do.
+ */
+#define LIKELY(x) (__builtin_expect((x), 1))
+#define UNLIKELY(x) (__builtin_expect((x), 0))
+
+/* disable warnings */
+
+/*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/
+
+
+/* compat. with non-clang compilers */
+#ifndef __has_builtin
+# define __has_builtin(x) 0
+#endif
+
+/* compat. with non-clang compilers */
+#ifndef __has_feature
+# define __has_feature(x) 0
+#endif
+
+/* C-language Attributes are added in C23. */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
+# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
+#else
+# define ZSTD_HAS_C_ATTRIBUTE(x) 0
+#endif
+
+/* Only use C++ attributes in C++. Some compilers report support for C++
+ * attributes when compiling with C.
+ */
+#define ZSTD_HAS_CPP_ATTRIBUTE(x) 0
+
+/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute.
+ * - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough
+ * - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+ * - Else: __attribute__((__fallthrough__))
+ */
+#define ZSTD_FALLTHROUGH fallthrough
+
+/* detects whether we are being compiled under msan */
+
+
+/* detects whether we are being compiled under asan */
+
+
+#endif /* ZSTD_COMPILER_H */
diff --git a/lib/zstd/common/cpu.h b/lib/zstd/common/cpu.h
new file mode 100644
index 000000000000..0db7b42407ee
--- /dev/null
+++ b/lib/zstd/common/cpu.h
@@ -0,0 +1,194 @@
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMMON_CPU_H
+#define ZSTD_COMMON_CPU_H
+
+/*
+ * Implementation taken from folly/CpuId.h
+ * https://github.com/facebook/folly/blob/master/folly/CpuId.h
+ */
+
+#include "mem.h"
+
+
+typedef struct {
+ U32 f1c;
+ U32 f1d;
+ U32 f7b;
+ U32 f7c;
+} ZSTD_cpuid_t;
+
+MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
+ U32 f1c = 0;
+ U32 f1d = 0;
+ U32 f7b = 0;
+ U32 f7c = 0;
+#if defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
+ /* The following block like the normal cpuid branch below, but gcc
+ * reserves ebx for use of its pic register so we must specially
+ * handle the save and restore to avoid clobbering the register
+ */
+ U32 n;
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "popl %%ebx\n\t"
+ : "=a"(n)
+ : "a"(0)
+ : "ecx", "edx");
+ if (n >= 1) {
+ U32 f1a;
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "popl %%ebx\n\t"
+ : "=a"(f1a), "=c"(f1c), "=d"(f1d)
+ : "a"(1));
+ }
+ if (n >= 7) {
+ __asm__(
+ "pushl %%ebx\n\t"
+ "cpuid\n\t"
+ "movl %%ebx, %%eax\n\t"
+ "popl %%ebx"
+ : "=a"(f7b), "=c"(f7c)
+ : "a"(7), "c"(0)
+ : "edx");
+ }
+#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
+ U32 n;
+ __asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
+ if (n >= 1) {
+ U32 f1a;
+ __asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
+ }
+ if (n >= 7) {
+ U32 f7a;
+ __asm__("cpuid"
+ : "=a"(f7a), "=b"(f7b), "=c"(f7c)
+ : "a"(7), "c"(0)
+ : "edx");
+ }
+#endif
+ {
+ ZSTD_cpuid_t cpuid;
+ cpuid.f1c = f1c;
+ cpuid.f1d = f1d;
+ cpuid.f7b = f7b;
+ cpuid.f7c = f7c;
+ return cpuid;
+ }
+}
+
+#define X(name, r, bit) \
+ MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
+ return ((cpuid.r) & (1U << bit)) != 0; \
+ }
+
+/* cpuid(1): Processor Info and Feature Bits. */
+#define C(name, bit) X(name, f1c, bit)
+ C(sse3, 0)
+ C(pclmuldq, 1)
+ C(dtes64, 2)
+ C(monitor, 3)
+ C(dscpl, 4)
+ C(vmx, 5)
+ C(smx, 6)
+ C(eist, 7)
+ C(tm2, 8)
+ C(ssse3, 9)
+ C(cnxtid, 10)
+ C(fma, 12)
+ C(cx16, 13)
+ C(xtpr, 14)
+ C(pdcm, 15)
+ C(pcid, 17)
+ C(dca, 18)
+ C(sse41, 19)
+ C(sse42, 20)
+ C(x2apic, 21)
+ C(movbe, 22)
+ C(popcnt, 23)
+ C(tscdeadline, 24)
+ C(aes, 25)
+ C(xsave, 26)
+ C(osxsave, 27)
+ C(avx, 28)
+ C(f16c, 29)
+ C(rdrand, 30)
+#undef C
+#define D(name, bit) X(name, f1d, bit)
+ D(fpu, 0)
+ D(vme, 1)
+ D(de, 2)
+ D(pse, 3)
+ D(tsc, 4)
+ D(msr, 5)
+ D(pae, 6)
+ D(mce, 7)
+ D(cx8, 8)
+ D(apic, 9)
+ D(sep, 11)
+ D(mtrr, 12)
+ D(pge, 13)
+ D(mca, 14)
+ D(cmov, 15)
+ D(pat, 16)
+ D(pse36, 17)
+ D(psn, 18)
+ D(clfsh, 19)
+ D(ds, 21)
+ D(acpi, 22)
+ D(mmx, 23)
+ D(fxsr, 24)
+ D(sse, 25)
+ D(sse2, 26)
+ D(ss, 27)
+ D(htt, 28)
+ D(tm, 29)
+ D(pbe, 31)
+#undef D
+
+/* cpuid(7): Extended Features. */
+#define B(name, bit) X(name, f7b, bit)
+ B(bmi1, 3)
+ B(hle, 4)
+ B(avx2, 5)
+ B(smep, 7)
+ B(bmi2, 8)
+ B(erms, 9)
+ B(invpcid, 10)
+ B(rtm, 11)
+ B(mpx, 14)
+ B(avx512f, 16)
+ B(avx512dq, 17)
+ B(rdseed, 18)
+ B(adx, 19)
+ B(smap, 20)
+ B(avx512ifma, 21)
+ B(pcommit, 22)
+ B(clflushopt, 23)
+ B(clwb, 24)
+ B(avx512pf, 26)
+ B(avx512er, 27)
+ B(avx512cd, 28)
+ B(sha, 29)
+ B(avx512bw, 30)
+ B(avx512vl, 31)
+#undef B
+#define C(name, bit) X(name, f7c, bit)
+ C(prefetchwt1, 0)
+ C(avx512vbmi, 1)
+#undef C
+
+#undef X
+
+#endif /* ZSTD_COMMON_CPU_H */
diff --git a/lib/zstd/common/debug.c b/lib/zstd/common/debug.c
new file mode 100644
index 000000000000..bb863c9ea616
--- /dev/null
+++ b/lib/zstd/common/debug.c
@@ -0,0 +1,24 @@
+/* ******************************************************************
+ * debug
+ * Part of FSE library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+
+/*
+ * This module only hosts one global variable
+ * which can be used to dynamically influence the verbosity of traces,
+ * such as DEBUGLOG and RAWLOG
+ */
+
+#include "debug.h"
+
+int g_debuglevel = DEBUGLEVEL;
diff --git a/lib/zstd/common/debug.h b/lib/zstd/common/debug.h
new file mode 100644
index 000000000000..6dd88d1fbd02
--- /dev/null
+++ b/lib/zstd/common/debug.h
@@ -0,0 +1,101 @@
+/* ******************************************************************
+ * debug
+ * Part of FSE library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+
+/*
+ * The purpose of this header is to enable debug functions.
+ * They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
+ * and DEBUG_STATIC_ASSERT() for compile-time.
+ *
+ * By default, DEBUGLEVEL==0, which means run-time debug is disabled.
+ *
+ * Level 1 enables assert() only.
+ * Starting level 2, traces can be generated and pushed to stderr.
+ * The higher the level, the more verbose the traces.
+ *
+ * It's possible to dynamically adjust level using variable g_debug_level,
+ * which is only declared if DEBUGLEVEL>=2,
+ * and is a global variable, not multi-thread protected (use with care)
+ */
+
+#ifndef DEBUG_H_12987983217
+#define DEBUG_H_12987983217
+
+
+
+/* static assert is triggered at compile time, leaving no runtime artefact.
+ * static assert only works with compile-time constants.
+ * Also, this variant can only be used inside a function. */
+#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
+
+
+/* DEBUGLEVEL is expected to be defined externally,
+ * typically through compiler command line.
+ * Value must be a number. */
+#ifndef DEBUGLEVEL
+# define DEBUGLEVEL 0
+#endif
+
+
+/* recommended values for DEBUGLEVEL :
+ * 0 : release mode, no debug, all run-time checks disabled
+ * 1 : enables assert() only, no display
+ * 2 : reserved, for currently active debug path
+ * 3 : events once per object lifetime (CCtx, CDict, etc.)
+ * 4 : events once per frame
+ * 5 : events once per block
+ * 6 : events once per sequence (verbose)
+ * 7+: events at every position (*very* verbose)
+ *
+ * It's generally inconvenient to output traces > 5.
+ * In which case, it's possible to selectively trigger high verbosity levels
+ * by modifying g_debug_level.
+ */
+
+#if (DEBUGLEVEL>=1)
+# define ZSTD_DEPS_NEED_ASSERT
+# include "zstd_deps.h"
+#else
+# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
+# define assert(condition) ((void)0) /* disable assert (default) */
+# endif
+#endif
+
+#if (DEBUGLEVEL>=2)
+# define ZSTD_DEPS_NEED_IO
+# include "zstd_deps.h"
+extern int g_debuglevel; /* the variable is only declared,
+ it actually lives in debug.c,
+ and is shared by the whole process.
+ It's not thread-safe.
+ It's useful when enabling very verbose levels
+ on selective conditions (such as position in src) */
+
+# define RAWLOG(l, ...) { \
+ if (l<=g_debuglevel) { \
+ ZSTD_DEBUG_PRINT(__VA_ARGS__); \
+ } }
+# define DEBUGLOG(l, ...) { \
+ if (l<=g_debuglevel) { \
+ ZSTD_DEBUG_PRINT(__FILE__ ": " __VA_ARGS__); \
+ ZSTD_DEBUG_PRINT(" \n"); \
+ } }
+#else
+# define RAWLOG(l, ...) {} /* disabled */
+# define DEBUGLOG(l, ...) {} /* disabled */
+#endif
+
+
+
+#endif /* DEBUG_H_12987983217 */
diff --git a/lib/zstd/common/entropy_common.c b/lib/zstd/common/entropy_common.c
new file mode 100644
index 000000000000..53b47a2b52ff
--- /dev/null
+++ b/lib/zstd/common/entropy_common.c
@@ -0,0 +1,357 @@
+/* ******************************************************************
+ * Common functions of New Generation Entropy library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* *************************************
+* Dependencies
+***************************************/
+#include "mem.h"
+#include "error_private.h" /* ERR_*, ERROR */
+#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
+#include "huf.h"
+
+
+/*=== Version ===*/
+unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
+
+
+/*=== Error Management ===*/
+unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/*-**************************************************************
+* FSE NCount encoding-decoding
+****************************************************************/
+static U32 FSE_ctz(U32 val)
+{
+ assert(val != 0);
+ {
+# if (__GNUC__ >= 3) /* GCC Intrinsic */
+ return __builtin_ctz(val);
+# else /* Software version */
+ U32 count = 0;
+ while ((val & 1) == 0) {
+ val >>= 1;
+ ++count;
+ }
+ return count;
+# endif
+ }
+}
+
+FORCE_INLINE_TEMPLATE
+size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ const BYTE* const istart = (const BYTE*) headerBuffer;
+ const BYTE* const iend = istart + hbSize;
+ const BYTE* ip = istart;
+ int nbBits;
+ int remaining;
+ int threshold;
+ U32 bitStream;
+ int bitCount;
+ unsigned charnum = 0;
+ unsigned const maxSV1 = *maxSVPtr + 1;
+ int previous0 = 0;
+
+ if (hbSize < 8) {
+ /* This function only works when hbSize >= 8 */
+ char buffer[8] = {0};
+ ZSTD_memcpy(buffer, headerBuffer, hbSize);
+ { size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
+ buffer, sizeof(buffer));
+ if (FSE_isError(countSize)) return countSize;
+ if (countSize > hbSize) return ERROR(corruption_detected);
+ return countSize;
+ } }
+ assert(hbSize >= 8);
+
+ /* init */
+ ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
+ bitStream = MEM_readLE32(ip);
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+ bitStream >>= 4;
+ bitCount = 4;
+ *tableLogPtr = nbBits;
+ remaining = (1<<nbBits)+1;
+ threshold = 1<<nbBits;
+ nbBits++;
+
+ for (;;) {
+ if (previous0) {
+ /* Count the number of repeats. Each time the
+ * 2-bit repeat code is 0b11 there is another
+ * repeat.
+ * Avoid UB by setting the high bit to 1.
+ */
+ int repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
+ while (repeats >= 12) {
+ charnum += 3 * 12;
+ if (LIKELY(ip <= iend-7)) {
+ ip += 3;
+ } else {
+ bitCount -= (int)(8 * (iend - 7 - ip));
+ bitCount &= 31;
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ repeats = FSE_ctz(~bitStream | 0x80000000) >> 1;
+ }
+ charnum += 3 * repeats;
+ bitStream >>= 2 * repeats;
+ bitCount += 2 * repeats;
+
+ /* Add the final repeat which isn't 0b11. */
+ assert((bitStream & 3) < 3);
+ charnum += bitStream & 3;
+ bitCount += 2;
+
+ /* This is an error, but break and return an error
+ * at the end, because returning out of a loop makes
+ * it harder for the compiler to optimize.
+ */
+ if (charnum >= maxSV1) break;
+
+ /* We don't need to set the normalized count to 0
+ * because we already memset the whole buffer to 0.
+ */
+
+ if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ assert((bitCount >> 3) <= 3); /* For first condition to work */
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ bitCount &= 31;
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ }
+ {
+ int const max = (2*threshold-1) - remaining;
+ int count;
+
+ if ((bitStream & (threshold-1)) < (U32)max) {
+ count = bitStream & (threshold-1);
+ bitCount += nbBits-1;
+ } else {
+ count = bitStream & (2*threshold-1);
+ if (count >= threshold) count -= max;
+ bitCount += nbBits;
+ }
+
+ count--; /* extra accuracy */
+ /* When it matters (small blocks), this is a
+ * predictable branch, because we don't use -1.
+ */
+ if (count >= 0) {
+ remaining -= count;
+ } else {
+ assert(count == -1);
+ remaining += count;
+ }
+ normalizedCounter[charnum++] = (short)count;
+ previous0 = !count;
+
+ assert(threshold > 1);
+ if (remaining < threshold) {
+ /* This branch can be folded into the
+ * threshold update condition because we
+ * know that threshold > 1.
+ */
+ if (remaining <= 1) break;
+ nbBits = BIT_highbit32(remaining) + 1;
+ threshold = 1 << (nbBits - 1);
+ }
+ if (charnum >= maxSV1) break;
+
+ if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+ ip += bitCount>>3;
+ bitCount &= 7;
+ } else {
+ bitCount -= (int)(8 * (iend - 4 - ip));
+ bitCount &= 31;
+ ip = iend - 4;
+ }
+ bitStream = MEM_readLE32(ip) >> bitCount;
+ } }
+ if (remaining != 1) return ERROR(corruption_detected);
+ /* Only possible when there are too many zeros. */
+ if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall);
+ if (bitCount > 32) return ERROR(corruption_detected);
+ *maxSVPtr = charnum-1;
+
+ ip += (bitCount+7)>>3;
+ return ip-istart;
+}
+
+/* Avoids the FORCE_INLINE of the _body() function. */
+static size_t FSE_readNCount_body_default(
+ short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
+}
+
+#if DYNAMIC_BMI2
+TARGET_ATTRIBUTE("bmi2") static size_t FSE_readNCount_body_bmi2(
+ short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
+}
+#endif
+
+size_t FSE_readNCount_bmi2(
+ short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize, int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
+ }
+#endif
+ (void)bmi2;
+ return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
+}
+
+size_t FSE_readNCount(
+ short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+ const void* headerBuffer, size_t hbSize)
+{
+ return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0);
+}
+
+
+/*! HUF_readStats() :
+ Read compact Huffman tree, saved by HUF_writeCTable().
+ `huffWeight` is destination buffer.
+ `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
+ @return : size read from `src` , or an error Code .
+ Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
+*/
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize)
+{
+ U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
+ return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* bmi2 */ 0);
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize,
+ int bmi2)
+{
+ U32 weightTotal;
+ const BYTE* ip = (const BYTE*) src;
+ size_t iSize;
+ size_t oSize;
+
+ if (!srcSize) return ERROR(srcSize_wrong);
+ iSize = ip[0];
+ /* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
+
+ if (iSize >= 128) { /* special header */
+ oSize = iSize - 127;
+ iSize = ((oSize+1)/2);
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ if (oSize >= hwSize) return ERROR(corruption_detected);
+ ip += 1;
+ { U32 n;
+ for (n=0; n<oSize; n+=2) {
+ huffWeight[n] = ip[n/2] >> 4;
+ huffWeight[n+1] = ip[n/2] & 15;
+ } } }
+ else { /* header compressed with FSE (normal case) */
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+ /* max (hwSize-1) values decoded, as last one is implied */
+ oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2);
+ if (FSE_isError(oSize)) return oSize;
+ }
+
+ /* collect weight stats */
+ ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
+ weightTotal = 0;
+ { U32 n; for (n=0; n<oSize; n++) {
+ if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
+ rankStats[huffWeight[n]]++;
+ weightTotal += (1 << huffWeight[n]) >> 1;
+ } }
+ if (weightTotal == 0) return ERROR(corruption_detected);
+
+ /* get last non-null symbol weight (implied, total must be 2^n) */
+ { U32 const tableLog = BIT_highbit32(weightTotal) + 1;
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
+ *tableLogPtr = tableLog;
+ /* determine last weight */
+ { U32 const total = 1 << tableLog;
+ U32 const rest = total - weightTotal;
+ U32 const verif = 1 << BIT_highbit32(rest);
+ U32 const lastWeight = BIT_highbit32(rest) + 1;
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
+ huffWeight[oSize] = (BYTE)lastWeight;
+ rankStats[lastWeight]++;
+ } }
+
+ /* check tree construction validity */
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
+
+ /* results */
+ *nbSymbolsPtr = (U32)(oSize+1);
+ return iSize+1;
+}
+
+/* Avoids the FORCE_INLINE of the _body() function. */
+static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0);
+}
+
+#if DYNAMIC_BMI2
+static TARGET_ATTRIBUTE("bmi2") size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1);
+}
+#endif
+
+size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+ U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize,
+ int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
+ }
+#endif
+ (void)bmi2;
+ return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
+}
diff --git a/lib/zstd/common/error_private.c b/lib/zstd/common/error_private.c
new file mode 100644
index 000000000000..6d1135f8c373
--- /dev/null
+++ b/lib/zstd/common/error_private.c
@@ -0,0 +1,56 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* The purpose of this file is to have a single list of error strings embedded in binary */
+
+#include "error_private.h"
+
+const char* ERR_getErrorString(ERR_enum code)
+{
+#ifdef ZSTD_STRIP_ERROR_STRINGS
+ (void)code;
+ return "Error strings stripped";
+#else
+ static const char* const notErrorCode = "Unspecified error code";
+ switch( code )
+ {
+ case PREFIX(no_error): return "No error detected";
+ case PREFIX(GENERIC): return "Error (generic)";
+ case PREFIX(prefix_unknown): return "Unknown frame descriptor";
+ case PREFIX(version_unsupported): return "Version not supported";
+ case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
+ case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
+ case PREFIX(corruption_detected): return "Corrupted block detected";
+ case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
+ case PREFIX(parameter_unsupported): return "Unsupported parameter";
+ case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
+ case PREFIX(init_missing): return "Context should be init first";
+ case PREFIX(memory_allocation): return "Allocation error : not enough memory";
+ case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
+ case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
+ case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
+ case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
+ case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
+ case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
+ case PREFIX(dictionary_wrong): return "Dictionary mismatch";
+ case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
+ case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
+ case PREFIX(srcSize_wrong): return "Src size is incorrect";
+ case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
+ /* following error codes are not stable and may be removed or changed in a future version */
+ case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
+ case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
+ case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong";
+ case PREFIX(srcBuffer_wrong): return "Source buffer is wrong";
+ case PREFIX(maxCode):
+ default: return notErrorCode;
+ }
+#endif
+}
diff --git a/lib/zstd/common/error_private.h b/lib/zstd/common/error_private.h
new file mode 100644
index 000000000000..d14e686adf95
--- /dev/null
+++ b/lib/zstd/common/error_private.h
@@ -0,0 +1,66 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* Note : this module is expected to remain private, do not expose it */
+
+#ifndef ERROR_H_MODULE
+#define ERROR_H_MODULE
+
+
+
+/* ****************************************
+* Dependencies
+******************************************/
+#include "zstd_deps.h" /* size_t */
+#include <linux/zstd_errors.h> /* enum list */
+
+
+/* ****************************************
+* Compiler-specific
+******************************************/
+#define ERR_STATIC static __attribute__((unused))
+
+
+/*-****************************************
+* Customization (error_public.h)
+******************************************/
+typedef ZSTD_ErrorCode ERR_enum;
+#define PREFIX(name) ZSTD_error_##name
+
+
+/*-****************************************
+* Error codes handling
+******************************************/
+#undef ERROR /* already defined on Visual Studio */
+#define ERROR(name) ZSTD_ERROR(name)
+#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
+
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
+
+ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
+
+/* check and forward error code */
+#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
+#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
+
+
+/*-****************************************
+* Error Strings
+******************************************/
+
+const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
+
+ERR_STATIC const char* ERR_getErrorName(size_t code)
+{
+ return ERR_getErrorString(ERR_getErrorCode(code));
+}
+
+
+#endif /* ERROR_H_MODULE */
diff --git a/lib/zstd/common/fse.h b/lib/zstd/common/fse.h
new file mode 100644
index 000000000000..0bb174c2c367
--- /dev/null
+++ b/lib/zstd/common/fse.h
@@ -0,0 +1,710 @@
+/* ******************************************************************
+ * FSE : Finite State Entropy codec
+ * Public Prototypes declaration
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+
+#ifndef FSE_H
+#define FSE_H
+
+
+/*-*****************************************
+* Dependencies
+******************************************/
+#include "zstd_deps.h" /* size_t, ptrdiff_t */
+
+
+/*-*****************************************
+* FSE_PUBLIC_API : control library symbols visibility
+******************************************/
+#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
+# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
+#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
+# define FSE_PUBLIC_API __declspec(dllexport)
+#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
+# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
+#else
+# define FSE_PUBLIC_API
+#endif
+
+/*------ Version ------*/
+#define FSE_VERSION_MAJOR 0
+#define FSE_VERSION_MINOR 9
+#define FSE_VERSION_RELEASE 0
+
+#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
+#define FSE_QUOTE(str) #str
+#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
+#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
+
+#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
+FSE_PUBLIC_API unsigned FSE_versionNumber(void); /*< library version number; to be used when checking dll version */
+
+
+/*-****************************************
+* FSE simple functions
+******************************************/
+/*! FSE_compress() :
+ Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
+ 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
+ @return : size of compressed data (<= dstCapacity).
+ Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+ if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
+ if FSE_isError(return), compression failed (more details using FSE_getErrorName())
+*/
+FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+/*! FSE_decompress():
+ Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+ into already allocated destination buffer 'dst', of size 'dstCapacity'.
+ @return : size of regenerated data (<= maxDstSize),
+ or an error code, which can be tested using FSE_isError() .
+
+ ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
+ Why ? : making this distinction requires a header.
+ Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
+ const void* cSrc, size_t cSrcSize);
+
+
+/*-*****************************************
+* Tool functions
+******************************************/
+FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
+
+/* Error Management */
+FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
+FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
+
+
+/*-*****************************************
+* FSE advanced functions
+******************************************/
+/*! FSE_compress2() :
+ Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
+ Both parameters can be defined as '0' to mean : use default value
+ @return : size of compressed data
+ Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
+ if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
+ if FSE_isError(return), it's an error code.
+*/
+FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+
+
+/*-*****************************************
+* FSE detailed API
+******************************************/
+/*!
+FSE_compress() does the following:
+1. count symbol occurrence from source[] into table count[] (see hist.h)
+2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
+3. save normalized counters to memory buffer using writeNCount()
+4. build encoding table 'CTable' from normalized counters
+5. encode the data stream using encoding table 'CTable'
+
+FSE_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+/* *** COMPRESSION *** */
+
+/*! FSE_optimalTableLog():
+ dynamically downsize 'tableLog' when conditions are met.
+ It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
+ @return : recommended tableLog (necessarily <= 'maxTableLog') */
+FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+
+/*! FSE_normalizeCount():
+ normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
+ 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
+ useLowProbCount is a boolean parameter which trades off compressed size for
+ faster header decoding. When it is set to 1, the compressed data will be slightly
+ smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
+ faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
+ is a good default, since header deserialization makes a big speed difference.
+ Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
+ @return : tableLog,
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
+ const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
+
+/*! FSE_NCountWriteBound():
+ Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
+ Typically useful for allocation purpose. */
+FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_writeNCount():
+ Compactly save 'normalizedCounter' into 'buffer'.
+ @return : size of the compressed table,
+ or an errorCode, which can be tested using FSE_isError(). */
+FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
+ const short* normalizedCounter,
+ unsigned maxSymbolValue, unsigned tableLog);
+
+/*! Constructor and Destructor of FSE_CTable.
+ Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
+typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
+FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
+FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
+
+/*! FSE_buildCTable():
+ Builds `ct`, which must be already allocated, using FSE_createCTable().
+ @return : 0, or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_compress_usingCTable():
+ Compress `src` using `ct` into `dst` which must be already allocated.
+ @return : size of compressed data (<= `dstCapacity`),
+ or 0 if compressed data could not fit into `dst`,
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
+
+/*!
+Tutorial :
+----------
+The first step is to count all symbols. FSE_count() does this job very fast.
+Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
+'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
+maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
+FSE_count() will return the number of occurrence of the most frequent symbol.
+This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+The next step is to normalize the frequencies.
+FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
+It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
+You can use 'tableLog'==0 to mean "use default tableLog value".
+If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
+which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
+
+The result of FSE_normalizeCount() will be saved into a table,
+called 'normalizedCounter', which is a table of signed short.
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
+The return value is tableLog if everything proceeded as expected.
+It is 0 if there is a single symbol within distribution.
+If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
+'buffer' must be already allocated.
+For guaranteed success, buffer size must be at least FSE_headerBound().
+The result of the function is the number of bytes written into 'buffer'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
+
+'normalizedCounter' can then be used to create the compression table 'CTable'.
+The space required by 'CTable' must be already allocated, using FSE_createCTable().
+You can then use FSE_buildCTable() to fill 'CTable'.
+If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
+
+'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
+Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
+The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
+If it returns '0', compressed data could not fit into 'dst'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*! FSE_readNCount():
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
+ @return : size read from 'rBuffer',
+ or an errorCode, which can be tested using FSE_isError().
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
+ unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
+ const void* rBuffer, size_t rBuffSize);
+
+/*! FSE_readNCount_bmi2():
+ * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
+ */
+FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
+ unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
+ const void* rBuffer, size_t rBuffSize, int bmi2);
+
+/*! Constructor and Destructor of FSE_DTable.
+ Note that its size depends on 'tableLog' */
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
+FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
+FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
+
+/*! FSE_buildDTable():
+ Builds 'dt', which must be already allocated, using FSE_createDTable().
+ return : 0, or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_decompress_usingDTable():
+ Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
+ into `dst` which must be already allocated.
+ @return : size of regenerated data (necessarily <= `dstCapacity`),
+ or an errorCode, which can be tested using FSE_isError() */
+FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
+This is performed by the function FSE_buildDTable().
+The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
+FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
+If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
+*/
+
+#endif /* FSE_H */
+
+#if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
+#define FSE_H_FSE_STATIC_LINKING_ONLY
+
+/* *** Dependency *** */
+#include "bitstream.h"
+
+
+/* *****************************************
+* Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog)))
+
+/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
+#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
+#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
+
+
+/* *****************************************
+ * FSE advanced API
+ ***************************************** */
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
+/*< same as FSE_optimalTableLog(), which used `minus==2` */
+
+/* FSE_compress_wksp() :
+ * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
+ * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
+ */
+#define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
+size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
+
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
+/*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
+
+size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
+/*< build a fake FSE_CTable, designed to compress always the same symbolValue */
+
+/* FSE_buildCTable_wksp() :
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
+ * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
+ */
+#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2)))
+#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
+size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
+
+#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
+#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
+FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
+/*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
+
+size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/*< build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
+#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
+/*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
+
+size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
+/*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
+
+typedef enum {
+ FSE_repeat_none, /*< Cannot use the previous table */
+ FSE_repeat_check, /*< Can use the previous table but it must be checked */
+ FSE_repeat_valid /*< Can use the previous table and it is assumed to be valid */
+ } FSE_repeat;
+
+/* *****************************************
+* FSE symbol compression API
+*******************************************/
+/*!
+ This API consists of small unitary functions, which highly benefit from being inlined.
+ Hence their body are included in next section.
+*/
+typedef struct {
+ ptrdiff_t value;
+ const void* stateTable;
+ const void* symbolTT;
+ unsigned stateLog;
+} FSE_CState_t;
+
+static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
+
+static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
+
+static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
+
+/*<
+These functions are inner components of FSE_compress_usingCTable().
+They allow the creation of custom streams, mixing multiple tables and bit sources.
+
+A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
+So the first symbol you will encode is the last you will decode, like a LIFO stack.
+
+You will need a few variables to track your CStream. They are :
+
+FSE_CTable ct; // Provided by FSE_buildCTable()
+BIT_CStream_t bitStream; // bitStream tracking structure
+FSE_CState_t state; // State tracking structure (can have several)
+
+
+The first thing to do is to init bitStream and state.
+ size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
+ FSE_initCState(&state, ct);
+
+Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
+You can then encode your input data, byte after byte.
+FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
+Remember decoding will be done in reverse direction.
+ FSE_encodeByte(&bitStream, &state, symbol);
+
+At any time, you can also add any bit sequence.
+Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
+ BIT_addBits(&bitStream, bitField, nbBits);
+
+The above methods don't commit data to memory, they just store it into local register, for speed.
+Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+Writing data to memory is a manual operation, performed by the flushBits function.
+ BIT_flushBits(&bitStream);
+
+Your last FSE encoding operation shall be to flush your last state value(s).
+ FSE_flushState(&bitStream, &state);
+
+Finally, you must close the bitStream.
+The function returns the size of CStream in bytes.
+If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
+If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
+ size_t size = BIT_closeCStream(&bitStream);
+*/
+
+
+/* *****************************************
+* FSE symbol decompression API
+*******************************************/
+typedef struct {
+ size_t state;
+ const void* table; /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+/*<
+Let's now decompose FSE_decompress_usingDTable() into its unitary components.
+You will decode FSE-encoded symbols from the bitStream,
+and also any other bitFields you put in, **in reverse order**.
+
+You will need a few variables to track your bitStream. They are :
+
+BIT_DStream_t DStream; // Stream context
+FSE_DState_t DState; // State context. Multiple ones are possible
+FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
+
+The first thing to do is to init the bitStream.
+ errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
+
+You should then retrieve your initial state(s)
+(in reverse flushing order if you have several ones) :
+ errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
+
+You can then decode your data, symbol after symbol.
+For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
+Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
+ unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
+
+You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
+Note : maximum allowed nbBits is 25, for 32-bits compatibility
+ size_t bitField = BIT_readBits(&DStream, nbBits);
+
+All above operations only read from local register (which size depends on size_t).
+Refueling the register from memory is manually performed by the reload method.
+ endSignal = FSE_reloadDStream(&DStream);
+
+BIT_reloadDStream() result tells if there is still some more data to read from DStream.
+BIT_DStream_unfinished : there is still some data left into the DStream.
+BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
+BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
+BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
+
+When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
+to properly detect the exact end of stream.
+After each decoded symbol, check if DStream is fully consumed using this simple test :
+ BIT_reloadDStream(&DStream) >= BIT_DStream_completed
+
+When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
+Checking if DStream has reached its end is performed by :
+ BIT_endOfDStream(&DStream);
+Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
+ FSE_endOfDState(&DState);
+*/
+
+
+/* *****************************************
+* FSE unsafe API
+*******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+* Implementation of inlined functions
+*******************************************/
+typedef struct {
+ int deltaFindState;
+ U32 deltaNbBits;
+} FSE_symbolCompressionTransform; /* total 8 bytes */
+
+MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
+{
+ const void* ptr = ct;
+ const U16* u16ptr = (const U16*) ptr;
+ const U32 tableLog = MEM_read16(ptr);
+ statePtr->value = (ptrdiff_t)1<<tableLog;
+ statePtr->stateTable = u16ptr+2;
+ statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
+ statePtr->stateLog = tableLog;
+}
+
+
+/*! FSE_initCState2() :
+* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
+* uses the smallest state value possible, saving the cost of this symbol */
+MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
+{
+ FSE_initCState(statePtr, ct);
+ { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+ const U16* stateTable = (const U16*)(statePtr->stateTable);
+ U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
+ statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
+ statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+ }
+}
+
+MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
+{
+ FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+ const U16* const stateTable = (const U16*)(statePtr->stateTable);
+ U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
+ BIT_addBits(bitC, statePtr->value, nbBitsOut);
+ statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+}
+
+MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
+{
+ BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
+ BIT_flushBits(bitC);
+}
+
+
+/* FSE_getMaxNbBits() :
+ * Approximate maximum cost of a symbol, in bits.
+ * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
+ * note 1 : assume symbolValue is valid (<= maxSymbolValue)
+ * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
+MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
+{
+ const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
+ return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
+}
+
+/* FSE_bitCost() :
+ * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
+ * note 1 : assume symbolValue is valid (<= maxSymbolValue)
+ * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
+MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
+{
+ const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
+ U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
+ U32 const threshold = (minNbBits+1) << 16;
+ assert(tableLog < 16);
+ assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
+ { U32 const tableSize = 1 << tableLog;
+ U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
+ U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
+ U32 const bitMultiplier = 1 << accuracyLog;
+ assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
+ assert(normalizedDeltaFromThreshold <= bitMultiplier);
+ return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
+ }
+}
+
+
+/* ====== Decompression ====== */
+
+typedef struct {
+ U16 tableLog;
+ U16 fastMode;
+} FSE_DTableHeader; /* sizeof U32 */
+
+typedef struct
+{
+ unsigned short newState;
+ unsigned char symbol;
+ unsigned char nbBits;
+} FSE_decode_t; /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
+ DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ return DInfo.symbol;
+}
+
+MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.newState + lowBits;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+/*! FSE_decodeSymbolFast() :
+ unsafe, only works if no symbol has a probability > 50% */
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ BYTE const symbol = DInfo.symbol;
+ size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
+
+ DStatePtr->state = DInfo.newState + lowBits;
+ return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+ return DStatePtr->state == 0;
+}
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/* **************************************************************
+* Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+* Increasing memory usage improves compression ratio
+* Reduced memory usage can improve speed, due to cache effect
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#ifndef FSE_MAX_MEMORY_USAGE
+# define FSE_MAX_MEMORY_USAGE 14
+#endif
+#ifndef FSE_DEFAULT_MEMORY_USAGE
+# define FSE_DEFAULT_MEMORY_USAGE 13
+#endif
+#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
+# error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
+#endif
+
+/*!FSE_MAX_SYMBOL_VALUE :
+* Maximum symbol value authorized.
+* Required for proper stack allocation */
+#ifndef FSE_MAX_SYMBOL_VALUE
+# define FSE_MAX_SYMBOL_VALUE 255
+#endif
+
+/* **************************************************************
+* template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+#define FSE_DECODE_TYPE FSE_decode_t
+
+
+#endif /* !FSE_COMMONDEFS_ONLY */
+
+
+/* ***************************************************************
+* Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
+
+
+#endif /* FSE_STATIC_LINKING_ONLY */
+
+
diff --git a/lib/zstd/common/fse_decompress.c b/lib/zstd/common/fse_decompress.c
new file mode 100644
index 000000000000..2c8bbe3e4c14
--- /dev/null
+++ b/lib/zstd/common/fse_decompress.c
@@ -0,0 +1,390 @@
+/* ******************************************************************
+ * FSE : Finite State Entropy decoder
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include "debug.h" /* assert */
+#include "bitstream.h"
+#include "compiler.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#include "error_private.h"
+#define ZSTD_DEPS_NEED_MALLOC
+#include "zstd_deps.h"
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSE_isError ERR_isError
+#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+FSE_DTable* FSE_createDTable (unsigned tableLog)
+{
+ if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+ return (FSE_DTable*)ZSTD_malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSE_freeDTable (FSE_DTable* dt)
+{
+ ZSTD_free(dt);
+}
+
+static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
+{
+ void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
+ U16* symbolNext = (U16*)workSpace;
+ BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1);
+
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+ U32 highThreshold = tableSize-1;
+
+ /* Sanity Checks */
+ if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge);
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+ /* Init, lay down lowprob symbols */
+ { FSE_DTableHeader DTableH;
+ DTableH.tableLog = (U16)tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ symbolNext[s] = normalizedCounter[s];
+ } } }
+ ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ if (highThreshold == tableSize - 1) {
+ size_t const tableMask = tableSize-1;
+ size_t const step = FSE_TABLESTEP(tableSize);
+ /* First lay down the symbols in order.
+ * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
+ * misses since small blocks generally have small table logs, so nearly
+ * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
+ * our buffer to handle the over-write.
+ */
+ {
+ U64 const add = 0x0101010101010101ull;
+ size_t pos = 0;
+ U64 sv = 0;
+ U32 s;
+ for (s=0; s<maxSV1; ++s, sv += add) {
+ int i;
+ int const n = normalizedCounter[s];
+ MEM_write64(spread + pos, sv);
+ for (i = 8; i < n; i += 8) {
+ MEM_write64(spread + pos + i, sv);
+ }
+ pos += n;
+ }
+ }
+ /* Now we spread those positions across the table.
+ * The benefit of doing it in two stages is that we avoid the the
+ * variable size inner loop, which caused lots of branch misses.
+ * Now we can run through all the positions without any branch misses.
+ * We unroll the loop twice, since that is what emperically worked best.
+ */
+ {
+ size_t position = 0;
+ size_t s;
+ size_t const unroll = 2;
+ assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
+ for (s = 0; s < (size_t)tableSize; s += unroll) {
+ size_t u;
+ for (u = 0; u < unroll; ++u) {
+ size_t const uPosition = (position + (u * step)) & tableMask;
+ tableDecode[uPosition].symbol = spread[s + u];
+ }
+ position = (position + (unroll * step)) & tableMask;
+ }
+ assert(position == 0);
+ }
+ } else {
+ U32 const tableMask = tableSize-1;
+ U32 const step = FSE_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ for (i=0; i<normalizedCounter[s]; i++) {
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ { U32 u;
+ for (u=0; u<tableSize; u++) {
+ FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
+ U32 const nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
+ tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ } }
+
+ return 0;
+}
+
+size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
+{
+ return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize);
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/*-*******************************************************
+* Decompression (Byte symbols)
+*********************************************************/
+size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->newState = 0;
+ cell->symbol = symbolValue;
+ cell->nbBits = 0;
+
+ return 0;
+}
+
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+ void* ptr = dt;
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+ void* dPtr = dt + 1;
+ FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSV1 = tableMask+1;
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* Build Decoding Table */
+ DTableH->tableLog = (U16)nbBits;
+ DTableH->fastMode = 1;
+ for (s=0; s<maxSV1; s++) {
+ dinfo[s].newState = 0;
+ dinfo[s].symbol = (BYTE)s;
+ dinfo[s].nbBits = (BYTE)nbBits;
+ }
+
+ return 0;
+}
+
+FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
+ void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt, const unsigned fast)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const omax = op + maxDstSize;
+ BYTE* const olimit = omax-3;
+
+ BIT_DStream_t bitD;
+ FSE_DState_t state1;
+ FSE_DState_t state2;
+
+ /* Init */
+ CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
+
+ FSE_initDState(&state1, &bitD, dt);
+ FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+ /* 4 symbols per loop */
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
+ op[0] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[1] = FSE_GETSYMBOL(&state2);
+
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+ op[2] = FSE_GETSYMBOL(&state1);
+
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
+ BIT_reloadDStream(&bitD);
+
+ op[3] = FSE_GETSYMBOL(&state2);
+ }
+
+ /* tail */
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+ while (1) {
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+ *op++ = FSE_GETSYMBOL(&state1);
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+ *op++ = FSE_GETSYMBOL(&state2);
+ break;
+ }
+
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+ *op++ = FSE_GETSYMBOL(&state2);
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+ *op++ = FSE_GETSYMBOL(&state1);
+ break;
+ } }
+
+ return op-ostart;
+}
+
+
+size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize,
+ const FSE_DTable* dt)
+{
+ const void* ptr = dt;
+ const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
+{
+ return FSE_decompress_wksp_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, /* bmi2 */ 0);
+}
+
+typedef struct {
+ short ncount[FSE_MAX_SYMBOL_VALUE + 1];
+ FSE_DTable dtable[1]; /* Dynamically sized */
+} FSE_DecompressWksp;
+
+
+FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
+ void* dst, size_t dstCapacity,
+ const void* cSrc, size_t cSrcSize,
+ unsigned maxLog, void* workSpace, size_t wkspSize,
+ int bmi2)
+{
+ const BYTE* const istart = (const BYTE*)cSrc;
+ const BYTE* ip = istart;
+ unsigned tableLog;
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+ FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;
+
+ DEBUG_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
+ if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);
+
+ /* normal FSE decoding mode */
+ {
+ size_t const NCountLength = FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
+ if (FSE_isError(NCountLength)) return NCountLength;
+ if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
+ assert(NCountLength <= cSrcSize);
+ ip += NCountLength;
+ cSrcSize -= NCountLength;
+ }
+
+ if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
+ workSpace = wksp->dtable + FSE_DTABLE_SIZE_U32(tableLog);
+ wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
+
+ CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
+
+ {
+ const void* ptr = wksp->dtable;
+ const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
+ const U32 fastMode = DTableH->fastMode;
+
+ /* select fast mode (static) */
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 1);
+ return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 0);
+ }
+}
+
+/* Avoids the FORCE_INLINE of the _body() function. */
+static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
+{
+ return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0);
+}
+
+#if DYNAMIC_BMI2
+TARGET_ATTRIBUTE("bmi2") static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
+{
+ return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
+}
+#endif
+
+size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
+ }
+#endif
+ (void)bmi2;
+ return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
+}
+
+
+typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/lib/zstd/common/huf.h b/lib/zstd/common/huf.h
new file mode 100644
index 000000000000..88c5586646aa
--- /dev/null
+++ b/lib/zstd/common/huf.h
@@ -0,0 +1,356 @@
+/* ******************************************************************
+ * huff0 huffman codec,
+ * part of Finite State Entropy library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+
+#ifndef HUF_H_298734234
+#define HUF_H_298734234
+
+/* *** Dependencies *** */
+#include "zstd_deps.h" /* size_t */
+
+
+/* *** library symbols visibility *** */
+/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
+ * HUF symbols remain "private" (internal symbols for library only).
+ * Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
+#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
+# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
+#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
+# define HUF_PUBLIC_API __declspec(dllexport)
+#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
+# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
+#else
+# define HUF_PUBLIC_API
+#endif
+
+
+/* ========================== */
+/* *** simple functions *** */
+/* ========================== */
+
+/* HUF_compress() :
+ * Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
+ * 'dst' buffer must be already allocated.
+ * Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
+ * `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
+ * @return : size of compressed data (<= `dstCapacity`).
+ * Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+ * if HUF_isError(return), compression failed (more details using HUF_getErrorName())
+ */
+HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize);
+
+/* HUF_decompress() :
+ * Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
+ * into already allocated buffer 'dst', of minimum size 'dstSize'.
+ * `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
+ * Note : in contrast with FSE, HUF_decompress can regenerate
+ * RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+ * because it knows size to regenerate (originalSize).
+ * @return : size of regenerated data (== originalSize),
+ * or an error code, which can be tested using HUF_isError()
+ */
+HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
+ const void* cSrc, size_t cSrcSize);
+
+
+/* *** Tool functions *** */
+#define HUF_BLOCKSIZE_MAX (128 * 1024) /*< maximum input size for a single block compressed with HUF_compress */
+HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /*< maximum compressed size (worst case) */
+
+/* Error Management */
+HUF_PUBLIC_API unsigned HUF_isError(size_t code); /*< tells if a return value is an error code */
+HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /*< provides error code string (useful for debugging) */
+
+
+/* *** Advanced function *** */
+
+/* HUF_compress2() :
+ * Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
+ * `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
+ * `tableLog` must be `<= HUF_TABLELOG_MAX` . */
+HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog);
+
+/* HUF_compress4X_wksp() :
+ * Same as HUF_compress2(), but uses externally allocated `workSpace`.
+ * `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
+#define HUF_WORKSPACE_SIZE ((6 << 10) + 256)
+#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
+HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize);
+
+#endif /* HUF_H_298734234 */
+
+/* ******************************************************************
+ * WARNING !!
+ * The following section contains advanced and experimental definitions
+ * which shall never be used in the context of a dynamic library,
+ * because they are not guaranteed to remain stable in the future.
+ * Only consider them in association with static linking.
+ * *****************************************************************/
+#if !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
+#define HUF_H_HUF_STATIC_LINKING_ONLY
+
+/* *** Dependencies *** */
+#include "mem.h" /* U32 */
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+
+
+/* *** Constants *** */
+#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
+#define HUF_SYMBOLVALUE_MAX 255
+
+#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
+# error "HUF_TABLELOG_MAX is too large !"
+#endif
+
+
+/* ****************************************
+* Static allocation
+******************************************/
+/* HUF buffer bounds */
+#define HUF_CTABLEBOUND 129
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
+
+/* static allocation of HUF's Compression Table */
+/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */
+struct HUF_CElt_s {
+ U16 val;
+ BYTE nbBits;
+}; /* typedef'd to HUF_CElt */
+typedef struct HUF_CElt_s HUF_CElt; /* consider it an incomplete type */
+#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
+#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
+#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
+ HUF_CElt name[HUF_CTABLE_SIZE_U32(maxSymbolValue)] /* no final ; */
+
+/* static allocation of HUF's DTable */
+typedef U32 HUF_DTable;
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
+#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
+ HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+ HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
+
+
+/* ****************************************
+* Advanced decompression functions
+******************************************/
+size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< double-symbols decoder */
+#endif
+
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< decodes RLE and uncompressed */
+size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< considers RLE and uncompressed as errors */
+size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /*< considers RLE and uncompressed as errors */
+size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< single-symbol decoder */
+size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /*< single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< double-symbols decoder */
+size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /*< double-symbols decoder */
+#endif
+
+
+/* ****************************************
+ * HUF detailed API
+ * ****************************************/
+
+/*! HUF_compress() does the following:
+ * 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
+ * 2. (optional) refine tableLog using HUF_optimalTableLog()
+ * 3. build Huffman table from count using HUF_buildCTable()
+ * 4. save Huffman table to memory buffer using HUF_writeCTable()
+ * 5. encode the data stream using HUF_compress4X_usingCTable()
+ *
+ * The following API allows targeting specific sub-functions for advanced tasks.
+ * For example, it's possible to compress several blocks using the same 'CTable',
+ * or to save and regenerate 'CTable' using external methods.
+ */
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
+size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
+int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
+
+typedef enum {
+ HUF_repeat_none, /*< Cannot use the previous table */
+ HUF_repeat_check, /*< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
+ HUF_repeat_valid /*< Can use the previous table and it is assumed to be valid */
+ } HUF_repeat;
+/* HUF_compress4X_repeat() :
+ * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
+ * If it uses hufTable it does not modify hufTable or repeat.
+ * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
+ * If preferRepeat then the old table will always be used if valid. */
+size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize, /*< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+
+/* HUF_buildCTable_wksp() :
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
+ * `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
+ */
+#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
+#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
+size_t HUF_buildCTable_wksp (HUF_CElt* tree,
+ const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
+ void* workSpace, size_t wkspSize);
+
+/*! HUF_readStats() :
+ * Read compact Huffman tree, saved by HUF_writeCTable().
+ * `huffWeight` is destination buffer.
+ * @return : size read from `src` , or an error Code .
+ * Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
+ U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize);
+
+/*! HUF_readStats_wksp() :
+ * Same as HUF_readStats() but takes an external workspace which must be
+ * 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE.
+ * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
+ */
+#define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1)
+#define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned))
+size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
+ U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
+ const void* src, size_t srcSize,
+ void* workspace, size_t wkspSize,
+ int bmi2);
+
+/* HUF_readCTable() :
+ * Loading a CTable saved with HUF_writeCTable() */
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights);
+
+/* HUF_getNbBits() :
+ * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
+ * Note 1 : is not inlined, as HUF_CElt definition is private
+ * Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */
+U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
+
+/*
+ * HUF_decompress() does the following:
+ * 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
+ * 2. build Huffman table from save, using HUF_readDTableX?()
+ * 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
+ */
+
+/* HUF_selectDecoder() :
+ * Tells which decoder is likely to decode faster,
+ * based on a set of pre-computed metrics.
+ * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
+ * Assumption : 0 < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
+
+/*
+ * The minimum workspace size for the `workSpace` used in
+ * HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
+ *
+ * The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
+ * HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
+ * Buffer overflow errors may potentially occur if code modifications result in
+ * a required workspace size greater than that specified in the following
+ * macro.
+ */
+#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9))
+#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
+size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
+size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
+#endif
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+
+
+/* ====================== */
+/* single stream variants */
+/* ====================== */
+
+size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /*< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+/* HUF_compress1X_repeat() :
+ * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
+ * If it uses hufTable it does not modify hufTable or repeat.
+ * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
+ * If preferRepeat then the old table will always be used if valid. */
+size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize, /*< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
+
+size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
+#endif
+
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< single-symbol decoder */
+size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /*< single-symbol decoder */
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /*< double-symbols decoder */
+size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /*< double-symbols decoder */
+#endif
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /*< automatic selection of sing or double symbol decoder, based on DTable */
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+#ifndef HUF_FORCE_DECOMPRESS_X1
+size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+#endif
+
+/* BMI2 variants.
+ * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
+ */
+size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
+#endif
+size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
+size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2);
+#endif
+
+#endif /* HUF_STATIC_LINKING_ONLY */
+
diff --git a/lib/zstd/common/mem.h b/lib/zstd/common/mem.h
new file mode 100644
index 000000000000..dcdd586a9fd9
--- /dev/null
+++ b/lib/zstd/common/mem.h
@@ -0,0 +1,259 @@
+/* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+/*-****************************************
+* Dependencies
+******************************************/
+#include <asm/unaligned.h> /* get_unaligned, put_unaligned* */
+#include <linux/compiler.h> /* inline */
+#include <linux/swab.h> /* swab32, swab64 */
+#include <linux/types.h> /* size_t, ptrdiff_t */
+#include "debug.h" /* DEBUG_STATIC_ASSERT */
+
+/*-****************************************
+* Compiler specifics
+******************************************/
+#define MEM_STATIC static inline
+
+/*-**************************************************************
+* Basic Types
+*****************************************************************/
+typedef uint8_t BYTE;
+typedef uint16_t U16;
+typedef int16_t S16;
+typedef uint32_t U32;
+typedef int32_t S32;
+typedef uint64_t U64;
+typedef int64_t S64;
+
+/*-**************************************************************
+* Memory I/O API
+*****************************************************************/
+/*=== Static platform detection ===*/
+MEM_STATIC unsigned MEM_32bits(void);
+MEM_STATIC unsigned MEM_64bits(void);
+MEM_STATIC unsigned MEM_isLittleEndian(void);
+
+/*=== Native unaligned read/write ===*/
+MEM_STATIC U16 MEM_read16(const void* memPtr);
+MEM_STATIC U32 MEM_read32(const void* memPtr);
+MEM_STATIC U64 MEM_read64(const void* memPtr);
+MEM_STATIC size_t MEM_readST(const void* memPtr);
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value);
+MEM_STATIC void MEM_write32(void* memPtr, U32 value);
+MEM_STATIC void MEM_write64(void* memPtr, U64 value);
+
+/*=== Little endian unaligned read/write ===*/
+MEM_STATIC U16 MEM_readLE16(const void* memPtr);
+MEM_STATIC U32 MEM_readLE24(const void* memPtr);
+MEM_STATIC U32 MEM_readLE32(const void* memPtr);
+MEM_STATIC U64 MEM_readLE64(const void* memPtr);
+MEM_STATIC size_t MEM_readLEST(const void* memPtr);
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val);
+MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val);
+MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32);
+MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64);
+MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val);
+
+/*=== Big endian unaligned read/write ===*/
+MEM_STATIC U32 MEM_readBE32(const void* memPtr);
+MEM_STATIC U64 MEM_readBE64(const void* memPtr);
+MEM_STATIC size_t MEM_readBEST(const void* memPtr);
+
+MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32);
+MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64);
+MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val);
+
+/*=== Byteswap ===*/
+MEM_STATIC U32 MEM_swap32(U32 in);
+MEM_STATIC U64 MEM_swap64(U64 in);
+MEM_STATIC size_t MEM_swapST(size_t in);
+
+/*-**************************************************************
+* Memory I/O Implementation
+*****************************************************************/
+MEM_STATIC unsigned MEM_32bits(void)
+{
+ return sizeof(size_t) == 4;
+}
+
+MEM_STATIC unsigned MEM_64bits(void)
+{
+ return sizeof(size_t) == 8;
+}
+
+#if defined(__LITTLE_ENDIAN)
+#define MEM_LITTLE_ENDIAN 1
+#else
+#define MEM_LITTLE_ENDIAN 0
+#endif
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+ return MEM_LITTLE_ENDIAN;
+}
+
+MEM_STATIC U16 MEM_read16(const void *memPtr)
+{
+ return get_unaligned((const U16 *)memPtr);
+}
+
+MEM_STATIC U32 MEM_read32(const void *memPtr)
+{
+ return get_unaligned((const U32 *)memPtr);
+}
+
+MEM_STATIC U64 MEM_read64(const void *memPtr)
+{
+ return get_unaligned((const U64 *)memPtr);
+}
+
+MEM_STATIC size_t MEM_readST(const void *memPtr)
+{
+ return get_unaligned((const size_t *)memPtr);
+}
+
+MEM_STATIC void MEM_write16(void *memPtr, U16 value)
+{
+ put_unaligned(value, (U16 *)memPtr);
+}
+
+MEM_STATIC void MEM_write32(void *memPtr, U32 value)
+{
+ put_unaligned(value, (U32 *)memPtr);
+}
+
+MEM_STATIC void MEM_write64(void *memPtr, U64 value)
+{
+ put_unaligned(value, (U64 *)memPtr);
+}
+
+/*=== Little endian r/w ===*/
+
+MEM_STATIC U16 MEM_readLE16(const void *memPtr)
+{
+ return get_unaligned_le16(memPtr);
+}
+
+MEM_STATIC void MEM_writeLE16(void *memPtr, U16 val)
+{
+ put_unaligned_le16(val, memPtr);
+}
+
+MEM_STATIC U32 MEM_readLE24(const void *memPtr)
+{
+ return MEM_readLE16(memPtr) + (((const BYTE *)memPtr)[2] << 16);
+}
+
+MEM_STATIC void MEM_writeLE24(void *memPtr, U32 val)
+{
+ MEM_writeLE16(memPtr, (U16)val);
+ ((BYTE *)memPtr)[2] = (BYTE)(val >> 16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void *memPtr)
+{
+ return get_unaligned_le32(memPtr);
+}
+
+MEM_STATIC void MEM_writeLE32(void *memPtr, U32 val32)
+{
+ put_unaligned_le32(val32, memPtr);
+}
+
+MEM_STATIC U64 MEM_readLE64(const void *memPtr)
+{
+ return get_unaligned_le64(memPtr);
+}
+
+MEM_STATIC void MEM_writeLE64(void *memPtr, U64 val64)
+{
+ put_unaligned_le64(val64, memPtr);
+}
+
+MEM_STATIC size_t MEM_readLEST(const void *memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readLE32(memPtr);
+ else
+ return (size_t)MEM_readLE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeLEST(void *memPtr, size_t val)
+{
+ if (MEM_32bits())
+ MEM_writeLE32(memPtr, (U32)val);
+ else
+ MEM_writeLE64(memPtr, (U64)val);
+}
+
+/*=== Big endian r/w ===*/
+
+MEM_STATIC U32 MEM_readBE32(const void *memPtr)
+{
+ return get_unaligned_be32(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE32(void *memPtr, U32 val32)
+{
+ put_unaligned_be32(val32, memPtr);
+}
+
+MEM_STATIC U64 MEM_readBE64(const void *memPtr)
+{
+ return get_unaligned_be64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE64(void *memPtr, U64 val64)
+{
+ put_unaligned_be64(val64, memPtr);
+}
+
+MEM_STATIC size_t MEM_readBEST(const void *memPtr)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_readBE32(memPtr);
+ else
+ return (size_t)MEM_readBE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBEST(void *memPtr, size_t val)
+{
+ if (MEM_32bits())
+ MEM_writeBE32(memPtr, (U32)val);
+ else
+ MEM_writeBE64(memPtr, (U64)val);
+}
+
+MEM_STATIC U32 MEM_swap32(U32 in)
+{
+ return swab32(in);
+}
+
+MEM_STATIC U64 MEM_swap64(U64 in)
+{
+ return swab64(in);
+}
+
+MEM_STATIC size_t MEM_swapST(size_t in)
+{
+ if (MEM_32bits())
+ return (size_t)MEM_swap32((U32)in);
+ else
+ return (size_t)MEM_swap64((U64)in);
+}
+
+#endif /* MEM_H_MODULE */
diff --git a/lib/zstd/common/zstd_common.c b/lib/zstd/common/zstd_common.c
new file mode 100644
index 000000000000..3d7e35b309b5
--- /dev/null
+++ b/lib/zstd/common/zstd_common.c
@@ -0,0 +1,83 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+
+/*-*************************************
+* Dependencies
+***************************************/
+#define ZSTD_DEPS_NEED_MALLOC
+#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
+#include "error_private.h"
+#include "zstd_internal.h"
+
+
+/*-****************************************
+* Version
+******************************************/
+unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
+
+const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
+
+
+/*-****************************************
+* ZSTD Error Management
+******************************************/
+#undef ZSTD_isError /* defined within zstd_internal.h */
+/*! ZSTD_isError() :
+ * tells if a return value is an error code
+ * symbol is required for external callers */
+unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+/*! ZSTD_getErrorName() :
+ * provides error code string from function result (useful for debugging) */
+const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+/*! ZSTD_getError() :
+ * convert a `size_t` function result into a proper ZSTD_errorCode enum */
+ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
+
+/*! ZSTD_getErrorString() :
+ * provides error code string from enum */
+const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
+
+
+
+/*=**************************************************************
+* Custom allocator
+****************************************************************/
+void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
+{
+ if (customMem.customAlloc)
+ return customMem.customAlloc(customMem.opaque, size);
+ return ZSTD_malloc(size);
+}
+
+void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
+{
+ if (customMem.customAlloc) {
+ /* calloc implemented as malloc+memset;
+ * not as efficient as calloc, but next best guess for custom malloc */
+ void* const ptr = customMem.customAlloc(customMem.opaque, size);
+ ZSTD_memset(ptr, 0, size);
+ return ptr;
+ }
+ return ZSTD_calloc(1, size);
+}
+
+void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
+{
+ if (ptr!=NULL) {
+ if (customMem.customFree)
+ customMem.customFree(customMem.opaque, ptr);
+ else
+ ZSTD_free(ptr);
+ }
+}
diff --git a/lib/zstd/common/zstd_deps.h b/lib/zstd/common/zstd_deps.h
new file mode 100644
index 000000000000..7a5bf44839c9
--- /dev/null
+++ b/lib/zstd/common/zstd_deps.h
@@ -0,0 +1,125 @@
+/* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/*
+ * This file provides common libc dependencies that zstd requires.
+ * The purpose is to allow replacing this file with a custom implementation
+ * to compile zstd without libc support.
+ */
+
+/* Need:
+ * NULL
+ * INT_MAX
+ * UINT_MAX
+ * ZSTD_memcpy()
+ * ZSTD_memset()
+ * ZSTD_memmove()
+ */
+#ifndef ZSTD_DEPS_COMMON
+#define ZSTD_DEPS_COMMON
+
+#include <linux/limits.h>
+#include <linux/stddef.h>
+
+#define ZSTD_memcpy(d,s,n) __builtin_memcpy((d),(s),(n))
+#define ZSTD_memmove(d,s,n) __builtin_memmove((d),(s),(n))
+#define ZSTD_memset(d,s,n) __builtin_memset((d),(s),(n))
+
+#endif /* ZSTD_DEPS_COMMON */
+
+/*
+ * Define malloc as always failing. That means the user must
+ * either use ZSTD_customMem or statically allocate memory.
+ * Need:
+ * ZSTD_malloc()
+ * ZSTD_free()
+ * ZSTD_calloc()
+ */
+#ifdef ZSTD_DEPS_NEED_MALLOC
+#ifndef ZSTD_DEPS_MALLOC
+#define ZSTD_DEPS_MALLOC
+
+#define ZSTD_malloc(s) ({ (void)(s); NULL; })
+#define ZSTD_free(p) ((void)(p))
+#define ZSTD_calloc(n,s) ({ (void)(n); (void)(s); NULL; })
+
+#endif /* ZSTD_DEPS_MALLOC */
+#endif /* ZSTD_DEPS_NEED_MALLOC */
+
+/*
+ * Provides 64-bit math support.
+ * Need:
+ * U64 ZSTD_div64(U64 dividend, U32 divisor)
+ */
+#ifdef ZSTD_DEPS_NEED_MATH64
+#ifndef ZSTD_DEPS_MATH64
+#define ZSTD_DEPS_MATH64
+
+#include <linux/math64.h>
+
+static uint64_t ZSTD_div64(uint64_t dividend, uint32_t divisor) {
+ return div_u64(dividend, divisor);
+}
+
+#endif /* ZSTD_DEPS_MATH64 */
+#endif /* ZSTD_DEPS_NEED_MATH64 */
+
+/*
+ * This is only requested when DEBUGLEVEL >= 1, meaning
+ * it is disabled in production.
+ * Need:
+ * assert()
+ */
+#ifdef ZSTD_DEPS_NEED_ASSERT
+#ifndef ZSTD_DEPS_ASSERT
+#define ZSTD_DEPS_ASSERT
+
+#include <linux/kernel.h>
+
+#define assert(x) WARN_ON((x))
+
+#endif /* ZSTD_DEPS_ASSERT */
+#endif /* ZSTD_DEPS_NEED_ASSERT */
+
+/*
+ * This is only requested when DEBUGLEVEL >= 2, meaning
+ * it is disabled in production.
+ * Need:
+ * ZSTD_DEBUG_PRINT()
+ */
+#ifdef ZSTD_DEPS_NEED_IO
+#ifndef ZSTD_DEPS_IO
+#define ZSTD_DEPS_IO
+
+#include <linux/printk.h>
+
+#define ZSTD_DEBUG_PRINT(...) pr_debug(__VA_ARGS__)
+
+#endif /* ZSTD_DEPS_IO */
+#endif /* ZSTD_DEPS_NEED_IO */
+
+/*
+ * Only requested when MSAN is enabled.
+ * Need:
+ * intptr_t
+ */
+#ifdef ZSTD_DEPS_NEED_STDINT
+#ifndef ZSTD_DEPS_STDINT
+#define ZSTD_DEPS_STDINT
+
+/*
+ * The Linux Kernel doesn't provide intptr_t, only uintptr_t, which
+ * is an unsigned long.
+ */
+typedef long intptr_t;
+
+#endif /* ZSTD_DEPS_STDINT */
+#endif /* ZSTD_DEPS_NEED_STDINT */
diff --git a/lib/zstd/common/zstd_internal.h b/lib/zstd/common/zstd_internal.h
new file mode 100644
index 000000000000..fc6f3a9b40c0
--- /dev/null
+++ b/lib/zstd/common/zstd_internal.h
@@ -0,0 +1,450 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_CCOMMON_H_MODULE
+#define ZSTD_CCOMMON_H_MODULE
+
+/* this module contains definitions which must be identical
+ * across compression, decompression and dictBuilder.
+ * It also contains a few functions useful to at least 2 of them
+ * and which benefit from being inlined */
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "compiler.h"
+#include "mem.h"
+#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
+#include "error_private.h"
+#define ZSTD_STATIC_LINKING_ONLY
+#include <linux/zstd.h>
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include <linux/xxhash.h> /* XXH_reset, update, digest */
+#define ZSTD_TRACE 0
+
+
+/* ---- static assert (debug) --- */
+#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
+#define ZSTD_isError ERR_isError /* for inlining */
+#define FSE_isError ERR_isError
+#define HUF_isError ERR_isError
+
+
+/*-*************************************
+* shared macros
+***************************************/
+#undef MIN
+#undef MAX
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+
+/*
+ * Ignore: this is an internal helper.
+ *
+ * This is a helper function to help force C99-correctness during compilation.
+ * Under strict compilation modes, variadic macro arguments can't be empty.
+ * However, variadic function arguments can be. Using a function therefore lets
+ * us statically check that at least one (string) argument was passed,
+ * independent of the compilation flags.
+ */
+static INLINE_KEYWORD UNUSED_ATTR
+void _force_has_format_string(const char *format, ...) {
+ (void)format;
+}
+
+/*
+ * Ignore: this is an internal helper.
+ *
+ * We want to force this function invocation to be syntactically correct, but
+ * we don't want to force runtime evaluation of its arguments.
+ */
+#define _FORCE_HAS_FORMAT_STRING(...) \
+ if (0) { \
+ _force_has_format_string(__VA_ARGS__); \
+ }
+
+/*
+ * Return the specified error if the condition evaluates to true.
+ *
+ * In debug modes, prints additional information.
+ * In order to do that (particularly, printing the conditional that failed),
+ * this can't just wrap RETURN_ERROR().
+ */
+#define RETURN_ERROR_IF(cond, err, ...) \
+ if (cond) { \
+ RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
+ __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ }
+
+/*
+ * Unconditionally return the specified error.
+ *
+ * In debug modes, prints additional information.
+ */
+#define RETURN_ERROR(err, ...) \
+ do { \
+ RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
+ __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ } while(0);
+
+/*
+ * If the provided expression evaluates to an error code, returns that error code.
+ *
+ * In debug modes, prints additional information.
+ */
+#define FORWARD_IF_ERROR(err, ...) \
+ do { \
+ size_t const err_code = (err); \
+ if (ERR_isError(err_code)) { \
+ RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
+ __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return err_code; \
+ } \
+ } while(0);
+
+
+/*-*************************************
+* Common constants
+***************************************/
+#define ZSTD_OPT_NUM (1<<12)
+
+#define ZSTD_REP_NUM 3 /* number of repcodes */
+#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
+static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BIT7 128
+#define BIT6 64
+#define BIT5 32
+#define BIT4 16
+#define BIT1 2
+#define BIT0 1
+
+#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
+static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
+static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
+
+#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
+
+#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
+static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
+typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
+
+#define ZSTD_FRAMECHECKSUMSIZE 4
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
+
+#define HufLog 12
+typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
+
+#define LONGNBSEQ 0x7F00
+
+#define MINMATCH 3
+
+#define Litbits 8
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML 52
+#define MaxLL 35
+#define DefaultMaxOff 28
+#define MaxOff 31
+#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
+#define MLFSELog 9
+#define LLFSELog 9
+#define OffFSELog 8
+#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
+
+#define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */
+/* Each table cannot take more than #symbols * FSELog bits */
+#define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8)
+
+static UNUSED_ATTR const U32 LL_bits[MaxLL+1] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3,
+ 4, 6, 7, 8, 9,10,11,12,
+ 13,14,15,16
+};
+static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = {
+ 4, 3, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 3, 2, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1
+};
+#define LL_DEFAULTNORMLOG 6 /* for static allocation */
+static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
+
+static UNUSED_ATTR const U32 ML_bits[MaxML+1] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 7, 8, 9,10,11,
+ 12,13,14,15,16
+};
+static UNUSED_ATTR const S16 ML_defaultNorm[MaxML+1] = {
+ 1, 4, 3, 2, 2, 2, 2, 2,
+ 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1,-1,-1,
+ -1,-1,-1,-1,-1
+};
+#define ML_DEFAULTNORMLOG 6 /* for static allocation */
+static UNUSED_ATTR const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
+
+static UNUSED_ATTR const S16 OF_defaultNorm[DefaultMaxOff+1] = {
+ 1, 1, 1, 1, 1, 1, 2, 2,
+ 2, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ -1,-1,-1,-1,-1
+};
+#define OF_DEFAULTNORMLOG 5 /* for static allocation */
+static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
+
+
+/*-*******************************************
+* Shared functions to include for inlining
+*********************************************/
+static void ZSTD_copy8(void* dst, const void* src) {
+ ZSTD_memcpy(dst, src, 8);
+}
+
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+static void ZSTD_copy16(void* dst, const void* src) {
+ ZSTD_memcpy(dst, src, 16);
+}
+#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
+
+#define WILDCOPY_OVERLENGTH 32
+#define WILDCOPY_VECLEN 16
+
+typedef enum {
+ ZSTD_no_overlap,
+ ZSTD_overlap_src_before_dst
+ /* ZSTD_overlap_dst_before_src, */
+} ZSTD_overlap_e;
+
+/*! ZSTD_wildcopy() :
+ * Custom version of ZSTD_memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0)
+ * @param ovtype controls the overlap detection
+ * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
+ * - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart.
+ * The src buffer must be before the dst buffer.
+ */
+MEM_STATIC FORCE_INLINE_ATTR
+void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype)
+{
+ ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + length;
+
+ assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff <= -WILDCOPY_VECLEN));
+
+ if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
+ /* Handle short offset copies. */
+ do {
+ COPY8(op, ip)
+ } while (op < oend);
+ } else {
+ assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
+ /* Separate out the first COPY16() call because the copy length is
+ * almost certain to be short, so the branches have different
+ * probabilities. Since it is almost certain to be short, only do
+ * one COPY16() in the first call. Then, do two calls per loop since
+ * at that point it is more likely to have a high trip count.
+ */
+#ifdef __aarch64__
+ do {
+ COPY16(op, ip);
+ }
+ while (op < oend);
+#else
+ ZSTD_copy16(op, ip);
+ if (16 >= length) return;
+ op += 16;
+ ip += 16;
+ do {
+ COPY16(op, ip);
+ COPY16(op, ip);
+ }
+ while (op < oend);
+#endif
+ }
+}
+
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ size_t const length = MIN(dstCapacity, srcSize);
+ if (length > 0) {
+ ZSTD_memcpy(dst, src, length);
+ }
+ return length;
+}
+
+/* define "workspace is too large" as this number of times larger than needed */
+#define ZSTD_WORKSPACETOOLARGE_FACTOR 3
+
+/* when workspace is continuously too large
+ * during at least this number of times,
+ * context's memory usage is considered wasteful,
+ * because it's sized to handle a worst case scenario which rarely happens.
+ * In which case, resize it down to free some memory */
+#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128
+
+/* Controls whether the input/output buffer is buffered or stable. */
+typedef enum {
+ ZSTD_bm_buffered = 0, /* Buffer the input/output */
+ ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */
+} ZSTD_bufferMode_e;
+
+
+/*-*******************************************
+* Private declarations
+*********************************************/
+typedef struct seqDef_s {
+ U32 offset; /* Offset code of the sequence */
+ U16 litLength;
+ U16 matchLength;
+} seqDef;
+
+typedef struct {
+ seqDef* sequencesStart;
+ seqDef* sequences; /* ptr to end of sequences */
+ BYTE* litStart;
+ BYTE* lit; /* ptr to end of literals */
+ BYTE* llCode;
+ BYTE* mlCode;
+ BYTE* ofCode;
+ size_t maxNbSeq;
+ size_t maxNbLit;
+
+ /* longLengthPos and longLengthID to allow us to represent either a single litLength or matchLength
+ * in the seqStore that has a value larger than U16 (if it exists). To do so, we increment
+ * the existing value of the litLength or matchLength by 0x10000.
+ */
+ U32 longLengthID; /* 0 == no longLength; 1 == Represent the long literal; 2 == Represent the long match; */
+ U32 longLengthPos; /* Index of the sequence to apply long length modification to */
+} seqStore_t;
+
+typedef struct {
+ U32 litLength;
+ U32 matchLength;
+} ZSTD_sequenceLength;
+
+/*
+ * Returns the ZSTD_sequenceLength for the given sequences. It handles the decoding of long sequences
+ * indicated by longLengthPos and longLengthID, and adds MINMATCH back to matchLength.
+ */
+MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore, seqDef const* seq)
+{
+ ZSTD_sequenceLength seqLen;
+ seqLen.litLength = seq->litLength;
+ seqLen.matchLength = seq->matchLength + MINMATCH;
+ if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
+ if (seqStore->longLengthID == 1) {
+ seqLen.litLength += 0xFFFF;
+ }
+ if (seqStore->longLengthID == 2) {
+ seqLen.matchLength += 0xFFFF;
+ }
+ }
+ return seqLen;
+}
+
+/*
+ * Contains the compressed frame size and an upper-bound for the decompressed frame size.
+ * Note: before using `compressedSize`, check for errors using ZSTD_isError().
+ * similarly, before using `decompressedBound`, check for errors using:
+ * `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
+ */
+typedef struct {
+ size_t compressedSize;
+ unsigned long long decompressedBound;
+} ZSTD_frameSizeInfo; /* decompress & legacy */
+
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
+
+/* custom memory allocation functions */
+void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem);
+void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem);
+void ZSTD_customFree(void* ptr, ZSTD_customMem customMem);
+
+
+MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
+{
+ assert(val != 0);
+ {
+# if (__GNUC__ >= 3) /* GCC Intrinsic */
+ return __builtin_clz (val) ^ 31;
+# else /* Software version */
+ static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ U32 v = val;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
+# endif
+ }
+}
+
+
+/* ZSTD_invalidateRepCodes() :
+ * ensures next compression will not use repcodes from previous block.
+ * Note : only works with regular variant;
+ * do not use with extDict variant ! */
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
+
+
+typedef struct {
+ blockType_e blockType;
+ U32 lastBlock;
+ U32 origSize;
+} blockProperties_t; /* declared here for decompress and fullbench */
+
+/*! ZSTD_getcBlockSize() :
+ * Provides the size of compressed block from block header `src` */
+/* Used by: decompress, fullbench (does not get its definition from here) */
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
+ blockProperties_t* bpPtr);
+
+/*! ZSTD_decodeSeqHeaders() :
+ * decode sequence header from src */
+/* Used by: decompress, fullbench (does not get its definition from here) */
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
+ const void* src, size_t srcSize);
+
+
+
+#endif /* ZSTD_CCOMMON_H_MODULE */
diff --git a/lib/zstd/compress.c b/lib/zstd/compress.c
deleted file mode 100644
index b080264ed3ad..000000000000
--- a/lib/zstd/compress.c
+++ /dev/null
@@ -1,3485 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-/*-*************************************
-* Dependencies
-***************************************/
-#include "fse.h"
-#include "huf.h"
-#include "mem.h"
-#include "zstd_internal.h" /* includes zstd.h */
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/string.h> /* memset */
-
-/*-*************************************
-* Constants
-***************************************/
-static const U32 g_searchStrength = 8; /* control skip over incompressible data */
-#define HASH_READ_SIZE 8
-typedef enum { ZSTDcs_created = 0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
-
-/*-*************************************
-* Helper functions
-***************************************/
-size_t ZSTD_compressBound(size_t srcSize) { return FSE_compressBound(srcSize) + 12; }
-
-/*-*************************************
-* Sequence storage
-***************************************/
-static void ZSTD_resetSeqStore(seqStore_t *ssPtr)
-{
- ssPtr->lit = ssPtr->litStart;
- ssPtr->sequences = ssPtr->sequencesStart;
- ssPtr->longLengthID = 0;
-}
-
-/*-*************************************
-* Context memory management
-***************************************/
-struct ZSTD_CCtx_s {
- const BYTE *nextSrc; /* next block here to continue on curr prefix */
- const BYTE *base; /* All regular indexes relative to this position */
- const BYTE *dictBase; /* extDict indexes relative to this position */
- U32 dictLimit; /* below that point, need extDict */
- U32 lowLimit; /* below that point, no more data */
- U32 nextToUpdate; /* index from which to continue dictionary update */
- U32 nextToUpdate3; /* index from which to continue dictionary update */
- U32 hashLog3; /* dispatch table : larger == faster, more memory */
- U32 loadedDictEnd; /* index of end of dictionary */
- U32 forceWindow; /* force back-references to respect limit of 1<<wLog, even for dictionary */
- U32 forceRawDict; /* Force loading dictionary in "content-only" mode (no header analysis) */
- ZSTD_compressionStage_e stage;
- U32 rep[ZSTD_REP_NUM];
- U32 repToConfirm[ZSTD_REP_NUM];
- U32 dictID;
- ZSTD_parameters params;
- void *workSpace;
- size_t workSpaceSize;
- size_t blockSize;
- U64 frameContentSize;
- struct xxh64_state xxhState;
- ZSTD_customMem customMem;
-
- seqStore_t seqStore; /* sequences storage ptrs */
- U32 *hashTable;
- U32 *hashTable3;
- U32 *chainTable;
- HUF_CElt *hufTable;
- U32 flagStaticTables;
- HUF_repeat flagStaticHufTable;
- FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
- FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
- FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
- unsigned tmpCounters[HUF_COMPRESS_WORKSPACE_SIZE_U32];
-};
-
-size_t ZSTD_CCtxWorkspaceBound(ZSTD_compressionParameters cParams)
-{
- size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << cParams.windowLog);
- U32 const divider = (cParams.searchLength == 3) ? 3 : 4;
- size_t const maxNbSeq = blockSize / divider;
- size_t const tokenSpace = blockSize + 11 * maxNbSeq;
- size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : (1 << cParams.chainLog);
- size_t const hSize = ((size_t)1) << cParams.hashLog;
- U32 const hashLog3 = (cParams.searchLength > 3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog);
- size_t const h3Size = ((size_t)1) << hashLog3;
- size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
- size_t const optSpace =
- ((MaxML + 1) + (MaxLL + 1) + (MaxOff + 1) + (1 << Litbits)) * sizeof(U32) + (ZSTD_OPT_NUM + 1) * (sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
- size_t const workspaceSize = tableSpace + (256 * sizeof(U32)) /* huffTable */ + tokenSpace +
- (((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
-
- return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_CCtx)) + ZSTD_ALIGN(workspaceSize);
-}
-
-static ZSTD_CCtx *ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
-{
- ZSTD_CCtx *cctx;
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
- cctx = (ZSTD_CCtx *)ZSTD_malloc(sizeof(ZSTD_CCtx), customMem);
- if (!cctx)
- return NULL;
- memset(cctx, 0, sizeof(ZSTD_CCtx));
- cctx->customMem = customMem;
- return cctx;
-}
-
-ZSTD_CCtx *ZSTD_initCCtx(void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- ZSTD_CCtx *cctx = ZSTD_createCCtx_advanced(stackMem);
- if (cctx) {
- cctx->workSpace = ZSTD_stackAllocAll(cctx->customMem.opaque, &cctx->workSpaceSize);
- }
- return cctx;
-}
-
-size_t ZSTD_freeCCtx(ZSTD_CCtx *cctx)
-{
- if (cctx == NULL)
- return 0; /* support free on NULL */
- ZSTD_free(cctx->workSpace, cctx->customMem);
- ZSTD_free(cctx, cctx->customMem);
- return 0; /* reserved as a potential error code in the future */
-}
-
-const seqStore_t *ZSTD_getSeqStore(const ZSTD_CCtx *ctx) /* hidden interface */ { return &(ctx->seqStore); }
-
-static ZSTD_parameters ZSTD_getParamsFromCCtx(const ZSTD_CCtx *cctx) { return cctx->params; }
-
-/** ZSTD_checkParams() :
- ensure param values remain within authorized range.
- @return : 0, or an error code if one value is beyond authorized range */
-size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
-{
-#define CLAMPCHECK(val, min, max) \
- { \
- if ((val < min) | (val > max)) \
- return ERROR(compressionParameter_unsupported); \
- }
- CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
- CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
- CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
- CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
- CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
- CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
- if ((U32)(cParams.strategy) > (U32)ZSTD_btopt2)
- return ERROR(compressionParameter_unsupported);
- return 0;
-}
-
-/** ZSTD_cycleLog() :
- * condition for correct operation : hashLog > 1 */
-static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
-{
- U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
- return hashLog - btScale;
-}
-
-/** ZSTD_adjustCParams() :
- optimize `cPar` for a given input (`srcSize` and `dictSize`).
- mostly downsizing to reduce memory consumption and initialization.
- Both `srcSize` and `dictSize` are optional (use 0 if unknown),
- but if both are 0, no optimization can be done.
- Note : cPar is considered validated at this stage. Use ZSTD_checkParams() to ensure that. */
-ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
-{
- if (srcSize + dictSize == 0)
- return cPar; /* no size information available : no adjustment */
-
- /* resize params, to use less memory when necessary */
- {
- U32 const minSrcSize = (srcSize == 0) ? 500 : 0;
- U64 const rSize = srcSize + dictSize + minSrcSize;
- if (rSize < ((U64)1 << ZSTD_WINDOWLOG_MAX)) {
- U32 const srcLog = MAX(ZSTD_HASHLOG_MIN, ZSTD_highbit32((U32)(rSize)-1) + 1);
- if (cPar.windowLog > srcLog)
- cPar.windowLog = srcLog;
- }
- }
- if (cPar.hashLog > cPar.windowLog)
- cPar.hashLog = cPar.windowLog;
- {
- U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
- if (cycleLog > cPar.windowLog)
- cPar.chainLog -= (cycleLog - cPar.windowLog);
- }
-
- if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
- cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */
-
- return cPar;
-}
-
-static U32 ZSTD_equivalentParams(ZSTD_parameters param1, ZSTD_parameters param2)
-{
- return (param1.cParams.hashLog == param2.cParams.hashLog) & (param1.cParams.chainLog == param2.cParams.chainLog) &
- (param1.cParams.strategy == param2.cParams.strategy) & ((param1.cParams.searchLength == 3) == (param2.cParams.searchLength == 3));
-}
-
-/*! ZSTD_continueCCtx() :
- reuse CCtx without reset (note : requires no dictionary) */
-static size_t ZSTD_continueCCtx(ZSTD_CCtx *cctx, ZSTD_parameters params, U64 frameContentSize)
-{
- U32 const end = (U32)(cctx->nextSrc - cctx->base);
- cctx->params = params;
- cctx->frameContentSize = frameContentSize;
- cctx->lowLimit = end;
- cctx->dictLimit = end;
- cctx->nextToUpdate = end + 1;
- cctx->stage = ZSTDcs_init;
- cctx->dictID = 0;
- cctx->loadedDictEnd = 0;
- {
- int i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- cctx->rep[i] = repStartValue[i];
- }
- cctx->seqStore.litLengthSum = 0; /* force reset of btopt stats */
- xxh64_reset(&cctx->xxhState, 0);
- return 0;
-}
-
-typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset, ZSTDcrp_fullReset } ZSTD_compResetPolicy_e;
-
-/*! ZSTD_resetCCtx_advanced() :
- note : `params` must be validated */
-static size_t ZSTD_resetCCtx_advanced(ZSTD_CCtx *zc, ZSTD_parameters params, U64 frameContentSize, ZSTD_compResetPolicy_e const crp)
-{
- if (crp == ZSTDcrp_continue)
- if (ZSTD_equivalentParams(params, zc->params)) {
- zc->flagStaticTables = 0;
- zc->flagStaticHufTable = HUF_repeat_none;
- return ZSTD_continueCCtx(zc, params, frameContentSize);
- }
-
- {
- size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << params.cParams.windowLog);
- U32 const divider = (params.cParams.searchLength == 3) ? 3 : 4;
- size_t const maxNbSeq = blockSize / divider;
- size_t const tokenSpace = blockSize + 11 * maxNbSeq;
- size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : (1 << params.cParams.chainLog);
- size_t const hSize = ((size_t)1) << params.cParams.hashLog;
- U32 const hashLog3 = (params.cParams.searchLength > 3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog);
- size_t const h3Size = ((size_t)1) << hashLog3;
- size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
- void *ptr;
-
- /* Check if workSpace is large enough, alloc a new one if needed */
- {
- size_t const optSpace = ((MaxML + 1) + (MaxLL + 1) + (MaxOff + 1) + (1 << Litbits)) * sizeof(U32) +
- (ZSTD_OPT_NUM + 1) * (sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
- size_t const neededSpace = tableSpace + (256 * sizeof(U32)) /* huffTable */ + tokenSpace +
- (((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
- if (zc->workSpaceSize < neededSpace) {
- ZSTD_free(zc->workSpace, zc->customMem);
- zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
- if (zc->workSpace == NULL)
- return ERROR(memory_allocation);
- zc->workSpaceSize = neededSpace;
- }
- }
-
- if (crp != ZSTDcrp_noMemset)
- memset(zc->workSpace, 0, tableSpace); /* reset tables only */
- xxh64_reset(&zc->xxhState, 0);
- zc->hashLog3 = hashLog3;
- zc->hashTable = (U32 *)(zc->workSpace);
- zc->chainTable = zc->hashTable + hSize;
- zc->hashTable3 = zc->chainTable + chainSize;
- ptr = zc->hashTable3 + h3Size;
- zc->hufTable = (HUF_CElt *)ptr;
- zc->flagStaticTables = 0;
- zc->flagStaticHufTable = HUF_repeat_none;
- ptr = ((U32 *)ptr) + 256; /* note : HUF_CElt* is incomplete type, size is simulated using U32 */
-
- zc->nextToUpdate = 1;
- zc->nextSrc = NULL;
- zc->base = NULL;
- zc->dictBase = NULL;
- zc->dictLimit = 0;
- zc->lowLimit = 0;
- zc->params = params;
- zc->blockSize = blockSize;
- zc->frameContentSize = frameContentSize;
- {
- int i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- zc->rep[i] = repStartValue[i];
- }
-
- if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) {
- zc->seqStore.litFreq = (U32 *)ptr;
- zc->seqStore.litLengthFreq = zc->seqStore.litFreq + (1 << Litbits);
- zc->seqStore.matchLengthFreq = zc->seqStore.litLengthFreq + (MaxLL + 1);
- zc->seqStore.offCodeFreq = zc->seqStore.matchLengthFreq + (MaxML + 1);
- ptr = zc->seqStore.offCodeFreq + (MaxOff + 1);
- zc->seqStore.matchTable = (ZSTD_match_t *)ptr;
- ptr = zc->seqStore.matchTable + ZSTD_OPT_NUM + 1;
- zc->seqStore.priceTable = (ZSTD_optimal_t *)ptr;
- ptr = zc->seqStore.priceTable + ZSTD_OPT_NUM + 1;
- zc->seqStore.litLengthSum = 0;
- }
- zc->seqStore.sequencesStart = (seqDef *)ptr;
- ptr = zc->seqStore.sequencesStart + maxNbSeq;
- zc->seqStore.llCode = (BYTE *)ptr;
- zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
- zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
- zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
-
- zc->stage = ZSTDcs_init;
- zc->dictID = 0;
- zc->loadedDictEnd = 0;
-
- return 0;
- }
-}
-
-/* ZSTD_invalidateRepCodes() :
- * ensures next compression will not use repcodes from previous block.
- * Note : only works with regular variant;
- * do not use with extDict variant ! */
-void ZSTD_invalidateRepCodes(ZSTD_CCtx *cctx)
-{
- int i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- cctx->rep[i] = 0;
-}
-
-/*! ZSTD_copyCCtx() :
-* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
-* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
-* @return : 0, or an error code */
-size_t ZSTD_copyCCtx(ZSTD_CCtx *dstCCtx, const ZSTD_CCtx *srcCCtx, unsigned long long pledgedSrcSize)
-{
- if (srcCCtx->stage != ZSTDcs_init)
- return ERROR(stage_wrong);
-
- memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
- {
- ZSTD_parameters params = srcCCtx->params;
- params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
- ZSTD_resetCCtx_advanced(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset);
- }
-
- /* copy tables */
- {
- size_t const chainSize = (srcCCtx->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << srcCCtx->params.cParams.chainLog);
- size_t const hSize = ((size_t)1) << srcCCtx->params.cParams.hashLog;
- size_t const h3Size = (size_t)1 << srcCCtx->hashLog3;
- size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
- memcpy(dstCCtx->workSpace, srcCCtx->workSpace, tableSpace);
- }
-
- /* copy dictionary offsets */
- dstCCtx->nextToUpdate = srcCCtx->nextToUpdate;
- dstCCtx->nextToUpdate3 = srcCCtx->nextToUpdate3;
- dstCCtx->nextSrc = srcCCtx->nextSrc;
- dstCCtx->base = srcCCtx->base;
- dstCCtx->dictBase = srcCCtx->dictBase;
- dstCCtx->dictLimit = srcCCtx->dictLimit;
- dstCCtx->lowLimit = srcCCtx->lowLimit;
- dstCCtx->loadedDictEnd = srcCCtx->loadedDictEnd;
- dstCCtx->dictID = srcCCtx->dictID;
-
- /* copy entropy tables */
- dstCCtx->flagStaticTables = srcCCtx->flagStaticTables;
- dstCCtx->flagStaticHufTable = srcCCtx->flagStaticHufTable;
- if (srcCCtx->flagStaticTables) {
- memcpy(dstCCtx->litlengthCTable, srcCCtx->litlengthCTable, sizeof(dstCCtx->litlengthCTable));
- memcpy(dstCCtx->matchlengthCTable, srcCCtx->matchlengthCTable, sizeof(dstCCtx->matchlengthCTable));
- memcpy(dstCCtx->offcodeCTable, srcCCtx->offcodeCTable, sizeof(dstCCtx->offcodeCTable));
- }
- if (srcCCtx->flagStaticHufTable) {
- memcpy(dstCCtx->hufTable, srcCCtx->hufTable, 256 * 4);
- }
-
- return 0;
-}
-
-/*! ZSTD_reduceTable() :
-* reduce table indexes by `reducerValue` */
-static void ZSTD_reduceTable(U32 *const table, U32 const size, U32 const reducerValue)
-{
- U32 u;
- for (u = 0; u < size; u++) {
- if (table[u] < reducerValue)
- table[u] = 0;
- else
- table[u] -= reducerValue;
- }
-}
-
-/*! ZSTD_reduceIndex() :
-* rescale all indexes to avoid future overflow (indexes are U32) */
-static void ZSTD_reduceIndex(ZSTD_CCtx *zc, const U32 reducerValue)
-{
- {
- U32 const hSize = 1 << zc->params.cParams.hashLog;
- ZSTD_reduceTable(zc->hashTable, hSize, reducerValue);
- }
-
- {
- U32 const chainSize = (zc->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << zc->params.cParams.chainLog);
- ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue);
- }
-
- {
- U32 const h3Size = (zc->hashLog3) ? 1 << zc->hashLog3 : 0;
- ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue);
- }
-}
-
-/*-*******************************************************
-* Block entropic compression
-*********************************************************/
-
-/* See doc/zstd_compression_format.md for detailed format description */
-
-size_t ZSTD_noCompressBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- if (srcSize + ZSTD_blockHeaderSize > dstCapacity)
- return ERROR(dstSize_tooSmall);
- memcpy((BYTE *)dst + ZSTD_blockHeaderSize, src, srcSize);
- ZSTD_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
- return ZSTD_blockHeaderSize + srcSize;
-}
-
-static size_t ZSTD_noCompressLiterals(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- BYTE *const ostart = (BYTE * const)dst;
- U32 const flSize = 1 + (srcSize > 31) + (srcSize > 4095);
-
- if (srcSize + flSize > dstCapacity)
- return ERROR(dstSize_tooSmall);
-
- switch (flSize) {
- case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_basic + (srcSize << 3)); break;
- case 2: /* 2 - 2 - 12 */ ZSTD_writeLE16(ostart, (U16)((U32)set_basic + (1 << 2) + (srcSize << 4))); break;
- default: /*note : should not be necessary : flSize is within {1,2,3} */
- case 3: /* 2 - 2 - 20 */ ZSTD_writeLE32(ostart, (U32)((U32)set_basic + (3 << 2) + (srcSize << 4))); break;
- }
-
- memcpy(ostart + flSize, src, srcSize);
- return srcSize + flSize;
-}
-
-static size_t ZSTD_compressRleLiteralsBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- BYTE *const ostart = (BYTE * const)dst;
- U32 const flSize = 1 + (srcSize > 31) + (srcSize > 4095);
-
- (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
-
- switch (flSize) {
- case 1: /* 2 - 1 - 5 */ ostart[0] = (BYTE)((U32)set_rle + (srcSize << 3)); break;
- case 2: /* 2 - 2 - 12 */ ZSTD_writeLE16(ostart, (U16)((U32)set_rle + (1 << 2) + (srcSize << 4))); break;
- default: /*note : should not be necessary : flSize is necessarily within {1,2,3} */
- case 3: /* 2 - 2 - 20 */ ZSTD_writeLE32(ostart, (U32)((U32)set_rle + (3 << 2) + (srcSize << 4))); break;
- }
-
- ostart[flSize] = *(const BYTE *)src;
- return flSize + 1;
-}
-
-static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
-
-static size_t ZSTD_compressLiterals(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t const minGain = ZSTD_minGain(srcSize);
- size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
- BYTE *const ostart = (BYTE *)dst;
- U32 singleStream = srcSize < 256;
- symbolEncodingType_e hType = set_compressed;
- size_t cLitSize;
-
-/* small ? don't even attempt compression (speed opt) */
-#define LITERAL_NOENTROPY 63
- {
- size_t const minLitSize = zc->flagStaticHufTable == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY;
- if (srcSize <= minLitSize)
- return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
- }
-
- if (dstCapacity < lhSize + 1)
- return ERROR(dstSize_tooSmall); /* not enough space for compression */
- {
- HUF_repeat repeat = zc->flagStaticHufTable;
- int const preferRepeat = zc->params.cParams.strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
- if (repeat == HUF_repeat_valid && lhSize == 3)
- singleStream = 1;
- cLitSize = singleStream ? HUF_compress1X_repeat(ostart + lhSize, dstCapacity - lhSize, src, srcSize, 255, 11, zc->tmpCounters,
- sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat)
- : HUF_compress4X_repeat(ostart + lhSize, dstCapacity - lhSize, src, srcSize, 255, 11, zc->tmpCounters,
- sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat);
- if (repeat != HUF_repeat_none) {
- hType = set_repeat;
- } /* reused the existing table */
- else {
- zc->flagStaticHufTable = HUF_repeat_check;
- } /* now have a table to reuse */
- }
-
- if ((cLitSize == 0) | (cLitSize >= srcSize - minGain)) {
- zc->flagStaticHufTable = HUF_repeat_none;
- return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
- }
- if (cLitSize == 1) {
- zc->flagStaticHufTable = HUF_repeat_none;
- return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
- }
-
- /* Build header */
- switch (lhSize) {
- case 3: /* 2 - 2 - 10 - 10 */
- {
- U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 14);
- ZSTD_writeLE24(ostart, lhc);
- break;
- }
- case 4: /* 2 - 2 - 14 - 14 */
- {
- U32 const lhc = hType + (2 << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 18);
- ZSTD_writeLE32(ostart, lhc);
- break;
- }
- default: /* should not be necessary, lhSize is only {3,4,5} */
- case 5: /* 2 - 2 - 18 - 18 */
- {
- U32 const lhc = hType + (3 << 2) + ((U32)srcSize << 4) + ((U32)cLitSize << 22);
- ZSTD_writeLE32(ostart, lhc);
- ostart[4] = (BYTE)(cLitSize >> 10);
- break;
- }
- }
- return lhSize + cLitSize;
-}
-
-static const BYTE LL_Code[64] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18,
- 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23,
- 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24};
-
-static const BYTE ML_Code[128] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
- 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38,
- 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42,
- 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42};
-
-void ZSTD_seqToCodes(const seqStore_t *seqStorePtr)
-{
- BYTE const LL_deltaCode = 19;
- BYTE const ML_deltaCode = 36;
- const seqDef *const sequences = seqStorePtr->sequencesStart;
- BYTE *const llCodeTable = seqStorePtr->llCode;
- BYTE *const ofCodeTable = seqStorePtr->ofCode;
- BYTE *const mlCodeTable = seqStorePtr->mlCode;
- U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
- U32 u;
- for (u = 0; u < nbSeq; u++) {
- U32 const llv = sequences[u].litLength;
- U32 const mlv = sequences[u].matchLength;
- llCodeTable[u] = (llv > 63) ? (BYTE)ZSTD_highbit32(llv) + LL_deltaCode : LL_Code[llv];
- ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
- mlCodeTable[u] = (mlv > 127) ? (BYTE)ZSTD_highbit32(mlv) + ML_deltaCode : ML_Code[mlv];
- }
- if (seqStorePtr->longLengthID == 1)
- llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
- if (seqStorePtr->longLengthID == 2)
- mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
-}
-
-ZSTD_STATIC size_t ZSTD_compressSequences_internal(ZSTD_CCtx *zc, void *dst, size_t dstCapacity)
-{
- const int longOffsets = zc->params.cParams.windowLog > STREAM_ACCUMULATOR_MIN;
- const seqStore_t *seqStorePtr = &(zc->seqStore);
- FSE_CTable *CTable_LitLength = zc->litlengthCTable;
- FSE_CTable *CTable_OffsetBits = zc->offcodeCTable;
- FSE_CTable *CTable_MatchLength = zc->matchlengthCTable;
- U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
- const seqDef *const sequences = seqStorePtr->sequencesStart;
- const BYTE *const ofCodeTable = seqStorePtr->ofCode;
- const BYTE *const llCodeTable = seqStorePtr->llCode;
- const BYTE *const mlCodeTable = seqStorePtr->mlCode;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstCapacity;
- BYTE *op = ostart;
- size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
- BYTE *seqHead;
-
- U32 *count;
- S16 *norm;
- U32 *workspace;
- size_t workspaceSize = sizeof(zc->tmpCounters);
- {
- size_t spaceUsed32 = 0;
- count = (U32 *)zc->tmpCounters + spaceUsed32;
- spaceUsed32 += MaxSeq + 1;
- norm = (S16 *)((U32 *)zc->tmpCounters + spaceUsed32);
- spaceUsed32 += ALIGN(sizeof(S16) * (MaxSeq + 1), sizeof(U32)) >> 2;
-
- workspace = (U32 *)zc->tmpCounters + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
- }
-
- /* Compress literals */
- {
- const BYTE *const literals = seqStorePtr->litStart;
- size_t const litSize = seqStorePtr->lit - literals;
- size_t const cSize = ZSTD_compressLiterals(zc, op, dstCapacity, literals, litSize);
- if (ZSTD_isError(cSize))
- return cSize;
- op += cSize;
- }
-
- /* Sequences Header */
- if ((oend - op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */)
- return ERROR(dstSize_tooSmall);
- if (nbSeq < 0x7F)
- *op++ = (BYTE)nbSeq;
- else if (nbSeq < LONGNBSEQ)
- op[0] = (BYTE)((nbSeq >> 8) + 0x80), op[1] = (BYTE)nbSeq, op += 2;
- else
- op[0] = 0xFF, ZSTD_writeLE16(op + 1, (U16)(nbSeq - LONGNBSEQ)), op += 3;
- if (nbSeq == 0)
- return op - ostart;
-
- /* seqHead : flags for FSE encoding type */
- seqHead = op++;
-
-#define MIN_SEQ_FOR_DYNAMIC_FSE 64
-#define MAX_SEQ_FOR_STATIC_FSE 1000
-
- /* convert length/distances into codes */
- ZSTD_seqToCodes(seqStorePtr);
-
- /* CTable for Literal Lengths */
- {
- U32 max = MaxLL;
- size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace);
- if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
- *op++ = llCodeTable[0];
- FSE_buildCTable_rle(CTable_LitLength, (BYTE)max);
- LLtype = set_rle;
- } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
- LLtype = set_repeat;
- } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (LL_defaultNormLog - 1)))) {
- FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, workspace, workspaceSize);
- LLtype = set_basic;
- } else {
- size_t nbSeq_1 = nbSeq;
- const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max);
- if (count[llCodeTable[nbSeq - 1]] > 1) {
- count[llCodeTable[nbSeq - 1]]--;
- nbSeq_1--;
- }
- FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
- {
- size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
- if (FSE_isError(NCountSize))
- return NCountSize;
- op += NCountSize;
- }
- FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, workspace, workspaceSize);
- LLtype = set_compressed;
- }
- }
-
- /* CTable for Offsets */
- {
- U32 max = MaxOff;
- size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace);
- if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
- *op++ = ofCodeTable[0];
- FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max);
- Offtype = set_rle;
- } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
- Offtype = set_repeat;
- } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (OF_defaultNormLog - 1)))) {
- FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog, workspace, workspaceSize);
- Offtype = set_basic;
- } else {
- size_t nbSeq_1 = nbSeq;
- const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max);
- if (count[ofCodeTable[nbSeq - 1]] > 1) {
- count[ofCodeTable[nbSeq - 1]]--;
- nbSeq_1--;
- }
- FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
- {
- size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
- if (FSE_isError(NCountSize))
- return NCountSize;
- op += NCountSize;
- }
- FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, workspace, workspaceSize);
- Offtype = set_compressed;
- }
- }
-
- /* CTable for MatchLengths */
- {
- U32 max = MaxML;
- size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace);
- if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
- *op++ = *mlCodeTable;
- FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max);
- MLtype = set_rle;
- } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
- MLtype = set_repeat;
- } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (ML_defaultNormLog - 1)))) {
- FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, workspace, workspaceSize);
- MLtype = set_basic;
- } else {
- size_t nbSeq_1 = nbSeq;
- const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max);
- if (count[mlCodeTable[nbSeq - 1]] > 1) {
- count[mlCodeTable[nbSeq - 1]]--;
- nbSeq_1--;
- }
- FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
- {
- size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
- if (FSE_isError(NCountSize))
- return NCountSize;
- op += NCountSize;
- }
- FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, workspace, workspaceSize);
- MLtype = set_compressed;
- }
- }
-
- *seqHead = (BYTE)((LLtype << 6) + (Offtype << 4) + (MLtype << 2));
- zc->flagStaticTables = 0;
-
- /* Encoding Sequences */
- {
- BIT_CStream_t blockStream;
- FSE_CState_t stateMatchLength;
- FSE_CState_t stateOffsetBits;
- FSE_CState_t stateLitLength;
-
- CHECK_E(BIT_initCStream(&blockStream, op, oend - op), dstSize_tooSmall); /* not enough space remaining */
-
- /* first symbols */
- FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq - 1]);
- FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq - 1]);
- FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq - 1]);
- BIT_addBits(&blockStream, sequences[nbSeq - 1].litLength, LL_bits[llCodeTable[nbSeq - 1]]);
- if (ZSTD_32bits())
- BIT_flushBits(&blockStream);
- BIT_addBits(&blockStream, sequences[nbSeq - 1].matchLength, ML_bits[mlCodeTable[nbSeq - 1]]);
- if (ZSTD_32bits())
- BIT_flushBits(&blockStream);
- if (longOffsets) {
- U32 const ofBits = ofCodeTable[nbSeq - 1];
- int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN - 1);
- if (extraBits) {
- BIT_addBits(&blockStream, sequences[nbSeq - 1].offset, extraBits);
- BIT_flushBits(&blockStream);
- }
- BIT_addBits(&blockStream, sequences[nbSeq - 1].offset >> extraBits, ofBits - extraBits);
- } else {
- BIT_addBits(&blockStream, sequences[nbSeq - 1].offset, ofCodeTable[nbSeq - 1]);
- }
- BIT_flushBits(&blockStream);
-
- {
- size_t n;
- for (n = nbSeq - 2; n < nbSeq; n--) { /* intentional underflow */
- BYTE const llCode = llCodeTable[n];
- BYTE const ofCode = ofCodeTable[n];
- BYTE const mlCode = mlCodeTable[n];
- U32 const llBits = LL_bits[llCode];
- U32 const ofBits = ofCode; /* 32b*/ /* 64b*/
- U32 const mlBits = ML_bits[mlCode];
- /* (7)*/ /* (7)*/
- FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
- FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
- if (ZSTD_32bits())
- BIT_flushBits(&blockStream); /* (7)*/
- FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
- if (ZSTD_32bits() || (ofBits + mlBits + llBits >= 64 - 7 - (LLFSELog + MLFSELog + OffFSELog)))
- BIT_flushBits(&blockStream); /* (7)*/
- BIT_addBits(&blockStream, sequences[n].litLength, llBits);
- if (ZSTD_32bits() && ((llBits + mlBits) > 24))
- BIT_flushBits(&blockStream);
- BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
- if (ZSTD_32bits())
- BIT_flushBits(&blockStream); /* (7)*/
- if (longOffsets) {
- int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN - 1);
- if (extraBits) {
- BIT_addBits(&blockStream, sequences[n].offset, extraBits);
- BIT_flushBits(&blockStream); /* (7)*/
- }
- BIT_addBits(&blockStream, sequences[n].offset >> extraBits, ofBits - extraBits); /* 31 */
- } else {
- BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
- }
- BIT_flushBits(&blockStream); /* (7)*/
- }
- }
-
- FSE_flushCState(&blockStream, &stateMatchLength);
- FSE_flushCState(&blockStream, &stateOffsetBits);
- FSE_flushCState(&blockStream, &stateLitLength);
-
- {
- size_t const streamSize = BIT_closeCStream(&blockStream);
- if (streamSize == 0)
- return ERROR(dstSize_tooSmall); /* not enough space */
- op += streamSize;
- }
- }
- return op - ostart;
-}
-
-ZSTD_STATIC size_t ZSTD_compressSequences(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, size_t srcSize)
-{
- size_t const cSize = ZSTD_compressSequences_internal(zc, dst, dstCapacity);
- size_t const minGain = ZSTD_minGain(srcSize);
- size_t const maxCSize = srcSize - minGain;
- /* If the srcSize <= dstCapacity, then there is enough space to write a
- * raw uncompressed block. Since we ran out of space, the block must not
- * be compressible, so fall back to a raw uncompressed block.
- */
- int const uncompressibleError = cSize == ERROR(dstSize_tooSmall) && srcSize <= dstCapacity;
- int i;
-
- if (ZSTD_isError(cSize) && !uncompressibleError)
- return cSize;
- if (cSize >= maxCSize || uncompressibleError) {
- zc->flagStaticHufTable = HUF_repeat_none;
- return 0;
- }
- /* confirm repcodes */
- for (i = 0; i < ZSTD_REP_NUM; i++)
- zc->rep[i] = zc->repToConfirm[i];
- return cSize;
-}
-
-/*! ZSTD_storeSeq() :
- Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
- `offsetCode` : distance to match, or 0 == repCode.
- `matchCode` : matchLength - MINMATCH
-*/
-ZSTD_STATIC void ZSTD_storeSeq(seqStore_t *seqStorePtr, size_t litLength, const void *literals, U32 offsetCode, size_t matchCode)
-{
- /* copy Literals */
- ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
- seqStorePtr->lit += litLength;
-
- /* literal Length */
- if (litLength > 0xFFFF) {
- seqStorePtr->longLengthID = 1;
- seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
- }
- seqStorePtr->sequences[0].litLength = (U16)litLength;
-
- /* match offset */
- seqStorePtr->sequences[0].offset = offsetCode + 1;
-
- /* match Length */
- if (matchCode > 0xFFFF) {
- seqStorePtr->longLengthID = 2;
- seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
- }
- seqStorePtr->sequences[0].matchLength = (U16)matchCode;
-
- seqStorePtr->sequences++;
-}
-
-/*-*************************************
-* Match length counter
-***************************************/
-static unsigned ZSTD_NbCommonBytes(register size_t val)
-{
- if (ZSTD_isLittleEndian()) {
- if (ZSTD_64bits()) {
- return (__builtin_ctzll((U64)val) >> 3);
- } else { /* 32 bits */
- return (__builtin_ctz((U32)val) >> 3);
- }
- } else { /* Big Endian CPU */
- if (ZSTD_64bits()) {
- return (__builtin_clzll(val) >> 3);
- } else { /* 32 bits */
- return (__builtin_clz((U32)val) >> 3);
- }
- }
-}
-
-static size_t ZSTD_count(const BYTE *pIn, const BYTE *pMatch, const BYTE *const pInLimit)
-{
- const BYTE *const pStart = pIn;
- const BYTE *const pInLoopLimit = pInLimit - (sizeof(size_t) - 1);
-
- while (pIn < pInLoopLimit) {
- size_t const diff = ZSTD_readST(pMatch) ^ ZSTD_readST(pIn);
- if (!diff) {
- pIn += sizeof(size_t);
- pMatch += sizeof(size_t);
- continue;
- }
- pIn += ZSTD_NbCommonBytes(diff);
- return (size_t)(pIn - pStart);
- }
- if (ZSTD_64bits())
- if ((pIn < (pInLimit - 3)) && (ZSTD_read32(pMatch) == ZSTD_read32(pIn))) {
- pIn += 4;
- pMatch += 4;
- }
- if ((pIn < (pInLimit - 1)) && (ZSTD_read16(pMatch) == ZSTD_read16(pIn))) {
- pIn += 2;
- pMatch += 2;
- }
- if ((pIn < pInLimit) && (*pMatch == *pIn))
- pIn++;
- return (size_t)(pIn - pStart);
-}
-
-/** ZSTD_count_2segments() :
-* can count match length with `ip` & `match` in 2 different segments.
-* convention : on reaching mEnd, match count continue starting from iStart
-*/
-static size_t ZSTD_count_2segments(const BYTE *ip, const BYTE *match, const BYTE *iEnd, const BYTE *mEnd, const BYTE *iStart)
-{
- const BYTE *const vEnd = MIN(ip + (mEnd - match), iEnd);
- size_t const matchLength = ZSTD_count(ip, match, vEnd);
- if (match + matchLength != mEnd)
- return matchLength;
- return matchLength + ZSTD_count(ip + matchLength, iStart, iEnd);
-}
-
-/*-*************************************
-* Hashes
-***************************************/
-static const U32 prime3bytes = 506832829U;
-static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32 - 24)) * prime3bytes) >> (32 - h); }
-ZSTD_STATIC size_t ZSTD_hash3Ptr(const void *ptr, U32 h) { return ZSTD_hash3(ZSTD_readLE32(ptr), h); } /* only in zstd_opt.h */
-
-static const U32 prime4bytes = 2654435761U;
-static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32 - h); }
-static size_t ZSTD_hash4Ptr(const void *ptr, U32 h) { return ZSTD_hash4(ZSTD_read32(ptr), h); }
-
-static const U64 prime5bytes = 889523592379ULL;
-static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64 - 40)) * prime5bytes) >> (64 - h)); }
-static size_t ZSTD_hash5Ptr(const void *p, U32 h) { return ZSTD_hash5(ZSTD_readLE64(p), h); }
-
-static const U64 prime6bytes = 227718039650203ULL;
-static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64 - 48)) * prime6bytes) >> (64 - h)); }
-static size_t ZSTD_hash6Ptr(const void *p, U32 h) { return ZSTD_hash6(ZSTD_readLE64(p), h); }
-
-static const U64 prime7bytes = 58295818150454627ULL;
-static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64 - 56)) * prime7bytes) >> (64 - h)); }
-static size_t ZSTD_hash7Ptr(const void *p, U32 h) { return ZSTD_hash7(ZSTD_readLE64(p), h); }
-
-static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
-static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u)*prime8bytes) >> (64 - h)); }
-static size_t ZSTD_hash8Ptr(const void *p, U32 h) { return ZSTD_hash8(ZSTD_readLE64(p), h); }
-
-static size_t ZSTD_hashPtr(const void *p, U32 hBits, U32 mls)
-{
- switch (mls) {
- // case 3: return ZSTD_hash3Ptr(p, hBits);
- default:
- case 4: return ZSTD_hash4Ptr(p, hBits);
- case 5: return ZSTD_hash5Ptr(p, hBits);
- case 6: return ZSTD_hash6Ptr(p, hBits);
- case 7: return ZSTD_hash7Ptr(p, hBits);
- case 8: return ZSTD_hash8Ptr(p, hBits);
- }
-}
-
-/*-*************************************
-* Fast Scan
-***************************************/
-static void ZSTD_fillHashTable(ZSTD_CCtx *zc, const void *end, const U32 mls)
-{
- U32 *const hashTable = zc->hashTable;
- U32 const hBits = zc->params.cParams.hashLog;
- const BYTE *const base = zc->base;
- const BYTE *ip = base + zc->nextToUpdate;
- const BYTE *const iend = ((const BYTE *)end) - HASH_READ_SIZE;
- const size_t fastHashFillStep = 3;
-
- while (ip <= iend) {
- hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
- ip += fastHashFillStep;
- }
-}
-
-FORCE_INLINE
-void ZSTD_compressBlock_fast_generic(ZSTD_CCtx *cctx, const void *src, size_t srcSize, const U32 mls)
-{
- U32 *const hashTable = cctx->hashTable;
- U32 const hBits = cctx->params.cParams.hashLog;
- seqStore_t *seqStorePtr = &(cctx->seqStore);
- const BYTE *const base = cctx->base;
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const U32 lowestIndex = cctx->dictLimit;
- const BYTE *const lowest = base + lowestIndex;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - HASH_READ_SIZE;
- U32 offset_1 = cctx->rep[0], offset_2 = cctx->rep[1];
- U32 offsetSaved = 0;
-
- /* init */
- ip += (ip == lowest);
- {
- U32 const maxRep = (U32)(ip - lowest);
- if (offset_2 > maxRep)
- offsetSaved = offset_2, offset_2 = 0;
- if (offset_1 > maxRep)
- offsetSaved = offset_1, offset_1 = 0;
- }
-
- /* Main Search Loop */
- while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
- size_t mLength;
- size_t const h = ZSTD_hashPtr(ip, hBits, mls);
- U32 const curr = (U32)(ip - base);
- U32 const matchIndex = hashTable[h];
- const BYTE *match = base + matchIndex;
- hashTable[h] = curr; /* update hash table */
-
- if ((offset_1 > 0) & (ZSTD_read32(ip + 1 - offset_1) == ZSTD_read32(ip + 1))) {
- mLength = ZSTD_count(ip + 1 + 4, ip + 1 + 4 - offset_1, iend) + 4;
- ip++;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
- } else {
- U32 offset;
- if ((matchIndex <= lowestIndex) || (ZSTD_read32(match) != ZSTD_read32(ip))) {
- ip += ((ip - anchor) >> g_searchStrength) + 1;
- continue;
- }
- mLength = ZSTD_count(ip + 4, match + 4, iend) + 4;
- offset = (U32)(ip - match);
- while (((ip > anchor) & (match > lowest)) && (ip[-1] == match[-1])) {
- ip--;
- match--;
- mLength++;
- } /* catch up */
- offset_2 = offset_1;
- offset_1 = offset;
-
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
- }
-
- /* match found */
- ip += mLength;
- anchor = ip;
-
- if (ip <= ilimit) {
- /* Fill Table */
- hashTable[ZSTD_hashPtr(base + curr + 2, hBits, mls)] = curr + 2; /* here because curr+2 could be > iend-8 */
- hashTable[ZSTD_hashPtr(ip - 2, hBits, mls)] = (U32)(ip - 2 - base);
- /* check immediate repcode */
- while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
- /* store sequence */
- size_t const rLength = ZSTD_count(ip + 4, ip + 4 - offset_2, iend) + 4;
- {
- U32 const tmpOff = offset_2;
- offset_2 = offset_1;
- offset_1 = tmpOff;
- } /* swap offset_2 <=> offset_1 */
- hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength - MINMATCH);
- ip += rLength;
- anchor = ip;
- continue; /* faster when present ... (?) */
- }
- }
- }
-
- /* save reps for next block */
- cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
- cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-static void ZSTD_compressBlock_fast(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- const U32 mls = ctx->params.cParams.searchLength;
- switch (mls) {
- default: /* includes case 3 */
- case 4: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4); return;
- case 5: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5); return;
- case 6: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6); return;
- case 7: ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7); return;
- }
-}
-
-static void ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 mls)
-{
- U32 *hashTable = ctx->hashTable;
- const U32 hBits = ctx->params.cParams.hashLog;
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const base = ctx->base;
- const BYTE *const dictBase = ctx->dictBase;
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const U32 lowestIndex = ctx->lowLimit;
- const BYTE *const dictStart = dictBase + lowestIndex;
- const U32 dictLimit = ctx->dictLimit;
- const BYTE *const lowPrefixPtr = base + dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
-
- /* Search Loop */
- while (ip < ilimit) { /* < instead of <=, because (ip+1) */
- const size_t h = ZSTD_hashPtr(ip, hBits, mls);
- const U32 matchIndex = hashTable[h];
- const BYTE *matchBase = matchIndex < dictLimit ? dictBase : base;
- const BYTE *match = matchBase + matchIndex;
- const U32 curr = (U32)(ip - base);
- const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
- const BYTE *repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *repMatch = repBase + repIndex;
- size_t mLength;
- hashTable[h] = curr; /* update hash table */
-
- if ((((U32)((dictLimit - 1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) &&
- (ZSTD_read32(repMatch) == ZSTD_read32(ip + 1))) {
- const BYTE *repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
- mLength = ZSTD_count_2segments(ip + 1 + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repMatchEnd, lowPrefixPtr) + EQUAL_READ32;
- ip++;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
- } else {
- if ((matchIndex < lowestIndex) || (ZSTD_read32(match) != ZSTD_read32(ip))) {
- ip += ((ip - anchor) >> g_searchStrength) + 1;
- continue;
- }
- {
- const BYTE *matchEnd = matchIndex < dictLimit ? dictEnd : iend;
- const BYTE *lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
- U32 offset;
- mLength = ZSTD_count_2segments(ip + EQUAL_READ32, match + EQUAL_READ32, iend, matchEnd, lowPrefixPtr) + EQUAL_READ32;
- while (((ip > anchor) & (match > lowMatchPtr)) && (ip[-1] == match[-1])) {
- ip--;
- match--;
- mLength++;
- } /* catch up */
- offset = curr - matchIndex;
- offset_2 = offset_1;
- offset_1 = offset;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
- }
- }
-
- /* found a match : store it */
- ip += mLength;
- anchor = ip;
-
- if (ip <= ilimit) {
- /* Fill Table */
- hashTable[ZSTD_hashPtr(base + curr + 2, hBits, mls)] = curr + 2;
- hashTable[ZSTD_hashPtr(ip - 2, hBits, mls)] = (U32)(ip - 2 - base);
- /* check immediate repcode */
- while (ip <= ilimit) {
- U32 const curr2 = (U32)(ip - base);
- U32 const repIndex2 = curr2 - offset_2;
- const BYTE *repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
- if ((((U32)((dictLimit - 1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
- && (ZSTD_read32(repMatch2) == ZSTD_read32(ip))) {
- const BYTE *const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
- size_t repLength2 =
- ZSTD_count_2segments(ip + EQUAL_READ32, repMatch2 + EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
- U32 tmpOffset = offset_2;
- offset_2 = offset_1;
- offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2 - MINMATCH);
- hashTable[ZSTD_hashPtr(ip, hBits, mls)] = curr2;
- ip += repLength2;
- anchor = ip;
- continue;
- }
- break;
- }
- }
- }
-
- /* save reps for next block */
- ctx->repToConfirm[0] = offset_1;
- ctx->repToConfirm[1] = offset_2;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-static void ZSTD_compressBlock_fast_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- U32 const mls = ctx->params.cParams.searchLength;
- switch (mls) {
- default: /* includes case 3 */
- case 4: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4); return;
- case 5: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5); return;
- case 6: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6); return;
- case 7: ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7); return;
- }
-}
-
-/*-*************************************
-* Double Fast
-***************************************/
-static void ZSTD_fillDoubleHashTable(ZSTD_CCtx *cctx, const void *end, const U32 mls)
-{
- U32 *const hashLarge = cctx->hashTable;
- U32 const hBitsL = cctx->params.cParams.hashLog;
- U32 *const hashSmall = cctx->chainTable;
- U32 const hBitsS = cctx->params.cParams.chainLog;
- const BYTE *const base = cctx->base;
- const BYTE *ip = base + cctx->nextToUpdate;
- const BYTE *const iend = ((const BYTE *)end) - HASH_READ_SIZE;
- const size_t fastHashFillStep = 3;
-
- while (ip <= iend) {
- hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
- hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
- ip += fastHashFillStep;
- }
-}
-
-FORCE_INLINE
-void ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx *cctx, const void *src, size_t srcSize, const U32 mls)
-{
- U32 *const hashLong = cctx->hashTable;
- const U32 hBitsL = cctx->params.cParams.hashLog;
- U32 *const hashSmall = cctx->chainTable;
- const U32 hBitsS = cctx->params.cParams.chainLog;
- seqStore_t *seqStorePtr = &(cctx->seqStore);
- const BYTE *const base = cctx->base;
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const U32 lowestIndex = cctx->dictLimit;
- const BYTE *const lowest = base + lowestIndex;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - HASH_READ_SIZE;
- U32 offset_1 = cctx->rep[0], offset_2 = cctx->rep[1];
- U32 offsetSaved = 0;
-
- /* init */
- ip += (ip == lowest);
- {
- U32 const maxRep = (U32)(ip - lowest);
- if (offset_2 > maxRep)
- offsetSaved = offset_2, offset_2 = 0;
- if (offset_1 > maxRep)
- offsetSaved = offset_1, offset_1 = 0;
- }
-
- /* Main Search Loop */
- while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
- size_t mLength;
- size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
- size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
- U32 const curr = (U32)(ip - base);
- U32 const matchIndexL = hashLong[h2];
- U32 const matchIndexS = hashSmall[h];
- const BYTE *matchLong = base + matchIndexL;
- const BYTE *match = base + matchIndexS;
- hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
-
- if ((offset_1 > 0) & (ZSTD_read32(ip + 1 - offset_1) == ZSTD_read32(ip + 1))) { /* note : by construction, offset_1 <= curr */
- mLength = ZSTD_count(ip + 1 + 4, ip + 1 + 4 - offset_1, iend) + 4;
- ip++;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
- } else {
- U32 offset;
- if ((matchIndexL > lowestIndex) && (ZSTD_read64(matchLong) == ZSTD_read64(ip))) {
- mLength = ZSTD_count(ip + 8, matchLong + 8, iend) + 8;
- offset = (U32)(ip - matchLong);
- while (((ip > anchor) & (matchLong > lowest)) && (ip[-1] == matchLong[-1])) {
- ip--;
- matchLong--;
- mLength++;
- } /* catch up */
- } else if ((matchIndexS > lowestIndex) && (ZSTD_read32(match) == ZSTD_read32(ip))) {
- size_t const h3 = ZSTD_hashPtr(ip + 1, hBitsL, 8);
- U32 const matchIndex3 = hashLong[h3];
- const BYTE *match3 = base + matchIndex3;
- hashLong[h3] = curr + 1;
- if ((matchIndex3 > lowestIndex) && (ZSTD_read64(match3) == ZSTD_read64(ip + 1))) {
- mLength = ZSTD_count(ip + 9, match3 + 8, iend) + 8;
- ip++;
- offset = (U32)(ip - match3);
- while (((ip > anchor) & (match3 > lowest)) && (ip[-1] == match3[-1])) {
- ip--;
- match3--;
- mLength++;
- } /* catch up */
- } else {
- mLength = ZSTD_count(ip + 4, match + 4, iend) + 4;
- offset = (U32)(ip - match);
- while (((ip > anchor) & (match > lowest)) && (ip[-1] == match[-1])) {
- ip--;
- match--;
- mLength++;
- } /* catch up */
- }
- } else {
- ip += ((ip - anchor) >> g_searchStrength) + 1;
- continue;
- }
-
- offset_2 = offset_1;
- offset_1 = offset;
-
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
- }
-
- /* match found */
- ip += mLength;
- anchor = ip;
-
- if (ip <= ilimit) {
- /* Fill Table */
- hashLong[ZSTD_hashPtr(base + curr + 2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(base + curr + 2, hBitsS, mls)] =
- curr + 2; /* here because curr+2 could be > iend-8 */
- hashLong[ZSTD_hashPtr(ip - 2, hBitsL, 8)] = hashSmall[ZSTD_hashPtr(ip - 2, hBitsS, mls)] = (U32)(ip - 2 - base);
-
- /* check immediate repcode */
- while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
- /* store sequence */
- size_t const rLength = ZSTD_count(ip + 4, ip + 4 - offset_2, iend) + 4;
- {
- U32 const tmpOff = offset_2;
- offset_2 = offset_1;
- offset_1 = tmpOff;
- } /* swap offset_2 <=> offset_1 */
- hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
- hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength - MINMATCH);
- ip += rLength;
- anchor = ip;
- continue; /* faster when present ... (?) */
- }
- }
- }
-
- /* save reps for next block */
- cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
- cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-static void ZSTD_compressBlock_doubleFast(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- const U32 mls = ctx->params.cParams.searchLength;
- switch (mls) {
- default: /* includes case 3 */
- case 4: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4); return;
- case 5: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5); return;
- case 6: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6); return;
- case 7: ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7); return;
- }
-}
-
-static void ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 mls)
-{
- U32 *const hashLong = ctx->hashTable;
- U32 const hBitsL = ctx->params.cParams.hashLog;
- U32 *const hashSmall = ctx->chainTable;
- U32 const hBitsS = ctx->params.cParams.chainLog;
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const base = ctx->base;
- const BYTE *const dictBase = ctx->dictBase;
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const U32 lowestIndex = ctx->lowLimit;
- const BYTE *const dictStart = dictBase + lowestIndex;
- const U32 dictLimit = ctx->dictLimit;
- const BYTE *const lowPrefixPtr = base + dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
-
- /* Search Loop */
- while (ip < ilimit) { /* < instead of <=, because (ip+1) */
- const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
- const U32 matchIndex = hashSmall[hSmall];
- const BYTE *matchBase = matchIndex < dictLimit ? dictBase : base;
- const BYTE *match = matchBase + matchIndex;
-
- const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
- const U32 matchLongIndex = hashLong[hLong];
- const BYTE *matchLongBase = matchLongIndex < dictLimit ? dictBase : base;
- const BYTE *matchLong = matchLongBase + matchLongIndex;
-
- const U32 curr = (U32)(ip - base);
- const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
- const BYTE *repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *repMatch = repBase + repIndex;
- size_t mLength;
- hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
-
- if ((((U32)((dictLimit - 1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex)) &&
- (ZSTD_read32(repMatch) == ZSTD_read32(ip + 1))) {
- const BYTE *repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
- mLength = ZSTD_count_2segments(ip + 1 + 4, repMatch + 4, iend, repMatchEnd, lowPrefixPtr) + 4;
- ip++;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, 0, mLength - MINMATCH);
- } else {
- if ((matchLongIndex > lowestIndex) && (ZSTD_read64(matchLong) == ZSTD_read64(ip))) {
- const BYTE *matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
- const BYTE *lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr;
- U32 offset;
- mLength = ZSTD_count_2segments(ip + 8, matchLong + 8, iend, matchEnd, lowPrefixPtr) + 8;
- offset = curr - matchLongIndex;
- while (((ip > anchor) & (matchLong > lowMatchPtr)) && (ip[-1] == matchLong[-1])) {
- ip--;
- matchLong--;
- mLength++;
- } /* catch up */
- offset_2 = offset_1;
- offset_1 = offset;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
-
- } else if ((matchIndex > lowestIndex) && (ZSTD_read32(match) == ZSTD_read32(ip))) {
- size_t const h3 = ZSTD_hashPtr(ip + 1, hBitsL, 8);
- U32 const matchIndex3 = hashLong[h3];
- const BYTE *const match3Base = matchIndex3 < dictLimit ? dictBase : base;
- const BYTE *match3 = match3Base + matchIndex3;
- U32 offset;
- hashLong[h3] = curr + 1;
- if ((matchIndex3 > lowestIndex) && (ZSTD_read64(match3) == ZSTD_read64(ip + 1))) {
- const BYTE *matchEnd = matchIndex3 < dictLimit ? dictEnd : iend;
- const BYTE *lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr;
- mLength = ZSTD_count_2segments(ip + 9, match3 + 8, iend, matchEnd, lowPrefixPtr) + 8;
- ip++;
- offset = curr + 1 - matchIndex3;
- while (((ip > anchor) & (match3 > lowMatchPtr)) && (ip[-1] == match3[-1])) {
- ip--;
- match3--;
- mLength++;
- } /* catch up */
- } else {
- const BYTE *matchEnd = matchIndex < dictLimit ? dictEnd : iend;
- const BYTE *lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
- mLength = ZSTD_count_2segments(ip + 4, match + 4, iend, matchEnd, lowPrefixPtr) + 4;
- offset = curr - matchIndex;
- while (((ip > anchor) & (match > lowMatchPtr)) && (ip[-1] == match[-1])) {
- ip--;
- match--;
- mLength++;
- } /* catch up */
- }
- offset_2 = offset_1;
- offset_1 = offset;
- ZSTD_storeSeq(seqStorePtr, ip - anchor, anchor, offset + ZSTD_REP_MOVE, mLength - MINMATCH);
-
- } else {
- ip += ((ip - anchor) >> g_searchStrength) + 1;
- continue;
- }
- }
-
- /* found a match : store it */
- ip += mLength;
- anchor = ip;
-
- if (ip <= ilimit) {
- /* Fill Table */
- hashSmall[ZSTD_hashPtr(base + curr + 2, hBitsS, mls)] = curr + 2;
- hashLong[ZSTD_hashPtr(base + curr + 2, hBitsL, 8)] = curr + 2;
- hashSmall[ZSTD_hashPtr(ip - 2, hBitsS, mls)] = (U32)(ip - 2 - base);
- hashLong[ZSTD_hashPtr(ip - 2, hBitsL, 8)] = (U32)(ip - 2 - base);
- /* check immediate repcode */
- while (ip <= ilimit) {
- U32 const curr2 = (U32)(ip - base);
- U32 const repIndex2 = curr2 - offset_2;
- const BYTE *repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
- if ((((U32)((dictLimit - 1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
- && (ZSTD_read32(repMatch2) == ZSTD_read32(ip))) {
- const BYTE *const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
- size_t const repLength2 =
- ZSTD_count_2segments(ip + EQUAL_READ32, repMatch2 + EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
- U32 tmpOffset = offset_2;
- offset_2 = offset_1;
- offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2 - MINMATCH);
- hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = curr2;
- hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = curr2;
- ip += repLength2;
- anchor = ip;
- continue;
- }
- break;
- }
- }
- }
-
- /* save reps for next block */
- ctx->repToConfirm[0] = offset_1;
- ctx->repToConfirm[1] = offset_2;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-static void ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- U32 const mls = ctx->params.cParams.searchLength;
- switch (mls) {
- default: /* includes case 3 */
- case 4: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4); return;
- case 5: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5); return;
- case 6: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6); return;
- case 7: ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7); return;
- }
-}
-
-/*-*************************************
-* Binary Tree search
-***************************************/
-/** ZSTD_insertBt1() : add one or multiple positions to tree.
-* ip : assumed <= iend-8 .
-* @return : nb of positions added */
-static U32 ZSTD_insertBt1(ZSTD_CCtx *zc, const BYTE *const ip, const U32 mls, const BYTE *const iend, U32 nbCompares, U32 extDict)
-{
- U32 *const hashTable = zc->hashTable;
- U32 const hashLog = zc->params.cParams.hashLog;
- size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
- U32 *const bt = zc->chainTable;
- U32 const btLog = zc->params.cParams.chainLog - 1;
- U32 const btMask = (1 << btLog) - 1;
- U32 matchIndex = hashTable[h];
- size_t commonLengthSmaller = 0, commonLengthLarger = 0;
- const BYTE *const base = zc->base;
- const BYTE *const dictBase = zc->dictBase;
- const U32 dictLimit = zc->dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const BYTE *match;
- const U32 curr = (U32)(ip - base);
- const U32 btLow = btMask >= curr ? 0 : curr - btMask;
- U32 *smallerPtr = bt + 2 * (curr & btMask);
- U32 *largerPtr = smallerPtr + 1;
- U32 dummy32; /* to be nullified at the end */
- U32 const windowLow = zc->lowLimit;
- U32 matchEndIdx = curr + 8;
- size_t bestLength = 8;
-
- hashTable[h] = curr; /* Update Hash Table */
-
- while (nbCompares-- && (matchIndex > windowLow)) {
- U32 *const nextPtr = bt + 2 * (matchIndex & btMask);
- size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
-
- if ((!extDict) || (matchIndex + matchLength >= dictLimit)) {
- match = base + matchIndex;
- if (match[matchLength] == ip[matchLength])
- matchLength += ZSTD_count(ip + matchLength + 1, match + matchLength + 1, iend) + 1;
- } else {
- match = dictBase + matchIndex;
- matchLength += ZSTD_count_2segments(ip + matchLength, match + matchLength, iend, dictEnd, prefixStart);
- if (matchIndex + matchLength >= dictLimit)
- match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
- }
-
- if (matchLength > bestLength) {
- bestLength = matchLength;
- if (matchLength > matchEndIdx - matchIndex)
- matchEndIdx = matchIndex + (U32)matchLength;
- }
-
- if (ip + matchLength == iend) /* equal : no way to know if inf or sup */
- break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */
-
- if (match[matchLength] < ip[matchLength]) { /* necessarily within correct buffer */
- /* match is smaller than curr */
- *smallerPtr = matchIndex; /* update smaller idx */
- commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
- if (matchIndex <= btLow) {
- smallerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- smallerPtr = nextPtr + 1; /* new "smaller" => larger of match */
- matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
- } else {
- /* match is larger than curr */
- *largerPtr = matchIndex;
- commonLengthLarger = matchLength;
- if (matchIndex <= btLow) {
- largerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- largerPtr = nextPtr;
- matchIndex = nextPtr[0];
- }
- }
-
- *smallerPtr = *largerPtr = 0;
- if (bestLength > 384)
- return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
- if (matchEndIdx > curr + 8)
- return matchEndIdx - curr - 8;
- return 1;
-}
-
-static size_t ZSTD_insertBtAndFindBestMatch(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, size_t *offsetPtr, U32 nbCompares, const U32 mls,
- U32 extDict)
-{
- U32 *const hashTable = zc->hashTable;
- U32 const hashLog = zc->params.cParams.hashLog;
- size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
- U32 *const bt = zc->chainTable;
- U32 const btLog = zc->params.cParams.chainLog - 1;
- U32 const btMask = (1 << btLog) - 1;
- U32 matchIndex = hashTable[h];
- size_t commonLengthSmaller = 0, commonLengthLarger = 0;
- const BYTE *const base = zc->base;
- const BYTE *const dictBase = zc->dictBase;
- const U32 dictLimit = zc->dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const U32 curr = (U32)(ip - base);
- const U32 btLow = btMask >= curr ? 0 : curr - btMask;
- const U32 windowLow = zc->lowLimit;
- U32 *smallerPtr = bt + 2 * (curr & btMask);
- U32 *largerPtr = bt + 2 * (curr & btMask) + 1;
- U32 matchEndIdx = curr + 8;
- U32 dummy32; /* to be nullified at the end */
- size_t bestLength = 0;
-
- hashTable[h] = curr; /* Update Hash Table */
-
- while (nbCompares-- && (matchIndex > windowLow)) {
- U32 *const nextPtr = bt + 2 * (matchIndex & btMask);
- size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
- const BYTE *match;
-
- if ((!extDict) || (matchIndex + matchLength >= dictLimit)) {
- match = base + matchIndex;
- if (match[matchLength] == ip[matchLength])
- matchLength += ZSTD_count(ip + matchLength + 1, match + matchLength + 1, iend) + 1;
- } else {
- match = dictBase + matchIndex;
- matchLength += ZSTD_count_2segments(ip + matchLength, match + matchLength, iend, dictEnd, prefixStart);
- if (matchIndex + matchLength >= dictLimit)
- match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
- }
-
- if (matchLength > bestLength) {
- if (matchLength > matchEndIdx - matchIndex)
- matchEndIdx = matchIndex + (U32)matchLength;
- if ((4 * (int)(matchLength - bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)offsetPtr[0] + 1)))
- bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
- if (ip + matchLength == iend) /* equal : no way to know if inf or sup */
- break; /* drop, to guarantee consistency (miss a little bit of compression) */
- }
-
- if (match[matchLength] < ip[matchLength]) {
- /* match is smaller than curr */
- *smallerPtr = matchIndex; /* update smaller idx */
- commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
- if (matchIndex <= btLow) {
- smallerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- smallerPtr = nextPtr + 1; /* new "smaller" => larger of match */
- matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
- } else {
- /* match is larger than curr */
- *largerPtr = matchIndex;
- commonLengthLarger = matchLength;
- if (matchIndex <= btLow) {
- largerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- largerPtr = nextPtr;
- matchIndex = nextPtr[0];
- }
- }
-
- *smallerPtr = *largerPtr = 0;
-
- zc->nextToUpdate = (matchEndIdx > curr + 8) ? matchEndIdx - 8 : curr + 1;
- return bestLength;
-}
-
-static void ZSTD_updateTree(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, const U32 nbCompares, const U32 mls)
-{
- const BYTE *const base = zc->base;
- const U32 target = (U32)(ip - base);
- U32 idx = zc->nextToUpdate;
-
- while (idx < target)
- idx += ZSTD_insertBt1(zc, base + idx, mls, iend, nbCompares, 0);
-}
-
-/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
-static size_t ZSTD_BtFindBestMatch(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 mls)
-{
- if (ip < zc->base + zc->nextToUpdate)
- return 0; /* skipped area */
- ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
- return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0);
-}
-
-static size_t ZSTD_BtFindBestMatch_selectMLS(ZSTD_CCtx *zc, /* Index table will be updated */
- const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 matchLengthSearch)
-{
- switch (matchLengthSearch) {
- default: /* includes case 3 */
- case 4: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
- case 5: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
- case 7:
- case 6: return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
- }
-}
-
-static void ZSTD_updateTree_extDict(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iend, const U32 nbCompares, const U32 mls)
-{
- const BYTE *const base = zc->base;
- const U32 target = (U32)(ip - base);
- U32 idx = zc->nextToUpdate;
-
- while (idx < target)
- idx += ZSTD_insertBt1(zc, base + idx, mls, iend, nbCompares, 1);
-}
-
-/** Tree updater, providing best match */
-static size_t ZSTD_BtFindBestMatch_extDict(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
- const U32 mls)
-{
- if (ip < zc->base + zc->nextToUpdate)
- return 0; /* skipped area */
- ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
- return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1);
-}
-
-static size_t ZSTD_BtFindBestMatch_selectMLS_extDict(ZSTD_CCtx *zc, /* Index table will be updated */
- const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
- const U32 matchLengthSearch)
-{
- switch (matchLengthSearch) {
- default: /* includes case 3 */
- case 4: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
- case 5: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
- case 7:
- case 6: return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
- }
-}
-
-/* *********************************
-* Hash Chain
-***********************************/
-#define NEXT_IN_CHAIN(d, mask) chainTable[(d)&mask]
-
-/* Update chains up to ip (excluded)
- Assumption : always within prefix (i.e. not within extDict) */
-FORCE_INLINE
-U32 ZSTD_insertAndFindFirstIndex(ZSTD_CCtx *zc, const BYTE *ip, U32 mls)
-{
- U32 *const hashTable = zc->hashTable;
- const U32 hashLog = zc->params.cParams.hashLog;
- U32 *const chainTable = zc->chainTable;
- const U32 chainMask = (1 << zc->params.cParams.chainLog) - 1;
- const BYTE *const base = zc->base;
- const U32 target = (U32)(ip - base);
- U32 idx = zc->nextToUpdate;
-
- while (idx < target) { /* catch up */
- size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls);
- NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
- hashTable[h] = idx;
- idx++;
- }
-
- zc->nextToUpdate = target;
- return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
-}
-
-/* inlining is important to hardwire a hot branch (template emulation) */
-FORCE_INLINE
-size_t ZSTD_HcFindBestMatch_generic(ZSTD_CCtx *zc, /* Index table will be updated */
- const BYTE *const ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts, const U32 mls,
- const U32 extDict)
-{
- U32 *const chainTable = zc->chainTable;
- const U32 chainSize = (1 << zc->params.cParams.chainLog);
- const U32 chainMask = chainSize - 1;
- const BYTE *const base = zc->base;
- const BYTE *const dictBase = zc->dictBase;
- const U32 dictLimit = zc->dictLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const U32 lowLimit = zc->lowLimit;
- const U32 curr = (U32)(ip - base);
- const U32 minChain = curr > chainSize ? curr - chainSize : 0;
- int nbAttempts = maxNbAttempts;
- size_t ml = EQUAL_READ32 - 1;
-
- /* HC4 match finder */
- U32 matchIndex = ZSTD_insertAndFindFirstIndex(zc, ip, mls);
-
- for (; (matchIndex > lowLimit) & (nbAttempts > 0); nbAttempts--) {
- const BYTE *match;
- size_t currMl = 0;
- if ((!extDict) || matchIndex >= dictLimit) {
- match = base + matchIndex;
- if (match[ml] == ip[ml]) /* potentially better */
- currMl = ZSTD_count(ip, match, iLimit);
- } else {
- match = dictBase + matchIndex;
- if (ZSTD_read32(match) == ZSTD_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
- currMl = ZSTD_count_2segments(ip + EQUAL_READ32, match + EQUAL_READ32, iLimit, dictEnd, prefixStart) + EQUAL_READ32;
- }
-
- /* save best solution */
- if (currMl > ml) {
- ml = currMl;
- *offsetPtr = curr - matchIndex + ZSTD_REP_MOVE;
- if (ip + currMl == iLimit)
- break; /* best possible, and avoid read overflow*/
- }
-
- if (matchIndex <= minChain)
- break;
- matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
- }
-
- return ml;
-}
-
-FORCE_INLINE size_t ZSTD_HcFindBestMatch_selectMLS(ZSTD_CCtx *zc, const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
- const U32 matchLengthSearch)
-{
- switch (matchLengthSearch) {
- default: /* includes case 3 */
- case 4: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0);
- case 5: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0);
- case 7:
- case 6: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0);
- }
-}
-
-FORCE_INLINE size_t ZSTD_HcFindBestMatch_extDict_selectMLS(ZSTD_CCtx *zc, const BYTE *ip, const BYTE *const iLimit, size_t *offsetPtr, const U32 maxNbAttempts,
- const U32 matchLengthSearch)
-{
- switch (matchLengthSearch) {
- default: /* includes case 3 */
- case 4: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1);
- case 5: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1);
- case 7:
- case 6: return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1);
- }
-}
-
-/* *******************************
-* Common parser - lazy strategy
-*********************************/
-FORCE_INLINE
-void ZSTD_compressBlock_lazy_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 searchMethod, const U32 depth)
-{
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- const BYTE *const base = ctx->base + ctx->dictLimit;
-
- U32 const maxSearches = 1 << ctx->params.cParams.searchLog;
- U32 const mls = ctx->params.cParams.searchLength;
-
- typedef size_t (*searchMax_f)(ZSTD_CCtx * zc, const BYTE *ip, const BYTE *iLimit, size_t *offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch);
- searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS;
- U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1], savedOffset = 0;
-
- /* init */
- ip += (ip == base);
- ctx->nextToUpdate3 = ctx->nextToUpdate;
- {
- U32 const maxRep = (U32)(ip - base);
- if (offset_2 > maxRep)
- savedOffset = offset_2, offset_2 = 0;
- if (offset_1 > maxRep)
- savedOffset = offset_1, offset_1 = 0;
- }
-
- /* Match Loop */
- while (ip < ilimit) {
- size_t matchLength = 0;
- size_t offset = 0;
- const BYTE *start = ip + 1;
-
- /* check repCode */
- if ((offset_1 > 0) & (ZSTD_read32(ip + 1) == ZSTD_read32(ip + 1 - offset_1))) {
- /* repcode : we take it */
- matchLength = ZSTD_count(ip + 1 + EQUAL_READ32, ip + 1 + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
- if (depth == 0)
- goto _storeSequence;
- }
-
- /* first search (depth 0) */
- {
- size_t offsetFound = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
- if (ml2 > matchLength)
- matchLength = ml2, start = ip, offset = offsetFound;
- }
-
- if (matchLength < EQUAL_READ32) {
- ip += ((ip - anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
- continue;
- }
-
- /* let's try to find a better solution */
- if (depth >= 1)
- while (ip < ilimit) {
- ip++;
- if ((offset) && ((offset_1 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_1)))) {
- size_t const mlRep = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
- int const gain2 = (int)(mlRep * 3);
- int const gain1 = (int)(matchLength * 3 - ZSTD_highbit32((U32)offset + 1) + 1);
- if ((mlRep >= EQUAL_READ32) && (gain2 > gain1))
- matchLength = mlRep, offset = 0, start = ip;
- }
- {
- size_t offset2 = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
- int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
- int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 4);
- if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
- continue; /* search a better one */
- }
- }
-
- /* let's find an even better one */
- if ((depth == 2) && (ip < ilimit)) {
- ip++;
- if ((offset) && ((offset_1 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_1)))) {
- size_t const ml2 = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_1, iend) + EQUAL_READ32;
- int const gain2 = (int)(ml2 * 4);
- int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 1);
- if ((ml2 >= EQUAL_READ32) && (gain2 > gain1))
- matchLength = ml2, offset = 0, start = ip;
- }
- {
- size_t offset2 = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
- int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
- int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 7);
- if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
- continue;
- }
- }
- }
- break; /* nothing found : store previous solution */
- }
-
- /* NOTE:
- * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior.
- * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which
- * overflows the pointer, which is undefined behavior.
- */
- /* catch up */
- if (offset) {
- while ((start > anchor) && (start > base + offset - ZSTD_REP_MOVE) &&
- (start[-1] == (start-offset+ZSTD_REP_MOVE)[-1])) /* only search for offset within prefix */
- {
- start--;
- matchLength++;
- }
- offset_2 = offset_1;
- offset_1 = (U32)(offset - ZSTD_REP_MOVE);
- }
-
- /* store sequence */
-_storeSequence:
- {
- size_t const litLength = start - anchor;
- ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength - MINMATCH);
- anchor = ip = start + matchLength;
- }
-
- /* check immediate repcode */
- while ((ip <= ilimit) && ((offset_2 > 0) & (ZSTD_read32(ip) == ZSTD_read32(ip - offset_2)))) {
- /* store sequence */
- matchLength = ZSTD_count(ip + EQUAL_READ32, ip + EQUAL_READ32 - offset_2, iend) + EQUAL_READ32;
- offset = offset_2;
- offset_2 = offset_1;
- offset_1 = (U32)offset; /* swap repcodes */
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength - MINMATCH);
- ip += matchLength;
- anchor = ip;
- continue; /* faster when present ... (?) */
- }
- }
-
- /* Save reps for next block */
- ctx->repToConfirm[0] = offset_1 ? offset_1 : savedOffset;
- ctx->repToConfirm[1] = offset_2 ? offset_2 : savedOffset;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-static void ZSTD_compressBlock_btlazy2(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2); }
-
-static void ZSTD_compressBlock_lazy2(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2); }
-
-static void ZSTD_compressBlock_lazy(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1); }
-
-static void ZSTD_compressBlock_greedy(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0); }
-
-FORCE_INLINE
-void ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const U32 searchMethod, const U32 depth)
-{
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- const BYTE *const base = ctx->base;
- const U32 dictLimit = ctx->dictLimit;
- const U32 lowestIndex = ctx->lowLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const BYTE *const dictBase = ctx->dictBase;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const dictStart = dictBase + ctx->lowLimit;
-
- const U32 maxSearches = 1 << ctx->params.cParams.searchLog;
- const U32 mls = ctx->params.cParams.searchLength;
-
- typedef size_t (*searchMax_f)(ZSTD_CCtx * zc, const BYTE *ip, const BYTE *iLimit, size_t *offsetPtr, U32 maxNbAttempts, U32 matchLengthSearch);
- searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS;
-
- U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
-
- /* init */
- ctx->nextToUpdate3 = ctx->nextToUpdate;
- ip += (ip == prefixStart);
-
- /* Match Loop */
- while (ip < ilimit) {
- size_t matchLength = 0;
- size_t offset = 0;
- const BYTE *start = ip + 1;
- U32 curr = (U32)(ip - base);
-
- /* check repCode */
- {
- const U32 repIndex = (U32)(curr + 1 - offset_1);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- if (ZSTD_read32(ip + 1) == ZSTD_read32(repMatch)) {
- /* repcode detected we should take it */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- matchLength =
- ZSTD_count_2segments(ip + 1 + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
- if (depth == 0)
- goto _storeSequence;
- }
- }
-
- /* first search (depth 0) */
- {
- size_t offsetFound = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
- if (ml2 > matchLength)
- matchLength = ml2, start = ip, offset = offsetFound;
- }
-
- if (matchLength < EQUAL_READ32) {
- ip += ((ip - anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
- continue;
- }
-
- /* let's try to find a better solution */
- if (depth >= 1)
- while (ip < ilimit) {
- ip++;
- curr++;
- /* check repCode */
- if (offset) {
- const U32 repIndex = (U32)(curr - offset_1);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
- /* repcode detected */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- size_t const repLength =
- ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) +
- EQUAL_READ32;
- int const gain2 = (int)(repLength * 3);
- int const gain1 = (int)(matchLength * 3 - ZSTD_highbit32((U32)offset + 1) + 1);
- if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
- matchLength = repLength, offset = 0, start = ip;
- }
- }
-
- /* search match, depth 1 */
- {
- size_t offset2 = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
- int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
- int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 4);
- if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
- continue; /* search a better one */
- }
- }
-
- /* let's find an even better one */
- if ((depth == 2) && (ip < ilimit)) {
- ip++;
- curr++;
- /* check repCode */
- if (offset) {
- const U32 repIndex = (U32)(curr - offset_1);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
- /* repcode detected */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- size_t repLength = ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend,
- repEnd, prefixStart) +
- EQUAL_READ32;
- int gain2 = (int)(repLength * 4);
- int gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 1);
- if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
- matchLength = repLength, offset = 0, start = ip;
- }
- }
-
- /* search match, depth 2 */
- {
- size_t offset2 = 99999999;
- size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
- int const gain2 = (int)(ml2 * 4 - ZSTD_highbit32((U32)offset2 + 1)); /* raw approx */
- int const gain1 = (int)(matchLength * 4 - ZSTD_highbit32((U32)offset + 1) + 7);
- if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
- matchLength = ml2, offset = offset2, start = ip;
- continue;
- }
- }
- }
- break; /* nothing found : store previous solution */
- }
-
- /* catch up */
- if (offset) {
- U32 const matchIndex = (U32)((start - base) - (offset - ZSTD_REP_MOVE));
- const BYTE *match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
- const BYTE *const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
- while ((start > anchor) && (match > mStart) && (start[-1] == match[-1])) {
- start--;
- match--;
- matchLength++;
- } /* catch up */
- offset_2 = offset_1;
- offset_1 = (U32)(offset - ZSTD_REP_MOVE);
- }
-
- /* store sequence */
- _storeSequence : {
- size_t const litLength = start - anchor;
- ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength - MINMATCH);
- anchor = ip = start + matchLength;
- }
-
- /* check immediate repcode */
- while (ip <= ilimit) {
- const U32 repIndex = (U32)((ip - base) - offset_2);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- if (ZSTD_read32(ip) == ZSTD_read32(repMatch)) {
- /* repcode detected we should take it */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- matchLength =
- ZSTD_count_2segments(ip + EQUAL_READ32, repMatch + EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
- offset = offset_2;
- offset_2 = offset_1;
- offset_1 = (U32)offset; /* swap offset history */
- ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength - MINMATCH);
- ip += matchLength;
- anchor = ip;
- continue; /* faster when present ... (?) */
- }
- break;
- }
- }
-
- /* Save reps for next block */
- ctx->repToConfirm[0] = offset_1;
- ctx->repToConfirm[1] = offset_2;
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-void ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize) { ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0); }
-
-static void ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1);
-}
-
-static void ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2);
-}
-
-static void ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
- ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2);
-}
-
-/* The optimal parser */
-#include "zstd_opt.h"
-
-static void ZSTD_compressBlock_btopt(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
-#ifdef ZSTD_OPT_H_91842398743
- ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0);
-#else
- (void)ctx;
- (void)src;
- (void)srcSize;
- return;
-#endif
-}
-
-static void ZSTD_compressBlock_btopt2(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
-#ifdef ZSTD_OPT_H_91842398743
- ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 1);
-#else
- (void)ctx;
- (void)src;
- (void)srcSize;
- return;
-#endif
-}
-
-static void ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
-#ifdef ZSTD_OPT_H_91842398743
- ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 0);
-#else
- (void)ctx;
- (void)src;
- (void)srcSize;
- return;
-#endif
-}
-
-static void ZSTD_compressBlock_btopt2_extDict(ZSTD_CCtx *ctx, const void *src, size_t srcSize)
-{
-#ifdef ZSTD_OPT_H_91842398743
- ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 1);
-#else
- (void)ctx;
- (void)src;
- (void)srcSize;
- return;
-#endif
-}
-
-typedef void (*ZSTD_blockCompressor)(ZSTD_CCtx *ctx, const void *src, size_t srcSize);
-
-static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
-{
- static const ZSTD_blockCompressor blockCompressor[2][8] = {
- {ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2,
- ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btopt2},
- {ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,
- ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btopt2_extDict}};
-
- return blockCompressor[extDict][(U32)strat];
-}
-
-static size_t ZSTD_compressBlock_internal(ZSTD_CCtx *zc, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->params.cParams.strategy, zc->lowLimit < zc->dictLimit);
- const BYTE *const base = zc->base;
- const BYTE *const istart = (const BYTE *)src;
- const U32 curr = (U32)(istart - base);
- if (srcSize < MIN_CBLOCK_SIZE + ZSTD_blockHeaderSize + 1)
- return 0; /* don't even attempt compression below a certain srcSize */
- ZSTD_resetSeqStore(&(zc->seqStore));
- if (curr > zc->nextToUpdate + 384)
- zc->nextToUpdate = curr - MIN(192, (U32)(curr - zc->nextToUpdate - 384)); /* update tree not updated after finding very long rep matches */
- blockCompressor(zc, src, srcSize);
- return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize);
-}
-
-/*! ZSTD_compress_generic() :
-* Compress a chunk of data into one or multiple blocks.
-* All blocks will be terminated, all input will be consumed.
-* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
-* Frame is supposed already started (header already produced)
-* @return : compressed size, or an error code
-*/
-static size_t ZSTD_compress_generic(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, U32 lastFrameChunk)
-{
- size_t blockSize = cctx->blockSize;
- size_t remaining = srcSize;
- const BYTE *ip = (const BYTE *)src;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *op = ostart;
- U32 const maxDist = 1 << cctx->params.cParams.windowLog;
-
- if (cctx->params.fParams.checksumFlag && srcSize)
- xxh64_update(&cctx->xxhState, src, srcSize);
-
- while (remaining) {
- U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
- size_t cSize;
-
- if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE)
- return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */
- if (remaining < blockSize)
- blockSize = remaining;
-
- /* preemptive overflow correction */
- if (cctx->lowLimit > (3U << 29)) {
- U32 const cycleMask = (1 << ZSTD_cycleLog(cctx->params.cParams.hashLog, cctx->params.cParams.strategy)) - 1;
- U32 const curr = (U32)(ip - cctx->base);
- U32 const newCurr = (curr & cycleMask) + (1 << cctx->params.cParams.windowLog);
- U32 const correction = curr - newCurr;
- ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_64 <= 30);
- ZSTD_reduceIndex(cctx, correction);
- cctx->base += correction;
- cctx->dictBase += correction;
- cctx->lowLimit -= correction;
- cctx->dictLimit -= correction;
- if (cctx->nextToUpdate < correction)
- cctx->nextToUpdate = 0;
- else
- cctx->nextToUpdate -= correction;
- }
-
- if ((U32)(ip + blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) {
- /* enforce maxDist */
- U32 const newLowLimit = (U32)(ip + blockSize - cctx->base) - maxDist;
- if (cctx->lowLimit < newLowLimit)
- cctx->lowLimit = newLowLimit;
- if (cctx->dictLimit < cctx->lowLimit)
- cctx->dictLimit = cctx->lowLimit;
- }
-
- cSize = ZSTD_compressBlock_internal(cctx, op + ZSTD_blockHeaderSize, dstCapacity - ZSTD_blockHeaderSize, ip, blockSize);
- if (ZSTD_isError(cSize))
- return cSize;
-
- if (cSize == 0) { /* block is not compressible */
- U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw) << 1) + (U32)(blockSize << 3);
- if (blockSize + ZSTD_blockHeaderSize > dstCapacity)
- return ERROR(dstSize_tooSmall);
- ZSTD_writeLE32(op, cBlockHeader24); /* no pb, 4th byte will be overwritten */
- memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
- cSize = ZSTD_blockHeaderSize + blockSize;
- } else {
- U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed) << 1) + (U32)(cSize << 3);
- ZSTD_writeLE24(op, cBlockHeader24);
- cSize += ZSTD_blockHeaderSize;
- }
-
- remaining -= blockSize;
- dstCapacity -= cSize;
- ip += blockSize;
- op += cSize;
- }
-
- if (lastFrameChunk && (op > ostart))
- cctx->stage = ZSTDcs_ending;
- return op - ostart;
-}
-
-static size_t ZSTD_writeFrameHeader(void *dst, size_t dstCapacity, ZSTD_parameters params, U64 pledgedSrcSize, U32 dictID)
-{
- BYTE *const op = (BYTE *)dst;
- U32 const dictIDSizeCode = (dictID > 0) + (dictID >= 256) + (dictID >= 65536); /* 0-3 */
- U32 const checksumFlag = params.fParams.checksumFlag > 0;
- U32 const windowSize = 1U << params.cParams.windowLog;
- U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
- BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
- U32 const fcsCode =
- params.fParams.contentSizeFlag ? (pledgedSrcSize >= 256) + (pledgedSrcSize >= 65536 + 256) + (pledgedSrcSize >= 0xFFFFFFFFU) : 0; /* 0-3 */
- BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag << 2) + (singleSegment << 5) + (fcsCode << 6));
- size_t pos;
-
- if (dstCapacity < ZSTD_frameHeaderSize_max)
- return ERROR(dstSize_tooSmall);
-
- ZSTD_writeLE32(dst, ZSTD_MAGICNUMBER);
- op[4] = frameHeaderDecriptionByte;
- pos = 5;
- if (!singleSegment)
- op[pos++] = windowLogByte;
- switch (dictIDSizeCode) {
- default: /* impossible */
- case 0: break;
- case 1:
- op[pos] = (BYTE)(dictID);
- pos++;
- break;
- case 2:
- ZSTD_writeLE16(op + pos, (U16)dictID);
- pos += 2;
- break;
- case 3:
- ZSTD_writeLE32(op + pos, dictID);
- pos += 4;
- break;
- }
- switch (fcsCode) {
- default: /* impossible */
- case 0:
- if (singleSegment)
- op[pos++] = (BYTE)(pledgedSrcSize);
- break;
- case 1:
- ZSTD_writeLE16(op + pos, (U16)(pledgedSrcSize - 256));
- pos += 2;
- break;
- case 2:
- ZSTD_writeLE32(op + pos, (U32)(pledgedSrcSize));
- pos += 4;
- break;
- case 3:
- ZSTD_writeLE64(op + pos, (U64)(pledgedSrcSize));
- pos += 8;
- break;
- }
- return pos;
-}
-
-static size_t ZSTD_compressContinue_internal(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, U32 frame, U32 lastFrameChunk)
-{
- const BYTE *const ip = (const BYTE *)src;
- size_t fhSize = 0;
-
- if (cctx->stage == ZSTDcs_created)
- return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */
-
- if (frame && (cctx->stage == ZSTDcs_init)) {
- fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, cctx->frameContentSize, cctx->dictID);
- if (ZSTD_isError(fhSize))
- return fhSize;
- dstCapacity -= fhSize;
- dst = (char *)dst + fhSize;
- cctx->stage = ZSTDcs_ongoing;
- }
-
- /* Check if blocks follow each other */
- if (src != cctx->nextSrc) {
- /* not contiguous */
- ptrdiff_t const delta = cctx->nextSrc - ip;
- cctx->lowLimit = cctx->dictLimit;
- cctx->dictLimit = (U32)(cctx->nextSrc - cctx->base);
- cctx->dictBase = cctx->base;
- cctx->base -= delta;
- cctx->nextToUpdate = cctx->dictLimit;
- if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE)
- cctx->lowLimit = cctx->dictLimit; /* too small extDict */
- }
-
- /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
- if ((ip + srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) {
- ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase;
- U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx;
- cctx->lowLimit = lowLimitMax;
- }
-
- cctx->nextSrc = ip + srcSize;
-
- if (srcSize) {
- size_t const cSize = frame ? ZSTD_compress_generic(cctx, dst, dstCapacity, src, srcSize, lastFrameChunk)
- : ZSTD_compressBlock_internal(cctx, dst, dstCapacity, src, srcSize);
- if (ZSTD_isError(cSize))
- return cSize;
- return cSize + fhSize;
- } else
- return fhSize;
-}
-
-size_t ZSTD_compressContinue(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 0);
-}
-
-size_t ZSTD_getBlockSizeMax(ZSTD_CCtx *cctx) { return MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << cctx->params.cParams.windowLog); }
-
-size_t ZSTD_compressBlock(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t const blockSizeMax = ZSTD_getBlockSizeMax(cctx);
- if (srcSize > blockSizeMax)
- return ERROR(srcSize_wrong);
- return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0, 0);
-}
-
-/*! ZSTD_loadDictionaryContent() :
- * @return : 0, or an error code
- */
-static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx *zc, const void *src, size_t srcSize)
-{
- const BYTE *const ip = (const BYTE *)src;
- const BYTE *const iend = ip + srcSize;
-
- /* input becomes curr prefix */
- zc->lowLimit = zc->dictLimit;
- zc->dictLimit = (U32)(zc->nextSrc - zc->base);
- zc->dictBase = zc->base;
- zc->base += ip - zc->nextSrc;
- zc->nextToUpdate = zc->dictLimit;
- zc->loadedDictEnd = zc->forceWindow ? 0 : (U32)(iend - zc->base);
-
- zc->nextSrc = iend;
- if (srcSize <= HASH_READ_SIZE)
- return 0;
-
- switch (zc->params.cParams.strategy) {
- case ZSTD_fast: ZSTD_fillHashTable(zc, iend, zc->params.cParams.searchLength); break;
-
- case ZSTD_dfast: ZSTD_fillDoubleHashTable(zc, iend, zc->params.cParams.searchLength); break;
-
- case ZSTD_greedy:
- case ZSTD_lazy:
- case ZSTD_lazy2:
- if (srcSize >= HASH_READ_SIZE)
- ZSTD_insertAndFindFirstIndex(zc, iend - HASH_READ_SIZE, zc->params.cParams.searchLength);
- break;
-
- case ZSTD_btlazy2:
- case ZSTD_btopt:
- case ZSTD_btopt2:
- if (srcSize >= HASH_READ_SIZE)
- ZSTD_updateTree(zc, iend - HASH_READ_SIZE, iend, 1 << zc->params.cParams.searchLog, zc->params.cParams.searchLength);
- break;
-
- default:
- return ERROR(GENERIC); /* strategy doesn't exist; impossible */
- }
-
- zc->nextToUpdate = (U32)(iend - zc->base);
- return 0;
-}
-
-/* Dictionaries that assign zero probability to symbols that show up causes problems
- when FSE encoding. Refuse dictionaries that assign zero probability to symbols
- that we may encounter during compression.
- NOTE: This behavior is not standard and could be improved in the future. */
-static size_t ZSTD_checkDictNCount(short *normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue)
-{
- U32 s;
- if (dictMaxSymbolValue < maxSymbolValue)
- return ERROR(dictionary_corrupted);
- for (s = 0; s <= maxSymbolValue; ++s) {
- if (normalizedCounter[s] == 0)
- return ERROR(dictionary_corrupted);
- }
- return 0;
-}
-
-/* Dictionary format :
- * See :
- * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
- */
-/*! ZSTD_loadZstdDictionary() :
- * @return : 0, or an error code
- * assumptions : magic number supposed already checked
- * dictSize supposed > 8
- */
-static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx *cctx, const void *dict, size_t dictSize)
-{
- const BYTE *dictPtr = (const BYTE *)dict;
- const BYTE *const dictEnd = dictPtr + dictSize;
- short offcodeNCount[MaxOff + 1];
- unsigned offcodeMaxValue = MaxOff;
-
- dictPtr += 4; /* skip magic number */
- cctx->dictID = cctx->params.fParams.noDictIDFlag ? 0 : ZSTD_readLE32(dictPtr);
- dictPtr += 4;
-
- {
- size_t const hufHeaderSize = HUF_readCTable_wksp(cctx->hufTable, 255, dictPtr, dictEnd - dictPtr, cctx->tmpCounters, sizeof(cctx->tmpCounters));
- if (HUF_isError(hufHeaderSize))
- return ERROR(dictionary_corrupted);
- dictPtr += hufHeaderSize;
- }
-
- {
- unsigned offcodeLog;
- size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(offcodeHeaderSize))
- return ERROR(dictionary_corrupted);
- if (offcodeLog > OffFSELog)
- return ERROR(dictionary_corrupted);
- /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
- CHECK_E(FSE_buildCTable_wksp(cctx->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
- dictionary_corrupted);
- dictPtr += offcodeHeaderSize;
- }
-
- {
- short matchlengthNCount[MaxML + 1];
- unsigned matchlengthMaxValue = MaxML, matchlengthLog;
- size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(matchlengthHeaderSize))
- return ERROR(dictionary_corrupted);
- if (matchlengthLog > MLFSELog)
- return ERROR(dictionary_corrupted);
- /* Every match length code must have non-zero probability */
- CHECK_F(ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
- CHECK_E(
- FSE_buildCTable_wksp(cctx->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
- dictionary_corrupted);
- dictPtr += matchlengthHeaderSize;
- }
-
- {
- short litlengthNCount[MaxLL + 1];
- unsigned litlengthMaxValue = MaxLL, litlengthLog;
- size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(litlengthHeaderSize))
- return ERROR(dictionary_corrupted);
- if (litlengthLog > LLFSELog)
- return ERROR(dictionary_corrupted);
- /* Every literal length code must have non-zero probability */
- CHECK_F(ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
- CHECK_E(FSE_buildCTable_wksp(cctx->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, cctx->tmpCounters, sizeof(cctx->tmpCounters)),
- dictionary_corrupted);
- dictPtr += litlengthHeaderSize;
- }
-
- if (dictPtr + 12 > dictEnd)
- return ERROR(dictionary_corrupted);
- cctx->rep[0] = ZSTD_readLE32(dictPtr + 0);
- cctx->rep[1] = ZSTD_readLE32(dictPtr + 4);
- cctx->rep[2] = ZSTD_readLE32(dictPtr + 8);
- dictPtr += 12;
-
- {
- size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
- U32 offcodeMax = MaxOff;
- if (dictContentSize <= ((U32)-1) - 128 KB) {
- U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
- offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
- }
- /* All offset values <= dictContentSize + 128 KB must be representable */
- CHECK_F(ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
- /* All repCodes must be <= dictContentSize and != 0*/
- {
- U32 u;
- for (u = 0; u < 3; u++) {
- if (cctx->rep[u] == 0)
- return ERROR(dictionary_corrupted);
- if (cctx->rep[u] > dictContentSize)
- return ERROR(dictionary_corrupted);
- }
- }
-
- cctx->flagStaticTables = 1;
- cctx->flagStaticHufTable = HUF_repeat_valid;
- return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize);
- }
-}
-
-/** ZSTD_compress_insertDictionary() :
-* @return : 0, or an error code */
-static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx *cctx, const void *dict, size_t dictSize)
-{
- if ((dict == NULL) || (dictSize <= 8))
- return 0;
-
- /* dict as pure content */
- if ((ZSTD_readLE32(dict) != ZSTD_DICT_MAGIC) || (cctx->forceRawDict))
- return ZSTD_loadDictionaryContent(cctx, dict, dictSize);
-
- /* dict as zstd dictionary */
- return ZSTD_loadZstdDictionary(cctx, dict, dictSize);
-}
-
-/*! ZSTD_compressBegin_internal() :
-* @return : 0, or an error code */
-static size_t ZSTD_compressBegin_internal(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, ZSTD_parameters params, U64 pledgedSrcSize)
-{
- ZSTD_compResetPolicy_e const crp = dictSize ? ZSTDcrp_fullReset : ZSTDcrp_continue;
- CHECK_F(ZSTD_resetCCtx_advanced(cctx, params, pledgedSrcSize, crp));
- return ZSTD_compress_insertDictionary(cctx, dict, dictSize);
-}
-
-/*! ZSTD_compressBegin_advanced() :
-* @return : 0, or an error code */
-size_t ZSTD_compressBegin_advanced(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize)
-{
- /* compression parameters verification and optimization */
- CHECK_F(ZSTD_checkCParams(params.cParams));
- return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, pledgedSrcSize);
-}
-
-size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx *cctx, const void *dict, size_t dictSize, int compressionLevel)
-{
- ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
- return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, 0);
-}
-
-size_t ZSTD_compressBegin(ZSTD_CCtx *cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); }
-
-/*! ZSTD_writeEpilogue() :
-* Ends a frame.
-* @return : nb of bytes written into dst (or an error code) */
-static size_t ZSTD_writeEpilogue(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity)
-{
- BYTE *const ostart = (BYTE *)dst;
- BYTE *op = ostart;
- size_t fhSize = 0;
-
- if (cctx->stage == ZSTDcs_created)
- return ERROR(stage_wrong); /* init missing */
-
- /* special case : empty frame */
- if (cctx->stage == ZSTDcs_init) {
- fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, 0, 0);
- if (ZSTD_isError(fhSize))
- return fhSize;
- dstCapacity -= fhSize;
- op += fhSize;
- cctx->stage = ZSTDcs_ongoing;
- }
-
- if (cctx->stage != ZSTDcs_ending) {
- /* write one last empty block, make it the "last" block */
- U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw) << 1) + 0;
- if (dstCapacity < 4)
- return ERROR(dstSize_tooSmall);
- ZSTD_writeLE32(op, cBlockHeader24);
- op += ZSTD_blockHeaderSize;
- dstCapacity -= ZSTD_blockHeaderSize;
- }
-
- if (cctx->params.fParams.checksumFlag) {
- U32 const checksum = (U32)xxh64_digest(&cctx->xxhState);
- if (dstCapacity < 4)
- return ERROR(dstSize_tooSmall);
- ZSTD_writeLE32(op, checksum);
- op += 4;
- }
-
- cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
- return op - ostart;
-}
-
-size_t ZSTD_compressEnd(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t endResult;
- size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 1);
- if (ZSTD_isError(cSize))
- return cSize;
- endResult = ZSTD_writeEpilogue(cctx, (char *)dst + cSize, dstCapacity - cSize);
- if (ZSTD_isError(endResult))
- return endResult;
- return cSize + endResult;
-}
-
-static size_t ZSTD_compress_internal(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize,
- ZSTD_parameters params)
-{
- CHECK_F(ZSTD_compressBegin_internal(cctx, dict, dictSize, params, srcSize));
- return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
-}
-
-size_t ZSTD_compress_usingDict(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize,
- ZSTD_parameters params)
-{
- return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
-}
-
-size_t ZSTD_compressCCtx(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, ZSTD_parameters params)
-{
- return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, NULL, 0, params);
-}
-
-/* ===== Dictionary API ===== */
-
-struct ZSTD_CDict_s {
- void *dictBuffer;
- const void *dictContent;
- size_t dictContentSize;
- ZSTD_CCtx *refContext;
-}; /* typedef'd tp ZSTD_CDict within "zstd.h" */
-
-size_t ZSTD_CDictWorkspaceBound(ZSTD_compressionParameters cParams) { return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CDict)); }
-
-static ZSTD_CDict *ZSTD_createCDict_advanced(const void *dictBuffer, size_t dictSize, unsigned byReference, ZSTD_parameters params, ZSTD_customMem customMem)
-{
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
-
- {
- ZSTD_CDict *const cdict = (ZSTD_CDict *)ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
- ZSTD_CCtx *const cctx = ZSTD_createCCtx_advanced(customMem);
-
- if (!cdict || !cctx) {
- ZSTD_free(cdict, customMem);
- ZSTD_freeCCtx(cctx);
- return NULL;
- }
-
- if ((byReference) || (!dictBuffer) || (!dictSize)) {
- cdict->dictBuffer = NULL;
- cdict->dictContent = dictBuffer;
- } else {
- void *const internalBuffer = ZSTD_malloc(dictSize, customMem);
- if (!internalBuffer) {
- ZSTD_free(cctx, customMem);
- ZSTD_free(cdict, customMem);
- return NULL;
- }
- memcpy(internalBuffer, dictBuffer, dictSize);
- cdict->dictBuffer = internalBuffer;
- cdict->dictContent = internalBuffer;
- }
-
- {
- size_t const errorCode = ZSTD_compressBegin_advanced(cctx, cdict->dictContent, dictSize, params, 0);
- if (ZSTD_isError(errorCode)) {
- ZSTD_free(cdict->dictBuffer, customMem);
- ZSTD_free(cdict, customMem);
- ZSTD_freeCCtx(cctx);
- return NULL;
- }
- }
-
- cdict->refContext = cctx;
- cdict->dictContentSize = dictSize;
- return cdict;
- }
-}
-
-ZSTD_CDict *ZSTD_initCDict(const void *dict, size_t dictSize, ZSTD_parameters params, void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- return ZSTD_createCDict_advanced(dict, dictSize, 1, params, stackMem);
-}
-
-size_t ZSTD_freeCDict(ZSTD_CDict *cdict)
-{
- if (cdict == NULL)
- return 0; /* support free on NULL */
- {
- ZSTD_customMem const cMem = cdict->refContext->customMem;
- ZSTD_freeCCtx(cdict->refContext);
- ZSTD_free(cdict->dictBuffer, cMem);
- ZSTD_free(cdict, cMem);
- return 0;
- }
-}
-
-static ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict *cdict) { return ZSTD_getParamsFromCCtx(cdict->refContext); }
-
-size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx *cctx, const ZSTD_CDict *cdict, unsigned long long pledgedSrcSize)
-{
- if (cdict->dictContentSize)
- CHECK_F(ZSTD_copyCCtx(cctx, cdict->refContext, pledgedSrcSize))
- else {
- ZSTD_parameters params = cdict->refContext->params;
- params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
- CHECK_F(ZSTD_compressBegin_advanced(cctx, NULL, 0, params, pledgedSrcSize));
- }
- return 0;
-}
-
-/*! ZSTD_compress_usingCDict() :
-* Compression using a digested Dictionary.
-* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
-* Note that compression level is decided during dictionary creation */
-size_t ZSTD_compress_usingCDict(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const ZSTD_CDict *cdict)
-{
- CHECK_F(ZSTD_compressBegin_usingCDict(cctx, cdict, srcSize));
-
- if (cdict->refContext->params.fParams.contentSizeFlag == 1) {
- cctx->params.fParams.contentSizeFlag = 1;
- cctx->frameContentSize = srcSize;
- } else {
- cctx->params.fParams.contentSizeFlag = 0;
- }
-
- return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
-}
-
-/* ******************************************************************
-* Streaming
-********************************************************************/
-
-typedef enum { zcss_init, zcss_load, zcss_flush, zcss_final } ZSTD_cStreamStage;
-
-struct ZSTD_CStream_s {
- ZSTD_CCtx *cctx;
- ZSTD_CDict *cdictLocal;
- const ZSTD_CDict *cdict;
- char *inBuff;
- size_t inBuffSize;
- size_t inToCompress;
- size_t inBuffPos;
- size_t inBuffTarget;
- size_t blockSize;
- char *outBuff;
- size_t outBuffSize;
- size_t outBuffContentSize;
- size_t outBuffFlushedSize;
- ZSTD_cStreamStage stage;
- U32 checksum;
- U32 frameEnded;
- U64 pledgedSrcSize;
- U64 inputProcessed;
- ZSTD_parameters params;
- ZSTD_customMem customMem;
-}; /* typedef'd to ZSTD_CStream within "zstd.h" */
-
-size_t ZSTD_CStreamWorkspaceBound(ZSTD_compressionParameters cParams)
-{
- size_t const inBuffSize = (size_t)1 << cParams.windowLog;
- size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, inBuffSize);
- size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
-
- return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CStream)) + ZSTD_ALIGN(inBuffSize) + ZSTD_ALIGN(outBuffSize);
-}
-
-ZSTD_CStream *ZSTD_createCStream_advanced(ZSTD_customMem customMem)
-{
- ZSTD_CStream *zcs;
-
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
-
- zcs = (ZSTD_CStream *)ZSTD_malloc(sizeof(ZSTD_CStream), customMem);
- if (zcs == NULL)
- return NULL;
- memset(zcs, 0, sizeof(ZSTD_CStream));
- memcpy(&zcs->customMem, &customMem, sizeof(ZSTD_customMem));
- zcs->cctx = ZSTD_createCCtx_advanced(customMem);
- if (zcs->cctx == NULL) {
- ZSTD_freeCStream(zcs);
- return NULL;
- }
- return zcs;
-}
-
-size_t ZSTD_freeCStream(ZSTD_CStream *zcs)
-{
- if (zcs == NULL)
- return 0; /* support free on NULL */
- {
- ZSTD_customMem const cMem = zcs->customMem;
- ZSTD_freeCCtx(zcs->cctx);
- zcs->cctx = NULL;
- ZSTD_freeCDict(zcs->cdictLocal);
- zcs->cdictLocal = NULL;
- ZSTD_free(zcs->inBuff, cMem);
- zcs->inBuff = NULL;
- ZSTD_free(zcs->outBuff, cMem);
- zcs->outBuff = NULL;
- ZSTD_free(zcs, cMem);
- return 0;
- }
-}
-
-/*====== Initialization ======*/
-
-size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
-size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */; }
-
-static size_t ZSTD_resetCStream_internal(ZSTD_CStream *zcs, unsigned long long pledgedSrcSize)
-{
- if (zcs->inBuffSize == 0)
- return ERROR(stage_wrong); /* zcs has not been init at least once => can't reset */
-
- if (zcs->cdict)
- CHECK_F(ZSTD_compressBegin_usingCDict(zcs->cctx, zcs->cdict, pledgedSrcSize))
- else
- CHECK_F(ZSTD_compressBegin_advanced(zcs->cctx, NULL, 0, zcs->params, pledgedSrcSize));
-
- zcs->inToCompress = 0;
- zcs->inBuffPos = 0;
- zcs->inBuffTarget = zcs->blockSize;
- zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
- zcs->stage = zcss_load;
- zcs->frameEnded = 0;
- zcs->pledgedSrcSize = pledgedSrcSize;
- zcs->inputProcessed = 0;
- return 0; /* ready to go */
-}
-
-size_t ZSTD_resetCStream(ZSTD_CStream *zcs, unsigned long long pledgedSrcSize)
-{
-
- zcs->params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
-
- return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
-}
-
-static size_t ZSTD_initCStream_advanced(ZSTD_CStream *zcs, const void *dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize)
-{
- /* allocate buffers */
- {
- size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
- if (zcs->inBuffSize < neededInBuffSize) {
- zcs->inBuffSize = neededInBuffSize;
- ZSTD_free(zcs->inBuff, zcs->customMem);
- zcs->inBuff = (char *)ZSTD_malloc(neededInBuffSize, zcs->customMem);
- if (zcs->inBuff == NULL)
- return ERROR(memory_allocation);
- }
- zcs->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
- }
- if (zcs->outBuffSize < ZSTD_compressBound(zcs->blockSize) + 1) {
- zcs->outBuffSize = ZSTD_compressBound(zcs->blockSize) + 1;
- ZSTD_free(zcs->outBuff, zcs->customMem);
- zcs->outBuff = (char *)ZSTD_malloc(zcs->outBuffSize, zcs->customMem);
- if (zcs->outBuff == NULL)
- return ERROR(memory_allocation);
- }
-
- if (dict && dictSize >= 8) {
- ZSTD_freeCDict(zcs->cdictLocal);
- zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 0, params, zcs->customMem);
- if (zcs->cdictLocal == NULL)
- return ERROR(memory_allocation);
- zcs->cdict = zcs->cdictLocal;
- } else
- zcs->cdict = NULL;
-
- zcs->checksum = params.fParams.checksumFlag > 0;
- zcs->params = params;
-
- return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
-}
-
-ZSTD_CStream *ZSTD_initCStream(ZSTD_parameters params, unsigned long long pledgedSrcSize, void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- ZSTD_CStream *const zcs = ZSTD_createCStream_advanced(stackMem);
- if (zcs) {
- size_t const code = ZSTD_initCStream_advanced(zcs, NULL, 0, params, pledgedSrcSize);
- if (ZSTD_isError(code)) {
- return NULL;
- }
- }
- return zcs;
-}
-
-ZSTD_CStream *ZSTD_initCStream_usingCDict(const ZSTD_CDict *cdict, unsigned long long pledgedSrcSize, void *workspace, size_t workspaceSize)
-{
- ZSTD_parameters const params = ZSTD_getParamsFromCDict(cdict);
- ZSTD_CStream *const zcs = ZSTD_initCStream(params, pledgedSrcSize, workspace, workspaceSize);
- if (zcs) {
- zcs->cdict = cdict;
- if (ZSTD_isError(ZSTD_resetCStream_internal(zcs, pledgedSrcSize))) {
- return NULL;
- }
- }
- return zcs;
-}
-
-/*====== Compression ======*/
-
-typedef enum { zsf_gather, zsf_flush, zsf_end } ZSTD_flush_e;
-
-ZSTD_STATIC size_t ZSTD_limitCopy(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t const length = MIN(dstCapacity, srcSize);
- memcpy(dst, src, length);
- return length;
-}
-
-static size_t ZSTD_compressStream_generic(ZSTD_CStream *zcs, void *dst, size_t *dstCapacityPtr, const void *src, size_t *srcSizePtr, ZSTD_flush_e const flush)
-{
- U32 someMoreWork = 1;
- const char *const istart = (const char *)src;
- const char *const iend = istart + *srcSizePtr;
- const char *ip = istart;
- char *const ostart = (char *)dst;
- char *const oend = ostart + *dstCapacityPtr;
- char *op = ostart;
-
- while (someMoreWork) {
- switch (zcs->stage) {
- case zcss_init:
- return ERROR(init_missing); /* call ZBUFF_compressInit() first ! */
-
- case zcss_load:
- /* complete inBuffer */
- {
- size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
- size_t const loaded = ZSTD_limitCopy(zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend - ip);
- zcs->inBuffPos += loaded;
- ip += loaded;
- if ((zcs->inBuffPos == zcs->inToCompress) || (!flush && (toLoad != loaded))) {
- someMoreWork = 0;
- break; /* not enough input to get a full block : stop there, wait for more */
- }
- }
- /* compress curr block (note : this stage cannot be stopped in the middle) */
- {
- void *cDst;
- size_t cSize;
- size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
- size_t oSize = oend - op;
- if (oSize >= ZSTD_compressBound(iSize))
- cDst = op; /* compress directly into output buffer (avoid flush stage) */
- else
- cDst = zcs->outBuff, oSize = zcs->outBuffSize;
- cSize = (flush == zsf_end) ? ZSTD_compressEnd(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize)
- : ZSTD_compressContinue(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize);
- if (ZSTD_isError(cSize))
- return cSize;
- if (flush == zsf_end)
- zcs->frameEnded = 1;
- /* prepare next block */
- zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
- if (zcs->inBuffTarget > zcs->inBuffSize)
- zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; /* note : inBuffSize >= blockSize */
- zcs->inToCompress = zcs->inBuffPos;
- if (cDst == op) {
- op += cSize;
- break;
- } /* no need to flush */
- zcs->outBuffContentSize = cSize;
- zcs->outBuffFlushedSize = 0;
- zcs->stage = zcss_flush; /* pass-through to flush stage */
- }
- fallthrough;
-
- case zcss_flush: {
- size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
- size_t const flushed = ZSTD_limitCopy(op, oend - op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
- op += flushed;
- zcs->outBuffFlushedSize += flushed;
- if (toFlush != flushed) {
- someMoreWork = 0;
- break;
- } /* dst too small to store flushed data : stop there */
- zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
- zcs->stage = zcss_load;
- break;
- }
-
- case zcss_final:
- someMoreWork = 0; /* do nothing */
- break;
-
- default:
- return ERROR(GENERIC); /* impossible */
- }
- }
-
- *srcSizePtr = ip - istart;
- *dstCapacityPtr = op - ostart;
- zcs->inputProcessed += *srcSizePtr;
- if (zcs->frameEnded)
- return 0;
- {
- size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
- if (hintInSize == 0)
- hintInSize = zcs->blockSize;
- return hintInSize;
- }
-}
-
-size_t ZSTD_compressStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output, ZSTD_inBuffer *input)
-{
- size_t sizeRead = input->size - input->pos;
- size_t sizeWritten = output->size - output->pos;
- size_t const result =
- ZSTD_compressStream_generic(zcs, (char *)(output->dst) + output->pos, &sizeWritten, (const char *)(input->src) + input->pos, &sizeRead, zsf_gather);
- input->pos += sizeRead;
- output->pos += sizeWritten;
- return result;
-}
-
-/*====== Finalize ======*/
-
-/*! ZSTD_flushStream() :
-* @return : amount of data remaining to flush */
-size_t ZSTD_flushStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output)
-{
- size_t srcSize = 0;
- size_t sizeWritten = output->size - output->pos;
- size_t const result = ZSTD_compressStream_generic(zcs, (char *)(output->dst) + output->pos, &sizeWritten, &srcSize,
- &srcSize, /* use a valid src address instead of NULL */
- zsf_flush);
- output->pos += sizeWritten;
- if (ZSTD_isError(result))
- return result;
- return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */
-}
-
-size_t ZSTD_endStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output)
-{
- BYTE *const ostart = (BYTE *)(output->dst) + output->pos;
- BYTE *const oend = (BYTE *)(output->dst) + output->size;
- BYTE *op = ostart;
-
- if ((zcs->pledgedSrcSize) && (zcs->inputProcessed != zcs->pledgedSrcSize))
- return ERROR(srcSize_wrong); /* pledgedSrcSize not respected */
-
- if (zcs->stage != zcss_final) {
- /* flush whatever remains */
- size_t srcSize = 0;
- size_t sizeWritten = output->size - output->pos;
- size_t const notEnded =
- ZSTD_compressStream_generic(zcs, ostart, &sizeWritten, &srcSize, &srcSize, zsf_end); /* use a valid src address instead of NULL */
- size_t const remainingToFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
- op += sizeWritten;
- if (remainingToFlush) {
- output->pos += sizeWritten;
- return remainingToFlush + ZSTD_BLOCKHEADERSIZE /* final empty block */ + (zcs->checksum * 4);
- }
- /* create epilogue */
- zcs->stage = zcss_final;
- zcs->outBuffContentSize = !notEnded ? 0 : ZSTD_compressEnd(zcs->cctx, zcs->outBuff, zcs->outBuffSize, NULL,
- 0); /* write epilogue, including final empty block, into outBuff */
- }
-
- /* flush epilogue */
- {
- size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
- size_t const flushed = ZSTD_limitCopy(op, oend - op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
- op += flushed;
- zcs->outBuffFlushedSize += flushed;
- output->pos += op - ostart;
- if (toFlush == flushed)
- zcs->stage = zcss_init; /* end reached */
- return toFlush - flushed;
- }
-}
-
-/*-===== Pre-defined compression levels =====-*/
-
-#define ZSTD_DEFAULT_CLEVEL 1
-#define ZSTD_MAX_CLEVEL 22
-int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
-
-static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL + 1] = {
- {
- /* "default" */
- /* W, C, H, S, L, TL, strat */
- {18, 12, 12, 1, 7, 16, ZSTD_fast}, /* level 0 - never used */
- {19, 13, 14, 1, 7, 16, ZSTD_fast}, /* level 1 */
- {19, 15, 16, 1, 6, 16, ZSTD_fast}, /* level 2 */
- {20, 16, 17, 1, 5, 16, ZSTD_dfast}, /* level 3.*/
- {20, 18, 18, 1, 5, 16, ZSTD_dfast}, /* level 4.*/
- {20, 15, 18, 3, 5, 16, ZSTD_greedy}, /* level 5 */
- {21, 16, 19, 2, 5, 16, ZSTD_lazy}, /* level 6 */
- {21, 17, 20, 3, 5, 16, ZSTD_lazy}, /* level 7 */
- {21, 18, 20, 3, 5, 16, ZSTD_lazy2}, /* level 8 */
- {21, 20, 20, 3, 5, 16, ZSTD_lazy2}, /* level 9 */
- {21, 19, 21, 4, 5, 16, ZSTD_lazy2}, /* level 10 */
- {22, 20, 22, 4, 5, 16, ZSTD_lazy2}, /* level 11 */
- {22, 20, 22, 5, 5, 16, ZSTD_lazy2}, /* level 12 */
- {22, 21, 22, 5, 5, 16, ZSTD_lazy2}, /* level 13 */
- {22, 21, 22, 6, 5, 16, ZSTD_lazy2}, /* level 14 */
- {22, 21, 21, 5, 5, 16, ZSTD_btlazy2}, /* level 15 */
- {23, 22, 22, 5, 5, 16, ZSTD_btlazy2}, /* level 16 */
- {23, 21, 22, 4, 5, 24, ZSTD_btopt}, /* level 17 */
- {23, 23, 22, 6, 5, 32, ZSTD_btopt}, /* level 18 */
- {23, 23, 22, 6, 3, 48, ZSTD_btopt}, /* level 19 */
- {25, 25, 23, 7, 3, 64, ZSTD_btopt2}, /* level 20 */
- {26, 26, 23, 7, 3, 256, ZSTD_btopt2}, /* level 21 */
- {27, 27, 25, 9, 3, 512, ZSTD_btopt2}, /* level 22 */
- },
- {
- /* for srcSize <= 256 KB */
- /* W, C, H, S, L, T, strat */
- {0, 0, 0, 0, 0, 0, ZSTD_fast}, /* level 0 - not used */
- {18, 13, 14, 1, 6, 8, ZSTD_fast}, /* level 1 */
- {18, 14, 13, 1, 5, 8, ZSTD_dfast}, /* level 2 */
- {18, 16, 15, 1, 5, 8, ZSTD_dfast}, /* level 3 */
- {18, 15, 17, 1, 5, 8, ZSTD_greedy}, /* level 4.*/
- {18, 16, 17, 4, 5, 8, ZSTD_greedy}, /* level 5.*/
- {18, 16, 17, 3, 5, 8, ZSTD_lazy}, /* level 6.*/
- {18, 17, 17, 4, 4, 8, ZSTD_lazy}, /* level 7 */
- {18, 17, 17, 4, 4, 8, ZSTD_lazy2}, /* level 8 */
- {18, 17, 17, 5, 4, 8, ZSTD_lazy2}, /* level 9 */
- {18, 17, 17, 6, 4, 8, ZSTD_lazy2}, /* level 10 */
- {18, 18, 17, 6, 4, 8, ZSTD_lazy2}, /* level 11.*/
- {18, 18, 17, 7, 4, 8, ZSTD_lazy2}, /* level 12.*/
- {18, 19, 17, 6, 4, 8, ZSTD_btlazy2}, /* level 13 */
- {18, 18, 18, 4, 4, 16, ZSTD_btopt}, /* level 14.*/
- {18, 18, 18, 4, 3, 16, ZSTD_btopt}, /* level 15.*/
- {18, 19, 18, 6, 3, 32, ZSTD_btopt}, /* level 16.*/
- {18, 19, 18, 8, 3, 64, ZSTD_btopt}, /* level 17.*/
- {18, 19, 18, 9, 3, 128, ZSTD_btopt}, /* level 18.*/
- {18, 19, 18, 10, 3, 256, ZSTD_btopt}, /* level 19.*/
- {18, 19, 18, 11, 3, 512, ZSTD_btopt2}, /* level 20.*/
- {18, 19, 18, 12, 3, 512, ZSTD_btopt2}, /* level 21.*/
- {18, 19, 18, 13, 3, 512, ZSTD_btopt2}, /* level 22.*/
- },
- {
- /* for srcSize <= 128 KB */
- /* W, C, H, S, L, T, strat */
- {17, 12, 12, 1, 7, 8, ZSTD_fast}, /* level 0 - not used */
- {17, 12, 13, 1, 6, 8, ZSTD_fast}, /* level 1 */
- {17, 13, 16, 1, 5, 8, ZSTD_fast}, /* level 2 */
- {17, 16, 16, 2, 5, 8, ZSTD_dfast}, /* level 3 */
- {17, 13, 15, 3, 4, 8, ZSTD_greedy}, /* level 4 */
- {17, 15, 17, 4, 4, 8, ZSTD_greedy}, /* level 5 */
- {17, 16, 17, 3, 4, 8, ZSTD_lazy}, /* level 6 */
- {17, 15, 17, 4, 4, 8, ZSTD_lazy2}, /* level 7 */
- {17, 17, 17, 4, 4, 8, ZSTD_lazy2}, /* level 8 */
- {17, 17, 17, 5, 4, 8, ZSTD_lazy2}, /* level 9 */
- {17, 17, 17, 6, 4, 8, ZSTD_lazy2}, /* level 10 */
- {17, 17, 17, 7, 4, 8, ZSTD_lazy2}, /* level 11 */
- {17, 17, 17, 8, 4, 8, ZSTD_lazy2}, /* level 12 */
- {17, 18, 17, 6, 4, 8, ZSTD_btlazy2}, /* level 13.*/
- {17, 17, 17, 7, 3, 8, ZSTD_btopt}, /* level 14.*/
- {17, 17, 17, 7, 3, 16, ZSTD_btopt}, /* level 15.*/
- {17, 18, 17, 7, 3, 32, ZSTD_btopt}, /* level 16.*/
- {17, 18, 17, 7, 3, 64, ZSTD_btopt}, /* level 17.*/
- {17, 18, 17, 7, 3, 256, ZSTD_btopt}, /* level 18.*/
- {17, 18, 17, 8, 3, 256, ZSTD_btopt}, /* level 19.*/
- {17, 18, 17, 9, 3, 256, ZSTD_btopt2}, /* level 20.*/
- {17, 18, 17, 10, 3, 256, ZSTD_btopt2}, /* level 21.*/
- {17, 18, 17, 11, 3, 512, ZSTD_btopt2}, /* level 22.*/
- },
- {
- /* for srcSize <= 16 KB */
- /* W, C, H, S, L, T, strat */
- {14, 12, 12, 1, 7, 6, ZSTD_fast}, /* level 0 - not used */
- {14, 14, 14, 1, 6, 6, ZSTD_fast}, /* level 1 */
- {14, 14, 14, 1, 4, 6, ZSTD_fast}, /* level 2 */
- {14, 14, 14, 1, 4, 6, ZSTD_dfast}, /* level 3.*/
- {14, 14, 14, 4, 4, 6, ZSTD_greedy}, /* level 4.*/
- {14, 14, 14, 3, 4, 6, ZSTD_lazy}, /* level 5.*/
- {14, 14, 14, 4, 4, 6, ZSTD_lazy2}, /* level 6 */
- {14, 14, 14, 5, 4, 6, ZSTD_lazy2}, /* level 7 */
- {14, 14, 14, 6, 4, 6, ZSTD_lazy2}, /* level 8.*/
- {14, 15, 14, 6, 4, 6, ZSTD_btlazy2}, /* level 9.*/
- {14, 15, 14, 3, 3, 6, ZSTD_btopt}, /* level 10.*/
- {14, 15, 14, 6, 3, 8, ZSTD_btopt}, /* level 11.*/
- {14, 15, 14, 6, 3, 16, ZSTD_btopt}, /* level 12.*/
- {14, 15, 14, 6, 3, 24, ZSTD_btopt}, /* level 13.*/
- {14, 15, 15, 6, 3, 48, ZSTD_btopt}, /* level 14.*/
- {14, 15, 15, 6, 3, 64, ZSTD_btopt}, /* level 15.*/
- {14, 15, 15, 6, 3, 96, ZSTD_btopt}, /* level 16.*/
- {14, 15, 15, 6, 3, 128, ZSTD_btopt}, /* level 17.*/
- {14, 15, 15, 6, 3, 256, ZSTD_btopt}, /* level 18.*/
- {14, 15, 15, 7, 3, 256, ZSTD_btopt}, /* level 19.*/
- {14, 15, 15, 8, 3, 256, ZSTD_btopt2}, /* level 20.*/
- {14, 15, 15, 9, 3, 256, ZSTD_btopt2}, /* level 21.*/
- {14, 15, 15, 10, 3, 256, ZSTD_btopt2}, /* level 22.*/
- },
-};
-
-/*! ZSTD_getCParams() :
-* @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`.
-* Size values are optional, provide 0 if not known or unused */
-ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
-{
- ZSTD_compressionParameters cp;
- size_t const addedSize = srcSize ? 0 : 500;
- U64 const rSize = srcSize + dictSize ? srcSize + dictSize + addedSize : (U64)-1;
- U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */
- if (compressionLevel <= 0)
- compressionLevel = ZSTD_DEFAULT_CLEVEL; /* 0 == default; no negative compressionLevel yet */
- if (compressionLevel > ZSTD_MAX_CLEVEL)
- compressionLevel = ZSTD_MAX_CLEVEL;
- cp = ZSTD_defaultCParameters[tableID][compressionLevel];
- if (ZSTD_32bits()) { /* auto-correction, for 32-bits mode */
- if (cp.windowLog > ZSTD_WINDOWLOG_MAX)
- cp.windowLog = ZSTD_WINDOWLOG_MAX;
- if (cp.chainLog > ZSTD_CHAINLOG_MAX)
- cp.chainLog = ZSTD_CHAINLOG_MAX;
- if (cp.hashLog > ZSTD_HASHLOG_MAX)
- cp.hashLog = ZSTD_HASHLOG_MAX;
- }
- cp = ZSTD_adjustCParams(cp, srcSize, dictSize);
- return cp;
-}
-
-/*! ZSTD_getParams() :
-* same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
-* All fields of `ZSTD_frameParameters` are set to default (0) */
-ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
-{
- ZSTD_parameters params;
- ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSize, dictSize);
- memset(&params, 0, sizeof(params));
- params.cParams = cParams;
- return params;
-}
-
-EXPORT_SYMBOL(ZSTD_maxCLevel);
-EXPORT_SYMBOL(ZSTD_compressBound);
-
-EXPORT_SYMBOL(ZSTD_CCtxWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initCCtx);
-EXPORT_SYMBOL(ZSTD_compressCCtx);
-EXPORT_SYMBOL(ZSTD_compress_usingDict);
-
-EXPORT_SYMBOL(ZSTD_CDictWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initCDict);
-EXPORT_SYMBOL(ZSTD_compress_usingCDict);
-
-EXPORT_SYMBOL(ZSTD_CStreamWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initCStream);
-EXPORT_SYMBOL(ZSTD_initCStream_usingCDict);
-EXPORT_SYMBOL(ZSTD_resetCStream);
-EXPORT_SYMBOL(ZSTD_compressStream);
-EXPORT_SYMBOL(ZSTD_flushStream);
-EXPORT_SYMBOL(ZSTD_endStream);
-EXPORT_SYMBOL(ZSTD_CStreamInSize);
-EXPORT_SYMBOL(ZSTD_CStreamOutSize);
-
-EXPORT_SYMBOL(ZSTD_getCParams);
-EXPORT_SYMBOL(ZSTD_getParams);
-EXPORT_SYMBOL(ZSTD_checkCParams);
-EXPORT_SYMBOL(ZSTD_adjustCParams);
-
-EXPORT_SYMBOL(ZSTD_compressBegin);
-EXPORT_SYMBOL(ZSTD_compressBegin_usingDict);
-EXPORT_SYMBOL(ZSTD_compressBegin_advanced);
-EXPORT_SYMBOL(ZSTD_copyCCtx);
-EXPORT_SYMBOL(ZSTD_compressBegin_usingCDict);
-EXPORT_SYMBOL(ZSTD_compressContinue);
-EXPORT_SYMBOL(ZSTD_compressEnd);
-
-EXPORT_SYMBOL(ZSTD_getBlockSizeMax);
-EXPORT_SYMBOL(ZSTD_compressBlock);
-
-MODULE_LICENSE("Dual BSD/GPL");
-MODULE_DESCRIPTION("Zstd Compressor");
diff --git a/lib/zstd/compress/fse_compress.c b/lib/zstd/compress/fse_compress.c
new file mode 100644
index 000000000000..436985b620e5
--- /dev/null
+++ b/lib/zstd/compress/fse_compress.c
@@ -0,0 +1,625 @@
+/* ******************************************************************
+ * FSE : Finite State Entropy encoder
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include "../common/compiler.h"
+#include "../common/mem.h" /* U32, U16, etc. */
+#include "../common/debug.h" /* assert, DEBUGLOG */
+#include "hist.h" /* HIST_count_wksp */
+#include "../common/bitstream.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "../common/fse.h"
+#include "../common/error_private.h"
+#define ZSTD_DEPS_NEED_MALLOC
+#define ZSTD_DEPS_NEED_MATH64
+#include "../common/zstd_deps.h" /* ZSTD_malloc, ZSTD_free, ZSTD_memcpy, ZSTD_memset */
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define FSE_isError ERR_isError
+
+
+/* **************************************************************
+* Templates
+****************************************************************/
+/*
+ designed to be included
+ for type-specific functions (template emulation in C)
+ Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+# error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+# error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+
+/* FSE_buildCTable_wksp() :
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
+ * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
+ * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
+ */
+size_t FSE_buildCTable_wksp(FSE_CTable* ct,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
+ void* workSpace, size_t wkspSize)
+{
+ U32 const tableSize = 1 << tableLog;
+ U32 const tableMask = tableSize - 1;
+ void* const ptr = ct;
+ U16* const tableU16 = ( (U16*) ptr) + 2;
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+ U32 const step = FSE_TABLESTEP(tableSize);
+
+ U32* cumul = (U32*)workSpace;
+ FSE_FUNCTION_TYPE* tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSymbolValue + 2));
+
+ U32 highThreshold = tableSize-1;
+
+ if ((size_t)workSpace & 3) return ERROR(GENERIC); /* Must be 4 byte aligned */
+ if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge);
+ /* CTable header */
+ tableU16[-2] = (U16) tableLog;
+ tableU16[-1] = (U16) maxSymbolValue;
+ assert(tableLog < 16); /* required for threshold strategy to work */
+
+ /* For explanations on how to distribute symbol values over the table :
+ * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
+
+ #ifdef __clang_analyzer__
+ ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
+ #endif
+
+ /* symbol start positions */
+ { U32 u;
+ cumul[0] = 0;
+ for (u=1; u <= maxSymbolValue+1; u++) {
+ if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
+ cumul[u] = cumul[u-1] + 1;
+ tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
+ } else {
+ cumul[u] = cumul[u-1] + normalizedCounter[u-1];
+ } }
+ cumul[maxSymbolValue+1] = tableSize+1;
+ }
+
+ /* Spread symbols */
+ { U32 position = 0;
+ U32 symbol;
+ for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+ int nbOccurrences;
+ int const freq = normalizedCounter[symbol];
+ for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
+ tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
+ position = (position + step) & tableMask;
+ while (position > highThreshold)
+ position = (position + step) & tableMask; /* Low proba area */
+ } }
+
+ assert(position==0); /* Must have initialized all positions */
+ }
+
+ /* Build table */
+ { U32 u; for (u=0; u<tableSize; u++) {
+ FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
+ tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
+ } }
+
+ /* Build Symbol Transformation Table */
+ { unsigned total = 0;
+ unsigned s;
+ for (s=0; s<=maxSymbolValue; s++) {
+ switch (normalizedCounter[s])
+ {
+ case 0:
+ /* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
+ symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
+ break;
+
+ case -1:
+ case 1:
+ symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
+ symbolTT[s].deltaFindState = total - 1;
+ total ++;
+ break;
+ default :
+ {
+ U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
+ U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
+ symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
+ symbolTT[s].deltaFindState = total - normalizedCounter[s];
+ total += normalizedCounter[s];
+ } } } }
+
+#if 0 /* debug : symbol costs */
+ DEBUGLOG(5, "\n --- table statistics : ");
+ { U32 symbol;
+ for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+ DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
+ symbol, normalizedCounter[symbol],
+ FSE_getMaxNbBits(symbolTT, symbol),
+ (double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
+ }
+ }
+#endif
+
+ return 0;
+}
+
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+
+/*-**************************************************************
+* FSE NCount encoding
+****************************************************************/
+size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
+{
+ size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
+ return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
+}
+
+static size_t
+FSE_writeNCount_generic (void* header, size_t headerBufferSize,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
+ unsigned writeIsSafe)
+{
+ BYTE* const ostart = (BYTE*) header;
+ BYTE* out = ostart;
+ BYTE* const oend = ostart + headerBufferSize;
+ int nbBits;
+ const int tableSize = 1 << tableLog;
+ int remaining;
+ int threshold;
+ U32 bitStream = 0;
+ int bitCount = 0;
+ unsigned symbol = 0;
+ unsigned const alphabetSize = maxSymbolValue + 1;
+ int previousIs0 = 0;
+
+ /* Table Size */
+ bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
+ bitCount += 4;
+
+ /* Init */
+ remaining = tableSize+1; /* +1 for extra accuracy */
+ threshold = tableSize;
+ nbBits = tableLog+1;
+
+ while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
+ if (previousIs0) {
+ unsigned start = symbol;
+ while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
+ if (symbol == alphabetSize) break; /* incorrect distribution */
+ while (symbol >= start+24) {
+ start+=24;
+ bitStream += 0xFFFFU << bitCount;
+ if ((!writeIsSafe) && (out > oend-2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE) bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out+=2;
+ bitStream>>=16;
+ }
+ while (symbol >= start+3) {
+ start+=3;
+ bitStream += 3 << bitCount;
+ bitCount += 2;
+ }
+ bitStream += (symbol-start) << bitCount;
+ bitCount += 2;
+ if (bitCount>16) {
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out += 2;
+ bitStream >>= 16;
+ bitCount -= 16;
+ } }
+ { int count = normalizedCounter[symbol++];
+ int const max = (2*threshold-1) - remaining;
+ remaining -= count < 0 ? -count : count;
+ count++; /* +1 for extra accuracy */
+ if (count>=threshold)
+ count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
+ bitStream += count << bitCount;
+ bitCount += nbBits;
+ bitCount -= (count<max);
+ previousIs0 = (count==1);
+ if (remaining<1) return ERROR(GENERIC);
+ while (remaining<threshold) { nbBits--; threshold>>=1; }
+ }
+ if (bitCount>16) {
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out += 2;
+ bitStream >>= 16;
+ bitCount -= 16;
+ } }
+
+ if (remaining != 1)
+ return ERROR(GENERIC); /* incorrect normalized distribution */
+ assert(symbol <= alphabetSize);
+
+ /* flush remaining bitStream */
+ if ((!writeIsSafe) && (out > oend - 2))
+ return ERROR(dstSize_tooSmall); /* Buffer overflow */
+ out[0] = (BYTE)bitStream;
+ out[1] = (BYTE)(bitStream>>8);
+ out+= (bitCount+7) /8;
+
+ return (out-ostart);
+}
+
+
+size_t FSE_writeNCount (void* buffer, size_t bufferSize,
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
+
+ if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
+
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
+}
+
+
+/*-**************************************************************
+* FSE Compression Code
+****************************************************************/
+
+FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
+{
+ size_t size;
+ if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+ size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
+ return (FSE_CTable*)ZSTD_malloc(size);
+}
+
+void FSE_freeCTable (FSE_CTable* ct) { ZSTD_free(ct); }
+
+/* provides the minimum logSize to safely represent a distribution */
+static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
+{
+ U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1;
+ U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
+ U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
+ assert(srcSize > 1); /* Not supported, RLE should be used instead */
+ return minBits;
+}
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
+{
+ U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
+ U32 tableLog = maxTableLog;
+ U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
+ assert(srcSize > 1); /* Not supported, RLE should be used instead */
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+ if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
+ if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
+ if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
+ if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
+ return tableLog;
+}
+
+unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
+}
+
+/* Secondary normalization method.
+ To be used when primary method fails. */
+
+static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue, short lowProbCount)
+{
+ short const NOT_YET_ASSIGNED = -2;
+ U32 s;
+ U32 distributed = 0;
+ U32 ToDistribute;
+
+ /* Init */
+ U32 const lowThreshold = (U32)(total >> tableLog);
+ U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
+
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (count[s] == 0) {
+ norm[s]=0;
+ continue;
+ }
+ if (count[s] <= lowThreshold) {
+ norm[s] = lowProbCount;
+ distributed++;
+ total -= count[s];
+ continue;
+ }
+ if (count[s] <= lowOne) {
+ norm[s] = 1;
+ distributed++;
+ total -= count[s];
+ continue;
+ }
+
+ norm[s]=NOT_YET_ASSIGNED;
+ }
+ ToDistribute = (1 << tableLog) - distributed;
+
+ if (ToDistribute == 0)
+ return 0;
+
+ if ((total / ToDistribute) > lowOne) {
+ /* risk of rounding to zero */
+ lowOne = (U32)((total * 3) / (ToDistribute * 2));
+ for (s=0; s<=maxSymbolValue; s++) {
+ if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
+ norm[s] = 1;
+ distributed++;
+ total -= count[s];
+ continue;
+ } }
+ ToDistribute = (1 << tableLog) - distributed;
+ }
+
+ if (distributed == maxSymbolValue+1) {
+ /* all values are pretty poor;
+ probably incompressible data (should have already been detected);
+ find max, then give all remaining points to max */
+ U32 maxV = 0, maxC = 0;
+ for (s=0; s<=maxSymbolValue; s++)
+ if (count[s] > maxC) { maxV=s; maxC=count[s]; }
+ norm[maxV] += (short)ToDistribute;
+ return 0;
+ }
+
+ if (total == 0) {
+ /* all of the symbols were low enough for the lowOne or lowThreshold */
+ for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
+ if (norm[s] > 0) { ToDistribute--; norm[s]++; }
+ return 0;
+ }
+
+ { U64 const vStepLog = 62 - tableLog;
+ U64 const mid = (1ULL << (vStepLog-1)) - 1;
+ U64 const rStep = ZSTD_div64((((U64)1<<vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
+ U64 tmpTotal = mid;
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (norm[s]==NOT_YET_ASSIGNED) {
+ U64 const end = tmpTotal + (count[s] * rStep);
+ U32 const sStart = (U32)(tmpTotal >> vStepLog);
+ U32 const sEnd = (U32)(end >> vStepLog);
+ U32 const weight = sEnd - sStart;
+ if (weight < 1)
+ return ERROR(GENERIC);
+ norm[s] = (short)weight;
+ tmpTotal = end;
+ } } }
+
+ return 0;
+}
+
+size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
+ const unsigned* count, size_t total,
+ unsigned maxSymbolValue, unsigned useLowProbCount)
+{
+ /* Sanity checks */
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
+ if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
+
+ { static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
+ short const lowProbCount = useLowProbCount ? -1 : 1;
+ U64 const scale = 62 - tableLog;
+ U64 const step = ZSTD_div64((U64)1<<62, (U32)total); /* <== here, one division ! */
+ U64 const vStep = 1ULL<<(scale-20);
+ int stillToDistribute = 1<<tableLog;
+ unsigned s;
+ unsigned largest=0;
+ short largestP=0;
+ U32 lowThreshold = (U32)(total >> tableLog);
+
+ for (s=0; s<=maxSymbolValue; s++) {
+ if (count[s] == total) return 0; /* rle special case */
+ if (count[s] == 0) { normalizedCounter[s]=0; continue; }
+ if (count[s] <= lowThreshold) {
+ normalizedCounter[s] = lowProbCount;
+ stillToDistribute--;
+ } else {
+ short proba = (short)((count[s]*step) >> scale);
+ if (proba<8) {
+ U64 restToBeat = vStep * rtbTable[proba];
+ proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
+ }
+ if (proba > largestP) { largestP=proba; largest=s; }
+ normalizedCounter[s] = proba;
+ stillToDistribute -= proba;
+ } }
+ if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
+ /* corner case, need another normalization method */
+ size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue, lowProbCount);
+ if (FSE_isError(errorCode)) return errorCode;
+ }
+ else normalizedCounter[largest] += (short)stillToDistribute;
+ }
+
+#if 0
+ { /* Print Table (debug) */
+ U32 s;
+ U32 nTotal = 0;
+ for (s=0; s<=maxSymbolValue; s++)
+ RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
+ for (s=0; s<=maxSymbolValue; s++)
+ nTotal += abs(normalizedCounter[s]);
+ if (nTotal != (1U<<tableLog))
+ RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
+ getchar();
+ }
+#endif
+
+ return tableLog;
+}
+
+
+/* fake FSE_CTable, for raw (uncompressed) input */
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
+{
+ const unsigned tableSize = 1 << nbBits;
+ const unsigned tableMask = tableSize - 1;
+ const unsigned maxSymbolValue = tableMask;
+ void* const ptr = ct;
+ U16* const tableU16 = ( (U16*) ptr) + 2;
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+ unsigned s;
+
+ /* Sanity checks */
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
+
+ /* header */
+ tableU16[-2] = (U16) nbBits;
+ tableU16[-1] = (U16) maxSymbolValue;
+
+ /* Build table */
+ for (s=0; s<tableSize; s++)
+ tableU16[s] = (U16)(tableSize + s);
+
+ /* Build Symbol Transformation Table */
+ { const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
+ for (s=0; s<=maxSymbolValue; s++) {
+ symbolTT[s].deltaNbBits = deltaNbBits;
+ symbolTT[s].deltaFindState = s-1;
+ } }
+
+ return 0;
+}
+
+/* fake FSE_CTable, for rle input (always same symbol) */
+size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
+{
+ void* ptr = ct;
+ U16* tableU16 = ( (U16*) ptr) + 2;
+ void* FSCTptr = (U32*)ptr + 2;
+ FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
+
+ /* header */
+ tableU16[-2] = (U16) 0;
+ tableU16[-1] = (U16) symbolValue;
+
+ /* Build table */
+ tableU16[0] = 0;
+ tableU16[1] = 0; /* just in case */
+
+ /* Build Symbol Transformation Table */
+ symbolTT[symbolValue].deltaNbBits = 0;
+ symbolTT[symbolValue].deltaFindState = 0;
+
+ return 0;
+}
+
+
+static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const FSE_CTable* ct, const unsigned fast)
+{
+ const BYTE* const istart = (const BYTE*) src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip=iend;
+
+ BIT_CStream_t bitC;
+ FSE_CState_t CState1, CState2;
+
+ /* init */
+ if (srcSize <= 2) return 0;
+ { size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
+ if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
+
+#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
+
+ if (srcSize & 1) {
+ FSE_initCState2(&CState1, ct, *--ip);
+ FSE_initCState2(&CState2, ct, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ FSE_FLUSHBITS(&bitC);
+ } else {
+ FSE_initCState2(&CState2, ct, *--ip);
+ FSE_initCState2(&CState1, ct, *--ip);
+ }
+
+ /* join to mod 4 */
+ srcSize -= 2;
+ if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ FSE_FLUSHBITS(&bitC);
+ }
+
+ /* 2 or 4 encoding per loop */
+ while ( ip>istart ) {
+
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+
+ if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
+ FSE_FLUSHBITS(&bitC);
+
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+
+ if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
+ }
+
+ FSE_FLUSHBITS(&bitC);
+ }
+
+ FSE_flushCState(&bitC, &CState2);
+ FSE_flushCState(&bitC, &CState1);
+ return BIT_closeCStream(&bitC);
+}
+
+size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const FSE_CTable* ct)
+{
+ unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
+
+ if (fast)
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
+ else
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
+}
+
+
+size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
+
+
+#endif /* FSE_COMMONDEFS_ONLY */
diff --git a/lib/zstd/compress/hist.c b/lib/zstd/compress/hist.c
new file mode 100644
index 000000000000..3ddc6dfb6894
--- /dev/null
+++ b/lib/zstd/compress/hist.c
@@ -0,0 +1,165 @@
+/* ******************************************************************
+ * hist : Histogram functions
+ * part of Finite State Entropy project
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* --- dependencies --- */
+#include "../common/mem.h" /* U32, BYTE, etc. */
+#include "../common/debug.h" /* assert, DEBUGLOG */
+#include "../common/error_private.h" /* ERROR */
+#include "hist.h"
+
+
+/* --- Error management --- */
+unsigned HIST_isError(size_t code) { return ERR_isError(code); }
+
+/*-**************************************************************
+ * Histogram functions
+ ****************************************************************/
+unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const end = ip + srcSize;
+ unsigned maxSymbolValue = *maxSymbolValuePtr;
+ unsigned largestCount=0;
+
+ ZSTD_memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
+ if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
+
+ while (ip<end) {
+ assert(*ip <= maxSymbolValue);
+ count[*ip++]++;
+ }
+
+ while (!count[maxSymbolValue]) maxSymbolValue--;
+ *maxSymbolValuePtr = maxSymbolValue;
+
+ { U32 s;
+ for (s=0; s<=maxSymbolValue; s++)
+ if (count[s] > largestCount) largestCount = count[s];
+ }
+
+ return largestCount;
+}
+
+typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e;
+
+/* HIST_count_parallel_wksp() :
+ * store histogram into 4 intermediate tables, recombined at the end.
+ * this design makes better use of OoO cpus,
+ * and is noticeably faster when some values are heavily repeated.
+ * But it needs some additional workspace for intermediate tables.
+ * `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32.
+ * @return : largest histogram frequency,
+ * or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */
+static size_t HIST_count_parallel_wksp(
+ unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ HIST_checkInput_e check,
+ U32* const workSpace)
+{
+ const BYTE* ip = (const BYTE*)source;
+ const BYTE* const iend = ip+sourceSize;
+ size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count);
+ unsigned max=0;
+ U32* const Counting1 = workSpace;
+ U32* const Counting2 = Counting1 + 256;
+ U32* const Counting3 = Counting2 + 256;
+ U32* const Counting4 = Counting3 + 256;
+
+ /* safety checks */
+ assert(*maxSymbolValuePtr <= 255);
+ if (!sourceSize) {
+ ZSTD_memset(count, 0, countSize);
+ *maxSymbolValuePtr = 0;
+ return 0;
+ }
+ ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned));
+
+ /* by stripes of 16 bytes */
+ { U32 cached = MEM_read32(ip); ip += 4;
+ while (ip < iend-15) {
+ U32 c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ c = cached; cached = MEM_read32(ip); ip += 4;
+ Counting1[(BYTE) c ]++;
+ Counting2[(BYTE)(c>>8) ]++;
+ Counting3[(BYTE)(c>>16)]++;
+ Counting4[ c>>24 ]++;
+ }
+ ip-=4;
+ }
+
+ /* finish last symbols */
+ while (ip<iend) Counting1[*ip++]++;
+
+ { U32 s;
+ for (s=0; s<256; s++) {
+ Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
+ if (Counting1[s] > max) max = Counting1[s];
+ } }
+
+ { unsigned maxSymbolValue = 255;
+ while (!Counting1[maxSymbolValue]) maxSymbolValue--;
+ if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall);
+ *maxSymbolValuePtr = maxSymbolValue;
+ ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */
+ }
+ return (size_t)max;
+}
+
+/* HIST_countFast_wksp() :
+ * Same as HIST_countFast(), but using an externally provided scratch buffer.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ void* workSpace, size_t workSpaceSize)
+{
+ if (sourceSize < 1500) /* heuristic threshold */
+ return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
+ if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
+ return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace);
+}
+
+/* HIST_count_wksp() :
+ * Same as HIST_count(), but using an externally provided scratch buffer.
+ * `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
+size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* source, size_t sourceSize,
+ void* workSpace, size_t workSpaceSize)
+{
+ if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
+ if (*maxSymbolValuePtr < 255)
+ return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace);
+ *maxSymbolValuePtr = 255;
+ return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize);
+}
+
diff --git a/lib/zstd/compress/hist.h b/lib/zstd/compress/hist.h
new file mode 100644
index 000000000000..fc1830abc9c6
--- /dev/null
+++ b/lib/zstd/compress/hist.h
@@ -0,0 +1,75 @@
+/* ******************************************************************
+ * hist : Histogram functions
+ * part of Finite State Entropy project
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* --- dependencies --- */
+#include "../common/zstd_deps.h" /* size_t */
+
+
+/* --- simple histogram functions --- */
+
+/*! HIST_count():
+ * Provides the precise count of each byte within a table 'count'.
+ * 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
+ * Updates *maxSymbolValuePtr with actual largest symbol value detected.
+ * @return : count of the most frequent symbol (which isn't identified).
+ * or an error code, which can be tested using HIST_isError().
+ * note : if return == srcSize, there is only one symbol.
+ */
+size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
+
+unsigned HIST_isError(size_t code); /*< tells if a return value is an error code */
+
+
+/* --- advanced histogram functions --- */
+
+#define HIST_WKSP_SIZE_U32 1024
+#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned))
+/* HIST_count_wksp() :
+ * Same as HIST_count(), but using an externally provided scratch buffer.
+ * Benefit is this function will use very little stack space.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t workSpaceSize);
+
+/* HIST_countFast() :
+ * same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
+ * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
+ */
+size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
+
+/* HIST_countFast_wksp() :
+ * Same as HIST_countFast(), but using an externally provided scratch buffer.
+ * `workSpace` is a writable buffer which must be 4-bytes aligned,
+ * `workSpaceSize` must be >= HIST_WKSP_SIZE
+ */
+size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t workSpaceSize);
+
+/*! HIST_count_simple() :
+ * Same as HIST_countFast(), this function is unsafe,
+ * and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
+ * It is also a bit slower for large inputs.
+ * However, it does not need any additional memory (not even on stack).
+ * @return : count of the most frequent symbol.
+ * Note this function doesn't produce any error (i.e. it must succeed).
+ */
+unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
+ const void* src, size_t srcSize);
diff --git a/lib/zstd/compress/huf_compress.c b/lib/zstd/compress/huf_compress.c
new file mode 100644
index 000000000000..f76a526bfa54
--- /dev/null
+++ b/lib/zstd/compress/huf_compress.c
@@ -0,0 +1,905 @@
+/* ******************************************************************
+ * Huffman encoder, part of New Generation Entropy library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ * - Public forum : https://groups.google.com/forum/#!forum/lz4c
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* **************************************************************
+* Compiler specifics
+****************************************************************/
+
+
+/* **************************************************************
+* Includes
+****************************************************************/
+#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
+#include "../common/compiler.h"
+#include "../common/bitstream.h"
+#include "hist.h"
+#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
+#include "../common/fse.h" /* header compression */
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include "../common/error_private.h"
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUF_isError ERR_isError
+#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
+
+
+/* **************************************************************
+* Utils
+****************************************************************/
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
+}
+
+
+/* *******************************************************
+* HUF : Huffman block compression
+*********************************************************/
+/* HUF_compressWeights() :
+ * Same as FSE_compress(), but dedicated to huff0's weights compression.
+ * The use case needs much less stack memory.
+ * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
+ */
+#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
+
+typedef struct {
+ FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
+ U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
+ unsigned count[HUF_TABLELOG_MAX+1];
+ S16 norm[HUF_TABLELOG_MAX+1];
+} HUF_CompressWeightsWksp;
+
+static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
+{
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* op = ostart;
+ BYTE* const oend = ostart + dstSize;
+
+ unsigned maxSymbolValue = HUF_TABLELOG_MAX;
+ U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
+ HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)workspace;
+
+ if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
+
+ /* init conditions */
+ if (wtSize <= 1) return 0; /* Not compressible */
+
+ /* Scan input and build symbol stats */
+ { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
+ if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
+ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
+ }
+
+ tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
+ CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
+
+ /* Write table description header */
+ { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
+ op += hSize;
+ }
+
+ /* Compress */
+ CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
+ if (cSize == 0) return 0; /* not enough space for compressed data */
+ op += cSize;
+ }
+
+ return (size_t)(op-ostart);
+}
+
+
+typedef struct {
+ HUF_CompressWeightsWksp wksp;
+ BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
+} HUF_WriteCTableWksp;
+
+size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
+ const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
+ void* workspace, size_t workspaceSize)
+{
+ BYTE* op = (BYTE*)dst;
+ U32 n;
+ HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)workspace;
+
+ /* check conditions */
+ if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
+
+ /* convert to weight */
+ wksp->bitsToWeight[0] = 0;
+ for (n=1; n<huffLog+1; n++)
+ wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
+ for (n=0; n<maxSymbolValue; n++)
+ wksp->huffWeight[n] = wksp->bitsToWeight[CTable[n].nbBits];
+
+ /* attempt weights compression by FSE */
+ { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
+ if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
+ op[0] = (BYTE)hSize;
+ return hSize+1;
+ } }
+
+ /* write raw values as 4-bits (max : 15) */
+ if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
+ if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
+ op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
+ wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
+ for (n=0; n<maxSymbolValue; n+=2)
+ op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
+ return ((maxSymbolValue+1)/2) + 1;
+}
+
+/*! HUF_writeCTable() :
+ `CTable` : Huffman tree to save, using huf representation.
+ @return : size of saved CTable */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize,
+ const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
+{
+ HUF_WriteCTableWksp wksp;
+ return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
+}
+
+
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
+{
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
+ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
+ U32 tableLog = 0;
+ U32 nbSymbols = 0;
+
+ /* get symbol weights */
+ CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
+ *hasZeroWeights = (rankVal[0] > 0);
+
+ /* check result */
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
+
+ /* Prepare base value per rank */
+ { U32 n, nextRankStart = 0;
+ for (n=1; n<=tableLog; n++) {
+ U32 curr = nextRankStart;
+ nextRankStart += (rankVal[n] << (n-1));
+ rankVal[n] = curr;
+ } }
+
+ /* fill nbBits */
+ { U32 n; for (n=0; n<nbSymbols; n++) {
+ const U32 w = huffWeight[n];
+ CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
+ } }
+
+ /* fill val */
+ { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
+ U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
+ { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
+ /* determine stating value per rank */
+ valPerRank[tableLog+1] = 0; /* for w==0 */
+ { U16 min = 0;
+ U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
+ valPerRank[n] = min; /* get starting value within each rank */
+ min += nbPerRank[n];
+ min >>= 1;
+ } }
+ /* assign value within rank, symbol order */
+ { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
+ }
+
+ *maxSymbolValuePtr = nbSymbols - 1;
+ return readSize;
+}
+
+U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
+{
+ const HUF_CElt* table = (const HUF_CElt*)symbolTable;
+ assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
+ return table[symbolValue].nbBits;
+}
+
+
+typedef struct nodeElt_s {
+ U32 count;
+ U16 parent;
+ BYTE byte;
+ BYTE nbBits;
+} nodeElt;
+
+/*
+ * HUF_setMaxHeight():
+ * Enforces maxNbBits on the Huffman tree described in huffNode.
+ *
+ * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
+ * the tree to so that it is a valid canonical Huffman tree.
+ *
+ * @pre The sum of the ranks of each symbol == 2^largestBits,
+ * where largestBits == huffNode[lastNonNull].nbBits.
+ * @post The sum of the ranks of each symbol == 2^largestBits,
+ * where largestBits is the return value <= maxNbBits.
+ *
+ * @param huffNode The Huffman tree modified in place to enforce maxNbBits.
+ * @param lastNonNull The symbol with the lowest count in the Huffman tree.
+ * @param maxNbBits The maximum allowed number of bits, which the Huffman tree
+ * may not respect. After this function the Huffman tree will
+ * respect maxNbBits.
+ * @return The maximum number of bits of the Huffman tree after adjustment,
+ * necessarily no more than maxNbBits.
+ */
+static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
+{
+ const U32 largestBits = huffNode[lastNonNull].nbBits;
+ /* early exit : no elt > maxNbBits, so the tree is already valid. */
+ if (largestBits <= maxNbBits) return largestBits;
+
+ /* there are several too large elements (at least >= 2) */
+ { int totalCost = 0;
+ const U32 baseCost = 1 << (largestBits - maxNbBits);
+ int n = (int)lastNonNull;
+
+ /* Adjust any ranks > maxNbBits to maxNbBits.
+ * Compute totalCost, which is how far the sum of the ranks is
+ * we are over 2^largestBits after adjust the offending ranks.
+ */
+ while (huffNode[n].nbBits > maxNbBits) {
+ totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
+ huffNode[n].nbBits = (BYTE)maxNbBits;
+ n--;
+ }
+ /* n stops at huffNode[n].nbBits <= maxNbBits */
+ assert(huffNode[n].nbBits <= maxNbBits);
+ /* n end at index of smallest symbol using < maxNbBits */
+ while (huffNode[n].nbBits == maxNbBits) --n;
+
+ /* renorm totalCost from 2^largestBits to 2^maxNbBits
+ * note : totalCost is necessarily a multiple of baseCost */
+ assert((totalCost & (baseCost - 1)) == 0);
+ totalCost >>= (largestBits - maxNbBits);
+ assert(totalCost > 0);
+
+ /* repay normalized cost */
+ { U32 const noSymbol = 0xF0F0F0F0;
+ U32 rankLast[HUF_TABLELOG_MAX+2];
+
+ /* Get pos of last (smallest = lowest cum. count) symbol per rank */
+ ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
+ { U32 currentNbBits = maxNbBits;
+ int pos;
+ for (pos=n ; pos >= 0; pos--) {
+ if (huffNode[pos].nbBits >= currentNbBits) continue;
+ currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
+ rankLast[maxNbBits-currentNbBits] = (U32)pos;
+ } }
+
+ while (totalCost > 0) {
+ /* Try to reduce the next power of 2 above totalCost because we
+ * gain back half the rank.
+ */
+ U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
+ for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
+ U32 const highPos = rankLast[nBitsToDecrease];
+ U32 const lowPos = rankLast[nBitsToDecrease-1];
+ if (highPos == noSymbol) continue;
+ /* Decrease highPos if no symbols of lowPos or if it is
+ * not cheaper to remove 2 lowPos than highPos.
+ */
+ if (lowPos == noSymbol) break;
+ { U32 const highTotal = huffNode[highPos].count;
+ U32 const lowTotal = 2 * huffNode[lowPos].count;
+ if (highTotal <= lowTotal) break;
+ } }
+ /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
+ assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
+ /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
+ while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
+ nBitsToDecrease++;
+ assert(rankLast[nBitsToDecrease] != noSymbol);
+ /* Increase the number of bits to gain back half the rank cost. */
+ totalCost -= 1 << (nBitsToDecrease-1);
+ huffNode[rankLast[nBitsToDecrease]].nbBits++;
+
+ /* Fix up the new rank.
+ * If the new rank was empty, this symbol is now its smallest.
+ * Otherwise, this symbol will be the largest in the new rank so no adjustment.
+ */
+ if (rankLast[nBitsToDecrease-1] == noSymbol)
+ rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
+ /* Fix up the old rank.
+ * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
+ * it must be the only symbol in its rank, so the old rank now has no symbols.
+ * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
+ * the smallest node in the rank. If the previous position belongs to a different rank,
+ * then the rank is now empty.
+ */
+ if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
+ rankLast[nBitsToDecrease] = noSymbol;
+ else {
+ rankLast[nBitsToDecrease]--;
+ if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
+ rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
+ }
+ } /* while (totalCost > 0) */
+
+ /* If we've removed too much weight, then we have to add it back.
+ * To avoid overshooting again, we only adjust the smallest rank.
+ * We take the largest nodes from the lowest rank 0 and move them
+ * to rank 1. There's guaranteed to be enough rank 0 symbols because
+ * TODO.
+ */
+ while (totalCost < 0) { /* Sometimes, cost correction overshoot */
+ /* special case : no rank 1 symbol (using maxNbBits-1);
+ * let's create one from largest rank 0 (using maxNbBits).
+ */
+ if (rankLast[1] == noSymbol) {
+ while (huffNode[n].nbBits == maxNbBits) n--;
+ huffNode[n+1].nbBits--;
+ assert(n >= 0);
+ rankLast[1] = (U32)(n+1);
+ totalCost++;
+ continue;
+ }
+ huffNode[ rankLast[1] + 1 ].nbBits--;
+ rankLast[1]++;
+ totalCost ++;
+ }
+ } /* repay normalized cost */
+ } /* there are several too large elements (at least >= 2) */
+
+ return maxNbBits;
+}
+
+typedef struct {
+ U32 base;
+ U32 curr;
+} rankPos;
+
+typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
+
+#define RANK_POSITION_TABLE_SIZE 32
+
+typedef struct {
+ huffNodeTable huffNodeTbl;
+ rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
+} HUF_buildCTable_wksp_tables;
+
+/*
+ * HUF_sort():
+ * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
+ *
+ * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
+ * Must have (maxSymbolValue + 1) entries.
+ * @param[in] count Histogram of the symbols.
+ * @param[in] maxSymbolValue Maximum symbol value.
+ * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
+ */
+static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
+{
+ int n;
+ int const maxSymbolValue1 = (int)maxSymbolValue + 1;
+
+ /* Compute base and set curr to base.
+ * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
+ * Then 2^lowerRank <= count[n]+1 <= 2^rank.
+ * We attribute each symbol to lowerRank's base value, because we want to know where
+ * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
+ */
+ ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
+ for (n = 0; n < maxSymbolValue1; ++n) {
+ U32 lowerRank = BIT_highbit32(count[n] + 1);
+ rankPosition[lowerRank].base++;
+ }
+ assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
+ for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
+ rankPosition[n-1].base += rankPosition[n].base;
+ rankPosition[n-1].curr = rankPosition[n-1].base;
+ }
+ /* Sort */
+ for (n = 0; n < maxSymbolValue1; ++n) {
+ U32 const c = count[n];
+ U32 const r = BIT_highbit32(c+1) + 1;
+ U32 pos = rankPosition[r].curr++;
+ /* Insert into the correct position in the rank.
+ * We have at most 256 symbols, so this insertion should be fine.
+ */
+ while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
+ huffNode[pos] = huffNode[pos-1];
+ pos--;
+ }
+ huffNode[pos].count = c;
+ huffNode[pos].byte = (BYTE)n;
+ }
+}
+
+
+/* HUF_buildCTable_wksp() :
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
+ * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
+ */
+#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
+
+/* HUF_buildTree():
+ * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
+ *
+ * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
+ * @param maxSymbolValue The maximum symbol value.
+ * @return The smallest node in the Huffman tree (by count).
+ */
+static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
+{
+ nodeElt* const huffNode0 = huffNode - 1;
+ int nonNullRank;
+ int lowS, lowN;
+ int nodeNb = STARTNODE;
+ int n, nodeRoot;
+ /* init for parents */
+ nonNullRank = (int)maxSymbolValue;
+ while(huffNode[nonNullRank].count == 0) nonNullRank--;
+ lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
+ huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
+ huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
+ nodeNb++; lowS-=2;
+ for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
+ huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
+
+ /* create parents */
+ while (nodeNb <= nodeRoot) {
+ int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+ int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+ huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
+ huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
+ nodeNb++;
+ }
+
+ /* distribute weights (unlimited tree height) */
+ huffNode[nodeRoot].nbBits = 0;
+ for (n=nodeRoot-1; n>=STARTNODE; n--)
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+ for (n=0; n<=nonNullRank; n++)
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+
+ return nonNullRank;
+}
+
+/*
+ * HUF_buildCTableFromTree():
+ * Build the CTable given the Huffman tree in huffNode.
+ *
+ * @param[out] CTable The output Huffman CTable.
+ * @param huffNode The Huffman tree.
+ * @param nonNullRank The last and smallest node in the Huffman tree.
+ * @param maxSymbolValue The maximum symbol value.
+ * @param maxNbBits The exact maximum number of bits used in the Huffman tree.
+ */
+static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
+{
+ /* fill result into ctable (val, nbBits) */
+ int n;
+ U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
+ U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
+ int const alphabetSize = (int)(maxSymbolValue + 1);
+ for (n=0; n<=nonNullRank; n++)
+ nbPerRank[huffNode[n].nbBits]++;
+ /* determine starting value per rank */
+ { U16 min = 0;
+ for (n=(int)maxNbBits; n>0; n--) {
+ valPerRank[n] = min; /* get starting value within each rank */
+ min += nbPerRank[n];
+ min >>= 1;
+ } }
+ for (n=0; n<alphabetSize; n++)
+ CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
+ for (n=0; n<alphabetSize; n++)
+ CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */
+}
+
+size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
+{
+ HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
+ nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
+ nodeElt* const huffNode = huffNode0+1;
+ int nonNullRank;
+
+ /* safety checks */
+ if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
+ if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
+ return ERROR(workSpace_tooSmall);
+ if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
+ return ERROR(maxSymbolValue_tooLarge);
+ ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
+
+ /* sort, decreasing order */
+ HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
+
+ /* build tree */
+ nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
+
+ /* enforce maxTableLog */
+ maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
+ if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
+
+ HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
+
+ return maxNbBits;
+}
+
+size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
+{
+ size_t nbBits = 0;
+ int s;
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
+ nbBits += CTable[s].nbBits * count[s];
+ }
+ return nbBits >> 3;
+}
+
+int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
+ int bad = 0;
+ int s;
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
+ bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
+ }
+ return !bad;
+}
+
+size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
+
+FORCE_INLINE_TEMPLATE void
+HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
+{
+ BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
+}
+
+#define HUF_FLUSHBITS(s) BIT_flushBits(s)
+
+#define HUF_FLUSHBITS_1(stream) \
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
+
+#define HUF_FLUSHBITS_2(stream) \
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ const BYTE* ip = (const BYTE*) src;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+ size_t n;
+ BIT_CStream_t bitC;
+
+ /* init */
+ if (dstSize < 8) return 0; /* not enough space to compress */
+ { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
+ if (HUF_isError(initErr)) return 0; }
+
+ n = srcSize & ~3; /* join to mod 4 */
+ switch (srcSize & 3)
+ {
+ case 3:
+ HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
+ HUF_FLUSHBITS_2(&bitC);
+ ZSTD_FALLTHROUGH;
+ case 2:
+ HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ ZSTD_FALLTHROUGH;
+ case 1:
+ HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
+ HUF_FLUSHBITS(&bitC);
+ ZSTD_FALLTHROUGH;
+ case 0: ZSTD_FALLTHROUGH;
+ default: break;
+ }
+
+ for (; n>0; n-=4) { /* note : n&3==0 at this stage */
+ HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
+ HUF_FLUSHBITS_2(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
+ HUF_FLUSHBITS_1(&bitC);
+ HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
+ HUF_FLUSHBITS(&bitC);
+ }
+
+ return BIT_closeCStream(&bitC);
+}
+
+#if DYNAMIC_BMI2
+
+static TARGET_ATTRIBUTE("bmi2") size_t
+HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+static size_t
+HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+static size_t
+HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, const int bmi2)
+{
+ if (bmi2) {
+ return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
+ }
+ return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
+}
+
+#else
+
+static size_t
+HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, const int bmi2)
+{
+ (void)bmi2;
+ return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
+}
+
+#endif
+
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+ return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+}
+
+
+static size_t
+HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ const HUF_CElt* CTable, int bmi2)
+{
+ size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
+ const BYTE* ip = (const BYTE*) src;
+ const BYTE* const iend = ip + srcSize;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+
+ if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
+ if (srcSize < 12) return 0; /* no saving possible : too small input */
+ op += 6; /* jumpTable */
+
+ assert(op <= oend);
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ assert(op <= oend);
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart+2, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ assert(op <= oend);
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
+ if (cSize==0) return 0;
+ assert(cSize <= 65535);
+ MEM_writeLE16(ostart+4, (U16)cSize);
+ op += cSize;
+ }
+
+ ip += segmentSize;
+ assert(op <= oend);
+ assert(ip <= iend);
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
+ if (cSize==0) return 0;
+ op += cSize;
+ }
+
+ return (size_t)(op-ostart);
+}
+
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+ return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
+}
+
+typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
+
+static size_t HUF_compressCTable_internal(
+ BYTE* const ostart, BYTE* op, BYTE* const oend,
+ const void* src, size_t srcSize,
+ HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
+{
+ size_t const cSize = (nbStreams==HUF_singleStream) ?
+ HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
+ HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
+ if (HUF_isError(cSize)) { return cSize; }
+ if (cSize==0) { return 0; } /* uncompressible */
+ op += cSize;
+ /* check compressibility */
+ assert(op >= ostart);
+ if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
+ return (size_t)(op-ostart);
+}
+
+typedef struct {
+ unsigned count[HUF_SYMBOLVALUE_MAX + 1];
+ HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
+ union {
+ HUF_buildCTable_wksp_tables buildCTable_wksp;
+ HUF_WriteCTableWksp writeCTable_wksp;
+ } wksps;
+} HUF_compress_tables_t;
+
+/* HUF_compress_internal() :
+ * `workSpace_align4` must be aligned on 4-bytes boundaries,
+ * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
+static size_t
+HUF_compress_internal (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ HUF_nbStreams_e nbStreams,
+ void* workSpace_align4, size_t wkspSize,
+ HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
+ const int bmi2)
+{
+ HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart;
+
+ HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
+ assert(((size_t)workSpace_align4 & 3) == 0); /* must be aligned on 4-bytes boundaries */
+
+ /* checks & inits */
+ if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
+ if (!srcSize) return 0; /* Uncompressed */
+ if (!dstSize) return 0; /* cannot fit anything within dst budget */
+ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
+ if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
+ if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
+ if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
+
+ /* Heuristic : If old table is valid, use it for small inputs */
+ if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ }
+
+ /* Scan input and build symbol stats */
+ { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
+ if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
+ if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
+ }
+
+ /* Check validity of previous table */
+ if ( repeat
+ && *repeat == HUF_repeat_check
+ && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
+ *repeat = HUF_repeat_none;
+ }
+ /* Heuristic : use existing table for small inputs */
+ if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ }
+
+ /* Build Huffman Tree */
+ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
+ { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
+ maxSymbolValue, huffLog,
+ &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
+ CHECK_F(maxBits);
+ huffLog = (U32)maxBits;
+ /* Zero unused symbols in CTable, so we can check it for validity */
+ ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
+ sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
+ }
+
+ /* Write table description header */
+ { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
+ &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
+ /* Check if using previous huffman table is beneficial */
+ if (repeat && *repeat != HUF_repeat_none) {
+ size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
+ size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
+ if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, oldHufTable, bmi2);
+ } }
+
+ /* Use the new huffman table */
+ if (hSize + 12ul >= srcSize) { return 0; }
+ op += hSize;
+ if (repeat) { *repeat = HUF_repeat_none; }
+ if (oldHufTable)
+ ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
+ }
+ return HUF_compressCTable_internal(ostart, op, oend,
+ src, srcSize,
+ nbStreams, table->CTable, bmi2);
+}
+
+
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_singleStream,
+ workSpace, wkspSize,
+ NULL, NULL, 0, 0 /*bmi2*/);
+}
+
+size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize,
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_singleStream,
+ workSpace, wkspSize, hufTable,
+ repeat, preferRepeat, bmi2);
+}
+
+/* HUF_compress4X_repeat():
+ * compress input using 4 streams.
+ * provide workspace to generate compression tables */
+size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_fourStreams,
+ workSpace, wkspSize,
+ NULL, NULL, 0, 0 /*bmi2*/);
+}
+
+/* HUF_compress4X_repeat():
+ * compress input using 4 streams.
+ * re-use an existing huffman compression table */
+size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
+ const void* src, size_t srcSize,
+ unsigned maxSymbolValue, unsigned huffLog,
+ void* workSpace, size_t wkspSize,
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
+{
+ return HUF_compress_internal(dst, dstSize, src, srcSize,
+ maxSymbolValue, huffLog, HUF_fourStreams,
+ workSpace, wkspSize,
+ hufTable, repeat, preferRepeat, bmi2);
+}
+
diff --git a/lib/zstd/compress/zstd_compress.c b/lib/zstd/compress/zstd_compress.c
new file mode 100644
index 000000000000..a4e916008b3a
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress.c
@@ -0,0 +1,5109 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "../common/zstd_deps.h" /* INT_MAX, ZSTD_memset, ZSTD_memcpy */
+#include "../common/cpu.h"
+#include "../common/mem.h"
+#include "hist.h" /* HIST_countFast_wksp */
+#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
+#include "../common/fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include "zstd_compress_internal.h"
+#include "zstd_compress_sequences.h"
+#include "zstd_compress_literals.h"
+#include "zstd_fast.h"
+#include "zstd_double_fast.h"
+#include "zstd_lazy.h"
+#include "zstd_opt.h"
+#include "zstd_ldm.h"
+#include "zstd_compress_superblock.h"
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * COMPRESS_HEAPMODE :
+ * Select how default decompression function ZSTD_compress() allocates its context,
+ * on stack (0, default), or into heap (1).
+ * Note that functions with explicit context such as ZSTD_compressCCtx() are unaffected.
+ */
+
+
+/*-*************************************
+* Helper functions
+***************************************/
+/* ZSTD_compressBound()
+ * Note that the result from this function is only compatible with the "normal"
+ * full-block strategy.
+ * When there are a lot of small blocks due to frequent flush in streaming mode
+ * the overhead of headers can make the compressed data to be larger than the
+ * return value of ZSTD_compressBound().
+ */
+size_t ZSTD_compressBound(size_t srcSize) {
+ return ZSTD_COMPRESSBOUND(srcSize);
+}
+
+
+/*-*************************************
+* Context memory management
+***************************************/
+struct ZSTD_CDict_s {
+ const void* dictContent;
+ size_t dictContentSize;
+ ZSTD_dictContentType_e dictContentType; /* The dictContentType the CDict was created with */
+ U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
+ ZSTD_cwksp workspace;
+ ZSTD_matchState_t matchState;
+ ZSTD_compressedBlockState_t cBlockState;
+ ZSTD_customMem customMem;
+ U32 dictID;
+ int compressionLevel; /* 0 indicates that advanced API was used to select CDict params */
+}; /* typedef'd to ZSTD_CDict within "zstd.h" */
+
+ZSTD_CCtx* ZSTD_createCCtx(void)
+{
+ return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
+}
+
+static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager)
+{
+ assert(cctx != NULL);
+ ZSTD_memset(cctx, 0, sizeof(*cctx));
+ cctx->customMem = memManager;
+ cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters);
+ assert(!ZSTD_isError(err));
+ (void)err;
+ }
+}
+
+ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
+{
+ ZSTD_STATIC_ASSERT(zcss_init==0);
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
+ if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
+ { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_customMalloc(sizeof(ZSTD_CCtx), customMem);
+ if (!cctx) return NULL;
+ ZSTD_initCCtx(cctx, customMem);
+ return cctx;
+ }
+}
+
+ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize)
+{
+ ZSTD_cwksp ws;
+ ZSTD_CCtx* cctx;
+ if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
+ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
+ ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
+
+ cctx = (ZSTD_CCtx*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CCtx));
+ if (cctx == NULL) return NULL;
+
+ ZSTD_memset(cctx, 0, sizeof(ZSTD_CCtx));
+ ZSTD_cwksp_move(&cctx->workspace, &ws);
+ cctx->staticSize = workspaceSize;
+
+ /* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
+ if (!ZSTD_cwksp_check_available(&cctx->workspace, ENTROPY_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t))) return NULL;
+ cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
+ cctx->blockState.nextCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t));
+ cctx->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cctx->workspace, ENTROPY_WORKSPACE_SIZE);
+ cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ return cctx;
+}
+
+/*
+ * Clears and frees all of the dictionaries in the CCtx.
+ */
+static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx)
+{
+ ZSTD_customFree(cctx->localDict.dictBuffer, cctx->customMem);
+ ZSTD_freeCDict(cctx->localDict.cdict);
+ ZSTD_memset(&cctx->localDict, 0, sizeof(cctx->localDict));
+ ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict));
+ cctx->cdict = NULL;
+}
+
+static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict)
+{
+ size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0;
+ size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict);
+ return bufferSize + cdictSize;
+}
+
+static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx)
+{
+ assert(cctx != NULL);
+ assert(cctx->staticSize == 0);
+ ZSTD_clearAllDicts(cctx);
+ ZSTD_cwksp_free(&cctx->workspace, cctx->customMem);
+}
+
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
+{
+ if (cctx==NULL) return 0; /* support free on NULL */
+ RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
+ "not compatible with static CCtx");
+ {
+ int cctxInWorkspace = ZSTD_cwksp_owns_buffer(&cctx->workspace, cctx);
+ ZSTD_freeCCtxContent(cctx);
+ if (!cctxInWorkspace) {
+ ZSTD_customFree(cctx, cctx->customMem);
+ }
+ }
+ return 0;
+}
+
+
+static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
+{
+ (void)cctx;
+ return 0;
+}
+
+
+size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
+{
+ if (cctx==NULL) return 0; /* support sizeof on NULL */
+ /* cctx may be in the workspace */
+ return (cctx->workspace.workspace == cctx ? 0 : sizeof(*cctx))
+ + ZSTD_cwksp_sizeof(&cctx->workspace)
+ + ZSTD_sizeof_localDict(cctx->localDict)
+ + ZSTD_sizeof_mtctx(cctx);
+}
+
+size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
+{
+ return ZSTD_sizeof_CCtx(zcs); /* same object */
+}
+
+/* private API call, for dictBuilder only */
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
+
+/* Returns 1 if compression parameters are such that we should
+ * enable long distance matching (wlog >= 27, strategy >= btopt).
+ * Returns 0 otherwise.
+ */
+static U32 ZSTD_CParams_shouldEnableLdm(const ZSTD_compressionParameters* const cParams) {
+ return cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27;
+}
+
+static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
+ ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params cctxParams;
+ /* should not matter, as all cParams are presumed properly defined */
+ ZSTD_CCtxParams_init(&cctxParams, ZSTD_CLEVEL_DEFAULT);
+ cctxParams.cParams = cParams;
+
+ if (ZSTD_CParams_shouldEnableLdm(&cParams)) {
+ DEBUGLOG(4, "ZSTD_makeCCtxParamsFromCParams(): Including LDM into cctx params");
+ cctxParams.ldmParams.enableLdm = 1;
+ /* LDM is enabled by default for optimal parser and window size >= 128MB */
+ ZSTD_ldm_adjustParameters(&cctxParams.ldmParams, &cParams);
+ assert(cctxParams.ldmParams.hashLog >= cctxParams.ldmParams.bucketSizeLog);
+ assert(cctxParams.ldmParams.hashRateLog < 32);
+ }
+
+ assert(!ZSTD_checkCParams(cParams));
+ return cctxParams;
+}
+
+static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
+ ZSTD_customMem customMem)
+{
+ ZSTD_CCtx_params* params;
+ if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
+ params = (ZSTD_CCtx_params*)ZSTD_customCalloc(
+ sizeof(ZSTD_CCtx_params), customMem);
+ if (!params) { return NULL; }
+ ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
+ params->customMem = customMem;
+ return params;
+}
+
+ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
+{
+ return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
+}
+
+size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
+{
+ if (params == NULL) { return 0; }
+ ZSTD_customFree(params, params->customMem);
+ return 0;
+}
+
+size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params)
+{
+ return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
+}
+
+size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
+ RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
+ ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
+ cctxParams->compressionLevel = compressionLevel;
+ cctxParams->fParams.contentSizeFlag = 1;
+ return 0;
+}
+
+#define ZSTD_NO_CLEVEL 0
+
+/*
+ * Initializes the cctxParams from params and compressionLevel.
+ * @param compressionLevel If params are derived from a compression level then that compression level, otherwise ZSTD_NO_CLEVEL.
+ */
+static void ZSTD_CCtxParams_init_internal(ZSTD_CCtx_params* cctxParams, ZSTD_parameters const* params, int compressionLevel)
+{
+ assert(!ZSTD_checkCParams(params->cParams));
+ ZSTD_memset(cctxParams, 0, sizeof(*cctxParams));
+ cctxParams->cParams = params->cParams;
+ cctxParams->fParams = params->fParams;
+ /* Should not matter, as all cParams are presumed properly defined.
+ * But, set it for tracing anyway.
+ */
+ cctxParams->compressionLevel = compressionLevel;
+}
+
+size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
+{
+ RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!");
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
+ ZSTD_CCtxParams_init_internal(cctxParams, &params, ZSTD_NO_CLEVEL);
+ return 0;
+}
+
+/*
+ * Sets cctxParams' cParams and fParams from params, but otherwise leaves them alone.
+ * @param param Validated zstd parameters.
+ */
+static void ZSTD_CCtxParams_setZstdParams(
+ ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params)
+{
+ assert(!ZSTD_checkCParams(params->cParams));
+ cctxParams->cParams = params->cParams;
+ cctxParams->fParams = params->fParams;
+ /* Should not matter, as all cParams are presumed properly defined.
+ * But, set it for tracing anyway.
+ */
+ cctxParams->compressionLevel = ZSTD_NO_CLEVEL;
+}
+
+ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param)
+{
+ ZSTD_bounds bounds = { 0, 0, 0 };
+
+ switch(param)
+ {
+ case ZSTD_c_compressionLevel:
+ bounds.lowerBound = ZSTD_minCLevel();
+ bounds.upperBound = ZSTD_maxCLevel();
+ return bounds;
+
+ case ZSTD_c_windowLog:
+ bounds.lowerBound = ZSTD_WINDOWLOG_MIN;
+ bounds.upperBound = ZSTD_WINDOWLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_hashLog:
+ bounds.lowerBound = ZSTD_HASHLOG_MIN;
+ bounds.upperBound = ZSTD_HASHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_chainLog:
+ bounds.lowerBound = ZSTD_CHAINLOG_MIN;
+ bounds.upperBound = ZSTD_CHAINLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_searchLog:
+ bounds.lowerBound = ZSTD_SEARCHLOG_MIN;
+ bounds.upperBound = ZSTD_SEARCHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_minMatch:
+ bounds.lowerBound = ZSTD_MINMATCH_MIN;
+ bounds.upperBound = ZSTD_MINMATCH_MAX;
+ return bounds;
+
+ case ZSTD_c_targetLength:
+ bounds.lowerBound = ZSTD_TARGETLENGTH_MIN;
+ bounds.upperBound = ZSTD_TARGETLENGTH_MAX;
+ return bounds;
+
+ case ZSTD_c_strategy:
+ bounds.lowerBound = ZSTD_STRATEGY_MIN;
+ bounds.upperBound = ZSTD_STRATEGY_MAX;
+ return bounds;
+
+ case ZSTD_c_contentSizeFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_checksumFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_dictIDFlag:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_nbWorkers:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 0;
+ return bounds;
+
+ case ZSTD_c_jobSize:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 0;
+ return bounds;
+
+ case ZSTD_c_overlapLog:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 0;
+ return bounds;
+
+ case ZSTD_c_enableDedicatedDictSearch:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_enableLongDistanceMatching:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_ldmHashLog:
+ bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN;
+ bounds.upperBound = ZSTD_LDM_HASHLOG_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmMinMatch:
+ bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN;
+ bounds.upperBound = ZSTD_LDM_MINMATCH_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmBucketSizeLog:
+ bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN;
+ bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX;
+ return bounds;
+
+ case ZSTD_c_ldmHashRateLog:
+ bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN;
+ bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX;
+ return bounds;
+
+ /* experimental parameters */
+ case ZSTD_c_rsyncable:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_forceMaxWindow :
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ case ZSTD_c_format:
+ ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
+ bounds.lowerBound = ZSTD_f_zstd1;
+ bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */
+ return bounds;
+
+ case ZSTD_c_forceAttachDict:
+ ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceLoad);
+ bounds.lowerBound = ZSTD_dictDefaultAttach;
+ bounds.upperBound = ZSTD_dictForceLoad; /* note : how to ensure at compile time that this is the highest value enum ? */
+ return bounds;
+
+ case ZSTD_c_literalCompressionMode:
+ ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed);
+ bounds.lowerBound = ZSTD_lcm_auto;
+ bounds.upperBound = ZSTD_lcm_uncompressed;
+ return bounds;
+
+ case ZSTD_c_targetCBlockSize:
+ bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN;
+ bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX;
+ return bounds;
+
+ case ZSTD_c_srcSizeHint:
+ bounds.lowerBound = ZSTD_SRCSIZEHINT_MIN;
+ bounds.upperBound = ZSTD_SRCSIZEHINT_MAX;
+ return bounds;
+
+ case ZSTD_c_stableInBuffer:
+ case ZSTD_c_stableOutBuffer:
+ bounds.lowerBound = (int)ZSTD_bm_buffered;
+ bounds.upperBound = (int)ZSTD_bm_stable;
+ return bounds;
+
+ case ZSTD_c_blockDelimiters:
+ bounds.lowerBound = (int)ZSTD_sf_noBlockDelimiters;
+ bounds.upperBound = (int)ZSTD_sf_explicitBlockDelimiters;
+ return bounds;
+
+ case ZSTD_c_validateSequences:
+ bounds.lowerBound = 0;
+ bounds.upperBound = 1;
+ return bounds;
+
+ default:
+ bounds.error = ERROR(parameter_unsupported);
+ return bounds;
+ }
+}
+
+/* ZSTD_cParam_clampBounds:
+ * Clamps the value into the bounded range.
+ */
+static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value)
+{
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
+ if (ZSTD_isError(bounds.error)) return bounds.error;
+ if (*value < bounds.lowerBound) *value = bounds.lowerBound;
+ if (*value > bounds.upperBound) *value = bounds.upperBound;
+ return 0;
+}
+
+#define BOUNDCHECK(cParam, val) { \
+ RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
+ parameter_outOfBound, "Param out of bounds"); \
+}
+
+
+static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
+{
+ switch(param)
+ {
+ case ZSTD_c_compressionLevel:
+ case ZSTD_c_hashLog:
+ case ZSTD_c_chainLog:
+ case ZSTD_c_searchLog:
+ case ZSTD_c_minMatch:
+ case ZSTD_c_targetLength:
+ case ZSTD_c_strategy:
+ return 1;
+
+ case ZSTD_c_format:
+ case ZSTD_c_windowLog:
+ case ZSTD_c_contentSizeFlag:
+ case ZSTD_c_checksumFlag:
+ case ZSTD_c_dictIDFlag:
+ case ZSTD_c_forceMaxWindow :
+ case ZSTD_c_nbWorkers:
+ case ZSTD_c_jobSize:
+ case ZSTD_c_overlapLog:
+ case ZSTD_c_rsyncable:
+ case ZSTD_c_enableDedicatedDictSearch:
+ case ZSTD_c_enableLongDistanceMatching:
+ case ZSTD_c_ldmHashLog:
+ case ZSTD_c_ldmMinMatch:
+ case ZSTD_c_ldmBucketSizeLog:
+ case ZSTD_c_ldmHashRateLog:
+ case ZSTD_c_forceAttachDict:
+ case ZSTD_c_literalCompressionMode:
+ case ZSTD_c_targetCBlockSize:
+ case ZSTD_c_srcSizeHint:
+ case ZSTD_c_stableInBuffer:
+ case ZSTD_c_stableOutBuffer:
+ case ZSTD_c_blockDelimiters:
+ case ZSTD_c_validateSequences:
+ default:
+ return 0;
+ }
+}
+
+size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value);
+ if (cctx->streamStage != zcss_init) {
+ if (ZSTD_isUpdateAuthorized(param)) {
+ cctx->cParamsChanged = 1;
+ } else {
+ RETURN_ERROR(stage_wrong, "can only set params in ctx init stage");
+ } }
+
+ switch(param)
+ {
+ case ZSTD_c_nbWorkers:
+ RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported,
+ "MT not compatible with static alloc");
+ break;
+
+ case ZSTD_c_compressionLevel:
+ case ZSTD_c_windowLog:
+ case ZSTD_c_hashLog:
+ case ZSTD_c_chainLog:
+ case ZSTD_c_searchLog:
+ case ZSTD_c_minMatch:
+ case ZSTD_c_targetLength:
+ case ZSTD_c_strategy:
+ case ZSTD_c_ldmHashRateLog:
+ case ZSTD_c_format:
+ case ZSTD_c_contentSizeFlag:
+ case ZSTD_c_checksumFlag:
+ case ZSTD_c_dictIDFlag:
+ case ZSTD_c_forceMaxWindow:
+ case ZSTD_c_forceAttachDict:
+ case ZSTD_c_literalCompressionMode:
+ case ZSTD_c_jobSize:
+ case ZSTD_c_overlapLog:
+ case ZSTD_c_rsyncable:
+ case ZSTD_c_enableDedicatedDictSearch:
+ case ZSTD_c_enableLongDistanceMatching:
+ case ZSTD_c_ldmHashLog:
+ case ZSTD_c_ldmMinMatch:
+ case ZSTD_c_ldmBucketSizeLog:
+ case ZSTD_c_targetCBlockSize:
+ case ZSTD_c_srcSizeHint:
+ case ZSTD_c_stableInBuffer:
+ case ZSTD_c_stableOutBuffer:
+ case ZSTD_c_blockDelimiters:
+ case ZSTD_c_validateSequences:
+ break;
+
+ default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
+ }
+ return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value);
+}
+
+size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
+ ZSTD_cParameter param, int value)
+{
+ DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value);
+ switch(param)
+ {
+ case ZSTD_c_format :
+ BOUNDCHECK(ZSTD_c_format, value);
+ CCtxParams->format = (ZSTD_format_e)value;
+ return (size_t)CCtxParams->format;
+
+ case ZSTD_c_compressionLevel : {
+ FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
+ if (value == 0)
+ CCtxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
+ else
+ CCtxParams->compressionLevel = value;
+ if (CCtxParams->compressionLevel >= 0) return (size_t)CCtxParams->compressionLevel;
+ return 0; /* return type (size_t) cannot represent negative values */
+ }
+
+ case ZSTD_c_windowLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_windowLog, value);
+ CCtxParams->cParams.windowLog = (U32)value;
+ return CCtxParams->cParams.windowLog;
+
+ case ZSTD_c_hashLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_hashLog, value);
+ CCtxParams->cParams.hashLog = (U32)value;
+ return CCtxParams->cParams.hashLog;
+
+ case ZSTD_c_chainLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_chainLog, value);
+ CCtxParams->cParams.chainLog = (U32)value;
+ return CCtxParams->cParams.chainLog;
+
+ case ZSTD_c_searchLog :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_searchLog, value);
+ CCtxParams->cParams.searchLog = (U32)value;
+ return (size_t)value;
+
+ case ZSTD_c_minMatch :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_minMatch, value);
+ CCtxParams->cParams.minMatch = value;
+ return CCtxParams->cParams.minMatch;
+
+ case ZSTD_c_targetLength :
+ BOUNDCHECK(ZSTD_c_targetLength, value);
+ CCtxParams->cParams.targetLength = value;
+ return CCtxParams->cParams.targetLength;
+
+ case ZSTD_c_strategy :
+ if (value!=0) /* 0 => use default */
+ BOUNDCHECK(ZSTD_c_strategy, value);
+ CCtxParams->cParams.strategy = (ZSTD_strategy)value;
+ return (size_t)CCtxParams->cParams.strategy;
+
+ case ZSTD_c_contentSizeFlag :
+ /* Content size written in frame header _when known_ (default:1) */
+ DEBUGLOG(4, "set content size flag = %u", (value!=0));
+ CCtxParams->fParams.contentSizeFlag = value != 0;
+ return CCtxParams->fParams.contentSizeFlag;
+
+ case ZSTD_c_checksumFlag :
+ /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
+ CCtxParams->fParams.checksumFlag = value != 0;
+ return CCtxParams->fParams.checksumFlag;
+
+ case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
+ DEBUGLOG(4, "set dictIDFlag = %u", (value!=0));
+ CCtxParams->fParams.noDictIDFlag = !value;
+ return !CCtxParams->fParams.noDictIDFlag;
+
+ case ZSTD_c_forceMaxWindow :
+ CCtxParams->forceWindow = (value != 0);
+ return CCtxParams->forceWindow;
+
+ case ZSTD_c_forceAttachDict : {
+ const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value;
+ BOUNDCHECK(ZSTD_c_forceAttachDict, pref);
+ CCtxParams->attachDictPref = pref;
+ return CCtxParams->attachDictPref;
+ }
+
+ case ZSTD_c_literalCompressionMode : {
+ const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value;
+ BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm);
+ CCtxParams->literalCompressionMode = lcm;
+ return CCtxParams->literalCompressionMode;
+ }
+
+ case ZSTD_c_nbWorkers :
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+
+ case ZSTD_c_jobSize :
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+
+ case ZSTD_c_overlapLog :
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+
+ case ZSTD_c_rsyncable :
+ RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading");
+ return 0;
+
+ case ZSTD_c_enableDedicatedDictSearch :
+ CCtxParams->enableDedicatedDictSearch = (value!=0);
+ return CCtxParams->enableDedicatedDictSearch;
+
+ case ZSTD_c_enableLongDistanceMatching :
+ CCtxParams->ldmParams.enableLdm = (value!=0);
+ return CCtxParams->ldmParams.enableLdm;
+
+ case ZSTD_c_ldmHashLog :
+ if (value!=0) /* 0 ==> auto */
+ BOUNDCHECK(ZSTD_c_ldmHashLog, value);
+ CCtxParams->ldmParams.hashLog = value;
+ return CCtxParams->ldmParams.hashLog;
+
+ case ZSTD_c_ldmMinMatch :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmMinMatch, value);
+ CCtxParams->ldmParams.minMatchLength = value;
+ return CCtxParams->ldmParams.minMatchLength;
+
+ case ZSTD_c_ldmBucketSizeLog :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value);
+ CCtxParams->ldmParams.bucketSizeLog = value;
+ return CCtxParams->ldmParams.bucketSizeLog;
+
+ case ZSTD_c_ldmHashRateLog :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_ldmHashRateLog, value);
+ CCtxParams->ldmParams.hashRateLog = value;
+ return CCtxParams->ldmParams.hashRateLog;
+
+ case ZSTD_c_targetCBlockSize :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_targetCBlockSize, value);
+ CCtxParams->targetCBlockSize = value;
+ return CCtxParams->targetCBlockSize;
+
+ case ZSTD_c_srcSizeHint :
+ if (value!=0) /* 0 ==> default */
+ BOUNDCHECK(ZSTD_c_srcSizeHint, value);
+ CCtxParams->srcSizeHint = value;
+ return CCtxParams->srcSizeHint;
+
+ case ZSTD_c_stableInBuffer:
+ BOUNDCHECK(ZSTD_c_stableInBuffer, value);
+ CCtxParams->inBufferMode = (ZSTD_bufferMode_e)value;
+ return CCtxParams->inBufferMode;
+
+ case ZSTD_c_stableOutBuffer:
+ BOUNDCHECK(ZSTD_c_stableOutBuffer, value);
+ CCtxParams->outBufferMode = (ZSTD_bufferMode_e)value;
+ return CCtxParams->outBufferMode;
+
+ case ZSTD_c_blockDelimiters:
+ BOUNDCHECK(ZSTD_c_blockDelimiters, value);
+ CCtxParams->blockDelimiters = (ZSTD_sequenceFormat_e)value;
+ return CCtxParams->blockDelimiters;
+
+ case ZSTD_c_validateSequences:
+ BOUNDCHECK(ZSTD_c_validateSequences, value);
+ CCtxParams->validateSequences = value;
+ return CCtxParams->validateSequences;
+
+ default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
+ }
+}
+
+size_t ZSTD_CCtx_getParameter(ZSTD_CCtx const* cctx, ZSTD_cParameter param, int* value)
+{
+ return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value);
+}
+
+size_t ZSTD_CCtxParams_getParameter(
+ ZSTD_CCtx_params const* CCtxParams, ZSTD_cParameter param, int* value)
+{
+ switch(param)
+ {
+ case ZSTD_c_format :
+ *value = CCtxParams->format;
+ break;
+ case ZSTD_c_compressionLevel :
+ *value = CCtxParams->compressionLevel;
+ break;
+ case ZSTD_c_windowLog :
+ *value = (int)CCtxParams->cParams.windowLog;
+ break;
+ case ZSTD_c_hashLog :
+ *value = (int)CCtxParams->cParams.hashLog;
+ break;
+ case ZSTD_c_chainLog :
+ *value = (int)CCtxParams->cParams.chainLog;
+ break;
+ case ZSTD_c_searchLog :
+ *value = CCtxParams->cParams.searchLog;
+ break;
+ case ZSTD_c_minMatch :
+ *value = CCtxParams->cParams.minMatch;
+ break;
+ case ZSTD_c_targetLength :
+ *value = CCtxParams->cParams.targetLength;
+ break;
+ case ZSTD_c_strategy :
+ *value = (unsigned)CCtxParams->cParams.strategy;
+ break;
+ case ZSTD_c_contentSizeFlag :
+ *value = CCtxParams->fParams.contentSizeFlag;
+ break;
+ case ZSTD_c_checksumFlag :
+ *value = CCtxParams->fParams.checksumFlag;
+ break;
+ case ZSTD_c_dictIDFlag :
+ *value = !CCtxParams->fParams.noDictIDFlag;
+ break;
+ case ZSTD_c_forceMaxWindow :
+ *value = CCtxParams->forceWindow;
+ break;
+ case ZSTD_c_forceAttachDict :
+ *value = CCtxParams->attachDictPref;
+ break;
+ case ZSTD_c_literalCompressionMode :
+ *value = CCtxParams->literalCompressionMode;
+ break;
+ case ZSTD_c_nbWorkers :
+ assert(CCtxParams->nbWorkers == 0);
+ *value = CCtxParams->nbWorkers;
+ break;
+ case ZSTD_c_jobSize :
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+ case ZSTD_c_overlapLog :
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+ case ZSTD_c_rsyncable :
+ RETURN_ERROR(parameter_unsupported, "not compiled with multithreading");
+ case ZSTD_c_enableDedicatedDictSearch :
+ *value = CCtxParams->enableDedicatedDictSearch;
+ break;
+ case ZSTD_c_enableLongDistanceMatching :
+ *value = CCtxParams->ldmParams.enableLdm;
+ break;
+ case ZSTD_c_ldmHashLog :
+ *value = CCtxParams->ldmParams.hashLog;
+ break;
+ case ZSTD_c_ldmMinMatch :
+ *value = CCtxParams->ldmParams.minMatchLength;
+ break;
+ case ZSTD_c_ldmBucketSizeLog :
+ *value = CCtxParams->ldmParams.bucketSizeLog;
+ break;
+ case ZSTD_c_ldmHashRateLog :
+ *value = CCtxParams->ldmParams.hashRateLog;
+ break;
+ case ZSTD_c_targetCBlockSize :
+ *value = (int)CCtxParams->targetCBlockSize;
+ break;
+ case ZSTD_c_srcSizeHint :
+ *value = (int)CCtxParams->srcSizeHint;
+ break;
+ case ZSTD_c_stableInBuffer :
+ *value = (int)CCtxParams->inBufferMode;
+ break;
+ case ZSTD_c_stableOutBuffer :
+ *value = (int)CCtxParams->outBufferMode;
+ break;
+ case ZSTD_c_blockDelimiters :
+ *value = (int)CCtxParams->blockDelimiters;
+ break;
+ case ZSTD_c_validateSequences :
+ *value = (int)CCtxParams->validateSequences;
+ break;
+ default: RETURN_ERROR(parameter_unsupported, "unknown parameter");
+ }
+ return 0;
+}
+
+/* ZSTD_CCtx_setParametersUsingCCtxParams() :
+ * just applies `params` into `cctx`
+ * no action is performed, parameters are merely stored.
+ * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx.
+ * This is possible even if a compression is ongoing.
+ * In which case, new parameters will be applied on the fly, starting with next compression job.
+ */
+size_t ZSTD_CCtx_setParametersUsingCCtxParams(
+ ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams");
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "The context is in the wrong stage!");
+ RETURN_ERROR_IF(cctx->cdict, stage_wrong,
+ "Can't override parameters with cdict attached (some must "
+ "be inherited from the cdict).");
+
+ cctx->requestedParams = *params;
+ return 0;
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't set pledgedSrcSize when not in init stage.");
+ cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
+ return 0;
+}
+
+static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(
+ int const compressionLevel,
+ size_t const dictSize);
+static int ZSTD_dedicatedDictSearch_isSupported(
+ const ZSTD_compressionParameters* cParams);
+static void ZSTD_dedicatedDictSearch_revertCParams(
+ ZSTD_compressionParameters* cParams);
+
+/*
+ * Initializes the local dict using the requested parameters.
+ * NOTE: This does not use the pledged src size, because it may be used for more
+ * than one compression.
+ */
+static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx)
+{
+ ZSTD_localDict* const dl = &cctx->localDict;
+ if (dl->dict == NULL) {
+ /* No local dictionary. */
+ assert(dl->dictBuffer == NULL);
+ assert(dl->cdict == NULL);
+ assert(dl->dictSize == 0);
+ return 0;
+ }
+ if (dl->cdict != NULL) {
+ assert(cctx->cdict == dl->cdict);
+ /* Local dictionary already initialized. */
+ return 0;
+ }
+ assert(dl->dictSize > 0);
+ assert(cctx->cdict == NULL);
+ assert(cctx->prefixDict.dict == NULL);
+
+ dl->cdict = ZSTD_createCDict_advanced2(
+ dl->dict,
+ dl->dictSize,
+ ZSTD_dlm_byRef,
+ dl->dictContentType,
+ &cctx->requestedParams,
+ cctx->customMem);
+ RETURN_ERROR_IF(!dl->cdict, memory_allocation, "ZSTD_createCDict_advanced failed");
+ cctx->cdict = dl->cdict;
+ return 0;
+}
+
+size_t ZSTD_CCtx_loadDictionary_advanced(
+ ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't load a dictionary when ctx is not in init stage.");
+ DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
+ ZSTD_clearAllDicts(cctx); /* in case one already exists */
+ if (dict == NULL || dictSize == 0) /* no dictionary mode */
+ return 0;
+ if (dictLoadMethod == ZSTD_dlm_byRef) {
+ cctx->localDict.dict = dict;
+ } else {
+ void* dictBuffer;
+ RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
+ "no malloc for static CCtx");
+ dictBuffer = ZSTD_customMalloc(dictSize, cctx->customMem);
+ RETURN_ERROR_IF(!dictBuffer, memory_allocation, "NULL pointer!");
+ ZSTD_memcpy(dictBuffer, dict, dictSize);
+ cctx->localDict.dictBuffer = dictBuffer;
+ cctx->localDict.dict = dictBuffer;
+ }
+ cctx->localDict.dictSize = dictSize;
+ cctx->localDict.dictContentType = dictContentType;
+ return 0;
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
+ ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_CCtx_loadDictionary_advanced(
+ cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
+}
+
+ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_CCtx_loadDictionary_advanced(
+ cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
+}
+
+
+size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't ref a dict when ctx not in init stage.");
+ /* Free the existing local cdict (if any) to save memory. */
+ ZSTD_clearAllDicts(cctx);
+ cctx->cdict = cdict;
+ return 0;
+}
+
+size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't ref a pool when ctx not in init stage.");
+ cctx->pool = pool;
+ return 0;
+}
+
+size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
+{
+ return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent);
+}
+
+size_t ZSTD_CCtx_refPrefix_advanced(
+ ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't ref a prefix when ctx not in init stage.");
+ ZSTD_clearAllDicts(cctx);
+ if (prefix != NULL && prefixSize > 0) {
+ cctx->prefixDict.dict = prefix;
+ cctx->prefixDict.dictSize = prefixSize;
+ cctx->prefixDict.dictContentType = dictContentType;
+ }
+ return 0;
+}
+
+/*! ZSTD_CCtx_reset() :
+ * Also dumps dictionary */
+size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset)
+{
+ if ( (reset == ZSTD_reset_session_only)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ cctx->streamStage = zcss_init;
+ cctx->pledgedSrcSizePlusOne = 0;
+ }
+ if ( (reset == ZSTD_reset_parameters)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
+ "Can't reset parameters only when not in init stage.");
+ ZSTD_clearAllDicts(cctx);
+ return ZSTD_CCtxParams_reset(&cctx->requestedParams);
+ }
+ return 0;
+}
+
+
+/* ZSTD_checkCParams() :
+ control CParam values remain within authorized range.
+ @return : 0, or an error code if one value is beyond authorized range */
+size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
+{
+ BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog);
+ BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog);
+ BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog);
+ BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog);
+ BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch);
+ BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength);
+ BOUNDCHECK(ZSTD_c_strategy, cParams.strategy);
+ return 0;
+}
+
+/* ZSTD_clampCParams() :
+ * make CParam values within valid range.
+ * @return : valid CParams */
+static ZSTD_compressionParameters
+ZSTD_clampCParams(ZSTD_compressionParameters cParams)
+{
+# define CLAMP_TYPE(cParam, val, type) { \
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
+ if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
+ else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
+ }
+# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned)
+ CLAMP(ZSTD_c_windowLog, cParams.windowLog);
+ CLAMP(ZSTD_c_chainLog, cParams.chainLog);
+ CLAMP(ZSTD_c_hashLog, cParams.hashLog);
+ CLAMP(ZSTD_c_searchLog, cParams.searchLog);
+ CLAMP(ZSTD_c_minMatch, cParams.minMatch);
+ CLAMP(ZSTD_c_targetLength,cParams.targetLength);
+ CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy);
+ return cParams;
+}
+
+/* ZSTD_cycleLog() :
+ * condition for correct operation : hashLog > 1 */
+U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
+{
+ U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
+ return hashLog - btScale;
+}
+
+/* ZSTD_dictAndWindowLog() :
+ * Returns an adjusted window log that is large enough to fit the source and the dictionary.
+ * The zstd format says that the entire dictionary is valid if one byte of the dictionary
+ * is within the window. So the hashLog and chainLog should be large enough to reference both
+ * the dictionary and the window. So we must use this adjusted dictAndWindowLog when downsizing
+ * the hashLog and windowLog.
+ * NOTE: srcSize must not be ZSTD_CONTENTSIZE_UNKNOWN.
+ */
+static U32 ZSTD_dictAndWindowLog(U32 windowLog, U64 srcSize, U64 dictSize)
+{
+ const U64 maxWindowSize = 1ULL << ZSTD_WINDOWLOG_MAX;
+ /* No dictionary ==> No change */
+ if (dictSize == 0) {
+ return windowLog;
+ }
+ assert(windowLog <= ZSTD_WINDOWLOG_MAX);
+ assert(srcSize != ZSTD_CONTENTSIZE_UNKNOWN); /* Handled in ZSTD_adjustCParams_internal() */
+ {
+ U64 const windowSize = 1ULL << windowLog;
+ U64 const dictAndWindowSize = dictSize + windowSize;
+ /* If the window size is already large enough to fit both the source and the dictionary
+ * then just use the window size. Otherwise adjust so that it fits the dictionary and
+ * the window.
+ */
+ if (windowSize >= dictSize + srcSize) {
+ return windowLog; /* Window size large enough already */
+ } else if (dictAndWindowSize >= maxWindowSize) {
+ return ZSTD_WINDOWLOG_MAX; /* Larger than max window log */
+ } else {
+ return ZSTD_highbit32((U32)dictAndWindowSize - 1) + 1;
+ }
+ }
+}
+
+/* ZSTD_adjustCParams_internal() :
+ * optimize `cPar` for a specified input (`srcSize` and `dictSize`).
+ * mostly downsize to reduce memory consumption and initialization latency.
+ * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known.
+ * `mode` is the mode for parameter adjustment. See docs for `ZSTD_cParamMode_e`.
+ * note : `srcSize==0` means 0!
+ * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */
+static ZSTD_compressionParameters
+ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar,
+ unsigned long long srcSize,
+ size_t dictSize,
+ ZSTD_cParamMode_e mode)
+{
+ const U64 minSrcSize = 513; /* (1<<9) + 1 */
+ const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
+ assert(ZSTD_checkCParams(cPar)==0);
+
+ switch (mode) {
+ case ZSTD_cpm_unknown:
+ case ZSTD_cpm_noAttachDict:
+ /* If we don't know the source size, don't make any
+ * assumptions about it. We will already have selected
+ * smaller parameters if a dictionary is in use.
+ */
+ break;
+ case ZSTD_cpm_createCDict:
+ /* Assume a small source size when creating a dictionary
+ * with an unkown source size.
+ */
+ if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN)
+ srcSize = minSrcSize;
+ break;
+ case ZSTD_cpm_attachDict:
+ /* Dictionary has its own dedicated parameters which have
+ * already been selected. We are selecting parameters
+ * for only the source.
+ */
+ dictSize = 0;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ /* resize windowLog if input is small enough, to use less memory */
+ if ( (srcSize < maxWindowResize)
+ && (dictSize < maxWindowResize) ) {
+ U32 const tSize = (U32)(srcSize + dictSize);
+ static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
+ U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
+ ZSTD_highbit32(tSize-1) + 1;
+ if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
+ }
+ if (srcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize);
+ U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
+ if (cPar.hashLog > dictAndWindowLog+1) cPar.hashLog = dictAndWindowLog+1;
+ if (cycleLog > dictAndWindowLog)
+ cPar.chainLog -= (cycleLog - dictAndWindowLog);
+ }
+
+ if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
+ cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */
+
+ return cPar;
+}
+
+ZSTD_compressionParameters
+ZSTD_adjustCParams(ZSTD_compressionParameters cPar,
+ unsigned long long srcSize,
+ size_t dictSize)
+{
+ cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */
+ if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize, ZSTD_cpm_unknown);
+}
+
+static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
+static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
+
+static void ZSTD_overrideCParams(
+ ZSTD_compressionParameters* cParams,
+ const ZSTD_compressionParameters* overrides)
+{
+ if (overrides->windowLog) cParams->windowLog = overrides->windowLog;
+ if (overrides->hashLog) cParams->hashLog = overrides->hashLog;
+ if (overrides->chainLog) cParams->chainLog = overrides->chainLog;
+ if (overrides->searchLog) cParams->searchLog = overrides->searchLog;
+ if (overrides->minMatch) cParams->minMatch = overrides->minMatch;
+ if (overrides->targetLength) cParams->targetLength = overrides->targetLength;
+ if (overrides->strategy) cParams->strategy = overrides->strategy;
+}
+
+ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
+ const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
+{
+ ZSTD_compressionParameters cParams;
+ if (srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN && CCtxParams->srcSizeHint > 0) {
+ srcSizeHint = CCtxParams->srcSizeHint;
+ }
+ cParams = ZSTD_getCParams_internal(CCtxParams->compressionLevel, srcSizeHint, dictSize, mode);
+ if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
+ ZSTD_overrideCParams(&cParams, &CCtxParams->cParams);
+ assert(!ZSTD_checkCParams(cParams));
+ /* srcSizeHint == 0 means 0 */
+ return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize, mode);
+}
+
+static size_t
+ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams,
+ const U32 forCCtx)
+{
+ size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ size_t const hSize = ((size_t)1) << cParams->hashLog;
+ U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
+ size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
+ /* We don't use ZSTD_cwksp_alloc_size() here because the tables aren't
+ * surrounded by redzones in ASAN. */
+ size_t const tableSpace = chainSize * sizeof(U32)
+ + hSize * sizeof(U32)
+ + h3Size * sizeof(U32);
+ size_t const optPotentialSpace =
+ ZSTD_cwksp_alloc_size((MaxML+1) * sizeof(U32))
+ + ZSTD_cwksp_alloc_size((MaxLL+1) * sizeof(U32))
+ + ZSTD_cwksp_alloc_size((MaxOff+1) * sizeof(U32))
+ + ZSTD_cwksp_alloc_size((1<<Litbits) * sizeof(U32))
+ + ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t))
+ + ZSTD_cwksp_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt))
+ ? optPotentialSpace
+ : 0;
+ DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u",
+ (U32)chainSize, (U32)hSize, (U32)h3Size);
+ return tableSpace + optSpace;
+}
+
+static size_t ZSTD_estimateCCtxSize_usingCCtxParams_internal(
+ const ZSTD_compressionParameters* cParams,
+ const ldmParams_t* ldmParams,
+ const int isStatic,
+ const size_t buffInSize,
+ const size_t buffOutSize,
+ const U64 pledgedSrcSize)
+{
+ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << cParams->windowLog), pledgedSrcSize));
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
+ U32 const divider = (cParams->minMatch==3) ? 3 : 4;
+ size_t const maxNbSeq = blockSize / divider;
+ size_t const tokenSpace = ZSTD_cwksp_alloc_size(WILDCOPY_OVERLENGTH + blockSize)
+ + ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(seqDef))
+ + 3 * ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(BYTE));
+ size_t const entropySpace = ZSTD_cwksp_alloc_size(ENTROPY_WORKSPACE_SIZE);
+ size_t const blockStateSpace = 2 * ZSTD_cwksp_alloc_size(sizeof(ZSTD_compressedBlockState_t));
+ size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, /* forCCtx */ 1);
+
+ size_t const ldmSpace = ZSTD_ldm_getTableSize(*ldmParams);
+ size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(*ldmParams, blockSize);
+ size_t const ldmSeqSpace = ldmParams->enableLdm ?
+ ZSTD_cwksp_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0;
+
+
+ size_t const bufferSpace = ZSTD_cwksp_alloc_size(buffInSize)
+ + ZSTD_cwksp_alloc_size(buffOutSize);
+
+ size_t const cctxSpace = isStatic ? ZSTD_cwksp_alloc_size(sizeof(ZSTD_CCtx)) : 0;
+
+ size_t const neededSpace =
+ cctxSpace +
+ entropySpace +
+ blockStateSpace +
+ ldmSpace +
+ ldmSeqSpace +
+ matchStateSize +
+ tokenSpace +
+ bufferSpace;
+
+ DEBUGLOG(5, "estimate workspace : %u", (U32)neededSpace);
+ return neededSpace;
+}
+
+size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
+{
+ ZSTD_compressionParameters const cParams =
+ ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
+
+ RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
+ /* estimateCCtxSize is for one-shot compression. So no buffers should
+ * be needed. However, we still allocate two 0-sized buffers, which can
+ * take space under ASAN. */
+ return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
+ &cParams, &params->ldmParams, 1, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN);
+}
+
+size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
+ return ZSTD_estimateCCtxSize_usingCCtxParams(&params);
+}
+
+static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel)
+{
+ int tier = 0;
+ size_t largestSize = 0;
+ static const unsigned long long srcSizeTiers[4] = {16 KB, 128 KB, 256 KB, ZSTD_CONTENTSIZE_UNKNOWN};
+ for (; tier < 4; ++tier) {
+ /* Choose the set of cParams for a given level across all srcSizes that give the largest cctxSize */
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeTiers[tier], 0, ZSTD_cpm_noAttachDict);
+ largestSize = MAX(ZSTD_estimateCCtxSize_usingCParams(cParams), largestSize);
+ }
+ return largestSize;
+}
+
+size_t ZSTD_estimateCCtxSize(int compressionLevel)
+{
+ int level;
+ size_t memBudget = 0;
+ for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
+ /* Ensure monotonically increasing memory usage as compression level increases */
+ size_t const newMB = ZSTD_estimateCCtxSize_internal(level);
+ if (newMB > memBudget) memBudget = newMB;
+ }
+ return memBudget;
+}
+
+size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
+{
+ RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only.");
+ { ZSTD_compressionParameters const cParams =
+ ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
+ size_t const inBuffSize = (params->inBufferMode == ZSTD_bm_buffered)
+ ? ((size_t)1 << cParams.windowLog) + blockSize
+ : 0;
+ size_t const outBuffSize = (params->outBufferMode == ZSTD_bm_buffered)
+ ? ZSTD_compressBound(blockSize) + 1
+ : 0;
+
+ return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
+ &cParams, &params->ldmParams, 1, inBuffSize, outBuffSize,
+ ZSTD_CONTENTSIZE_UNKNOWN);
+ }
+}
+
+size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
+{
+ ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
+ return ZSTD_estimateCStreamSize_usingCCtxParams(&params);
+}
+
+static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel)
+{
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
+ return ZSTD_estimateCStreamSize_usingCParams(cParams);
+}
+
+size_t ZSTD_estimateCStreamSize(int compressionLevel)
+{
+ int level;
+ size_t memBudget = 0;
+ for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) {
+ size_t const newMB = ZSTD_estimateCStreamSize_internal(level);
+ if (newMB > memBudget) memBudget = newMB;
+ }
+ return memBudget;
+}
+
+/* ZSTD_getFrameProgression():
+ * tells how much data has been consumed (input) and produced (output) for current frame.
+ * able to count progression inside worker threads (non-blocking mode).
+ */
+ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx)
+{
+ { ZSTD_frameProgression fp;
+ size_t const buffered = (cctx->inBuff == NULL) ? 0 :
+ cctx->inBuffPos - cctx->inToCompress;
+ if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress);
+ assert(buffered <= ZSTD_BLOCKSIZE_MAX);
+ fp.ingested = cctx->consumedSrcSize + buffered;
+ fp.consumed = cctx->consumedSrcSize;
+ fp.produced = cctx->producedCSize;
+ fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */
+ fp.currentJobID = 0;
+ fp.nbActiveWorkers = 0;
+ return fp;
+} }
+
+/*! ZSTD_toFlushNow()
+ * Only useful for multithreading scenarios currently (nbWorkers >= 1).
+ */
+size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx)
+{
+ (void)cctx;
+ return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */
+}
+
+static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1,
+ ZSTD_compressionParameters cParams2)
+{
+ (void)cParams1;
+ (void)cParams2;
+ assert(cParams1.windowLog == cParams2.windowLog);
+ assert(cParams1.chainLog == cParams2.chainLog);
+ assert(cParams1.hashLog == cParams2.hashLog);
+ assert(cParams1.searchLog == cParams2.searchLog);
+ assert(cParams1.minMatch == cParams2.minMatch);
+ assert(cParams1.targetLength == cParams2.targetLength);
+ assert(cParams1.strategy == cParams2.strategy);
+}
+
+void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs)
+{
+ int i;
+ for (i = 0; i < ZSTD_REP_NUM; ++i)
+ bs->rep[i] = repStartValue[i];
+ bs->entropy.huf.repeatMode = HUF_repeat_none;
+ bs->entropy.fse.offcode_repeatMode = FSE_repeat_none;
+ bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none;
+ bs->entropy.fse.litlength_repeatMode = FSE_repeat_none;
+}
+
+/*! ZSTD_invalidateMatchState()
+ * Invalidate all the matches in the match finder tables.
+ * Requires nextSrc and base to be set (can be NULL).
+ */
+static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms)
+{
+ ZSTD_window_clear(&ms->window);
+
+ ms->nextToUpdate = ms->window.dictLimit;
+ ms->loadedDictEnd = 0;
+ ms->opt.litLengthSum = 0; /* force reset of btopt stats */
+ ms->dictMatchState = NULL;
+}
+
+/*
+ * Controls, for this matchState reset, whether the tables need to be cleared /
+ * prepared for the coming compression (ZSTDcrp_makeClean), or whether the
+ * tables can be left unclean (ZSTDcrp_leaveDirty), because we know that a
+ * subsequent operation will overwrite the table space anyways (e.g., copying
+ * the matchState contents in from a CDict).
+ */
+typedef enum {
+ ZSTDcrp_makeClean,
+ ZSTDcrp_leaveDirty
+} ZSTD_compResetPolicy_e;
+
+/*
+ * Controls, for this matchState reset, whether indexing can continue where it
+ * left off (ZSTDirp_continue), or whether it needs to be restarted from zero
+ * (ZSTDirp_reset).
+ */
+typedef enum {
+ ZSTDirp_continue,
+ ZSTDirp_reset
+} ZSTD_indexResetPolicy_e;
+
+typedef enum {
+ ZSTD_resetTarget_CDict,
+ ZSTD_resetTarget_CCtx
+} ZSTD_resetTarget_e;
+
+static size_t
+ZSTD_reset_matchState(ZSTD_matchState_t* ms,
+ ZSTD_cwksp* ws,
+ const ZSTD_compressionParameters* cParams,
+ const ZSTD_compResetPolicy_e crp,
+ const ZSTD_indexResetPolicy_e forceResetIndex,
+ const ZSTD_resetTarget_e forWho)
+{
+ size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
+ size_t const hSize = ((size_t)1) << cParams->hashLog;
+ U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
+ size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0;
+
+ DEBUGLOG(4, "reset indices : %u", forceResetIndex == ZSTDirp_reset);
+ if (forceResetIndex == ZSTDirp_reset) {
+ ZSTD_window_init(&ms->window);
+ ZSTD_cwksp_mark_tables_dirty(ws);
+ }
+
+ ms->hashLog3 = hashLog3;
+
+ ZSTD_invalidateMatchState(ms);
+
+ assert(!ZSTD_cwksp_reserve_failed(ws)); /* check that allocation hasn't already failed */
+
+ ZSTD_cwksp_clear_tables(ws);
+
+ DEBUGLOG(5, "reserving table space");
+ /* table Space */
+ ms->hashTable = (U32*)ZSTD_cwksp_reserve_table(ws, hSize * sizeof(U32));
+ ms->chainTable = (U32*)ZSTD_cwksp_reserve_table(ws, chainSize * sizeof(U32));
+ ms->hashTable3 = (U32*)ZSTD_cwksp_reserve_table(ws, h3Size * sizeof(U32));
+ RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
+ "failed a workspace allocation in ZSTD_reset_matchState");
+
+ DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_leaveDirty);
+ if (crp!=ZSTDcrp_leaveDirty) {
+ /* reset tables only */
+ ZSTD_cwksp_clean_tables(ws);
+ }
+
+ /* opt parser space */
+ if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) {
+ DEBUGLOG(4, "reserving optimal parser space");
+ ms->opt.litFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (1<<Litbits) * sizeof(unsigned));
+ ms->opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxLL+1) * sizeof(unsigned));
+ ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxML+1) * sizeof(unsigned));
+ ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxOff+1) * sizeof(unsigned));
+ ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t));
+ ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ }
+
+ ms->cParams = *cParams;
+
+ RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation,
+ "failed a workspace allocation in ZSTD_reset_matchState");
+
+ return 0;
+}
+
+/* ZSTD_indexTooCloseToMax() :
+ * minor optimization : prefer memset() rather than reduceIndex()
+ * which is measurably slow in some circumstances (reported for Visual Studio).
+ * Works when re-using a context for a lot of smallish inputs :
+ * if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN,
+ * memset() will be triggered before reduceIndex().
+ */
+#define ZSTD_INDEXOVERFLOW_MARGIN (16 MB)
+static int ZSTD_indexTooCloseToMax(ZSTD_window_t w)
+{
+ return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN);
+}
+
+/*! ZSTD_resetCCtx_internal() :
+ note : `params` are assumed fully validated at this stage */
+static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
+ ZSTD_CCtx_params params,
+ U64 const pledgedSrcSize,
+ ZSTD_compResetPolicy_e const crp,
+ ZSTD_buffered_policy_e const zbuff)
+{
+ ZSTD_cwksp* const ws = &zc->workspace;
+ DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
+ (U32)pledgedSrcSize, params.cParams.windowLog);
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+
+ zc->isFirstBlock = 1;
+
+ if (params.ldmParams.enableLdm) {
+ /* Adjust long distance matching parameters */
+ ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
+ assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
+ assert(params.ldmParams.hashRateLog < 32);
+ }
+
+ { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
+ U32 const divider = (params.cParams.minMatch==3) ? 3 : 4;
+ size_t const maxNbSeq = blockSize / divider;
+ size_t const buffOutSize = (zbuff == ZSTDb_buffered && params.outBufferMode == ZSTD_bm_buffered)
+ ? ZSTD_compressBound(blockSize) + 1
+ : 0;
+ size_t const buffInSize = (zbuff == ZSTDb_buffered && params.inBufferMode == ZSTD_bm_buffered)
+ ? windowSize + blockSize
+ : 0;
+ size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize);
+
+ int const indexTooClose = ZSTD_indexTooCloseToMax(zc->blockState.matchState.window);
+ ZSTD_indexResetPolicy_e needsIndexReset =
+ (!indexTooClose && zc->initialized) ? ZSTDirp_continue : ZSTDirp_reset;
+
+ size_t const neededSpace =
+ ZSTD_estimateCCtxSize_usingCCtxParams_internal(
+ &params.cParams, &params.ldmParams, zc->staticSize != 0,
+ buffInSize, buffOutSize, pledgedSrcSize);
+ FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!");
+
+ if (!zc->staticSize) ZSTD_cwksp_bump_oversized_duration(ws, 0);
+
+ /* Check if workspace is large enough, alloc a new one if needed */
+ {
+ int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace;
+ int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace);
+
+ DEBUGLOG(4, "Need %zu B workspace", neededSpace);
+ DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize);
+
+ if (workspaceTooSmall || workspaceWasteful) {
+ DEBUGLOG(4, "Resize workspaceSize from %zuKB to %zuKB",
+ ZSTD_cwksp_sizeof(ws) >> 10,
+ neededSpace >> 10);
+
+ RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize");
+
+ needsIndexReset = ZSTDirp_reset;
+
+ ZSTD_cwksp_free(ws, zc->customMem);
+ FORWARD_IF_ERROR(ZSTD_cwksp_create(ws, neededSpace, zc->customMem), "");
+
+ DEBUGLOG(5, "reserving object space");
+ /* Statically sized space.
+ * entropyWorkspace never moves,
+ * though prev/next block swap places */
+ assert(ZSTD_cwksp_check_available(ws, 2 * sizeof(ZSTD_compressedBlockState_t)));
+ zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
+ RETURN_ERROR_IF(zc->blockState.prevCBlock == NULL, memory_allocation, "couldn't allocate prevCBlock");
+ zc->blockState.nextCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t));
+ RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate nextCBlock");
+ zc->entropyWorkspace = (U32*) ZSTD_cwksp_reserve_object(ws, ENTROPY_WORKSPACE_SIZE);
+ RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate entropyWorkspace");
+ } }
+
+ ZSTD_cwksp_clear(ws);
+
+ /* init params */
+ zc->appliedParams = params;
+ zc->blockState.matchState.cParams = params.cParams;
+ zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
+ zc->consumedSrcSize = 0;
+ zc->producedCSize = 0;
+ if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
+ zc->appliedParams.fParams.contentSizeFlag = 0;
+ DEBUGLOG(4, "pledged content size : %u ; flag : %u",
+ (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
+ zc->blockSize = blockSize;
+
+ xxh64_reset(&zc->xxhState, 0);
+ zc->stage = ZSTDcs_init;
+ zc->dictID = 0;
+ zc->dictContentSize = 0;
+
+ ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock);
+
+ /* ZSTD_wildcopy() is used to copy into the literals buffer,
+ * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes.
+ */
+ zc->seqStore.litStart = ZSTD_cwksp_reserve_buffer(ws, blockSize + WILDCOPY_OVERLENGTH);
+ zc->seqStore.maxNbLit = blockSize;
+
+ /* buffers */
+ zc->bufferedPolicy = zbuff;
+ zc->inBuffSize = buffInSize;
+ zc->inBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffInSize);
+ zc->outBuffSize = buffOutSize;
+ zc->outBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffOutSize);
+
+ /* ldm bucketOffsets table */
+ if (params.ldmParams.enableLdm) {
+ /* TODO: avoid memset? */
+ size_t const numBuckets =
+ ((size_t)1) << (params.ldmParams.hashLog -
+ params.ldmParams.bucketSizeLog);
+ zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, numBuckets);
+ ZSTD_memset(zc->ldmState.bucketOffsets, 0, numBuckets);
+ }
+
+ /* sequences storage */
+ ZSTD_referenceExternalSequences(zc, NULL, 0);
+ zc->seqStore.maxNbSeq = maxNbSeq;
+ zc->seqStore.llCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
+ zc->seqStore.mlCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
+ zc->seqStore.ofCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE));
+ zc->seqStore.sequencesStart = (seqDef*)ZSTD_cwksp_reserve_aligned(ws, maxNbSeq * sizeof(seqDef));
+
+ FORWARD_IF_ERROR(ZSTD_reset_matchState(
+ &zc->blockState.matchState,
+ ws,
+ &params.cParams,
+ crp,
+ needsIndexReset,
+ ZSTD_resetTarget_CCtx), "");
+
+ /* ldm hash table */
+ if (params.ldmParams.enableLdm) {
+ /* TODO: avoid memset? */
+ size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
+ zc->ldmState.hashTable = (ldmEntry_t*)ZSTD_cwksp_reserve_aligned(ws, ldmHSize * sizeof(ldmEntry_t));
+ ZSTD_memset(zc->ldmState.hashTable, 0, ldmHSize * sizeof(ldmEntry_t));
+ zc->ldmSequences = (rawSeq*)ZSTD_cwksp_reserve_aligned(ws, maxNbLdmSeq * sizeof(rawSeq));
+ zc->maxNbLdmSequences = maxNbLdmSeq;
+
+ ZSTD_window_init(&zc->ldmState.window);
+ ZSTD_window_clear(&zc->ldmState.window);
+ zc->ldmState.loadedDictEnd = 0;
+ }
+
+ /* Due to alignment, when reusing a workspace, we can actually consume
+ * up to 3 extra bytes for alignment. See the comments in zstd_cwksp.h
+ */
+ assert(ZSTD_cwksp_used(ws) >= neededSpace &&
+ ZSTD_cwksp_used(ws) <= neededSpace + 3);
+
+ DEBUGLOG(3, "wksp: finished allocating, %zd bytes remain available", ZSTD_cwksp_available_space(ws));
+ zc->initialized = 1;
+
+ return 0;
+ }
+}
+
+/* ZSTD_invalidateRepCodes() :
+ * ensures next compression will not use repcodes from previous block.
+ * Note : only works with regular variant;
+ * do not use with extDict variant ! */
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
+ int i;
+ for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0;
+ assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
+}
+
+/* These are the approximate sizes for each strategy past which copying the
+ * dictionary tables into the working context is faster than using them
+ * in-place.
+ */
+static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = {
+ 8 KB, /* unused */
+ 8 KB, /* ZSTD_fast */
+ 16 KB, /* ZSTD_dfast */
+ 32 KB, /* ZSTD_greedy */
+ 32 KB, /* ZSTD_lazy */
+ 32 KB, /* ZSTD_lazy2 */
+ 32 KB, /* ZSTD_btlazy2 */
+ 32 KB, /* ZSTD_btopt */
+ 8 KB, /* ZSTD_btultra */
+ 8 KB /* ZSTD_btultra2 */
+};
+
+static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params,
+ U64 pledgedSrcSize)
+{
+ size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy];
+ int const dedicatedDictSearch = cdict->matchState.dedicatedDictSearch;
+ return dedicatedDictSearch
+ || ( ( pledgedSrcSize <= cutoff
+ || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
+ || params->attachDictPref == ZSTD_dictForceAttach )
+ && params->attachDictPref != ZSTD_dictForceCopy
+ && !params->forceWindow ); /* dictMatchState isn't correctly
+ * handled in _enforceMaxDist */
+}
+
+static size_t
+ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ {
+ ZSTD_compressionParameters adjusted_cdict_cParams = cdict->matchState.cParams;
+ unsigned const windowLog = params.cParams.windowLog;
+ assert(windowLog != 0);
+ /* Resize working context table params for input only, since the dict
+ * has its own tables. */
+ /* pledgedSrcSize == 0 means 0! */
+
+ if (cdict->matchState.dedicatedDictSearch) {
+ ZSTD_dedicatedDictSearch_revertCParams(&adjusted_cdict_cParams);
+ }
+
+ params.cParams = ZSTD_adjustCParams_internal(adjusted_cdict_cParams, pledgedSrcSize,
+ cdict->dictContentSize, ZSTD_cpm_attachDict);
+ params.cParams.windowLog = windowLog;
+ FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ ZSTDcrp_makeClean, zbuff), "");
+ assert(cctx->appliedParams.cParams.strategy == adjusted_cdict_cParams.strategy);
+ }
+
+ { const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc
+ - cdict->matchState.window.base);
+ const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit;
+ if (cdictLen == 0) {
+ /* don't even attach dictionaries with no contents */
+ DEBUGLOG(4, "skipping attaching empty dictionary");
+ } else {
+ DEBUGLOG(4, "attaching dictionary into context");
+ cctx->blockState.matchState.dictMatchState = &cdict->matchState;
+
+ /* prep working match state so dict matches never have negative indices
+ * when they are translated to the working context's index space. */
+ if (cctx->blockState.matchState.window.dictLimit < cdictEnd) {
+ cctx->blockState.matchState.window.nextSrc =
+ cctx->blockState.matchState.window.base + cdictEnd;
+ ZSTD_window_clear(&cctx->blockState.matchState.window);
+ }
+ /* loadedDictEnd is expressed within the referential of the active context */
+ cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit;
+ } }
+
+ cctx->dictID = cdict->dictID;
+ cctx->dictContentSize = cdict->dictContentSize;
+
+ /* copy block state */
+ ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
+
+ return 0;
+}
+
+static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ ZSTD_CCtx_params params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams;
+
+ assert(!cdict->matchState.dedicatedDictSearch);
+
+ DEBUGLOG(4, "copying dictionary into context");
+
+ { unsigned const windowLog = params.cParams.windowLog;
+ assert(windowLog != 0);
+ /* Copy only compression parameters related to tables. */
+ params.cParams = *cdict_cParams;
+ params.cParams.windowLog = windowLog;
+ FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
+ ZSTDcrp_leaveDirty, zbuff), "");
+ assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy);
+ assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog);
+ assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog);
+ }
+
+ ZSTD_cwksp_mark_tables_dirty(&cctx->workspace);
+
+ /* copy tables */
+ { size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog);
+ size_t const hSize = (size_t)1 << cdict_cParams->hashLog;
+
+ ZSTD_memcpy(cctx->blockState.matchState.hashTable,
+ cdict->matchState.hashTable,
+ hSize * sizeof(U32));
+ ZSTD_memcpy(cctx->blockState.matchState.chainTable,
+ cdict->matchState.chainTable,
+ chainSize * sizeof(U32));
+ }
+
+ /* Zero the hashTable3, since the cdict never fills it */
+ { int const h3log = cctx->blockState.matchState.hashLog3;
+ size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
+ assert(cdict->matchState.hashLog3 == 0);
+ ZSTD_memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32));
+ }
+
+ ZSTD_cwksp_mark_tables_clean(&cctx->workspace);
+
+ /* copy dictionary offsets */
+ { ZSTD_matchState_t const* srcMatchState = &cdict->matchState;
+ ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState;
+ dstMatchState->window = srcMatchState->window;
+ dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
+ dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
+ }
+
+ cctx->dictID = cdict->dictID;
+ cctx->dictContentSize = cdict->dictContentSize;
+
+ /* copy block state */
+ ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
+
+ return 0;
+}
+
+/* We have a choice between copying the dictionary context into the working
+ * context, or referencing the dictionary context from the working context
+ * in-place. We decide here which strategy to use. */
+static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx,
+ const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+
+ DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)",
+ (unsigned)pledgedSrcSize);
+
+ if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) {
+ return ZSTD_resetCCtx_byAttachingCDict(
+ cctx, cdict, *params, pledgedSrcSize, zbuff);
+ } else {
+ return ZSTD_resetCCtx_byCopyingCDict(
+ cctx, cdict, *params, pledgedSrcSize, zbuff);
+ }
+}
+
+/*! ZSTD_copyCCtx_internal() :
+ * Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
+ * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
+ * The "context", in this case, refers to the hash and chain tables,
+ * entropy tables, and dictionary references.
+ * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
+ * @return : 0, or an error code */
+static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
+ const ZSTD_CCtx* srcCCtx,
+ ZSTD_frameParameters fParams,
+ U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ DEBUGLOG(5, "ZSTD_copyCCtx_internal");
+ RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong,
+ "Can't copy a ctx that's not in init stage.");
+
+ ZSTD_memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
+ { ZSTD_CCtx_params params = dstCCtx->requestedParams;
+ /* Copy only compression parameters related to tables. */
+ params.cParams = srcCCtx->appliedParams.cParams;
+ params.fParams = fParams;
+ ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
+ ZSTDcrp_leaveDirty, zbuff);
+ assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog);
+ assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy);
+ assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog);
+ assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog);
+ assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3);
+ }
+
+ ZSTD_cwksp_mark_tables_dirty(&dstCCtx->workspace);
+
+ /* copy tables */
+ { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
+ size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
+ int const h3log = srcCCtx->blockState.matchState.hashLog3;
+ size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0;
+
+ ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable,
+ srcCCtx->blockState.matchState.hashTable,
+ hSize * sizeof(U32));
+ ZSTD_memcpy(dstCCtx->blockState.matchState.chainTable,
+ srcCCtx->blockState.matchState.chainTable,
+ chainSize * sizeof(U32));
+ ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable3,
+ srcCCtx->blockState.matchState.hashTable3,
+ h3Size * sizeof(U32));
+ }
+
+ ZSTD_cwksp_mark_tables_clean(&dstCCtx->workspace);
+
+ /* copy dictionary offsets */
+ {
+ const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState;
+ ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState;
+ dstMatchState->window = srcMatchState->window;
+ dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
+ dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
+ }
+ dstCCtx->dictID = srcCCtx->dictID;
+ dstCCtx->dictContentSize = srcCCtx->dictContentSize;
+
+ /* copy block state */
+ ZSTD_memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock));
+
+ return 0;
+}
+
+/*! ZSTD_copyCCtx() :
+ * Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
+ * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
+ * pledgedSrcSize==0 means "unknown".
+* @return : 0, or an error code */
+size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
+{
+ ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ ZSTD_buffered_policy_e const zbuff = srcCCtx->bufferedPolicy;
+ ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
+ if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
+
+ return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
+ fParams, pledgedSrcSize,
+ zbuff);
+}
+
+
+#define ZSTD_ROWSIZE 16
+/*! ZSTD_reduceTable() :
+ * reduce table indexes by `reducerValue`, or squash to zero.
+ * PreserveMark preserves "unsorted mark" for btlazy2 strategy.
+ * It must be set to a clear 0/1 value, to remove branch during inlining.
+ * Presume table size is a multiple of ZSTD_ROWSIZE
+ * to help auto-vectorization */
+FORCE_INLINE_TEMPLATE void
+ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark)
+{
+ int const nbRows = (int)size / ZSTD_ROWSIZE;
+ int cellNb = 0;
+ int rowNb;
+ assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */
+ assert(size < (1U<<31)); /* can be casted to int */
+
+
+ for (rowNb=0 ; rowNb < nbRows ; rowNb++) {
+ int column;
+ for (column=0; column<ZSTD_ROWSIZE; column++) {
+ if (preserveMark) {
+ U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0;
+ table[cellNb] += adder;
+ }
+ if (table[cellNb] < reducerValue) table[cellNb] = 0;
+ else table[cellNb] -= reducerValue;
+ cellNb++;
+ } }
+}
+
+static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue)
+{
+ ZSTD_reduceTable_internal(table, size, reducerValue, 0);
+}
+
+static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue)
+{
+ ZSTD_reduceTable_internal(table, size, reducerValue, 1);
+}
+
+/*! ZSTD_reduceIndex() :
+* rescale all indexes to avoid future overflow (indexes are U32) */
+static void ZSTD_reduceIndex (ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const U32 reducerValue)
+{
+ { U32 const hSize = (U32)1 << params->cParams.hashLog;
+ ZSTD_reduceTable(ms->hashTable, hSize, reducerValue);
+ }
+
+ if (params->cParams.strategy != ZSTD_fast) {
+ U32 const chainSize = (U32)1 << params->cParams.chainLog;
+ if (params->cParams.strategy == ZSTD_btlazy2)
+ ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue);
+ else
+ ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue);
+ }
+
+ if (ms->hashLog3) {
+ U32 const h3Size = (U32)1 << ms->hashLog3;
+ ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue);
+ }
+}
+
+
+/*-*******************************************************
+* Block entropic compression
+*********************************************************/
+
+/* See doc/zstd_compression_format.md for detailed format description */
+
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
+{
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
+ BYTE* const llCodeTable = seqStorePtr->llCode;
+ BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ U32 u;
+ assert(nbSeq <= seqStorePtr->maxNbSeq);
+ for (u=0; u<nbSeq; u++) {
+ U32 const llv = sequences[u].litLength;
+ U32 const mlv = sequences[u].matchLength;
+ llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
+ ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
+ mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
+ }
+ if (seqStorePtr->longLengthID==1)
+ llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
+ if (seqStorePtr->longLengthID==2)
+ mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
+}
+
+/* ZSTD_useTargetCBlockSize():
+ * Returns if target compressed block size param is being used.
+ * If used, compression will do best effort to make a compressed block size to be around targetCBlockSize.
+ * Returns 1 if true, 0 otherwise. */
+static int ZSTD_useTargetCBlockSize(const ZSTD_CCtx_params* cctxParams)
+{
+ DEBUGLOG(5, "ZSTD_useTargetCBlockSize (targetCBlockSize=%zu)", cctxParams->targetCBlockSize);
+ return (cctxParams->targetCBlockSize != 0);
+}
+
+/* ZSTD_entropyCompressSequences_internal():
+ * actually compresses both literals and sequences */
+MEM_STATIC size_t
+ZSTD_entropyCompressSequences_internal(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ void* entropyWorkspace, size_t entropyWkspSize,
+ const int bmi2)
+{
+ const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
+ ZSTD_strategy const strategy = cctxParams->cParams.strategy;
+ unsigned* count = (unsigned*)entropyWorkspace;
+ FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable;
+ FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable;
+ FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable;
+ U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
+ const BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ const BYTE* const llCodeTable = seqStorePtr->llCode;
+ const BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ size_t const nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ BYTE* seqHead;
+ BYTE* lastNCount = NULL;
+
+ entropyWorkspace = count + (MaxSeq + 1);
+ entropyWkspSize -= (MaxSeq + 1) * sizeof(*count);
+
+ DEBUGLOG(4, "ZSTD_entropyCompressSequences_internal (nbSeq=%zu)", nbSeq);
+ ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
+ assert(entropyWkspSize >= HUF_WORKSPACE_SIZE);
+
+ /* Compress literals */
+ { const BYTE* const literals = seqStorePtr->litStart;
+ size_t const litSize = (size_t)(seqStorePtr->lit - literals);
+ size_t const cSize = ZSTD_compressLiterals(
+ &prevEntropy->huf, &nextEntropy->huf,
+ cctxParams->cParams.strategy,
+ ZSTD_disableLiteralsCompression(cctxParams),
+ op, dstCapacity,
+ literals, litSize,
+ entropyWorkspace, entropyWkspSize,
+ bmi2);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressLiterals failed");
+ assert(cSize <= dstCapacity);
+ op += cSize;
+ }
+
+ /* Sequences Header */
+ RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
+ dstSize_tooSmall, "Can't fit seq hdr in output buf!");
+ if (nbSeq < 128) {
+ *op++ = (BYTE)nbSeq;
+ } else if (nbSeq < LONGNBSEQ) {
+ op[0] = (BYTE)((nbSeq>>8) + 0x80);
+ op[1] = (BYTE)nbSeq;
+ op+=2;
+ } else {
+ op[0]=0xFF;
+ MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ));
+ op+=3;
+ }
+ assert(op <= oend);
+ if (nbSeq==0) {
+ /* Copy the old tables over as if we repeated them */
+ ZSTD_memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse));
+ return (size_t)(op - ostart);
+ }
+
+ /* seqHead : flags for FSE encoding type */
+ seqHead = op++;
+ assert(op <= oend);
+
+ /* convert length/distances into codes */
+ ZSTD_seqToCodes(seqStorePtr);
+ /* build CTable for Literal Lengths */
+ { unsigned max = MaxLL;
+ size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ DEBUGLOG(5, "Building LL table");
+ nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode;
+ LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ LLFSELog, prevEntropy->fse.litlengthCTable,
+ LL_defaultNorm, LL_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(set_basic < set_compressed && set_rle < set_compressed);
+ assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
+ count, max, llCodeTable, nbSeq,
+ LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ prevEntropy->fse.litlengthCTable,
+ sizeof(prevEntropy->fse.litlengthCTable),
+ entropyWorkspace, entropyWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for LitLens failed");
+ if (LLtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for Offsets */
+ { unsigned max = MaxOff;
+ size_t const mostFrequent = HIST_countFast_wksp(
+ count, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
+ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
+ DEBUGLOG(5, "Building OF table");
+ nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode;
+ Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ OffFSELog, prevEntropy->fse.offcodeCTable,
+ OF_defaultNorm, OF_defaultNormLog,
+ defaultPolicy, strategy);
+ assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
+ count, max, ofCodeTable, nbSeq,
+ OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ prevEntropy->fse.offcodeCTable,
+ sizeof(prevEntropy->fse.offcodeCTable),
+ entropyWorkspace, entropyWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for Offsets failed");
+ if (Offtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+ /* build CTable for MatchLengths */
+ { unsigned max = MaxML;
+ size_t const mostFrequent = HIST_countFast_wksp(
+ count, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */
+ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
+ nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode;
+ MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode,
+ count, max, mostFrequent, nbSeq,
+ MLFSELog, prevEntropy->fse.matchlengthCTable,
+ ML_defaultNorm, ML_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(
+ op, (size_t)(oend - op),
+ CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
+ count, max, mlCodeTable, nbSeq,
+ ML_defaultNorm, ML_defaultNormLog, MaxML,
+ prevEntropy->fse.matchlengthCTable,
+ sizeof(prevEntropy->fse.matchlengthCTable),
+ entropyWorkspace, entropyWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for MatchLengths failed");
+ if (MLtype == set_compressed)
+ lastNCount = op;
+ op += countSize;
+ assert(op <= oend);
+ } }
+
+ *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
+
+ { size_t const bitstreamSize = ZSTD_encodeSequences(
+ op, (size_t)(oend - op),
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq,
+ longOffsets, bmi2);
+ FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
+ op += bitstreamSize;
+ assert(op <= oend);
+ /* zstd versions <= 1.3.4 mistakenly report corruption when
+ * FSE_readNCount() receives a buffer < 4 bytes.
+ * Fixed by https://github.com/facebook/zstd/pull/1146.
+ * This can happen when the last set_compressed table present is 2
+ * bytes and the bitstream is only one byte.
+ * In this exceedingly rare case, we will simply emit an uncompressed
+ * block, since it isn't worth optimizing.
+ */
+ if (lastNCount && (op - lastNCount) < 4) {
+ /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
+ assert(op - lastNCount == 3);
+ DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
+ "emitting an uncompressed block.");
+ return 0;
+ }
+ }
+
+ DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart));
+ return (size_t)(op - ostart);
+}
+
+MEM_STATIC size_t
+ZSTD_entropyCompressSequences(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ size_t srcSize,
+ void* entropyWorkspace, size_t entropyWkspSize,
+ int bmi2)
+{
+ size_t const cSize = ZSTD_entropyCompressSequences_internal(
+ seqStorePtr, prevEntropy, nextEntropy, cctxParams,
+ dst, dstCapacity,
+ entropyWorkspace, entropyWkspSize, bmi2);
+ if (cSize == 0) return 0;
+ /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block.
+ * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block.
+ */
+ if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity))
+ return 0; /* block not compressed */
+ FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSequences_internal failed");
+
+ /* Check compressibility */
+ { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy);
+ if (cSize >= maxCSize) return 0; /* block not compressed */
+ }
+ DEBUGLOG(4, "ZSTD_entropyCompressSequences() cSize: %zu\n", cSize);
+ return cSize;
+}
+
+/* ZSTD_selectBlockCompressor() :
+ * Not static, but internal use only (used by long distance matcher)
+ * assumption : strat is a valid strategy */
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode)
+{
+ static const ZSTD_blockCompressor blockCompressor[4][ZSTD_STRATEGY_MAX+1] = {
+ { ZSTD_compressBlock_fast /* default for 0 */,
+ ZSTD_compressBlock_fast,
+ ZSTD_compressBlock_doubleFast,
+ ZSTD_compressBlock_greedy,
+ ZSTD_compressBlock_lazy,
+ ZSTD_compressBlock_lazy2,
+ ZSTD_compressBlock_btlazy2,
+ ZSTD_compressBlock_btopt,
+ ZSTD_compressBlock_btultra,
+ ZSTD_compressBlock_btultra2 },
+ { ZSTD_compressBlock_fast_extDict /* default for 0 */,
+ ZSTD_compressBlock_fast_extDict,
+ ZSTD_compressBlock_doubleFast_extDict,
+ ZSTD_compressBlock_greedy_extDict,
+ ZSTD_compressBlock_lazy_extDict,
+ ZSTD_compressBlock_lazy2_extDict,
+ ZSTD_compressBlock_btlazy2_extDict,
+ ZSTD_compressBlock_btopt_extDict,
+ ZSTD_compressBlock_btultra_extDict,
+ ZSTD_compressBlock_btultra_extDict },
+ { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */,
+ ZSTD_compressBlock_fast_dictMatchState,
+ ZSTD_compressBlock_doubleFast_dictMatchState,
+ ZSTD_compressBlock_greedy_dictMatchState,
+ ZSTD_compressBlock_lazy_dictMatchState,
+ ZSTD_compressBlock_lazy2_dictMatchState,
+ ZSTD_compressBlock_btlazy2_dictMatchState,
+ ZSTD_compressBlock_btopt_dictMatchState,
+ ZSTD_compressBlock_btultra_dictMatchState,
+ ZSTD_compressBlock_btultra_dictMatchState },
+ { NULL /* default for 0 */,
+ NULL,
+ NULL,
+ ZSTD_compressBlock_greedy_dedicatedDictSearch,
+ ZSTD_compressBlock_lazy_dedicatedDictSearch,
+ ZSTD_compressBlock_lazy2_dedicatedDictSearch,
+ NULL,
+ NULL,
+ NULL,
+ NULL }
+ };
+ ZSTD_blockCompressor selectedCompressor;
+ ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
+
+ assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
+ selectedCompressor = blockCompressor[(int)dictMode][(int)strat];
+ assert(selectedCompressor != NULL);
+ return selectedCompressor;
+}
+
+static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
+ const BYTE* anchor, size_t lastLLSize)
+{
+ ZSTD_memcpy(seqStorePtr->lit, anchor, lastLLSize);
+ seqStorePtr->lit += lastLLSize;
+}
+
+void ZSTD_resetSeqStore(seqStore_t* ssPtr)
+{
+ ssPtr->lit = ssPtr->litStart;
+ ssPtr->sequences = ssPtr->sequencesStart;
+ ssPtr->longLengthID = 0;
+}
+
+typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_buildSeqStore_e;
+
+static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
+{
+ ZSTD_matchState_t* const ms = &zc->blockState.matchState;
+ DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize);
+ assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
+ /* Assert that we have correctly flushed the ctx params into the ms's copy */
+ ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams);
+ if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
+ if (zc->appliedParams.cParams.strategy >= ZSTD_btopt) {
+ ZSTD_ldm_skipRawSeqStoreBytes(&zc->externSeqStore, srcSize);
+ } else {
+ ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch);
+ }
+ return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */
+ }
+ ZSTD_resetSeqStore(&(zc->seqStore));
+ /* required for optimal parser to read stats from dictionary */
+ ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy;
+ /* tell the optimal parser how we expect to compress literals */
+ ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode;
+ /* a gap between an attached dict and the current window is not safe,
+ * they must remain adjacent,
+ * and when that stops being the case, the dict must be unset */
+ assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit);
+
+ /* limited update after a very long match */
+ { const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const U32 curr = (U32)(istart-base);
+ if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */
+ if (curr > ms->nextToUpdate + 384)
+ ms->nextToUpdate = curr - MIN(192, (U32)(curr - ms->nextToUpdate - 384));
+ }
+
+ /* select and store sequences */
+ { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms);
+ size_t lastLLSize;
+ { int i;
+ for (i = 0; i < ZSTD_REP_NUM; ++i)
+ zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i];
+ }
+ if (zc->externSeqStore.pos < zc->externSeqStore.size) {
+ assert(!zc->appliedParams.ldmParams.enableLdm);
+ /* Updates ldmSeqStore.pos */
+ lastLLSize =
+ ZSTD_ldm_blockCompress(&zc->externSeqStore,
+ ms, &zc->seqStore,
+ zc->blockState.nextCBlock->rep,
+ src, srcSize);
+ assert(zc->externSeqStore.pos <= zc->externSeqStore.size);
+ } else if (zc->appliedParams.ldmParams.enableLdm) {
+ rawSeqStore_t ldmSeqStore = kNullRawSeqStore;
+
+ ldmSeqStore.seq = zc->ldmSequences;
+ ldmSeqStore.capacity = zc->maxNbLdmSequences;
+ /* Updates ldmSeqStore.size */
+ FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore,
+ &zc->appliedParams.ldmParams,
+ src, srcSize), "");
+ /* Updates ldmSeqStore.pos */
+ lastLLSize =
+ ZSTD_ldm_blockCompress(&ldmSeqStore,
+ ms, &zc->seqStore,
+ zc->blockState.nextCBlock->rep,
+ src, srcSize);
+ assert(ldmSeqStore.pos == ldmSeqStore.size);
+ } else { /* not long range mode */
+ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode);
+ ms->ldmSeqStore = NULL;
+ lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
+ }
+ { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize;
+ ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize);
+ } }
+ return ZSTDbss_compress;
+}
+
+static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc)
+{
+ const seqStore_t* seqStore = ZSTD_getSeqStore(zc);
+ const seqDef* seqStoreSeqs = seqStore->sequencesStart;
+ size_t seqStoreSeqSize = seqStore->sequences - seqStoreSeqs;
+ size_t seqStoreLiteralsSize = (size_t)(seqStore->lit - seqStore->litStart);
+ size_t literalsRead = 0;
+ size_t lastLLSize;
+
+ ZSTD_Sequence* outSeqs = &zc->seqCollector.seqStart[zc->seqCollector.seqIndex];
+ size_t i;
+ repcodes_t updatedRepcodes;
+
+ assert(zc->seqCollector.seqIndex + 1 < zc->seqCollector.maxSequences);
+ /* Ensure we have enough space for last literals "sequence" */
+ assert(zc->seqCollector.maxSequences >= seqStoreSeqSize + 1);
+ ZSTD_memcpy(updatedRepcodes.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
+ for (i = 0; i < seqStoreSeqSize; ++i) {
+ U32 rawOffset = seqStoreSeqs[i].offset - ZSTD_REP_NUM;
+ outSeqs[i].litLength = seqStoreSeqs[i].litLength;
+ outSeqs[i].matchLength = seqStoreSeqs[i].matchLength + MINMATCH;
+ outSeqs[i].rep = 0;
+
+ if (i == seqStore->longLengthPos) {
+ if (seqStore->longLengthID == 1) {
+ outSeqs[i].litLength += 0x10000;
+ } else if (seqStore->longLengthID == 2) {
+ outSeqs[i].matchLength += 0x10000;
+ }
+ }
+
+ if (seqStoreSeqs[i].offset <= ZSTD_REP_NUM) {
+ /* Derive the correct offset corresponding to a repcode */
+ outSeqs[i].rep = seqStoreSeqs[i].offset;
+ if (outSeqs[i].litLength != 0) {
+ rawOffset = updatedRepcodes.rep[outSeqs[i].rep - 1];
+ } else {
+ if (outSeqs[i].rep == 3) {
+ rawOffset = updatedRepcodes.rep[0] - 1;
+ } else {
+ rawOffset = updatedRepcodes.rep[outSeqs[i].rep];
+ }
+ }
+ }
+ outSeqs[i].offset = rawOffset;
+ /* seqStoreSeqs[i].offset == offCode+1, and ZSTD_updateRep() expects offCode
+ so we provide seqStoreSeqs[i].offset - 1 */
+ updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep,
+ seqStoreSeqs[i].offset - 1,
+ seqStoreSeqs[i].litLength == 0);
+ literalsRead += outSeqs[i].litLength;
+ }
+ /* Insert last literals (if any exist) in the block as a sequence with ml == off == 0.
+ * If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker
+ * for the block boundary, according to the API.
+ */
+ assert(seqStoreLiteralsSize >= literalsRead);
+ lastLLSize = seqStoreLiteralsSize - literalsRead;
+ outSeqs[i].litLength = (U32)lastLLSize;
+ outSeqs[i].matchLength = outSeqs[i].offset = outSeqs[i].rep = 0;
+ seqStoreSeqSize++;
+ zc->seqCollector.seqIndex += seqStoreSeqSize;
+}
+
+size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
+ size_t outSeqsSize, const void* src, size_t srcSize)
+{
+ const size_t dstCapacity = ZSTD_compressBound(srcSize);
+ void* dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem);
+ SeqCollector seqCollector;
+
+ RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!");
+
+ seqCollector.collectSequences = 1;
+ seqCollector.seqStart = outSeqs;
+ seqCollector.seqIndex = 0;
+ seqCollector.maxSequences = outSeqsSize;
+ zc->seqCollector = seqCollector;
+
+ ZSTD_compress2(zc, dst, dstCapacity, src, srcSize);
+ ZSTD_customFree(dst, ZSTD_defaultCMem);
+ return zc->seqCollector.seqIndex;
+}
+
+size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize) {
+ size_t in = 0;
+ size_t out = 0;
+ for (; in < seqsSize; ++in) {
+ if (sequences[in].offset == 0 && sequences[in].matchLength == 0) {
+ if (in != seqsSize - 1) {
+ sequences[in+1].litLength += sequences[in].litLength;
+ }
+ } else {
+ sequences[out] = sequences[in];
+ ++out;
+ }
+ }
+ return out;
+}
+
+/* Unrolled loop to read four size_ts of input at a time. Returns 1 if is RLE, 0 if not. */
+static int ZSTD_isRLE(const BYTE* src, size_t length) {
+ const BYTE* ip = src;
+ const BYTE value = ip[0];
+ const size_t valueST = (size_t)((U64)value * 0x0101010101010101ULL);
+ const size_t unrollSize = sizeof(size_t) * 4;
+ const size_t unrollMask = unrollSize - 1;
+ const size_t prefixLength = length & unrollMask;
+ size_t i;
+ size_t u;
+ if (length == 1) return 1;
+ /* Check if prefix is RLE first before using unrolled loop */
+ if (prefixLength && ZSTD_count(ip+1, ip, ip+prefixLength) != prefixLength-1) {
+ return 0;
+ }
+ for (i = prefixLength; i != length; i += unrollSize) {
+ for (u = 0; u < unrollSize; u += sizeof(size_t)) {
+ if (MEM_readST(ip + i + u) != valueST) {
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+/* Returns true if the given block may be RLE.
+ * This is just a heuristic based on the compressibility.
+ * It may return both false positives and false negatives.
+ */
+static int ZSTD_maybeRLE(seqStore_t const* seqStore)
+{
+ size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart);
+ size_t const nbLits = (size_t)(seqStore->lit - seqStore->litStart);
+
+ return nbSeqs < 4 && nbLits < 10;
+}
+
+static void ZSTD_confirmRepcodesAndEntropyTables(ZSTD_CCtx* zc)
+{
+ ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock;
+ zc->blockState.prevCBlock = zc->blockState.nextCBlock;
+ zc->blockState.nextCBlock = tmp;
+}
+
+static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, U32 frame)
+{
+ /* This the upper bound for the length of an rle block.
+ * This isn't the actual upper bound. Finding the real threshold
+ * needs further investigation.
+ */
+ const U32 rleMaxLength = 25;
+ size_t cSize;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* op = (BYTE*)dst;
+ DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
+ (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit,
+ (unsigned)zc->blockState.matchState.nextToUpdate);
+
+ { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
+ FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
+ if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; }
+ }
+
+ if (zc->seqCollector.collectSequences) {
+ ZSTD_copyBlockSequences(zc);
+ ZSTD_confirmRepcodesAndEntropyTables(zc);
+ return 0;
+ }
+
+ /* encode sequences and literals */
+ cSize = ZSTD_entropyCompressSequences(&zc->seqStore,
+ &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
+ &zc->appliedParams,
+ dst, dstCapacity,
+ srcSize,
+ zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
+ zc->bmi2);
+
+ if (zc->seqCollector.collectSequences) {
+ ZSTD_copyBlockSequences(zc);
+ return 0;
+ }
+
+
+ if (frame &&
+ /* We don't want to emit our first block as a RLE even if it qualifies because
+ * doing so will cause the decoder (cli only) to throw a "should consume all input error."
+ * This is only an issue for zstd <= v1.4.3
+ */
+ !zc->isFirstBlock &&
+ cSize < rleMaxLength &&
+ ZSTD_isRLE(ip, srcSize))
+ {
+ cSize = 1;
+ op[0] = ip[0];
+ }
+
+out:
+ if (!ZSTD_isError(cSize) && cSize > 1) {
+ ZSTD_confirmRepcodesAndEntropyTables(zc);
+ }
+ /* We check that dictionaries have offset codes available for the first
+ * block. After the first block, the offcode table might not have large
+ * enough codes to represent the offsets in the data.
+ */
+ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+
+ return cSize;
+}
+
+static size_t ZSTD_compressBlock_targetCBlockSize_body(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const size_t bss, U32 lastBlock)
+{
+ DEBUGLOG(6, "Attempting ZSTD_compressSuperBlock()");
+ if (bss == ZSTDbss_compress) {
+ if (/* We don't want to emit our first block as a RLE even if it qualifies because
+ * doing so will cause the decoder (cli only) to throw a "should consume all input error."
+ * This is only an issue for zstd <= v1.4.3
+ */
+ !zc->isFirstBlock &&
+ ZSTD_maybeRLE(&zc->seqStore) &&
+ ZSTD_isRLE((BYTE const*)src, srcSize))
+ {
+ return ZSTD_rleCompressBlock(dst, dstCapacity, *(BYTE const*)src, srcSize, lastBlock);
+ }
+ /* Attempt superblock compression.
+ *
+ * Note that compressed size of ZSTD_compressSuperBlock() is not bound by the
+ * standard ZSTD_compressBound(). This is a problem, because even if we have
+ * space now, taking an extra byte now could cause us to run out of space later
+ * and violate ZSTD_compressBound().
+ *
+ * Define blockBound(blockSize) = blockSize + ZSTD_blockHeaderSize.
+ *
+ * In order to respect ZSTD_compressBound() we must attempt to emit a raw
+ * uncompressed block in these cases:
+ * * cSize == 0: Return code for an uncompressed block.
+ * * cSize == dstSize_tooSmall: We may have expanded beyond blockBound(srcSize).
+ * ZSTD_noCompressBlock() will return dstSize_tooSmall if we are really out of
+ * output space.
+ * * cSize >= blockBound(srcSize): We have expanded the block too much so
+ * emit an uncompressed block.
+ */
+ {
+ size_t const cSize = ZSTD_compressSuperBlock(zc, dst, dstCapacity, src, srcSize, lastBlock);
+ if (cSize != ERROR(dstSize_tooSmall)) {
+ size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, zc->appliedParams.cParams.strategy);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressSuperBlock failed");
+ if (cSize != 0 && cSize < maxCSize + ZSTD_blockHeaderSize) {
+ ZSTD_confirmRepcodesAndEntropyTables(zc);
+ return cSize;
+ }
+ }
+ }
+ }
+
+ DEBUGLOG(6, "Resorting to ZSTD_noCompressBlock()");
+ /* Superblock compression failed, attempt to emit a single no compress block.
+ * The decoder will be able to stream this block since it is uncompressed.
+ */
+ return ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock);
+}
+
+static size_t ZSTD_compressBlock_targetCBlockSize(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 lastBlock)
+{
+ size_t cSize = 0;
+ const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
+ DEBUGLOG(5, "ZSTD_compressBlock_targetCBlockSize (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u, srcSize=%zu)",
+ (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate, srcSize);
+ FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
+
+ cSize = ZSTD_compressBlock_targetCBlockSize_body(zc, dst, dstCapacity, src, srcSize, bss, lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize_body failed");
+
+ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+
+ return cSize;
+}
+
+static void ZSTD_overflowCorrectIfNeeded(ZSTD_matchState_t* ms,
+ ZSTD_cwksp* ws,
+ ZSTD_CCtx_params const* params,
+ void const* ip,
+ void const* iend)
+{
+ if (ZSTD_window_needOverflowCorrection(ms->window, iend)) {
+ U32 const maxDist = (U32)1 << params->cParams.windowLog;
+ U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy);
+ U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip);
+ ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
+ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
+ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
+ ZSTD_cwksp_mark_tables_dirty(ws);
+ ZSTD_reduceIndex(ms, params, correction);
+ ZSTD_cwksp_mark_tables_clean(ws);
+ if (ms->nextToUpdate < correction) ms->nextToUpdate = 0;
+ else ms->nextToUpdate -= correction;
+ /* invalidate dictionaries on overflow correction */
+ ms->loadedDictEnd = 0;
+ ms->dictMatchState = NULL;
+ }
+}
+
+/*! ZSTD_compress_frameChunk() :
+* Compress a chunk of data into one or multiple blocks.
+* All blocks will be terminated, all input will be consumed.
+* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
+* Frame is supposed already started (header already produced)
+* @return : compressed size, or an error code
+*/
+static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 lastFrameChunk)
+{
+ size_t blockSize = cctx->blockSize;
+ size_t remaining = srcSize;
+ const BYTE* ip = (const BYTE*)src;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* op = ostart;
+ U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
+
+ assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX);
+
+ DEBUGLOG(4, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize);
+ if (cctx->appliedParams.fParams.checksumFlag && srcSize)
+ xxh64_update(&cctx->xxhState, src, srcSize);
+
+ while (remaining) {
+ ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
+ U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
+
+ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE,
+ dstSize_tooSmall,
+ "not enough space to store compressed block");
+ if (remaining < blockSize) blockSize = remaining;
+
+ ZSTD_overflowCorrectIfNeeded(
+ ms, &cctx->workspace, &cctx->appliedParams, ip, ip + blockSize);
+ ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState);
+
+ /* Ensure hash/chain table insertion resumes no sooner than lowlimit */
+ if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit;
+
+ { size_t cSize;
+ if (ZSTD_useTargetCBlockSize(&cctx->appliedParams)) {
+ cSize = ZSTD_compressBlock_targetCBlockSize(cctx, op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize failed");
+ assert(cSize > 0);
+ assert(cSize <= blockSize + ZSTD_blockHeaderSize);
+ } else {
+ cSize = ZSTD_compressBlock_internal(cctx,
+ op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
+ ip, blockSize, 1 /* frame */);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_internal failed");
+
+ if (cSize == 0) { /* block is not compressible */
+ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
+ } else {
+ U32 const cBlockHeader = cSize == 1 ?
+ lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) :
+ lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
+ MEM_writeLE24(op, cBlockHeader);
+ cSize += ZSTD_blockHeaderSize;
+ }
+ }
+
+
+ ip += blockSize;
+ assert(remaining >= blockSize);
+ remaining -= blockSize;
+ op += cSize;
+ assert(dstCapacity >= cSize);
+ dstCapacity -= cSize;
+ cctx->isFirstBlock = 0;
+ DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
+ (unsigned)cSize);
+ } }
+
+ if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
+ return (size_t)(op-ostart);
+}
+
+
+static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
+ const ZSTD_CCtx_params* params, U64 pledgedSrcSize, U32 dictID)
+{ BYTE* const op = (BYTE*)dst;
+ U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
+ U32 const dictIDSizeCode = params->fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
+ U32 const checksumFlag = params->fParams.checksumFlag>0;
+ U32 const windowSize = (U32)1 << params->cParams.windowLog;
+ U32 const singleSegment = params->fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
+ BYTE const windowLogByte = (BYTE)((params->cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
+ U32 const fcsCode = params->fParams.contentSizeFlag ?
+ (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
+ BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
+ size_t pos=0;
+
+ assert(!(params->fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN));
+ RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall,
+ "dst buf is too small to fit worst-case frame header size.");
+ DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
+ !params->fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode);
+ if (params->format == ZSTD_f_zstd1) {
+ MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
+ pos = 4;
+ }
+ op[pos++] = frameHeaderDescriptionByte;
+ if (!singleSegment) op[pos++] = windowLogByte;
+ switch(dictIDSizeCode)
+ {
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
+ case 0 : break;
+ case 1 : op[pos] = (BYTE)(dictID); pos++; break;
+ case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
+ case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
+ }
+ switch(fcsCode)
+ {
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
+ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
+ case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
+ case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
+ case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
+ }
+ return pos;
+}
+
+/* ZSTD_writeSkippableFrame_advanced() :
+ * Writes out a skippable frame with the specified magic number variant (16 are supported),
+ * from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15, and the desired source data.
+ *
+ * Returns the total number of bytes written, or a ZSTD error code.
+ */
+size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, unsigned magicVariant) {
+ BYTE* op = (BYTE*)dst;
+ RETURN_ERROR_IF(dstCapacity < srcSize + ZSTD_SKIPPABLEHEADERSIZE /* Skippable frame overhead */,
+ dstSize_tooSmall, "Not enough room for skippable frame");
+ RETURN_ERROR_IF(srcSize > (unsigned)0xFFFFFFFF, srcSize_wrong, "Src size too large for skippable frame");
+ RETURN_ERROR_IF(magicVariant > 15, parameter_outOfBound, "Skippable frame magic number variant not supported");
+
+ MEM_writeLE32(op, (U32)(ZSTD_MAGIC_SKIPPABLE_START + magicVariant));
+ MEM_writeLE32(op+4, (U32)srcSize);
+ ZSTD_memcpy(op+8, src, srcSize);
+ return srcSize + ZSTD_SKIPPABLEHEADERSIZE;
+}
+
+/* ZSTD_writeLastEmptyBlock() :
+ * output an empty Block with end-of-frame mark to complete a frame
+ * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
+ * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
+ */
+size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
+{
+ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall,
+ "dst buf is too small to write frame trailer empty block.");
+ { U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */
+ MEM_writeLE24(dst, cBlockHeader24);
+ return ZSTD_blockHeaderSize;
+ }
+}
+
+size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
+{
+ RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong,
+ "wrong cctx stage");
+ RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm,
+ parameter_unsupported,
+ "incompatible with ldm");
+ cctx->externSeqStore.seq = seq;
+ cctx->externSeqStore.size = nbSeq;
+ cctx->externSeqStore.capacity = nbSeq;
+ cctx->externSeqStore.pos = 0;
+ cctx->externSeqStore.posInSequence = 0;
+ return 0;
+}
+
+
+static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ U32 frame, U32 lastFrameChunk)
+{
+ ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
+ size_t fhSize = 0;
+
+ DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u",
+ cctx->stage, (unsigned)srcSize);
+ RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong,
+ "missing init (ZSTD_compressBegin)");
+
+ if (frame && (cctx->stage==ZSTDcs_init)) {
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams,
+ cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
+ FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
+ assert(fhSize <= dstCapacity);
+ dstCapacity -= fhSize;
+ dst = (char*)dst + fhSize;
+ cctx->stage = ZSTDcs_ongoing;
+ }
+
+ if (!srcSize) return fhSize; /* do not generate an empty block if no input */
+
+ if (!ZSTD_window_update(&ms->window, src, srcSize)) {
+ ms->nextToUpdate = ms->window.dictLimit;
+ }
+ if (cctx->appliedParams.ldmParams.enableLdm) {
+ ZSTD_window_update(&cctx->ldmState.window, src, srcSize);
+ }
+
+ if (!frame) {
+ /* overflow check and correction for block mode */
+ ZSTD_overflowCorrectIfNeeded(
+ ms, &cctx->workspace, &cctx->appliedParams,
+ src, (BYTE const*)src + srcSize);
+ }
+
+ DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize);
+ { size_t const cSize = frame ?
+ ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
+ ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize, 0 /* frame */);
+ FORWARD_IF_ERROR(cSize, "%s", frame ? "ZSTD_compress_frameChunk failed" : "ZSTD_compressBlock_internal failed");
+ cctx->consumedSrcSize += srcSize;
+ cctx->producedCSize += (cSize + fhSize);
+ assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
+ if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
+ RETURN_ERROR_IF(
+ cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne,
+ srcSize_wrong,
+ "error : pledgedSrcSize = %u, while realSrcSize >= %u",
+ (unsigned)cctx->pledgedSrcSizePlusOne-1,
+ (unsigned)cctx->consumedSrcSize);
+ }
+ return cSize + fhSize;
+ }
+}
+
+size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize);
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
+}
+
+
+size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
+{
+ ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams;
+ assert(!ZSTD_checkCParams(cParams));
+ return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
+}
+
+size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressBlock: srcSize = %u", (unsigned)srcSize);
+ { size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
+ RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong, "input is larger than a block"); }
+
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
+}
+
+/*! ZSTD_loadDictionaryContent() :
+ * @return : 0, or an error code
+ */
+static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
+ ldmState_t* ls,
+ ZSTD_cwksp* ws,
+ ZSTD_CCtx_params const* params,
+ const void* src, size_t srcSize,
+ ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const BYTE* ip = (const BYTE*) src;
+ const BYTE* const iend = ip + srcSize;
+
+ ZSTD_window_update(&ms->window, src, srcSize);
+ ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base);
+
+ if (params->ldmParams.enableLdm && ls != NULL) {
+ ZSTD_window_update(&ls->window, src, srcSize);
+ ls->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ls->window.base);
+ }
+
+ /* Assert that we the ms params match the params we're being given */
+ ZSTD_assertEqualCParams(params->cParams, ms->cParams);
+
+ if (srcSize <= HASH_READ_SIZE) return 0;
+
+ while (iend - ip > HASH_READ_SIZE) {
+ size_t const remaining = (size_t)(iend - ip);
+ size_t const chunk = MIN(remaining, ZSTD_CHUNKSIZE_MAX);
+ const BYTE* const ichunk = ip + chunk;
+
+ ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, ichunk);
+
+ if (params->ldmParams.enableLdm && ls != NULL)
+ ZSTD_ldm_fillHashTable(ls, (const BYTE*)src, (const BYTE*)src + srcSize, &params->ldmParams);
+
+ switch(params->cParams.strategy)
+ {
+ case ZSTD_fast:
+ ZSTD_fillHashTable(ms, ichunk, dtlm);
+ break;
+ case ZSTD_dfast:
+ ZSTD_fillDoubleHashTable(ms, ichunk, dtlm);
+ break;
+
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ if (chunk >= HASH_READ_SIZE && ms->dedicatedDictSearch) {
+ assert(chunk == remaining); /* must load everything in one go */
+ ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, ichunk-HASH_READ_SIZE);
+ } else if (chunk >= HASH_READ_SIZE) {
+ ZSTD_insertAndFindFirstIndex(ms, ichunk-HASH_READ_SIZE);
+ }
+ break;
+
+ case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ if (chunk >= HASH_READ_SIZE)
+ ZSTD_updateTree(ms, ichunk-HASH_READ_SIZE, ichunk);
+ break;
+
+ default:
+ assert(0); /* not possible : not a valid strategy id */
+ }
+
+ ip = ichunk;
+ }
+
+ ms->nextToUpdate = (U32)(iend - ms->window.base);
+ return 0;
+}
+
+
+/* Dictionaries that assign zero probability to symbols that show up causes problems
+ * when FSE encoding. Mark dictionaries with zero probability symbols as FSE_repeat_check
+ * and only dictionaries with 100% valid symbols can be assumed valid.
+ */
+static FSE_repeat ZSTD_dictNCountRepeat(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue)
+{
+ U32 s;
+ if (dictMaxSymbolValue < maxSymbolValue) {
+ return FSE_repeat_check;
+ }
+ for (s = 0; s <= maxSymbolValue; ++s) {
+ if (normalizedCounter[s] == 0) {
+ return FSE_repeat_check;
+ }
+ }
+ return FSE_repeat_valid;
+}
+
+size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
+ const void* const dict, size_t dictSize)
+{
+ short offcodeNCount[MaxOff+1];
+ unsigned offcodeMaxValue = MaxOff;
+ const BYTE* dictPtr = (const BYTE*)dict; /* skip magic num and dict ID */
+ const BYTE* const dictEnd = dictPtr + dictSize;
+ dictPtr += 8;
+ bs->entropy.huf.repeatMode = HUF_repeat_check;
+
+ { unsigned maxSymbolValue = 255;
+ unsigned hasZeroWeights = 1;
+ size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr,
+ dictEnd-dictPtr, &hasZeroWeights);
+
+ /* We only set the loaded table as valid if it contains all non-zero
+ * weights. Otherwise, we set it to check */
+ if (!hasZeroWeights)
+ bs->entropy.huf.repeatMode = HUF_repeat_valid;
+
+ RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted, "");
+ dictPtr += hufHeaderSize;
+ }
+
+ { unsigned offcodeLog;
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, "");
+ /* fill all offset symbols to avoid garbage at end of table */
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.offcodeCTable,
+ offcodeNCount, MaxOff, offcodeLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted, "");
+ /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
+ dictPtr += offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, "");
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.matchlengthCTable,
+ matchlengthNCount, matchlengthMaxValue, matchlengthLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted, "");
+ bs->entropy.fse.matchlength_repeatMode = ZSTD_dictNCountRepeat(matchlengthNCount, matchlengthMaxValue, MaxML);
+ dictPtr += matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+ RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, "");
+ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp(
+ bs->entropy.fse.litlengthCTable,
+ litlengthNCount, litlengthMaxValue, litlengthLog,
+ workspace, HUF_WORKSPACE_SIZE)),
+ dictionary_corrupted, "");
+ bs->entropy.fse.litlength_repeatMode = ZSTD_dictNCountRepeat(litlengthNCount, litlengthMaxValue, MaxLL);
+ dictPtr += litlengthHeaderSize;
+ }
+
+ RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, "");
+ bs->rep[0] = MEM_readLE32(dictPtr+0);
+ bs->rep[1] = MEM_readLE32(dictPtr+4);
+ bs->rep[2] = MEM_readLE32(dictPtr+8);
+ dictPtr += 12;
+
+ { size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
+ U32 offcodeMax = MaxOff;
+ if (dictContentSize <= ((U32)-1) - 128 KB) {
+ U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
+ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
+ }
+ /* All offset values <= dictContentSize + 128 KB must be representable for a valid table */
+ bs->entropy.fse.offcode_repeatMode = ZSTD_dictNCountRepeat(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff));
+
+ /* All repCodes must be <= dictContentSize and != 0 */
+ { U32 u;
+ for (u=0; u<3; u++) {
+ RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted, "");
+ RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted, "");
+ } } }
+
+ return dictPtr - (const BYTE*)dict;
+}
+
+/* Dictionary format :
+ * See :
+ * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#dictionary-format
+ */
+/*! ZSTD_loadZstdDictionary() :
+ * @return : dictID, or an error code
+ * assumptions : magic number supposed already checked
+ * dictSize supposed >= 8
+ */
+static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs,
+ ZSTD_matchState_t* ms,
+ ZSTD_cwksp* ws,
+ ZSTD_CCtx_params const* params,
+ const void* dict, size_t dictSize,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ void* workspace)
+{
+ const BYTE* dictPtr = (const BYTE*)dict;
+ const BYTE* const dictEnd = dictPtr + dictSize;
+ size_t dictID;
+ size_t eSize;
+
+ ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
+ assert(dictSize >= 8);
+ assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY);
+
+ dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr + 4 /* skip magic number */ );
+ eSize = ZSTD_loadCEntropy(bs, workspace, dict, dictSize);
+ FORWARD_IF_ERROR(eSize, "ZSTD_loadCEntropy failed");
+ dictPtr += eSize;
+
+ {
+ size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
+ FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(
+ ms, NULL, ws, params, dictPtr, dictContentSize, dtlm), "");
+ }
+ return dictID;
+}
+
+/* ZSTD_compress_insertDictionary() :
+* @return : dictID, or an error code */
+static size_t
+ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs,
+ ZSTD_matchState_t* ms,
+ ldmState_t* ls,
+ ZSTD_cwksp* ws,
+ const ZSTD_CCtx_params* params,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ void* workspace)
+{
+ DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
+ if ((dict==NULL) || (dictSize<8)) {
+ RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
+ return 0;
+ }
+
+ ZSTD_reset_compressedBlockState(bs);
+
+ /* dict restricted modes */
+ if (dictContentType == ZSTD_dct_rawContent)
+ return ZSTD_loadDictionaryContent(ms, ls, ws, params, dict, dictSize, dtlm);
+
+ if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
+ if (dictContentType == ZSTD_dct_auto) {
+ DEBUGLOG(4, "raw content dictionary detected");
+ return ZSTD_loadDictionaryContent(
+ ms, ls, ws, params, dict, dictSize, dtlm);
+ }
+ RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, "");
+ assert(0); /* impossible */
+ }
+
+ /* dict as full zstd dictionary */
+ return ZSTD_loadZstdDictionary(
+ bs, ms, ws, params, dict, dictSize, dtlm, workspace);
+}
+
+#define ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF (128 KB)
+#define ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER (6ULL)
+
+/*! ZSTD_compressBegin_internal() :
+ * @return : 0, or an error code */
+static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params, U64 pledgedSrcSize,
+ ZSTD_buffered_policy_e zbuff)
+{
+ DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params->cParams.windowLog);
+ /* params are supposed to be fully validated at this point */
+ assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+ if ( (cdict)
+ && (cdict->dictContentSize > 0)
+ && ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
+ || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
+ || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
+ || cdict->compressionLevel == 0)
+ && (params->attachDictPref != ZSTD_dictForceLoad) ) {
+ return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff);
+ }
+
+ FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, *params, pledgedSrcSize,
+ ZSTDcrp_makeClean, zbuff) , "");
+ { size_t const dictID = cdict ?
+ ZSTD_compress_insertDictionary(
+ cctx->blockState.prevCBlock, &cctx->blockState.matchState,
+ &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, cdict->dictContent,
+ cdict->dictContentSize, cdict->dictContentType, dtlm,
+ cctx->entropyWorkspace)
+ : ZSTD_compress_insertDictionary(
+ cctx->blockState.prevCBlock, &cctx->blockState.matchState,
+ &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, dict, dictSize,
+ dictContentType, dtlm, cctx->entropyWorkspace);
+ FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
+ assert(dictID <= UINT_MAX);
+ cctx->dictID = (U32)dictID;
+ cctx->dictContentSize = cdict ? cdict->dictContentSize : dictSize;
+ }
+ return 0;
+}
+
+size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params->cParams.windowLog);
+ /* compression parameters verification and optimization */
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params->cParams) , "");
+ return ZSTD_compressBegin_internal(cctx,
+ dict, dictSize, dictContentType, dtlm,
+ cdict,
+ params, pledgedSrcSize,
+ ZSTDb_not_buffered);
+}
+
+/*! ZSTD_compressBegin_advanced() :
+* @return : 0, or an error code */
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+ ZSTD_CCtx_params cctxParams;
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, ZSTD_NO_CLEVEL);
+ return ZSTD_compressBegin_advanced_internal(cctx,
+ dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast,
+ NULL /*cdict*/,
+ &cctxParams, pledgedSrcSize);
+}
+
+size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_CCtx_params cctxParams;
+ {
+ ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict);
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel);
+ }
+ DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize);
+ return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
+ &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
+}
+
+size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
+{
+ return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
+}
+
+
+/*! ZSTD_writeEpilogue() :
+* Ends a frame.
+* @return : nb of bytes written into dst (or an error code) */
+static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
+{
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* op = ostart;
+ size_t fhSize = 0;
+
+ DEBUGLOG(4, "ZSTD_writeEpilogue");
+ RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing");
+
+ /* special case : empty frame */
+ if (cctx->stage == ZSTDcs_init) {
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0);
+ FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
+ dstCapacity -= fhSize;
+ op += fhSize;
+ cctx->stage = ZSTDcs_ongoing;
+ }
+
+ if (cctx->stage != ZSTDcs_ending) {
+ /* write one last empty block, make it the "last" block */
+ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for epilogue");
+ MEM_writeLE32(op, cBlockHeader24);
+ op += ZSTD_blockHeaderSize;
+ dstCapacity -= ZSTD_blockHeaderSize;
+ }
+
+ if (cctx->appliedParams.fParams.checksumFlag) {
+ U32 const checksum = (U32) xxh64_digest(&cctx->xxhState);
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
+ DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum);
+ MEM_writeLE32(op, checksum);
+ op += 4;
+ }
+
+ cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
+ return op-ostart;
+}
+
+void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize)
+{
+ (void)cctx;
+ (void)extraCSize;
+}
+
+size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t endResult;
+ size_t const cSize = ZSTD_compressContinue_internal(cctx,
+ dst, dstCapacity, src, srcSize,
+ 1 /* frame mode */, 1 /* last chunk */);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressContinue_internal failed");
+ endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
+ FORWARD_IF_ERROR(endResult, "ZSTD_writeEpilogue failed");
+ assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0));
+ if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1);
+ DEBUGLOG(4, "end of frame : controlling src size");
+ RETURN_ERROR_IF(
+ cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1,
+ srcSize_wrong,
+ "error : pledgedSrcSize = %u, while realSrcSize = %u",
+ (unsigned)cctx->pledgedSrcSizePlusOne-1,
+ (unsigned)cctx->consumedSrcSize);
+ }
+ ZSTD_CCtx_trace(cctx, endResult);
+ return cSize + endResult;
+}
+
+size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ ZSTD_parameters params)
+{
+ ZSTD_CCtx_params cctxParams;
+ DEBUGLOG(4, "ZSTD_compress_advanced");
+ FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), "");
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, ZSTD_NO_CLEVEL);
+ return ZSTD_compress_advanced_internal(cctx,
+ dst, dstCapacity,
+ src, srcSize,
+ dict, dictSize,
+ &cctxParams);
+}
+
+/* Internal */
+size_t ZSTD_compress_advanced_internal(
+ ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ const ZSTD_CCtx_params* params)
+{
+ DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize);
+ FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
+ dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL,
+ params, srcSize, ZSTDb_not_buffered) , "");
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
+}
+
+size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize,
+ int compressionLevel)
+{
+ ZSTD_CCtx_params cctxParams;
+ {
+ ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict);
+ assert(params.fParams.contentSizeFlag == 1);
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT: compressionLevel);
+ }
+ DEBUGLOG(4, "ZSTD_compress_usingDict (srcSize=%u)", (unsigned)srcSize);
+ return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctxParams);
+}
+
+size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize);
+ assert(cctx != NULL);
+ return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
+}
+
+size_t ZSTD_compress(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ int compressionLevel)
+{
+ size_t result;
+ ZSTD_CCtx* cctx = ZSTD_createCCtx();
+ RETURN_ERROR_IF(!cctx, memory_allocation, "ZSTD_createCCtx failed");
+ result = ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel);
+ ZSTD_freeCCtx(cctx);
+ return result;
+}
+
+
+/* ===== Dictionary API ===== */
+
+/*! ZSTD_estimateCDictSize_advanced() :
+ * Estimate amount of memory that will be needed to create a dictionary with following arguments */
+size_t ZSTD_estimateCDictSize_advanced(
+ size_t dictSize, ZSTD_compressionParameters cParams,
+ ZSTD_dictLoadMethod_e dictLoadMethod)
+{
+ DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict));
+ return ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
+ + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0)
+ + (dictLoadMethod == ZSTD_dlm_byRef ? 0
+ : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void *))));
+}
+
+size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
+ return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
+}
+
+size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
+{
+ if (cdict==NULL) return 0; /* support sizeof on NULL */
+ DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict));
+ /* cdict may be in the workspace */
+ return (cdict->workspace.workspace == cdict ? 0 : sizeof(*cdict))
+ + ZSTD_cwksp_sizeof(&cdict->workspace);
+}
+
+static size_t ZSTD_initCDict_internal(
+ ZSTD_CDict* cdict,
+ const void* dictBuffer, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_CCtx_params params)
+{
+ DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType);
+ assert(!ZSTD_checkCParams(params.cParams));
+ cdict->matchState.cParams = params.cParams;
+ cdict->matchState.dedicatedDictSearch = params.enableDedicatedDictSearch;
+ if (cdict->matchState.dedicatedDictSearch && dictSize > ZSTD_CHUNKSIZE_MAX) {
+ cdict->matchState.dedicatedDictSearch = 0;
+ }
+ if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
+ cdict->dictContent = dictBuffer;
+ } else {
+ void *internalBuffer = ZSTD_cwksp_reserve_object(&cdict->workspace, ZSTD_cwksp_align(dictSize, sizeof(void*)));
+ RETURN_ERROR_IF(!internalBuffer, memory_allocation, "NULL pointer!");
+ cdict->dictContent = internalBuffer;
+ ZSTD_memcpy(internalBuffer, dictBuffer, dictSize);
+ }
+ cdict->dictContentSize = dictSize;
+ cdict->dictContentType = dictContentType;
+
+ cdict->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cdict->workspace, HUF_WORKSPACE_SIZE);
+
+
+ /* Reset the state to no dictionary */
+ ZSTD_reset_compressedBlockState(&cdict->cBlockState);
+ FORWARD_IF_ERROR(ZSTD_reset_matchState(
+ &cdict->matchState,
+ &cdict->workspace,
+ &params.cParams,
+ ZSTDcrp_makeClean,
+ ZSTDirp_reset,
+ ZSTD_resetTarget_CDict), "");
+ /* (Maybe) load the dictionary
+ * Skips loading the dictionary if it is < 8 bytes.
+ */
+ { params.compressionLevel = ZSTD_CLEVEL_DEFAULT;
+ params.fParams.contentSizeFlag = 1;
+ { size_t const dictID = ZSTD_compress_insertDictionary(
+ &cdict->cBlockState, &cdict->matchState, NULL, &cdict->workspace,
+ &params, cdict->dictContent, cdict->dictContentSize,
+ dictContentType, ZSTD_dtlm_full, cdict->entropyWorkspace);
+ FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed");
+ assert(dictID <= (size_t)(U32)-1);
+ cdict->dictID = (U32)dictID;
+ }
+ }
+
+ return 0;
+}
+
+static ZSTD_CDict* ZSTD_createCDict_advanced_internal(size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
+{
+ if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
+
+ { size_t const workspaceSize =
+ ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) +
+ ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) +
+ ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0) +
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0
+ : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))));
+ void* const workspace = ZSTD_customMalloc(workspaceSize, customMem);
+ ZSTD_cwksp ws;
+ ZSTD_CDict* cdict;
+
+ if (!workspace) {
+ ZSTD_customFree(workspace, customMem);
+ return NULL;
+ }
+
+ ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_dynamic_alloc);
+
+ cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
+ assert(cdict != NULL);
+ ZSTD_cwksp_move(&cdict->workspace, &ws);
+ cdict->customMem = customMem;
+ cdict->compressionLevel = ZSTD_NO_CLEVEL; /* signals advanced API usage */
+
+ return cdict;
+ }
+}
+
+ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams,
+ ZSTD_customMem customMem)
+{
+ ZSTD_CCtx_params cctxParams;
+ ZSTD_memset(&cctxParams, 0, sizeof(cctxParams));
+ ZSTD_CCtxParams_init(&cctxParams, 0);
+ cctxParams.cParams = cParams;
+ cctxParams.customMem = customMem;
+ return ZSTD_createCDict_advanced2(
+ dictBuffer, dictSize,
+ dictLoadMethod, dictContentType,
+ &cctxParams, customMem);
+}
+
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2(
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ const ZSTD_CCtx_params* originalCctxParams,
+ ZSTD_customMem customMem)
+{
+ ZSTD_CCtx_params cctxParams = *originalCctxParams;
+ ZSTD_compressionParameters cParams;
+ ZSTD_CDict* cdict;
+
+ DEBUGLOG(3, "ZSTD_createCDict_advanced2, mode %u", (unsigned)dictContentType);
+ if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
+
+ if (cctxParams.enableDedicatedDictSearch) {
+ cParams = ZSTD_dedicatedDictSearch_getCParams(
+ cctxParams.compressionLevel, dictSize);
+ ZSTD_overrideCParams(&cParams, &cctxParams.cParams);
+ } else {
+ cParams = ZSTD_getCParamsFromCCtxParams(
+ &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
+ }
+
+ if (!ZSTD_dedicatedDictSearch_isSupported(&cParams)) {
+ /* Fall back to non-DDSS params */
+ cctxParams.enableDedicatedDictSearch = 0;
+ cParams = ZSTD_getCParamsFromCCtxParams(
+ &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
+ }
+
+ cctxParams.cParams = cParams;
+
+ cdict = ZSTD_createCDict_advanced_internal(dictSize,
+ dictLoadMethod, cctxParams.cParams,
+ customMem);
+
+ if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
+ dict, dictSize,
+ dictLoadMethod, dictContentType,
+ cctxParams) )) {
+ ZSTD_freeCDict(cdict);
+ return NULL;
+ }
+
+ return cdict;
+}
+
+ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
+ ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
+ ZSTD_dlm_byCopy, ZSTD_dct_auto,
+ cParams, ZSTD_defaultCMem);
+ if (cdict)
+ cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
+ return cdict;
+}
+
+ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict);
+ ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize,
+ ZSTD_dlm_byRef, ZSTD_dct_auto,
+ cParams, ZSTD_defaultCMem);
+ if (cdict)
+ cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel;
+ return cdict;
+}
+
+size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
+{
+ if (cdict==NULL) return 0; /* support free on NULL */
+ { ZSTD_customMem const cMem = cdict->customMem;
+ int cdictInWorkspace = ZSTD_cwksp_owns_buffer(&cdict->workspace, cdict);
+ ZSTD_cwksp_free(&cdict->workspace, cMem);
+ if (!cdictInWorkspace) {
+ ZSTD_customFree(cdict, cMem);
+ }
+ return 0;
+ }
+}
+
+/*! ZSTD_initStaticCDict_advanced() :
+ * Generate a digested dictionary in provided memory area.
+ * workspace: The memory area to emplace the dictionary into.
+ * Provided pointer must 8-bytes aligned.
+ * It must outlive dictionary usage.
+ * workspaceSize: Use ZSTD_estimateCDictSize()
+ * to determine how large workspace must be.
+ * cParams : use ZSTD_getCParams() to transform a compression level
+ * into its relevants cParams.
+ * @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
+ * Note : there is no corresponding "free" function.
+ * Since workspace was allocated externally, it must be freed externally.
+ */
+const ZSTD_CDict* ZSTD_initStaticCDict(
+ void* workspace, size_t workspaceSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_compressionParameters cParams)
+{
+ size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
+ size_t const neededSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict))
+ + (dictLoadMethod == ZSTD_dlm_byRef ? 0
+ : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*))))
+ + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE)
+ + matchStateSize;
+ ZSTD_CDict* cdict;
+ ZSTD_CCtx_params params;
+
+ if ((size_t)workspace & 7) return NULL; /* 8-aligned */
+
+ {
+ ZSTD_cwksp ws;
+ ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc);
+ cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict));
+ if (cdict == NULL) return NULL;
+ ZSTD_cwksp_move(&cdict->workspace, &ws);
+ }
+
+ DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
+ (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize));
+ if (workspaceSize < neededSize) return NULL;
+
+ ZSTD_CCtxParams_init(&params, 0);
+ params.cParams = cParams;
+
+ if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
+ dict, dictSize,
+ dictLoadMethod, dictContentType,
+ params) ))
+ return NULL;
+
+ return cdict;
+}
+
+ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict)
+{
+ assert(cdict != NULL);
+ return cdict->matchState.cParams;
+}
+
+/*! ZSTD_getDictID_fromCDict() :
+ * Provides the dictID of the dictionary loaded into `cdict`.
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
+unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict)
+{
+ if (cdict==NULL) return 0;
+ return cdict->dictID;
+}
+
+
+/* ZSTD_compressBegin_usingCDict_advanced() :
+ * cdict must be != NULL */
+size_t ZSTD_compressBegin_usingCDict_advanced(
+ ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
+ ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
+{
+ ZSTD_CCtx_params cctxParams;
+ DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
+ RETURN_ERROR_IF(cdict==NULL, dictionary_wrong, "NULL pointer!");
+ /* Initialize the cctxParams from the cdict */
+ {
+ ZSTD_parameters params;
+ params.fParams = fParams;
+ params.cParams = ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF
+ || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER
+ || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN
+ || cdict->compressionLevel == 0 ) ?
+ ZSTD_getCParamsFromCDict(cdict)
+ : ZSTD_getCParams(cdict->compressionLevel,
+ pledgedSrcSize,
+ cdict->dictContentSize);
+ ZSTD_CCtxParams_init_internal(&cctxParams, &params, cdict->compressionLevel);
+ }
+ /* Increase window log to fit the entire dictionary and source if the
+ * source size is known. Limit the increase to 19, which is the
+ * window log for compression level 1 with the largest source size.
+ */
+ if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
+ U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
+ cctxParams.cParams.windowLog = MAX(cctxParams.cParams.windowLog, limitedSrcLog);
+ }
+ return ZSTD_compressBegin_internal(cctx,
+ NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast,
+ cdict,
+ &cctxParams, pledgedSrcSize,
+ ZSTDb_not_buffered);
+}
+
+/* ZSTD_compressBegin_usingCDict() :
+ * pledgedSrcSize=0 means "unknown"
+ * if pledgedSrcSize>0, it will enable contentSizeFlag */
+size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
+{
+ ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
+ return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN);
+}
+
+size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
+{
+ FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
+}
+
+/*! ZSTD_compress_usingCDict() :
+ * Compression using a digested Dictionary.
+ * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
+ * Note that compression parameters are decided at CDict creation time
+ * while frame parameters are hardcoded */
+size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_CDict* cdict)
+{
+ ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
+ return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
+}
+
+
+
+/* ******************************************************************
+* Streaming
+********************************************************************/
+
+ZSTD_CStream* ZSTD_createCStream(void)
+{
+ DEBUGLOG(3, "ZSTD_createCStream");
+ return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
+}
+
+ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
+{
+ return ZSTD_initStaticCCtx(workspace, workspaceSize);
+}
+
+ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
+{ /* CStream and CCtx are now same object */
+ return ZSTD_createCCtx_advanced(customMem);
+}
+
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
+{
+ return ZSTD_freeCCtx(zcs); /* same object */
+}
+
+
+
+/*====== Initialization ======*/
+
+size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
+
+size_t ZSTD_CStreamOutSize(void)
+{
+ return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
+}
+
+static ZSTD_cParamMode_e ZSTD_getCParamMode(ZSTD_CDict const* cdict, ZSTD_CCtx_params const* params, U64 pledgedSrcSize)
+{
+ if (cdict != NULL && ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize))
+ return ZSTD_cpm_attachDict;
+ else
+ return ZSTD_cpm_noAttachDict;
+}
+
+/* ZSTD_resetCStream():
+ * pledgedSrcSize == 0 means "unknown" */
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss)
+{
+ /* temporary : 0 interpreted as "unknown" during transition period.
+ * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
+ * 0 will be interpreted as "empty" in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize);
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
+ return 0;
+}
+
+/*! ZSTD_initCStream_internal() :
+ * Note : for lib/compress only. Used by zstdmt_compress.c.
+ * Assumption 1 : params are valid
+ * Assumption 2 : either dict, or cdict, is defined, not both */
+size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_internal");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
+ assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams)));
+ zcs->requestedParams = *params;
+ assert(!((dict) && (cdict))); /* either dict or cdict, not both */
+ if (dict) {
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
+ } else {
+ /* Dictionary is cleared if !cdict */
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
+ }
+ return 0;
+}
+
+/* ZSTD_initCStream_usingCDict_advanced() :
+ * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
+size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
+ const ZSTD_CDict* cdict,
+ ZSTD_frameParameters fParams,
+ unsigned long long pledgedSrcSize)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
+ zcs->requestedParams.fParams = fParams;
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
+ return 0;
+}
+
+/* note : cdict must outlive compression session */
+size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , "");
+ return 0;
+}
+
+
+/* ZSTD_initCStream_advanced() :
+ * pledgedSrcSize must be exact.
+ * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
+ * dict is loaded with default parameters ZSTD_dct_auto and ZSTD_dlm_byCopy. */
+size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize,
+ ZSTD_parameters params, unsigned long long pss)
+{
+ /* for compatibility with older programs relying on this behavior.
+ * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN.
+ * This line will be removed in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_initCStream_advanced");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
+ FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , "");
+ ZSTD_CCtxParams_setZstdParams(&zcs->requestedParams, &params);
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
+ return 0;
+}
+
+size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_initCStream_usingDict");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , "");
+ return 0;
+}
+
+size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
+{
+ /* temporary : 0 interpreted as "unknown" during transition period.
+ * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN.
+ * 0 will be interpreted as "empty" in the future.
+ */
+ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss;
+ DEBUGLOG(4, "ZSTD_initCStream_srcSize");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , "");
+ return 0;
+}
+
+size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
+{
+ DEBUGLOG(4, "ZSTD_initCStream");
+ FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , "");
+ FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , "");
+ return 0;
+}
+
+/*====== Compression ======*/
+
+static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx)
+{
+ size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos;
+ if (hintInSize==0) hintInSize = cctx->blockSize;
+ return hintInSize;
+}
+
+/* ZSTD_compressStream_generic():
+ * internal function for all *compressStream*() variants
+ * non-static, because can be called from zstdmt_compress.c
+ * @return : hint size for next input */
+static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective const flushMode)
+{
+ const char* const istart = (const char*)input->src;
+ const char* const iend = input->size != 0 ? istart + input->size : istart;
+ const char* ip = input->pos != 0 ? istart + input->pos : istart;
+ char* const ostart = (char*)output->dst;
+ char* const oend = output->size != 0 ? ostart + output->size : ostart;
+ char* op = output->pos != 0 ? ostart + output->pos : ostart;
+ U32 someMoreWork = 1;
+
+ /* check expectations */
+ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode);
+ if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
+ assert(zcs->inBuff != NULL);
+ assert(zcs->inBuffSize > 0);
+ }
+ if (zcs->appliedParams.outBufferMode == ZSTD_bm_buffered) {
+ assert(zcs->outBuff != NULL);
+ assert(zcs->outBuffSize > 0);
+ }
+ assert(output->pos <= output->size);
+ assert(input->pos <= input->size);
+ assert((U32)flushMode <= (U32)ZSTD_e_end);
+
+ while (someMoreWork) {
+ switch(zcs->streamStage)
+ {
+ case zcss_init:
+ RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!");
+
+ case zcss_load:
+ if ( (flushMode == ZSTD_e_end)
+ && ( (size_t)(oend-op) >= ZSTD_compressBound(iend-ip) /* Enough output space */
+ || zcs->appliedParams.outBufferMode == ZSTD_bm_stable) /* OR we are allowed to return dstSizeTooSmall */
+ && (zcs->inBuffPos == 0) ) {
+ /* shortcut to compression pass directly into output buffer */
+ size_t const cSize = ZSTD_compressEnd(zcs,
+ op, oend-op, ip, iend-ip);
+ DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressEnd failed");
+ ip = iend;
+ op += cSize;
+ zcs->frameEnded = 1;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ someMoreWork = 0; break;
+ }
+ /* complete loading into inBuffer in buffered mode */
+ if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
+ size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
+ size_t const loaded = ZSTD_limitCopy(
+ zcs->inBuff + zcs->inBuffPos, toLoad,
+ ip, iend-ip);
+ zcs->inBuffPos += loaded;
+ if (loaded != 0)
+ ip += loaded;
+ if ( (flushMode == ZSTD_e_continue)
+ && (zcs->inBuffPos < zcs->inBuffTarget) ) {
+ /* not enough input to fill full block : stop here */
+ someMoreWork = 0; break;
+ }
+ if ( (flushMode == ZSTD_e_flush)
+ && (zcs->inBuffPos == zcs->inToCompress) ) {
+ /* empty */
+ someMoreWork = 0; break;
+ }
+ }
+ /* compress current block (note : this stage cannot be stopped in the middle) */
+ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
+ { int const inputBuffered = (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered);
+ void* cDst;
+ size_t cSize;
+ size_t oSize = oend-op;
+ size_t const iSize = inputBuffered
+ ? zcs->inBuffPos - zcs->inToCompress
+ : MIN((size_t)(iend - ip), zcs->blockSize);
+ if (oSize >= ZSTD_compressBound(iSize) || zcs->appliedParams.outBufferMode == ZSTD_bm_stable)
+ cDst = op; /* compress into output buffer, to skip flush stage */
+ else
+ cDst = zcs->outBuff, oSize = zcs->outBuffSize;
+ if (inputBuffered) {
+ unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
+ cSize = lastBlock ?
+ ZSTD_compressEnd(zcs, cDst, oSize,
+ zcs->inBuff + zcs->inToCompress, iSize) :
+ ZSTD_compressContinue(zcs, cDst, oSize,
+ zcs->inBuff + zcs->inToCompress, iSize);
+ FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
+ zcs->frameEnded = lastBlock;
+ /* prepare next block */
+ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
+ if (zcs->inBuffTarget > zcs->inBuffSize)
+ zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
+ DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
+ (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize);
+ if (!lastBlock)
+ assert(zcs->inBuffTarget <= zcs->inBuffSize);
+ zcs->inToCompress = zcs->inBuffPos;
+ } else {
+ unsigned const lastBlock = (ip + iSize == iend);
+ assert(flushMode == ZSTD_e_end /* Already validated */);
+ cSize = lastBlock ?
+ ZSTD_compressEnd(zcs, cDst, oSize, ip, iSize) :
+ ZSTD_compressContinue(zcs, cDst, oSize, ip, iSize);
+ /* Consume the input prior to error checking to mirror buffered mode. */
+ if (iSize > 0)
+ ip += iSize;
+ FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed");
+ zcs->frameEnded = lastBlock;
+ if (lastBlock)
+ assert(ip == iend);
+ }
+ if (cDst == op) { /* no need to flush */
+ op += cSize;
+ if (zcs->frameEnded) {
+ DEBUGLOG(5, "Frame completed directly in outBuffer");
+ someMoreWork = 0;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ }
+ break;
+ }
+ zcs->outBuffContentSize = cSize;
+ zcs->outBuffFlushedSize = 0;
+ zcs->streamStage = zcss_flush; /* pass-through to flush stage */
+ }
+ ZSTD_FALLTHROUGH;
+ case zcss_flush:
+ DEBUGLOG(5, "flush stage");
+ assert(zcs->appliedParams.outBufferMode == ZSTD_bm_buffered);
+ { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
+ size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op),
+ zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
+ DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
+ (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed);
+ if (flushed)
+ op += flushed;
+ zcs->outBuffFlushedSize += flushed;
+ if (toFlush!=flushed) {
+ /* flush not fully completed, presumably because dst is too small */
+ assert(op==oend);
+ someMoreWork = 0;
+ break;
+ }
+ zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
+ if (zcs->frameEnded) {
+ DEBUGLOG(5, "Frame completed on flush");
+ someMoreWork = 0;
+ ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only);
+ break;
+ }
+ zcs->streamStage = zcss_load;
+ break;
+ }
+
+ default: /* impossible */
+ assert(0);
+ }
+ }
+
+ input->pos = ip - istart;
+ output->pos = op - ostart;
+ if (zcs->frameEnded) return 0;
+ return ZSTD_nextInputSizeHint(zcs);
+}
+
+static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx)
+{
+ return ZSTD_nextInputSizeHint(cctx);
+
+}
+
+size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) , "");
+ return ZSTD_nextInputSizeHint_MTorST(zcs);
+}
+
+/* After a compression call set the expected input/output buffer.
+ * This is validated at the start of the next compression call.
+ */
+static void ZSTD_setBufferExpectations(ZSTD_CCtx* cctx, ZSTD_outBuffer const* output, ZSTD_inBuffer const* input)
+{
+ if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
+ cctx->expectedInBuffer = *input;
+ }
+ if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
+ cctx->expectedOutBufferSize = output->size - output->pos;
+ }
+}
+
+/* Validate that the input/output buffers match the expectations set by
+ * ZSTD_setBufferExpectations.
+ */
+static size_t ZSTD_checkBufferStability(ZSTD_CCtx const* cctx,
+ ZSTD_outBuffer const* output,
+ ZSTD_inBuffer const* input,
+ ZSTD_EndDirective endOp)
+{
+ if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) {
+ ZSTD_inBuffer const expect = cctx->expectedInBuffer;
+ if (expect.src != input->src || expect.pos != input->pos || expect.size != input->size)
+ RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer enabled but input differs!");
+ if (endOp != ZSTD_e_end)
+ RETURN_ERROR(srcBuffer_wrong, "ZSTD_c_stableInBuffer can only be used with ZSTD_e_end!");
+ }
+ if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) {
+ size_t const outBufferSize = output->size - output->pos;
+ if (cctx->expectedOutBufferSize != outBufferSize)
+ RETURN_ERROR(dstBuffer_wrong, "ZSTD_c_stableOutBuffer enabled but output size differs!");
+ }
+ return 0;
+}
+
+static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx,
+ ZSTD_EndDirective endOp,
+ size_t inSize) {
+ ZSTD_CCtx_params params = cctx->requestedParams;
+ ZSTD_prefixDict const prefixDict = cctx->prefixDict;
+ FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) , ""); /* Init the local dict if present. */
+ ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
+ assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
+ if (cctx->cdict)
+ params.compressionLevel = cctx->cdict->compressionLevel; /* let cdict take priority in terms of compression level */
+ DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage");
+ if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = inSize + 1; /* auto-fix pledgedSrcSize */
+ {
+ size_t const dictSize = prefixDict.dict
+ ? prefixDict.dictSize
+ : (cctx->cdict ? cctx->cdict->dictContentSize : 0);
+ ZSTD_cParamMode_e const mode = ZSTD_getCParamMode(cctx->cdict, &params, cctx->pledgedSrcSizePlusOne - 1);
+ params.cParams = ZSTD_getCParamsFromCCtxParams(
+ &params, cctx->pledgedSrcSizePlusOne-1,
+ dictSize, mode);
+ }
+
+ if (ZSTD_CParams_shouldEnableLdm(&params.cParams)) {
+ /* Enable LDM by default for optimal parser and window size >= 128MB */
+ DEBUGLOG(4, "LDM enabled by default (window size >= 128MB, strategy >= btopt)");
+ params.ldmParams.enableLdm = 1;
+ }
+
+ { U64 const pledgedSrcSize = cctx->pledgedSrcSizePlusOne - 1;
+ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
+ FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx,
+ prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, ZSTD_dtlm_fast,
+ cctx->cdict,
+ &params, pledgedSrcSize,
+ ZSTDb_buffered) , "");
+ assert(cctx->appliedParams.nbWorkers == 0);
+ cctx->inToCompress = 0;
+ cctx->inBuffPos = 0;
+ if (cctx->appliedParams.inBufferMode == ZSTD_bm_buffered) {
+ /* for small input: avoid automatic flush on reaching end of block, since
+ * it would require to add a 3-bytes null block to end frame
+ */
+ cctx->inBuffTarget = cctx->blockSize + (cctx->blockSize == pledgedSrcSize);
+ } else {
+ cctx->inBuffTarget = 0;
+ }
+ cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0;
+ cctx->streamStage = zcss_load;
+ cctx->frameEnded = 0;
+ }
+ return 0;
+}
+
+size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
+ ZSTD_outBuffer* output,
+ ZSTD_inBuffer* input,
+ ZSTD_EndDirective endOp)
+{
+ DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp);
+ /* check conditions */
+ RETURN_ERROR_IF(output->pos > output->size, dstSize_tooSmall, "invalid output buffer");
+ RETURN_ERROR_IF(input->pos > input->size, srcSize_wrong, "invalid input buffer");
+ RETURN_ERROR_IF((U32)endOp > (U32)ZSTD_e_end, parameter_outOfBound, "invalid endDirective");
+ assert(cctx != NULL);
+
+ /* transparent initialization stage */
+ if (cctx->streamStage == zcss_init) {
+ FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, endOp, input->size), "CompressStream2 initialization failed");
+ ZSTD_setBufferExpectations(cctx, output, input); /* Set initial buffer expectations now that we've initialized */
+ }
+ /* end of transparent initialization stage */
+
+ FORWARD_IF_ERROR(ZSTD_checkBufferStability(cctx, output, input, endOp), "invalid buffers");
+ /* compression stage */
+ FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) , "");
+ DEBUGLOG(5, "completed ZSTD_compressStream2");
+ ZSTD_setBufferExpectations(cctx, output, input);
+ return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
+}
+
+size_t ZSTD_compressStream2_simpleArgs (
+ ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos,
+ ZSTD_EndDirective endOp)
+{
+ ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
+ ZSTD_inBuffer input = { src, srcSize, *srcPos };
+ /* ZSTD_compressStream2() will check validity of dstPos and srcPos */
+ size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp);
+ *dstPos = output.pos;
+ *srcPos = input.pos;
+ return cErr;
+}
+
+size_t ZSTD_compress2(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ ZSTD_bufferMode_e const originalInBufferMode = cctx->requestedParams.inBufferMode;
+ ZSTD_bufferMode_e const originalOutBufferMode = cctx->requestedParams.outBufferMode;
+ DEBUGLOG(4, "ZSTD_compress2 (srcSize=%u)", (unsigned)srcSize);
+ ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
+ /* Enable stable input/output buffers. */
+ cctx->requestedParams.inBufferMode = ZSTD_bm_stable;
+ cctx->requestedParams.outBufferMode = ZSTD_bm_stable;
+ { size_t oPos = 0;
+ size_t iPos = 0;
+ size_t const result = ZSTD_compressStream2_simpleArgs(cctx,
+ dst, dstCapacity, &oPos,
+ src, srcSize, &iPos,
+ ZSTD_e_end);
+ /* Reset to the original values. */
+ cctx->requestedParams.inBufferMode = originalInBufferMode;
+ cctx->requestedParams.outBufferMode = originalOutBufferMode;
+ FORWARD_IF_ERROR(result, "ZSTD_compressStream2_simpleArgs failed");
+ if (result != 0) { /* compression not completed, due to lack of output space */
+ assert(oPos == dstCapacity);
+ RETURN_ERROR(dstSize_tooSmall, "");
+ }
+ assert(iPos == srcSize); /* all input is expected consumed */
+ return oPos;
+ }
+}
+
+typedef struct {
+ U32 idx; /* Index in array of ZSTD_Sequence */
+ U32 posInSequence; /* Position within sequence at idx */
+ size_t posInSrc; /* Number of bytes given by sequences provided so far */
+} ZSTD_sequencePosition;
+
+/* Returns a ZSTD error code if sequence is not valid */
+static size_t ZSTD_validateSequence(U32 offCode, U32 matchLength,
+ size_t posInSrc, U32 windowLog, size_t dictSize, U32 minMatch) {
+ size_t offsetBound;
+ U32 windowSize = 1 << windowLog;
+ /* posInSrc represents the amount of data the the decoder would decode up to this point.
+ * As long as the amount of data decoded is less than or equal to window size, offsets may be
+ * larger than the total length of output decoded in order to reference the dict, even larger than
+ * window size. After output surpasses windowSize, we're limited to windowSize offsets again.
+ */
+ offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize;
+ RETURN_ERROR_IF(offCode > offsetBound + ZSTD_REP_MOVE, corruption_detected, "Offset too large!");
+ RETURN_ERROR_IF(matchLength < minMatch, corruption_detected, "Matchlength too small");
+ return 0;
+}
+
+/* Returns an offset code, given a sequence's raw offset, the ongoing repcode array, and whether litLength == 0 */
+static U32 ZSTD_finalizeOffCode(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0) {
+ U32 offCode = rawOffset + ZSTD_REP_MOVE;
+ U32 repCode = 0;
+
+ if (!ll0 && rawOffset == rep[0]) {
+ repCode = 1;
+ } else if (rawOffset == rep[1]) {
+ repCode = 2 - ll0;
+ } else if (rawOffset == rep[2]) {
+ repCode = 3 - ll0;
+ } else if (ll0 && rawOffset == rep[0] - 1) {
+ repCode = 3;
+ }
+ if (repCode) {
+ /* ZSTD_storeSeq expects a number in the range [0, 2] to represent a repcode */
+ offCode = repCode - 1;
+ }
+ return offCode;
+}
+
+/* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of
+ * ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter.
+ */
+static size_t ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
+ const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
+ const void* src, size_t blockSize) {
+ U32 idx = seqPos->idx;
+ BYTE const* ip = (BYTE const*)(src);
+ const BYTE* const iend = ip + blockSize;
+ repcodes_t updatedRepcodes;
+ U32 dictSize;
+ U32 litLength;
+ U32 matchLength;
+ U32 ll0;
+ U32 offCode;
+
+ if (cctx->cdict) {
+ dictSize = (U32)cctx->cdict->dictContentSize;
+ } else if (cctx->prefixDict.dict) {
+ dictSize = (U32)cctx->prefixDict.dictSize;
+ } else {
+ dictSize = 0;
+ }
+ ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
+ for (; (inSeqs[idx].matchLength != 0 || inSeqs[idx].offset != 0) && idx < inSeqsSize; ++idx) {
+ litLength = inSeqs[idx].litLength;
+ matchLength = inSeqs[idx].matchLength;
+ ll0 = litLength == 0;
+ offCode = ZSTD_finalizeOffCode(inSeqs[idx].offset, updatedRepcodes.rep, ll0);
+ updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
+
+ DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
+ if (cctx->appliedParams.validateSequences) {
+ seqPos->posInSrc += litLength + matchLength;
+ FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
+ cctx->appliedParams.cParams.windowLog, dictSize,
+ cctx->appliedParams.cParams.minMatch),
+ "Sequence validation failed");
+ }
+ RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
+ "Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
+ ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
+ ip += matchLength + litLength;
+ }
+ ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
+
+ if (inSeqs[idx].litLength) {
+ DEBUGLOG(6, "Storing last literals of size: %u", inSeqs[idx].litLength);
+ ZSTD_storeLastLiterals(&cctx->seqStore, ip, inSeqs[idx].litLength);
+ ip += inSeqs[idx].litLength;
+ seqPos->posInSrc += inSeqs[idx].litLength;
+ }
+ RETURN_ERROR_IF(ip != iend, corruption_detected, "Blocksize doesn't agree with block delimiter!");
+ seqPos->idx = idx+1;
+ return 0;
+}
+
+/* Returns the number of bytes to move the current read position back by. Only non-zero
+ * if we ended up splitting a sequence. Otherwise, it may return a ZSTD error if something
+ * went wrong.
+ *
+ * This function will attempt to scan through blockSize bytes represented by the sequences
+ * in inSeqs, storing any (partial) sequences.
+ *
+ * Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to
+ * avoid splitting a match, or to avoid splitting a match such that it would produce a match
+ * smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block.
+ */
+static size_t ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
+ const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
+ const void* src, size_t blockSize) {
+ U32 idx = seqPos->idx;
+ U32 startPosInSequence = seqPos->posInSequence;
+ U32 endPosInSequence = seqPos->posInSequence + (U32)blockSize;
+ size_t dictSize;
+ BYTE const* ip = (BYTE const*)(src);
+ BYTE const* iend = ip + blockSize; /* May be adjusted if we decide to process fewer than blockSize bytes */
+ repcodes_t updatedRepcodes;
+ U32 bytesAdjustment = 0;
+ U32 finalMatchSplit = 0;
+ U32 litLength;
+ U32 matchLength;
+ U32 rawOffset;
+ U32 offCode;
+
+ if (cctx->cdict) {
+ dictSize = cctx->cdict->dictContentSize;
+ } else if (cctx->prefixDict.dict) {
+ dictSize = cctx->prefixDict.dictSize;
+ } else {
+ dictSize = 0;
+ }
+ DEBUGLOG(5, "ZSTD_copySequencesToSeqStore: idx: %u PIS: %u blockSize: %zu", idx, startPosInSequence, blockSize);
+ DEBUGLOG(5, "Start seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
+ ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t));
+ while (endPosInSequence && idx < inSeqsSize && !finalMatchSplit) {
+ const ZSTD_Sequence currSeq = inSeqs[idx];
+ litLength = currSeq.litLength;
+ matchLength = currSeq.matchLength;
+ rawOffset = currSeq.offset;
+
+ /* Modify the sequence depending on where endPosInSequence lies */
+ if (endPosInSequence >= currSeq.litLength + currSeq.matchLength) {
+ if (startPosInSequence >= litLength) {
+ startPosInSequence -= litLength;
+ litLength = 0;
+ matchLength -= startPosInSequence;
+ } else {
+ litLength -= startPosInSequence;
+ }
+ /* Move to the next sequence */
+ endPosInSequence -= currSeq.litLength + currSeq.matchLength;
+ startPosInSequence = 0;
+ idx++;
+ } else {
+ /* This is the final (partial) sequence we're adding from inSeqs, and endPosInSequence
+ does not reach the end of the match. So, we have to split the sequence */
+ DEBUGLOG(6, "Require a split: diff: %u, idx: %u PIS: %u",
+ currSeq.litLength + currSeq.matchLength - endPosInSequence, idx, endPosInSequence);
+ if (endPosInSequence > litLength) {
+ U32 firstHalfMatchLength;
+ litLength = startPosInSequence >= litLength ? 0 : litLength - startPosInSequence;
+ firstHalfMatchLength = endPosInSequence - startPosInSequence - litLength;
+ if (matchLength > blockSize && firstHalfMatchLength >= cctx->appliedParams.cParams.minMatch) {
+ /* Only ever split the match if it is larger than the block size */
+ U32 secondHalfMatchLength = currSeq.matchLength + currSeq.litLength - endPosInSequence;
+ if (secondHalfMatchLength < cctx->appliedParams.cParams.minMatch) {
+ /* Move the endPosInSequence backward so that it creates match of minMatch length */
+ endPosInSequence -= cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
+ bytesAdjustment = cctx->appliedParams.cParams.minMatch - secondHalfMatchLength;
+ firstHalfMatchLength -= bytesAdjustment;
+ }
+ matchLength = firstHalfMatchLength;
+ /* Flag that we split the last match - after storing the sequence, exit the loop,
+ but keep the value of endPosInSequence */
+ finalMatchSplit = 1;
+ } else {
+ /* Move the position in sequence backwards so that we don't split match, and break to store
+ * the last literals. We use the original currSeq.litLength as a marker for where endPosInSequence
+ * should go. We prefer to do this whenever it is not necessary to split the match, or if doing so
+ * would cause the first half of the match to be too small
+ */
+ bytesAdjustment = endPosInSequence - currSeq.litLength;
+ endPosInSequence = currSeq.litLength;
+ break;
+ }
+ } else {
+ /* This sequence ends inside the literals, break to store the last literals */
+ break;
+ }
+ }
+ /* Check if this offset can be represented with a repcode */
+ { U32 ll0 = (litLength == 0);
+ offCode = ZSTD_finalizeOffCode(rawOffset, updatedRepcodes.rep, ll0);
+ updatedRepcodes = ZSTD_updateRep(updatedRepcodes.rep, offCode, ll0);
+ }
+
+ if (cctx->appliedParams.validateSequences) {
+ seqPos->posInSrc += litLength + matchLength;
+ FORWARD_IF_ERROR(ZSTD_validateSequence(offCode, matchLength, seqPos->posInSrc,
+ cctx->appliedParams.cParams.windowLog, dictSize,
+ cctx->appliedParams.cParams.minMatch),
+ "Sequence validation failed");
+ }
+ DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offCode, matchLength, litLength);
+ RETURN_ERROR_IF(idx - seqPos->idx > cctx->seqStore.maxNbSeq, memory_allocation,
+ "Not enough memory allocated. Try adjusting ZSTD_c_minMatch.");
+ ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offCode, matchLength - MINMATCH);
+ ip += matchLength + litLength;
+ }
+ DEBUGLOG(5, "Ending seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength);
+ assert(idx == inSeqsSize || endPosInSequence <= inSeqs[idx].litLength + inSeqs[idx].matchLength);
+ seqPos->idx = idx;
+ seqPos->posInSequence = endPosInSequence;
+ ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t));
+
+ iend -= bytesAdjustment;
+ if (ip != iend) {
+ /* Store any last literals */
+ U32 lastLLSize = (U32)(iend - ip);
+ assert(ip <= iend);
+ DEBUGLOG(6, "Storing last literals of size: %u", lastLLSize);
+ ZSTD_storeLastLiterals(&cctx->seqStore, ip, lastLLSize);
+ seqPos->posInSrc += lastLLSize;
+ }
+
+ return bytesAdjustment;
+}
+
+typedef size_t (*ZSTD_sequenceCopier) (ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
+ const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
+ const void* src, size_t blockSize);
+static ZSTD_sequenceCopier ZSTD_selectSequenceCopier(ZSTD_sequenceFormat_e mode) {
+ ZSTD_sequenceCopier sequenceCopier = NULL;
+ assert(ZSTD_cParam_withinBounds(ZSTD_c_blockDelimiters, mode));
+ if (mode == ZSTD_sf_explicitBlockDelimiters) {
+ return ZSTD_copySequencesToSeqStoreExplicitBlockDelim;
+ } else if (mode == ZSTD_sf_noBlockDelimiters) {
+ return ZSTD_copySequencesToSeqStoreNoBlockDelim;
+ }
+ assert(sequenceCopier != NULL);
+ return sequenceCopier;
+}
+
+/* Compress, block-by-block, all of the sequences given.
+ *
+ * Returns the cumulative size of all compressed blocks (including their headers), otherwise a ZSTD error.
+ */
+static size_t ZSTD_compressSequences_internal(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
+ const void* src, size_t srcSize) {
+ size_t cSize = 0;
+ U32 lastBlock;
+ size_t blockSize;
+ size_t compressedSeqsSize;
+ size_t remaining = srcSize;
+ ZSTD_sequencePosition seqPos = {0, 0, 0};
+
+ BYTE const* ip = (BYTE const*)src;
+ BYTE* op = (BYTE*)dst;
+ ZSTD_sequenceCopier sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters);
+
+ DEBUGLOG(4, "ZSTD_compressSequences_internal srcSize: %zu, inSeqsSize: %zu", srcSize, inSeqsSize);
+ /* Special case: empty frame */
+ if (remaining == 0) {
+ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1);
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "No room for empty frame block header");
+ MEM_writeLE32(op, cBlockHeader24);
+ op += ZSTD_blockHeaderSize;
+ dstCapacity -= ZSTD_blockHeaderSize;
+ cSize += ZSTD_blockHeaderSize;
+ }
+
+ while (remaining) {
+ size_t cBlockSize;
+ size_t additionalByteAdjustment;
+ lastBlock = remaining <= cctx->blockSize;
+ blockSize = lastBlock ? (U32)remaining : (U32)cctx->blockSize;
+ ZSTD_resetSeqStore(&cctx->seqStore);
+ DEBUGLOG(4, "Working on new block. Blocksize: %zu", blockSize);
+
+ additionalByteAdjustment = sequenceCopier(cctx, &seqPos, inSeqs, inSeqsSize, ip, blockSize);
+ FORWARD_IF_ERROR(additionalByteAdjustment, "Bad sequence copy");
+ blockSize -= additionalByteAdjustment;
+
+ /* If blocks are too small, emit as a nocompress block */
+ if (blockSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
+ cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
+ DEBUGLOG(4, "Block too small, writing out nocompress block: cSize: %zu", cBlockSize);
+ cSize += cBlockSize;
+ ip += blockSize;
+ op += cBlockSize;
+ remaining -= blockSize;
+ dstCapacity -= cBlockSize;
+ continue;
+ }
+
+ compressedSeqsSize = ZSTD_entropyCompressSequences(&cctx->seqStore,
+ &cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy,
+ &cctx->appliedParams,
+ op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize,
+ blockSize,
+ cctx->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */,
+ cctx->bmi2);
+ FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed");
+ DEBUGLOG(4, "Compressed sequences size: %zu", compressedSeqsSize);
+
+ if (!cctx->isFirstBlock &&
+ ZSTD_maybeRLE(&cctx->seqStore) &&
+ ZSTD_isRLE((BYTE const*)src, srcSize)) {
+ /* We don't want to emit our first block as a RLE even if it qualifies because
+ * doing so will cause the decoder (cli only) to throw a "should consume all input error."
+ * This is only an issue for zstd <= v1.4.3
+ */
+ compressedSeqsSize = 1;
+ }
+
+ if (compressedSeqsSize == 0) {
+ /* ZSTD_noCompressBlock writes the block header as well */
+ cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed");
+ DEBUGLOG(4, "Writing out nocompress block, size: %zu", cBlockSize);
+ } else if (compressedSeqsSize == 1) {
+ cBlockSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, blockSize, lastBlock);
+ FORWARD_IF_ERROR(cBlockSize, "RLE compress block failed");
+ DEBUGLOG(4, "Writing out RLE block, size: %zu", cBlockSize);
+ } else {
+ U32 cBlockHeader;
+ /* Error checking and repcodes update */
+ ZSTD_confirmRepcodesAndEntropyTables(cctx);
+ if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
+ cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+
+ /* Write block header into beginning of block*/
+ cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3);
+ MEM_writeLE24(op, cBlockHeader);
+ cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize;
+ DEBUGLOG(4, "Writing out compressed block, size: %zu", cBlockSize);
+ }
+
+ cSize += cBlockSize;
+ DEBUGLOG(4, "cSize running total: %zu", cSize);
+
+ if (lastBlock) {
+ break;
+ } else {
+ ip += blockSize;
+ op += cBlockSize;
+ remaining -= blockSize;
+ dstCapacity -= cBlockSize;
+ cctx->isFirstBlock = 0;
+ }
+ }
+
+ return cSize;
+}
+
+size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstCapacity,
+ const ZSTD_Sequence* inSeqs, size_t inSeqsSize,
+ const void* src, size_t srcSize) {
+ BYTE* op = (BYTE*)dst;
+ size_t cSize = 0;
+ size_t compressedBlocksSize = 0;
+ size_t frameHeaderSize = 0;
+
+ /* Transparent initialization stage, same as compressStream2() */
+ DEBUGLOG(3, "ZSTD_compressSequences()");
+ assert(cctx != NULL);
+ FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, srcSize), "CCtx initialization failed");
+ /* Begin writing output, starting with frame header */
+ frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, &cctx->appliedParams, srcSize, cctx->dictID);
+ op += frameHeaderSize;
+ dstCapacity -= frameHeaderSize;
+ cSize += frameHeaderSize;
+ if (cctx->appliedParams.fParams.checksumFlag && srcSize) {
+ xxh64_update(&cctx->xxhState, src, srcSize);
+ }
+ /* cSize includes block header size and compressed sequences size */
+ compressedBlocksSize = ZSTD_compressSequences_internal(cctx,
+ op, dstCapacity,
+ inSeqs, inSeqsSize,
+ src, srcSize);
+ FORWARD_IF_ERROR(compressedBlocksSize, "Compressing blocks failed!");
+ cSize += compressedBlocksSize;
+ dstCapacity -= compressedBlocksSize;
+
+ if (cctx->appliedParams.fParams.checksumFlag) {
+ U32 const checksum = (U32) xxh64_digest(&cctx->xxhState);
+ RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum");
+ DEBUGLOG(4, "Write checksum : %08X", (unsigned)checksum);
+ MEM_writeLE32((char*)dst + cSize, checksum);
+ cSize += 4;
+ }
+
+ DEBUGLOG(3, "Final compressed size: %zu", cSize);
+ return cSize;
+}
+
+/*====== Finalize ======*/
+
+/*! ZSTD_flushStream() :
+ * @return : amount of data remaining to flush */
+size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+ ZSTD_inBuffer input = { NULL, 0, 0 };
+ return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush);
+}
+
+
+size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+ ZSTD_inBuffer input = { NULL, 0, 0 };
+ size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end);
+ FORWARD_IF_ERROR( remainingToFlush , "ZSTD_compressStream2 failed");
+ if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */
+ /* single thread mode : attempt to calculate remaining to flush more precisely */
+ { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
+ size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4);
+ size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize;
+ DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush);
+ return toFlush;
+ }
+}
+
+
+/*-===== Pre-defined compression levels =====-*/
+
+#define ZSTD_MAX_CLEVEL 22
+int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
+int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; }
+
+static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
+{ /* "default" - for any srcSize > 256 KB */
+ /* W, C, H, S, L, TL, strat */
+ { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
+ { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
+ { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
+ { 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
+ { 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
+ { 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */
+ { 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */
+ { 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */
+ { 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
+ { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
+ { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
+ { 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
+ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
+ { 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */
+ { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
+ { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
+ { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
+ { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
+ { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
+ { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
+ { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
+ { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
+ { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
+},
+{ /* for srcSize <= 256 KB */
+ /* W, C, H, S, L, T, strat */
+ { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
+ { 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
+ { 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/
+ { 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/
+ { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
+ { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
+ { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
+ { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
+ { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
+ { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
+ { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 128 KB */
+ /* W, C, H, S, L, T, strat */
+ { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
+ { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
+ { 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
+ { 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
+ { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
+ { 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
+ { 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
+ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
+ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
+ { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
+ { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
+ { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
+ { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
+ { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
+ { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
+ { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
+ { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
+ { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+{ /* for srcSize <= 16 KB */
+ /* W, C, H, S, L, T, strat */
+ { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
+ { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
+ { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
+ { 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
+ { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
+ { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
+ { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
+ { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
+ { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
+ { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
+ { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
+ { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
+ { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
+ { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
+ { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
+ { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
+ { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
+ { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
+ { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
+ { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
+ { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
+ { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
+},
+};
+
+static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(int const compressionLevel, size_t const dictSize)
+{
+ ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, 0, dictSize, ZSTD_cpm_createCDict);
+ switch (cParams.strategy) {
+ case ZSTD_fast:
+ case ZSTD_dfast:
+ break;
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ cParams.hashLog += ZSTD_LAZY_DDSS_BUCKET_LOG;
+ break;
+ case ZSTD_btlazy2:
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ break;
+ }
+ return cParams;
+}
+
+static int ZSTD_dedicatedDictSearch_isSupported(
+ ZSTD_compressionParameters const* cParams)
+{
+ return (cParams->strategy >= ZSTD_greedy)
+ && (cParams->strategy <= ZSTD_lazy2)
+ && (cParams->hashLog >= cParams->chainLog)
+ && (cParams->chainLog <= 24);
+}
+
+/*
+ * Reverses the adjustment applied to cparams when enabling dedicated dict
+ * search. This is used to recover the params set to be used in the working
+ * context. (Otherwise, those tables would also grow.)
+ */
+static void ZSTD_dedicatedDictSearch_revertCParams(
+ ZSTD_compressionParameters* cParams) {
+ switch (cParams->strategy) {
+ case ZSTD_fast:
+ case ZSTD_dfast:
+ break;
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ cParams->hashLog -= ZSTD_LAZY_DDSS_BUCKET_LOG;
+ break;
+ case ZSTD_btlazy2:
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ break;
+ }
+}
+
+static U64 ZSTD_getCParamRowSize(U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
+{
+ switch (mode) {
+ case ZSTD_cpm_unknown:
+ case ZSTD_cpm_noAttachDict:
+ case ZSTD_cpm_createCDict:
+ break;
+ case ZSTD_cpm_attachDict:
+ dictSize = 0;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ { int const unknown = srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN;
+ size_t const addedSize = unknown && dictSize > 0 ? 500 : 0;
+ return unknown && dictSize == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : srcSizeHint+dictSize+addedSize;
+ }
+}
+
+/*! ZSTD_getCParams_internal() :
+ * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
+ * Note: srcSizeHint 0 means 0, use ZSTD_CONTENTSIZE_UNKNOWN for unknown.
+ * Use dictSize == 0 for unknown or unused.
+ * Note: `mode` controls how we treat the `dictSize`. See docs for `ZSTD_cParamMode_e`. */
+static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode)
+{
+ U64 const rSize = ZSTD_getCParamRowSize(srcSizeHint, dictSize, mode);
+ U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB);
+ int row;
+ DEBUGLOG(5, "ZSTD_getCParams_internal (cLevel=%i)", compressionLevel);
+
+ /* row */
+ if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
+ else if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */
+ else if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL;
+ else row = compressionLevel;
+
+ { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row];
+ /* acceleration factor */
+ if (compressionLevel < 0) {
+ int const clampedCompressionLevel = MAX(ZSTD_minCLevel(), compressionLevel);
+ cp.targetLength = (unsigned)(-clampedCompressionLevel);
+ }
+ /* refine parameters based on srcSize & dictSize */
+ return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize, mode);
+ }
+}
+
+/*! ZSTD_getCParams() :
+ * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
+ * Size values are optional, provide 0 if not known or unused */
+ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
+{
+ if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
+ return ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
+}
+
+/*! ZSTD_getParams() :
+ * same idea as ZSTD_getCParams()
+ * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
+ * Fields of `ZSTD_frameParameters` are set to default values */
+static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) {
+ ZSTD_parameters params;
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, mode);
+ DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel);
+ ZSTD_memset(&params, 0, sizeof(params));
+ params.cParams = cParams;
+ params.fParams.contentSizeFlag = 1;
+ return params;
+}
+
+/*! ZSTD_getParams() :
+ * same idea as ZSTD_getCParams()
+ * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`).
+ * Fields of `ZSTD_frameParameters` are set to default values */
+ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
+ if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN;
+ return ZSTD_getParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown);
+}
diff --git a/lib/zstd/compress/zstd_compress_internal.h b/lib/zstd/compress/zstd_compress_internal.h
new file mode 100644
index 000000000000..685d2f996cc2
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_internal.h
@@ -0,0 +1,1188 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* This header contains definitions
+ * that shall **only** be used by modules within lib/compress.
+ */
+
+#ifndef ZSTD_COMPRESS_H
+#define ZSTD_COMPRESS_H
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "../common/zstd_internal.h"
+#include "zstd_cwksp.h"
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define kSearchStrength 8
+#define HASH_READ_SIZE 8
+#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
+ It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
+ It's not a big deal though : candidate will just be sorted again.
+ Additionally, candidate position 1 will be lost.
+ But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
+ The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
+ This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
+
+
+/*-*************************************
+* Context memory management
+***************************************/
+typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
+typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
+
+typedef struct ZSTD_prefixDict_s {
+ const void* dict;
+ size_t dictSize;
+ ZSTD_dictContentType_e dictContentType;
+} ZSTD_prefixDict;
+
+typedef struct {
+ void* dictBuffer;
+ void const* dict;
+ size_t dictSize;
+ ZSTD_dictContentType_e dictContentType;
+ ZSTD_CDict* cdict;
+} ZSTD_localDict;
+
+typedef struct {
+ HUF_CElt CTable[HUF_CTABLE_SIZE_U32(255)];
+ HUF_repeat repeatMode;
+} ZSTD_hufCTables_t;
+
+typedef struct {
+ FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
+ FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
+ FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
+ FSE_repeat offcode_repeatMode;
+ FSE_repeat matchlength_repeatMode;
+ FSE_repeat litlength_repeatMode;
+} ZSTD_fseCTables_t;
+
+typedef struct {
+ ZSTD_hufCTables_t huf;
+ ZSTD_fseCTables_t fse;
+} ZSTD_entropyCTables_t;
+
+typedef struct {
+ U32 off; /* Offset code (offset + ZSTD_REP_MOVE) for the match */
+ U32 len; /* Raw length of match */
+} ZSTD_match_t;
+
+typedef struct {
+ U32 offset; /* Offset of sequence */
+ U32 litLength; /* Length of literals prior to match */
+ U32 matchLength; /* Raw length of match */
+} rawSeq;
+
+typedef struct {
+ rawSeq* seq; /* The start of the sequences */
+ size_t pos; /* The index in seq where reading stopped. pos <= size. */
+ size_t posInSequence; /* The position within the sequence at seq[pos] where reading
+ stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
+ size_t size; /* The number of sequences. <= capacity. */
+ size_t capacity; /* The capacity starting from `seq` pointer */
+} rawSeqStore_t;
+
+UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
+
+typedef struct {
+ int price;
+ U32 off;
+ U32 mlen;
+ U32 litlen;
+ U32 rep[ZSTD_REP_NUM];
+} ZSTD_optimal_t;
+
+typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
+
+typedef struct {
+ /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
+ unsigned* litFreq; /* table of literals statistics, of size 256 */
+ unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
+ unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
+ unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
+ ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
+ ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
+
+ U32 litSum; /* nb of literals */
+ U32 litLengthSum; /* nb of litLength codes */
+ U32 matchLengthSum; /* nb of matchLength codes */
+ U32 offCodeSum; /* nb of offset codes */
+ U32 litSumBasePrice; /* to compare to log2(litfreq) */
+ U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
+ U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
+ U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
+ ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
+ const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
+ ZSTD_literalCompressionMode_e literalCompressionMode;
+} optState_t;
+
+typedef struct {
+ ZSTD_entropyCTables_t entropy;
+ U32 rep[ZSTD_REP_NUM];
+} ZSTD_compressedBlockState_t;
+
+typedef struct {
+ BYTE const* nextSrc; /* next block here to continue on current prefix */
+ BYTE const* base; /* All regular indexes relative to this position */
+ BYTE const* dictBase; /* extDict indexes relative to this position */
+ U32 dictLimit; /* below that point, need extDict */
+ U32 lowLimit; /* below that point, no more valid data */
+} ZSTD_window_t;
+
+typedef struct ZSTD_matchState_t ZSTD_matchState_t;
+struct ZSTD_matchState_t {
+ ZSTD_window_t window; /* State for window round buffer management */
+ U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
+ * When loadedDictEnd != 0, a dictionary is in use, and still valid.
+ * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
+ * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
+ * When dict referential is copied into active context (i.e. not attached),
+ * loadedDictEnd == dictSize, since referential starts from zero.
+ */
+ U32 nextToUpdate; /* index from which to continue table update */
+ U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
+ U32* hashTable;
+ U32* hashTable3;
+ U32* chainTable;
+ int dedicatedDictSearch; /* Indicates whether this matchState is using the
+ * dedicated dictionary search structure.
+ */
+ optState_t opt; /* optimal parser state */
+ const ZSTD_matchState_t* dictMatchState;
+ ZSTD_compressionParameters cParams;
+ const rawSeqStore_t* ldmSeqStore;
+};
+
+typedef struct {
+ ZSTD_compressedBlockState_t* prevCBlock;
+ ZSTD_compressedBlockState_t* nextCBlock;
+ ZSTD_matchState_t matchState;
+} ZSTD_blockState_t;
+
+typedef struct {
+ U32 offset;
+ U32 checksum;
+} ldmEntry_t;
+
+typedef struct {
+ BYTE const* split;
+ U32 hash;
+ U32 checksum;
+ ldmEntry_t* bucket;
+} ldmMatchCandidate_t;
+
+#define LDM_BATCH_SIZE 64
+
+typedef struct {
+ ZSTD_window_t window; /* State for the window round buffer management */
+ ldmEntry_t* hashTable;
+ U32 loadedDictEnd;
+ BYTE* bucketOffsets; /* Next position in bucket to insert entry */
+ size_t splitIndices[LDM_BATCH_SIZE];
+ ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
+} ldmState_t;
+
+typedef struct {
+ U32 enableLdm; /* 1 if enable long distance matching */
+ U32 hashLog; /* Log size of hashTable */
+ U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
+ U32 minMatchLength; /* Minimum match length */
+ U32 hashRateLog; /* Log number of entries to skip */
+ U32 windowLog; /* Window log for the LDM */
+} ldmParams_t;
+
+typedef struct {
+ int collectSequences;
+ ZSTD_Sequence* seqStart;
+ size_t seqIndex;
+ size_t maxSequences;
+} SeqCollector;
+
+struct ZSTD_CCtx_params_s {
+ ZSTD_format_e format;
+ ZSTD_compressionParameters cParams;
+ ZSTD_frameParameters fParams;
+
+ int compressionLevel;
+ int forceWindow; /* force back-references to respect limit of
+ * 1<<wLog, even for dictionary */
+ size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
+ * No target when targetCBlockSize == 0.
+ * There is no guarantee on compressed block size */
+ int srcSizeHint; /* User's best guess of source size.
+ * Hint is not valid when srcSizeHint == 0.
+ * There is no guarantee that hint is close to actual source size */
+
+ ZSTD_dictAttachPref_e attachDictPref;
+ ZSTD_literalCompressionMode_e literalCompressionMode;
+
+ /* Multithreading: used to pass parameters to mtctx */
+ int nbWorkers;
+ size_t jobSize;
+ int overlapLog;
+ int rsyncable;
+
+ /* Long distance matching parameters */
+ ldmParams_t ldmParams;
+
+ /* Dedicated dict search algorithm trigger */
+ int enableDedicatedDictSearch;
+
+ /* Input/output buffer modes */
+ ZSTD_bufferMode_e inBufferMode;
+ ZSTD_bufferMode_e outBufferMode;
+
+ /* Sequence compression API */
+ ZSTD_sequenceFormat_e blockDelimiters;
+ int validateSequences;
+
+ /* Internal use, for createCCtxParams() and freeCCtxParams() only */
+ ZSTD_customMem customMem;
+}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
+
+#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
+#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
+
+/*
+ * Indicates whether this compression proceeds directly from user-provided
+ * source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
+ * whether the context needs to buffer the input/output (ZSTDb_buffered).
+ */
+typedef enum {
+ ZSTDb_not_buffered,
+ ZSTDb_buffered
+} ZSTD_buffered_policy_e;
+
+struct ZSTD_CCtx_s {
+ ZSTD_compressionStage_e stage;
+ int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
+ int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
+ ZSTD_CCtx_params requestedParams;
+ ZSTD_CCtx_params appliedParams;
+ U32 dictID;
+ size_t dictContentSize;
+
+ ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
+ size_t blockSize;
+ unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
+ unsigned long long consumedSrcSize;
+ unsigned long long producedCSize;
+ struct xxh64_state xxhState;
+ ZSTD_customMem customMem;
+ ZSTD_threadPool* pool;
+ size_t staticSize;
+ SeqCollector seqCollector;
+ int isFirstBlock;
+ int initialized;
+
+ seqStore_t seqStore; /* sequences storage ptrs */
+ ldmState_t ldmState; /* long distance matching state */
+ rawSeq* ldmSequences; /* Storage for the ldm output sequences */
+ size_t maxNbLdmSequences;
+ rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
+ ZSTD_blockState_t blockState;
+ U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
+
+ /* Wether we are streaming or not */
+ ZSTD_buffered_policy_e bufferedPolicy;
+
+ /* streaming */
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inToCompress;
+ size_t inBuffPos;
+ size_t inBuffTarget;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outBuffContentSize;
+ size_t outBuffFlushedSize;
+ ZSTD_cStreamStage streamStage;
+ U32 frameEnded;
+
+ /* Stable in/out buffer verification */
+ ZSTD_inBuffer expectedInBuffer;
+ size_t expectedOutBufferSize;
+
+ /* Dictionary */
+ ZSTD_localDict localDict;
+ const ZSTD_CDict* cdict;
+ ZSTD_prefixDict prefixDict; /* single-usage dictionary */
+
+ /* Multi-threading */
+
+ /* Tracing */
+};
+
+typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
+
+typedef enum {
+ ZSTD_noDict = 0,
+ ZSTD_extDict = 1,
+ ZSTD_dictMatchState = 2,
+ ZSTD_dedicatedDictSearch = 3
+} ZSTD_dictMode_e;
+
+typedef enum {
+ ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict.
+ * In this mode we use both the srcSize and the dictSize
+ * when selecting and adjusting parameters.
+ */
+ ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
+ * In this mode we only take the srcSize into account when selecting
+ * and adjusting parameters.
+ */
+ ZSTD_cpm_createCDict = 2, /* Creating a CDict.
+ * In this mode we take both the source size and the dictionary size
+ * into account when selecting and adjusting the parameters.
+ */
+ ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
+ * We don't know what these parameters are for. We default to the legacy
+ * behavior of taking both the source size and the dict size into account
+ * when selecting and adjusting parameters.
+ */
+} ZSTD_cParamMode_e;
+
+typedef size_t (*ZSTD_blockCompressor) (
+ ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
+
+
+MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
+{
+ static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 16, 17, 17, 18, 18, 19, 19,
+ 20, 20, 20, 20, 21, 21, 21, 21,
+ 22, 22, 22, 22, 22, 22, 22, 22,
+ 23, 23, 23, 23, 23, 23, 23, 23,
+ 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24 };
+ static const U32 LL_deltaCode = 19;
+ return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
+}
+
+/* ZSTD_MLcode() :
+ * note : mlBase = matchLength - MINMATCH;
+ * because it's the format it's stored in seqStore->sequences */
+MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
+{
+ static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
+ 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
+ 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
+ 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
+ static const U32 ML_deltaCode = 36;
+ return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
+}
+
+typedef struct repcodes_s {
+ U32 rep[3];
+} repcodes_t;
+
+MEM_STATIC repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
+{
+ repcodes_t newReps;
+ if (offset >= ZSTD_REP_NUM) { /* full offset */
+ newReps.rep[2] = rep[1];
+ newReps.rep[1] = rep[0];
+ newReps.rep[0] = offset - ZSTD_REP_MOVE;
+ } else { /* repcode */
+ U32 const repCode = offset + ll0;
+ if (repCode > 0) { /* note : if repCode==0, no change */
+ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
+ newReps.rep[1] = rep[0];
+ newReps.rep[0] = currentOffset;
+ } else { /* repCode == 0 */
+ ZSTD_memcpy(&newReps, rep, sizeof(newReps));
+ }
+ }
+ return newReps;
+}
+
+/* ZSTD_cParam_withinBounds:
+ * @return 1 if value is within cParam bounds,
+ * 0 otherwise */
+MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
+{
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
+ if (ZSTD_isError(bounds.error)) return 0;
+ if (value < bounds.lowerBound) return 0;
+ if (value > bounds.upperBound) return 0;
+ return 1;
+}
+
+/* ZSTD_noCompressBlock() :
+ * Writes uncompressed block to dst buffer from given src.
+ * Returns the size of the block */
+MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
+{
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
+ RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
+ dstSize_tooSmall, "dst buf too small for uncompressed block");
+ MEM_writeLE24(dst, cBlockHeader24);
+ ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
+ return ZSTD_blockHeaderSize + srcSize;
+}
+
+MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
+{
+ BYTE* const op = (BYTE*)dst;
+ U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
+ RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
+ MEM_writeLE24(op, cBlockHeader);
+ op[3] = src;
+ return 4;
+}
+
+
+/* ZSTD_minGain() :
+ * minimum compression required
+ * to generate a compress block or a compressed literals section.
+ * note : use same formula for both situations */
+MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
+{
+ U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
+ ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
+ assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
+ return (srcSize >> minlog) + 2;
+}
+
+MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams)
+{
+ switch (cctxParams->literalCompressionMode) {
+ case ZSTD_lcm_huffman:
+ return 0;
+ case ZSTD_lcm_uncompressed:
+ return 1;
+ default:
+ assert(0 /* impossible: pre-validated */);
+ ZSTD_FALLTHROUGH;
+ case ZSTD_lcm_auto:
+ return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
+ }
+}
+
+/*! ZSTD_safecopyLiterals() :
+ * memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
+ * Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
+ * large copies.
+ */
+static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) {
+ assert(iend > ilimit_w);
+ if (ip <= ilimit_w) {
+ ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
+ op += ilimit_w - ip;
+ ip = ilimit_w;
+ }
+ while (ip < iend) *op++ = *ip++;
+}
+
+/*! ZSTD_storeSeq() :
+ * Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t.
+ * `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes).
+ * `mlBase` : matchLength - MINMATCH
+ * Allowed to overread literals up to litLimit.
+*/
+HINT_INLINE UNUSED_ATTR
+void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase)
+{
+ BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
+ BYTE const* const litEnd = literals + litLength;
+#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
+ static const BYTE* g_start = NULL;
+ if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
+ { U32 const pos = (U32)((const BYTE*)literals - g_start);
+ DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
+ pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode);
+ }
+#endif
+ assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
+ /* copy Literals */
+ assert(seqStorePtr->maxNbLit <= 128 KB);
+ assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
+ assert(literals + litLength <= litLimit);
+ if (litEnd <= litLimit_w) {
+ /* Common case we can use wildcopy.
+ * First copy 16 bytes, because literals are likely short.
+ */
+ assert(WILDCOPY_OVERLENGTH >= 16);
+ ZSTD_copy16(seqStorePtr->lit, literals);
+ if (litLength > 16) {
+ ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
+ }
+ } else {
+ ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
+ }
+ seqStorePtr->lit += litLength;
+
+ /* literal Length */
+ if (litLength>0xFFFF) {
+ assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
+ seqStorePtr->longLengthID = 1;
+ seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ }
+ seqStorePtr->sequences[0].litLength = (U16)litLength;
+
+ /* match offset */
+ seqStorePtr->sequences[0].offset = offCode + 1;
+
+ /* match Length */
+ if (mlBase>0xFFFF) {
+ assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
+ seqStorePtr->longLengthID = 2;
+ seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+ }
+ seqStorePtr->sequences[0].matchLength = (U16)mlBase;
+
+ seqStorePtr->sequences++;
+}
+
+
+/*-*************************************
+* Match length counter
+***************************************/
+static unsigned ZSTD_NbCommonBytes (size_t val)
+{
+ if (MEM_isLittleEndian()) {
+ if (MEM_64bits()) {
+# if (__GNUC__ >= 4)
+ return (__builtin_ctzll((U64)val) >> 3);
+# else
+ static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
+ 0, 3, 1, 3, 1, 4, 2, 7,
+ 0, 2, 3, 6, 1, 5, 3, 5,
+ 1, 3, 4, 4, 2, 5, 6, 7,
+ 7, 0, 1, 2, 3, 3, 4, 6,
+ 2, 6, 5, 5, 3, 4, 5, 6,
+ 7, 1, 2, 4, 6, 4, 4, 5,
+ 7, 2, 6, 5, 7, 6, 7, 7 };
+ return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+# endif
+ } else { /* 32 bits */
+# if (__GNUC__ >= 3)
+ return (__builtin_ctz((U32)val) >> 3);
+# else
+ static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
+ 3, 2, 2, 1, 3, 2, 0, 1,
+ 3, 3, 1, 2, 2, 2, 2, 0,
+ 3, 1, 2, 0, 1, 0, 1, 1 };
+ return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+# endif
+ }
+ } else { /* Big Endian CPU */
+ if (MEM_64bits()) {
+# if (__GNUC__ >= 4)
+ return (__builtin_clzll(val) >> 3);
+# else
+ unsigned r;
+ const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
+ if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
+ if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } else { /* 32 bits */
+# if (__GNUC__ >= 3)
+ return (__builtin_clz((U32)val) >> 3);
+# else
+ unsigned r;
+ if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
+ r += (!val);
+ return r;
+# endif
+ } }
+}
+
+
+MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
+{
+ const BYTE* const pStart = pIn;
+ const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
+
+ if (pIn < pInLoopLimit) {
+ { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+ if (diff) return ZSTD_NbCommonBytes(diff); }
+ pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
+ while (pIn < pInLoopLimit) {
+ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+ if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
+ pIn += ZSTD_NbCommonBytes(diff);
+ return (size_t)(pIn - pStart);
+ } }
+ if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
+ if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
+ if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
+ return (size_t)(pIn - pStart);
+}
+
+/* ZSTD_count_2segments() :
+ * can count match length with `ip` & `match` in 2 different segments.
+ * convention : on reaching mEnd, match count continue starting from iStart
+ */
+MEM_STATIC size_t
+ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
+ const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
+{
+ const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
+ size_t const matchLength = ZSTD_count(ip, match, vEnd);
+ if (match + matchLength != mEnd) return matchLength;
+ DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
+ DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
+ DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
+ DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
+ DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
+ return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
+}
+
+
+/*-*************************************
+ * Hashes
+ ***************************************/
+static const U32 prime3bytes = 506832829U;
+static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
+MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
+
+static const U32 prime4bytes = 2654435761U;
+static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
+static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
+
+static const U64 prime5bytes = 889523592379ULL;
+static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
+static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
+
+static const U64 prime6bytes = 227718039650203ULL;
+static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
+static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
+
+static const U64 prime7bytes = 58295818150454627ULL;
+static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
+static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
+
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
+
+MEM_STATIC FORCE_INLINE_ATTR
+size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
+{
+ switch(mls)
+ {
+ default:
+ case 4: return ZSTD_hash4Ptr(p, hBits);
+ case 5: return ZSTD_hash5Ptr(p, hBits);
+ case 6: return ZSTD_hash6Ptr(p, hBits);
+ case 7: return ZSTD_hash7Ptr(p, hBits);
+ case 8: return ZSTD_hash8Ptr(p, hBits);
+ }
+}
+
+/* ZSTD_ipow() :
+ * Return base^exponent.
+ */
+static U64 ZSTD_ipow(U64 base, U64 exponent)
+{
+ U64 power = 1;
+ while (exponent) {
+ if (exponent & 1) power *= base;
+ exponent >>= 1;
+ base *= base;
+ }
+ return power;
+}
+
+#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
+
+/* ZSTD_rollingHash_append() :
+ * Add the buffer to the hash value.
+ */
+static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
+{
+ BYTE const* istart = (BYTE const*)buf;
+ size_t pos;
+ for (pos = 0; pos < size; ++pos) {
+ hash *= prime8bytes;
+ hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
+ }
+ return hash;
+}
+
+/* ZSTD_rollingHash_compute() :
+ * Compute the rolling hash value of the buffer.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
+{
+ return ZSTD_rollingHash_append(0, buf, size);
+}
+
+/* ZSTD_rollingHash_primePower() :
+ * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
+ * over a window of length bytes.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
+{
+ return ZSTD_ipow(prime8bytes, length - 1);
+}
+
+/* ZSTD_rollingHash_rotate() :
+ * Rotate the rolling hash by one byte.
+ */
+MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
+{
+ hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
+ hash *= prime8bytes;
+ hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
+ return hash;
+}
+
+/*-*************************************
+* Round buffer management
+***************************************/
+#if (ZSTD_WINDOWLOG_MAX_64 > 31)
+# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
+#endif
+/* Max current allowed */
+#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
+/* Maximum chunk size before overflow correction needs to be called again */
+#define ZSTD_CHUNKSIZE_MAX \
+ ( ((U32)-1) /* Maximum ending current index */ \
+ - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
+
+/*
+ * ZSTD_window_clear():
+ * Clears the window containing the history by simply setting it to empty.
+ */
+MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
+{
+ size_t const endT = (size_t)(window->nextSrc - window->base);
+ U32 const end = (U32)endT;
+
+ window->lowLimit = end;
+ window->dictLimit = end;
+}
+
+/*
+ * ZSTD_window_hasExtDict():
+ * Returns non-zero if the window has a non-empty extDict.
+ */
+MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
+{
+ return window.lowLimit < window.dictLimit;
+}
+
+/*
+ * ZSTD_matchState_dictMode():
+ * Inspects the provided matchState and figures out what dictMode should be
+ * passed to the compressor.
+ */
+MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
+{
+ return ZSTD_window_hasExtDict(ms->window) ?
+ ZSTD_extDict :
+ ms->dictMatchState != NULL ?
+ (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
+ ZSTD_noDict;
+}
+
+/*
+ * ZSTD_window_needOverflowCorrection():
+ * Returns non-zero if the indices are getting too large and need overflow
+ * protection.
+ */
+MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
+ void const* srcEnd)
+{
+ U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
+ return curr > ZSTD_CURRENT_MAX;
+}
+
+/*
+ * ZSTD_window_correctOverflow():
+ * Reduces the indices to protect from index overflow.
+ * Returns the correction made to the indices, which must be applied to every
+ * stored index.
+ *
+ * The least significant cycleLog bits of the indices must remain the same,
+ * which may be 0. Every index up to maxDist in the past must be valid.
+ * NOTE: (maxDist & cycleMask) must be zero.
+ */
+MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
+ U32 maxDist, void const* src)
+{
+ /* preemptive overflow correction:
+ * 1. correction is large enough:
+ * lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
+ * 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
+ *
+ * current - newCurrent
+ * > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
+ * > (3<<29) - (1<<chainLog)
+ * > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
+ * > 1<<29
+ *
+ * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
+ * After correction, current is less than (1<<chainLog + 1<<windowLog).
+ * In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
+ * In 32-bit mode we are safe, because (chainLog <= 29), so
+ * ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
+ * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
+ * windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
+ */
+ U32 const cycleMask = (1U << cycleLog) - 1;
+ U32 const curr = (U32)((BYTE const*)src - window->base);
+ U32 const currentCycle0 = curr & cycleMask;
+ /* Exclude zero so that newCurrent - maxDist >= 1. */
+ U32 const currentCycle1 = currentCycle0 == 0 ? (1U << cycleLog) : currentCycle0;
+ U32 const newCurrent = currentCycle1 + maxDist;
+ U32 const correction = curr - newCurrent;
+ assert((maxDist & cycleMask) == 0);
+ assert(curr > newCurrent);
+ /* Loose bound, should be around 1<<29 (see above) */
+ assert(correction > 1<<28);
+
+ window->base += correction;
+ window->dictBase += correction;
+ if (window->lowLimit <= correction) window->lowLimit = 1;
+ else window->lowLimit -= correction;
+ if (window->dictLimit <= correction) window->dictLimit = 1;
+ else window->dictLimit -= correction;
+
+ /* Ensure we can still reference the full window. */
+ assert(newCurrent >= maxDist);
+ assert(newCurrent - maxDist >= 1);
+ /* Ensure that lowLimit and dictLimit didn't underflow. */
+ assert(window->lowLimit <= newCurrent);
+ assert(window->dictLimit <= newCurrent);
+
+ DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
+ window->lowLimit);
+ return correction;
+}
+
+/*
+ * ZSTD_window_enforceMaxDist():
+ * Updates lowLimit so that:
+ * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
+ *
+ * It ensures index is valid as long as index >= lowLimit.
+ * This must be called before a block compression call.
+ *
+ * loadedDictEnd is only defined if a dictionary is in use for current compression.
+ * As the name implies, loadedDictEnd represents the index at end of dictionary.
+ * The value lies within context's referential, it can be directly compared to blockEndIdx.
+ *
+ * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
+ * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
+ * This is because dictionaries are allowed to be referenced fully
+ * as long as the last byte of the dictionary is in the window.
+ * Once input has progressed beyond window size, dictionary cannot be referenced anymore.
+ *
+ * In normal dict mode, the dictionary lies between lowLimit and dictLimit.
+ * In dictMatchState mode, lowLimit and dictLimit are the same,
+ * and the dictionary is below them.
+ * forceWindow and dictMatchState are therefore incompatible.
+ */
+MEM_STATIC void
+ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
+ const void* blockEnd,
+ U32 maxDist,
+ U32* loadedDictEndPtr,
+ const ZSTD_matchState_t** dictMatchStatePtr)
+{
+ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
+ U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
+ DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
+ (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
+
+ /* - When there is no dictionary : loadedDictEnd == 0.
+ In which case, the test (blockEndIdx > maxDist) is merely to avoid
+ overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
+ - When there is a standard dictionary :
+ Index referential is copied from the dictionary,
+ which means it starts from 0.
+ In which case, loadedDictEnd == dictSize,
+ and it makes sense to compare `blockEndIdx > maxDist + dictSize`
+ since `blockEndIdx` also starts from zero.
+ - When there is an attached dictionary :
+ loadedDictEnd is expressed within the referential of the context,
+ so it can be directly compared against blockEndIdx.
+ */
+ if (blockEndIdx > maxDist + loadedDictEnd) {
+ U32 const newLowLimit = blockEndIdx - maxDist;
+ if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
+ if (window->dictLimit < window->lowLimit) {
+ DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
+ (unsigned)window->dictLimit, (unsigned)window->lowLimit);
+ window->dictLimit = window->lowLimit;
+ }
+ /* On reaching window size, dictionaries are invalidated */
+ if (loadedDictEndPtr) *loadedDictEndPtr = 0;
+ if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
+ }
+}
+
+/* Similar to ZSTD_window_enforceMaxDist(),
+ * but only invalidates dictionary
+ * when input progresses beyond window size.
+ * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
+ * loadedDictEnd uses same referential as window->base
+ * maxDist is the window size */
+MEM_STATIC void
+ZSTD_checkDictValidity(const ZSTD_window_t* window,
+ const void* blockEnd,
+ U32 maxDist,
+ U32* loadedDictEndPtr,
+ const ZSTD_matchState_t** dictMatchStatePtr)
+{
+ assert(loadedDictEndPtr != NULL);
+ assert(dictMatchStatePtr != NULL);
+ { U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
+ U32 const loadedDictEnd = *loadedDictEndPtr;
+ DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
+ (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
+ assert(blockEndIdx >= loadedDictEnd);
+
+ if (blockEndIdx > loadedDictEnd + maxDist) {
+ /* On reaching window size, dictionaries are invalidated.
+ * For simplification, if window size is reached anywhere within next block,
+ * the dictionary is invalidated for the full block.
+ */
+ DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
+ *loadedDictEndPtr = 0;
+ *dictMatchStatePtr = NULL;
+ } else {
+ if (*loadedDictEndPtr != 0) {
+ DEBUGLOG(6, "dictionary considered valid for current block");
+ } } }
+}
+
+MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
+ ZSTD_memset(window, 0, sizeof(*window));
+ window->base = (BYTE const*)"";
+ window->dictBase = (BYTE const*)"";
+ window->dictLimit = 1; /* start from 1, so that 1st position is valid */
+ window->lowLimit = 1; /* it ensures first and later CCtx usages compress the same */
+ window->nextSrc = window->base + 1; /* see issue #1241 */
+}
+
+/*
+ * ZSTD_window_update():
+ * Updates the window by appending [src, src + srcSize) to the window.
+ * If it is not contiguous, the current prefix becomes the extDict, and we
+ * forget about the extDict. Handles overlap of the prefix and extDict.
+ * Returns non-zero if the segment is contiguous.
+ */
+MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
+ void const* src, size_t srcSize)
+{
+ BYTE const* const ip = (BYTE const*)src;
+ U32 contiguous = 1;
+ DEBUGLOG(5, "ZSTD_window_update");
+ if (srcSize == 0)
+ return contiguous;
+ assert(window->base != NULL);
+ assert(window->dictBase != NULL);
+ /* Check if blocks follow each other */
+ if (src != window->nextSrc) {
+ /* not contiguous */
+ size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
+ DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
+ window->lowLimit = window->dictLimit;
+ assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
+ window->dictLimit = (U32)distanceFromBase;
+ window->dictBase = window->base;
+ window->base = ip - distanceFromBase;
+ /* ms->nextToUpdate = window->dictLimit; */
+ if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
+ contiguous = 0;
+ }
+ window->nextSrc = ip + srcSize;
+ /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
+ if ( (ip+srcSize > window->dictBase + window->lowLimit)
+ & (ip < window->dictBase + window->dictLimit)) {
+ ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
+ U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
+ window->lowLimit = lowLimitMax;
+ DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
+ }
+ return contiguous;
+}
+
+/*
+ * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
+ */
+MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
+{
+ U32 const maxDistance = 1U << windowLog;
+ U32 const lowestValid = ms->window.lowLimit;
+ U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
+ U32 const isDictionary = (ms->loadedDictEnd != 0);
+ /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
+ * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
+ * valid for the entire block. So this check is sufficient to find the lowest valid match index.
+ */
+ U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
+ return matchLowest;
+}
+
+/*
+ * Returns the lowest allowed match index in the prefix.
+ */
+MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
+{
+ U32 const maxDistance = 1U << windowLog;
+ U32 const lowestValid = ms->window.dictLimit;
+ U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
+ U32 const isDictionary = (ms->loadedDictEnd != 0);
+ /* When computing the lowest prefix index we need to take the dictionary into account to handle
+ * the edge case where the dictionary and the source are contiguous in memory.
+ */
+ U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
+ return matchLowest;
+}
+
+
+
+/* debug functions */
+#if (DEBUGLEVEL>=2)
+
+MEM_STATIC double ZSTD_fWeight(U32 rawStat)
+{
+ U32 const fp_accuracy = 8;
+ U32 const fp_multiplier = (1 << fp_accuracy);
+ U32 const newStat = rawStat + 1;
+ U32 const hb = ZSTD_highbit32(newStat);
+ U32 const BWeight = hb * fp_multiplier;
+ U32 const FWeight = (newStat << fp_accuracy) >> hb;
+ U32 const weight = BWeight + FWeight;
+ assert(hb + fp_accuracy < 31);
+ return (double)weight / fp_multiplier;
+}
+
+/* display a table content,
+ * listing each element, its frequency, and its predicted bit cost */
+MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
+{
+ unsigned u, sum;
+ for (u=0, sum=0; u<=max; u++) sum += table[u];
+ DEBUGLOG(2, "total nb elts: %u", sum);
+ for (u=0; u<=max; u++) {
+ DEBUGLOG(2, "%2u: %5u (%.2f)",
+ u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
+ }
+}
+
+#endif
+
+
+
+/* ===============================================================
+ * Shared internal declarations
+ * These prototypes may be called from sources not in lib/compress
+ * =============================================================== */
+
+/* ZSTD_loadCEntropy() :
+ * dict : must point at beginning of a valid zstd dictionary.
+ * return : size of dictionary header (size of magic number + dict ID + entropy tables)
+ * assumptions : magic number supposed already checked
+ * and dictSize >= 8 */
+size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
+ const void* const dict, size_t dictSize);
+
+void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
+
+/* ==============================================================
+ * Private declarations
+ * These prototypes shall only be called from within lib/compress
+ * ============================================================== */
+
+/* ZSTD_getCParamsFromCCtxParams() :
+ * cParams are built depending on compressionLevel, src size hints,
+ * LDM and manually set compression parameters.
+ * Note: srcSizeHint == 0 means 0!
+ */
+ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
+ const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
+
+/*! ZSTD_initCStream_internal() :
+ * Private use only. Init streaming operation.
+ * expects params to be valid.
+ * must receive dict, or cdict, or none, but not both.
+ * @return : 0, or an error code */
+size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
+ const void* dict, size_t dictSize,
+ const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
+
+void ZSTD_resetSeqStore(seqStore_t* ssPtr);
+
+/*! ZSTD_getCParamsFromCDict() :
+ * as the name implies */
+ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
+
+/* ZSTD_compressBegin_advanced_internal() :
+ * Private use only. To be called from zstdmt_compress.c. */
+size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_dictTableLoadMethod_e dtlm,
+ const ZSTD_CDict* cdict,
+ const ZSTD_CCtx_params* params,
+ unsigned long long pledgedSrcSize);
+
+/* ZSTD_compress_advanced_internal() :
+ * Private use only. To be called from zstdmt_compress.c. */
+size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict,size_t dictSize,
+ const ZSTD_CCtx_params* params);
+
+
+/* ZSTD_writeLastEmptyBlock() :
+ * output an empty Block with end-of-frame mark to complete a frame
+ * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
+ * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
+ */
+size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
+
+
+/* ZSTD_referenceExternalSequences() :
+ * Must be called before starting a compression operation.
+ * seqs must parse a prefix of the source.
+ * This cannot be used when long range matching is enabled.
+ * Zstd will use these sequences, and pass the literals to a secondary block
+ * compressor.
+ * @return : An error code on failure.
+ * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
+ * access and data corruption.
+ */
+size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
+
+/* ZSTD_cycleLog() :
+ * condition for correct operation : hashLog > 1 */
+U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
+
+/* ZSTD_CCtx_trace() :
+ * Trace the end of a compression call.
+ */
+void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
+
+#endif /* ZSTD_COMPRESS_H */
diff --git a/lib/zstd/compress/zstd_compress_literals.c b/lib/zstd/compress/zstd_compress_literals.c
new file mode 100644
index 000000000000..655bcda4d1f1
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_literals.c
@@ -0,0 +1,158 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+ /*-*************************************
+ * Dependencies
+ ***************************************/
+#include "zstd_compress_literals.h"
+
+size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ BYTE* const ostart = (BYTE*)dst;
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+ RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, "");
+
+ switch(flSize)
+ {
+ case 1: /* 2 - 1 - 5 */
+ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
+ break;
+ case 2: /* 2 - 2 - 12 */
+ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
+ break;
+ case 3: /* 2 - 2 - 20 */
+ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
+ break;
+ default: /* not necessary : flSize is {1,2,3} */
+ assert(0);
+ }
+
+ ZSTD_memcpy(ostart + flSize, src, srcSize);
+ DEBUGLOG(5, "Raw literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
+ return srcSize + flSize;
+}
+
+size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ BYTE* const ostart = (BYTE*)dst;
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+ (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
+
+ switch(flSize)
+ {
+ case 1: /* 2 - 1 - 5 */
+ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
+ break;
+ case 2: /* 2 - 2 - 12 */
+ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
+ break;
+ case 3: /* 2 - 2 - 20 */
+ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
+ break;
+ default: /* not necessary : flSize is {1,2,3} */
+ assert(0);
+ }
+
+ ostart[flSize] = *(const BYTE*)src;
+ DEBUGLOG(5, "RLE literals: %u -> %u", (U32)srcSize, (U32)flSize + 1);
+ return flSize+1;
+}
+
+size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
+ ZSTD_hufCTables_t* nextHuf,
+ ZSTD_strategy strategy, int disableLiteralCompression,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ void* entropyWorkspace, size_t entropyWorkspaceSize,
+ const int bmi2)
+{
+ size_t const minGain = ZSTD_minGain(srcSize, strategy);
+ size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
+ BYTE* const ostart = (BYTE*)dst;
+ U32 singleStream = srcSize < 256;
+ symbolEncodingType_e hType = set_compressed;
+ size_t cLitSize;
+
+ DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i srcSize=%u)",
+ disableLiteralCompression, (U32)srcSize);
+
+ /* Prepare nextEntropy assuming reusing the existing table */
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+
+ if (disableLiteralCompression)
+ return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+
+ /* small ? don't even attempt compression (speed opt) */
+# define COMPRESS_LITERALS_SIZE_MIN 63
+ { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
+ if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+ }
+
+ RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
+ { HUF_repeat repeat = prevHuf->repeatMode;
+ int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
+ if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
+ cLitSize = singleStream ?
+ HUF_compress1X_repeat(
+ ostart+lhSize, dstCapacity-lhSize, src, srcSize,
+ HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
+ (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) :
+ HUF_compress4X_repeat(
+ ostart+lhSize, dstCapacity-lhSize, src, srcSize,
+ HUF_SYMBOLVALUE_MAX, HUF_TABLELOG_DEFAULT, entropyWorkspace, entropyWorkspaceSize,
+ (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2);
+ if (repeat != HUF_repeat_none) {
+ /* reused the existing table */
+ DEBUGLOG(5, "Reusing previous huffman table");
+ hType = set_repeat;
+ }
+ }
+
+ if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+ }
+ if (cLitSize==1) {
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
+ }
+
+ if (hType == set_compressed) {
+ /* using a newly constructed table */
+ nextHuf->repeatMode = HUF_repeat_check;
+ }
+
+ /* Build header */
+ switch(lhSize)
+ {
+ case 3: /* 2 - 2 - 10 - 10 */
+ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
+ MEM_writeLE24(ostart, lhc);
+ break;
+ }
+ case 4: /* 2 - 2 - 14 - 14 */
+ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
+ MEM_writeLE32(ostart, lhc);
+ break;
+ }
+ case 5: /* 2 - 2 - 18 - 18 */
+ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
+ MEM_writeLE32(ostart, lhc);
+ ostart[4] = (BYTE)(cLitSize >> 10);
+ break;
+ }
+ default: /* not possible : lhSize is {3,4,5} */
+ assert(0);
+ }
+ DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)srcSize, (U32)(lhSize+cLitSize));
+ return lhSize+cLitSize;
+}
diff --git a/lib/zstd/compress/zstd_compress_literals.h b/lib/zstd/compress/zstd_compress_literals.h
new file mode 100644
index 000000000000..9904c0cd30a0
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_literals.h
@@ -0,0 +1,29 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMPRESS_LITERALS_H
+#define ZSTD_COMPRESS_LITERALS_H
+
+#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */
+
+
+size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
+ ZSTD_hufCTables_t* nextHuf,
+ ZSTD_strategy strategy, int disableLiteralCompression,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ void* entropyWorkspace, size_t entropyWorkspaceSize,
+ const int bmi2);
+
+#endif /* ZSTD_COMPRESS_LITERALS_H */
diff --git a/lib/zstd/compress/zstd_compress_sequences.c b/lib/zstd/compress/zstd_compress_sequences.c
new file mode 100644
index 000000000000..dcfcdc9cc5e8
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_sequences.c
@@ -0,0 +1,439 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+ /*-*************************************
+ * Dependencies
+ ***************************************/
+#include "zstd_compress_sequences.h"
+
+/*
+ * -log2(x / 256) lookup table for x in [0, 256).
+ * If x == 0: Return 0
+ * Else: Return floor(-log2(x / 256) * 256)
+ */
+static unsigned const kInverseProbabilityLog256[256] = {
+ 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
+ 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
+ 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
+ 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
+ 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
+ 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
+ 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
+ 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
+ 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
+ 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
+ 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
+ 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
+ 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
+ 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
+ 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
+ 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
+ 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
+ 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
+ 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
+ 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
+ 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
+ 5, 4, 2, 1,
+};
+
+static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
+ void const* ptr = ctable;
+ U16 const* u16ptr = (U16 const*)ptr;
+ U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
+ return maxSymbolValue;
+}
+
+/*
+ * Returns true if we should use ncount=-1 else we should
+ * use ncount=1 for low probability symbols instead.
+ */
+static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
+{
+ /* Heuristic: This should cover most blocks <= 16K and
+ * start to fade out after 16K to about 32K depending on
+ * comprssibility.
+ */
+ return nbSeq >= 2048;
+}
+
+/*
+ * Returns the cost in bytes of encoding the normalized count header.
+ * Returns an error if any of the helper functions return an error.
+ */
+static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
+ size_t const nbSeq, unsigned const FSELog)
+{
+ BYTE wksp[FSE_NCOUNTBOUND];
+ S16 norm[MaxSeq + 1];
+ const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
+ FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
+ return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
+}
+
+/*
+ * Returns the cost in bits of encoding the distribution described by count
+ * using the entropy bound.
+ */
+static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
+{
+ unsigned cost = 0;
+ unsigned s;
+ for (s = 0; s <= max; ++s) {
+ unsigned norm = (unsigned)((256 * count[s]) / total);
+ if (count[s] != 0 && norm == 0)
+ norm = 1;
+ assert(count[s] < total);
+ cost += count[s] * kInverseProbabilityLog256[norm];
+ }
+ return cost >> 8;
+}
+
+/*
+ * Returns the cost in bits of encoding the distribution in count using ctable.
+ * Returns an error if ctable cannot represent all the symbols in count.
+ */
+size_t ZSTD_fseBitCost(
+ FSE_CTable const* ctable,
+ unsigned const* count,
+ unsigned const max)
+{
+ unsigned const kAccuracyLog = 8;
+ size_t cost = 0;
+ unsigned s;
+ FSE_CState_t cstate;
+ FSE_initCState(&cstate, ctable);
+ if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
+ DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
+ ZSTD_getFSEMaxSymbolValue(ctable), max);
+ return ERROR(GENERIC);
+ }
+ for (s = 0; s <= max; ++s) {
+ unsigned const tableLog = cstate.stateLog;
+ unsigned const badCost = (tableLog + 1) << kAccuracyLog;
+ unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
+ if (count[s] == 0)
+ continue;
+ if (bitCost >= badCost) {
+ DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
+ return ERROR(GENERIC);
+ }
+ cost += (size_t)count[s] * bitCost;
+ }
+ return cost >> kAccuracyLog;
+}
+
+/*
+ * Returns the cost in bits of encoding the distribution in count using the
+ * table described by norm. The max symbol support by norm is assumed >= max.
+ * norm must be valid for every symbol with non-zero probability in count.
+ */
+size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
+ unsigned const* count, unsigned const max)
+{
+ unsigned const shift = 8 - accuracyLog;
+ size_t cost = 0;
+ unsigned s;
+ assert(accuracyLog <= 8);
+ for (s = 0; s <= max; ++s) {
+ unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
+ unsigned const norm256 = normAcc << shift;
+ assert(norm256 > 0);
+ assert(norm256 < 256);
+ cost += count[s] * kInverseProbabilityLog256[norm256];
+ }
+ return cost >> 8;
+}
+
+symbolEncodingType_e
+ZSTD_selectEncodingType(
+ FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
+ size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
+ FSE_CTable const* prevCTable,
+ short const* defaultNorm, U32 defaultNormLog,
+ ZSTD_defaultPolicy_e const isDefaultAllowed,
+ ZSTD_strategy const strategy)
+{
+ ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
+ if (mostFrequent == nbSeq) {
+ *repeatMode = FSE_repeat_none;
+ if (isDefaultAllowed && nbSeq <= 2) {
+ /* Prefer set_basic over set_rle when there are 2 or less symbols,
+ * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
+ * If basic encoding isn't possible, always choose RLE.
+ */
+ DEBUGLOG(5, "Selected set_basic");
+ return set_basic;
+ }
+ DEBUGLOG(5, "Selected set_rle");
+ return set_rle;
+ }
+ if (strategy < ZSTD_lazy) {
+ if (isDefaultAllowed) {
+ size_t const staticFse_nbSeq_max = 1000;
+ size_t const mult = 10 - strategy;
+ size_t const baseLog = 3;
+ size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
+ assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
+ assert(mult <= 9 && mult >= 7);
+ if ( (*repeatMode == FSE_repeat_valid)
+ && (nbSeq < staticFse_nbSeq_max) ) {
+ DEBUGLOG(5, "Selected set_repeat");
+ return set_repeat;
+ }
+ if ( (nbSeq < dynamicFse_nbSeq_min)
+ || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
+ DEBUGLOG(5, "Selected set_basic");
+ /* The format allows default tables to be repeated, but it isn't useful.
+ * When using simple heuristics to select encoding type, we don't want
+ * to confuse these tables with dictionaries. When running more careful
+ * analysis, we don't need to waste time checking both repeating tables
+ * and default tables.
+ */
+ *repeatMode = FSE_repeat_none;
+ return set_basic;
+ }
+ }
+ } else {
+ size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
+ size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
+ size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
+ size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
+
+ if (isDefaultAllowed) {
+ assert(!ZSTD_isError(basicCost));
+ assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
+ }
+ assert(!ZSTD_isError(NCountCost));
+ assert(compressedCost < ERROR(maxCode));
+ DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
+ (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
+ if (basicCost <= repeatCost && basicCost <= compressedCost) {
+ DEBUGLOG(5, "Selected set_basic");
+ assert(isDefaultAllowed);
+ *repeatMode = FSE_repeat_none;
+ return set_basic;
+ }
+ if (repeatCost <= compressedCost) {
+ DEBUGLOG(5, "Selected set_repeat");
+ assert(!ZSTD_isError(repeatCost));
+ return set_repeat;
+ }
+ assert(compressedCost < basicCost && compressedCost < repeatCost);
+ }
+ DEBUGLOG(5, "Selected set_compressed");
+ *repeatMode = FSE_repeat_check;
+ return set_compressed;
+}
+
+typedef struct {
+ S16 norm[MaxSeq + 1];
+ U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
+} ZSTD_BuildCTableWksp;
+
+size_t
+ZSTD_buildCTable(void* dst, size_t dstCapacity,
+ FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
+ unsigned* count, U32 max,
+ const BYTE* codeTable, size_t nbSeq,
+ const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
+ const FSE_CTable* prevCTable, size_t prevCTableSize,
+ void* entropyWorkspace, size_t entropyWorkspaceSize)
+{
+ BYTE* op = (BYTE*)dst;
+ const BYTE* const oend = op + dstCapacity;
+ DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
+
+ switch (type) {
+ case set_rle:
+ FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
+ RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
+ *op = codeTable[0];
+ return 1;
+ case set_repeat:
+ ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
+ return 0;
+ case set_basic:
+ FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
+ return 0;
+ case set_compressed: {
+ ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
+ size_t nbSeq_1 = nbSeq;
+ const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
+ if (count[codeTable[nbSeq-1]] > 1) {
+ count[codeTable[nbSeq-1]]--;
+ nbSeq_1--;
+ }
+ assert(nbSeq_1 > 1);
+ assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
+ (void)entropyWorkspaceSize;
+ FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "");
+ { size_t const NCountSize = FSE_writeNCount(op, oend - op, wksp->norm, max, tableLog); /* overflow protected */
+ FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
+ FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "");
+ return NCountSize;
+ }
+ }
+ default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
+ }
+}
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_encodeSequences_body(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ BIT_CStream_t blockStream;
+ FSE_CState_t stateMatchLength;
+ FSE_CState_t stateOffsetBits;
+ FSE_CState_t stateLitLength;
+
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
+ dstSize_tooSmall, "not enough space remaining");
+ DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
+ (int)(blockStream.endPtr - blockStream.startPtr),
+ (unsigned)dstCapacity);
+
+ /* first symbols */
+ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
+ FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
+ FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
+ BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
+ if (longOffsets) {
+ U32 const ofBits = ofCodeTable[nbSeq-1];
+ unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
+ if (extraBits) {
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
+ BIT_flushBits(&blockStream);
+ }
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
+ ofBits - extraBits);
+ } else {
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
+ }
+ BIT_flushBits(&blockStream);
+
+ { size_t n;
+ for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
+ BYTE const llCode = llCodeTable[n];
+ BYTE const ofCode = ofCodeTable[n];
+ BYTE const mlCode = mlCodeTable[n];
+ U32 const llBits = LL_bits[llCode];
+ U32 const ofBits = ofCode;
+ U32 const mlBits = ML_bits[mlCode];
+ DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
+ (unsigned)sequences[n].litLength,
+ (unsigned)sequences[n].matchLength + MINMATCH,
+ (unsigned)sequences[n].offset);
+ /* 32b*/ /* 64b*/
+ /* (7)*/ /* (7)*/
+ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
+ FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
+ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
+ FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
+ if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_flushBits(&blockStream); /* (7)*/
+ BIT_addBits(&blockStream, sequences[n].litLength, llBits);
+ if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
+ BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
+ if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
+ if (longOffsets) {
+ unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
+ if (extraBits) {
+ BIT_addBits(&blockStream, sequences[n].offset, extraBits);
+ BIT_flushBits(&blockStream); /* (7)*/
+ }
+ BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
+ ofBits - extraBits); /* 31 */
+ } else {
+ BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
+ }
+ BIT_flushBits(&blockStream); /* (7)*/
+ DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
+ } }
+
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
+ FSE_flushCState(&blockStream, &stateMatchLength);
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
+ FSE_flushCState(&blockStream, &stateOffsetBits);
+ DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
+ FSE_flushCState(&blockStream, &stateLitLength);
+
+ { size_t const streamSize = BIT_closeCStream(&blockStream);
+ RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
+ return streamSize;
+ }
+}
+
+static size_t
+ZSTD_encodeSequences_default(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ return ZSTD_encodeSequences_body(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
+
+
+#if DYNAMIC_BMI2
+
+static TARGET_ATTRIBUTE("bmi2") size_t
+ZSTD_encodeSequences_bmi2(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets)
+{
+ return ZSTD_encodeSequences_body(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
+
+#endif
+
+size_t ZSTD_encodeSequences(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
+{
+ DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+ }
+#endif
+ (void)bmi2;
+ return ZSTD_encodeSequences_default(dst, dstCapacity,
+ CTable_MatchLength, mlCodeTable,
+ CTable_OffsetBits, ofCodeTable,
+ CTable_LitLength, llCodeTable,
+ sequences, nbSeq, longOffsets);
+}
diff --git a/lib/zstd/compress/zstd_compress_sequences.h b/lib/zstd/compress/zstd_compress_sequences.h
new file mode 100644
index 000000000000..7991364c2f71
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_sequences.h
@@ -0,0 +1,54 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMPRESS_SEQUENCES_H
+#define ZSTD_COMPRESS_SEQUENCES_H
+
+#include "../common/fse.h" /* FSE_repeat, FSE_CTable */
+#include "../common/zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
+
+typedef enum {
+ ZSTD_defaultDisallowed = 0,
+ ZSTD_defaultAllowed = 1
+} ZSTD_defaultPolicy_e;
+
+symbolEncodingType_e
+ZSTD_selectEncodingType(
+ FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
+ size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
+ FSE_CTable const* prevCTable,
+ short const* defaultNorm, U32 defaultNormLog,
+ ZSTD_defaultPolicy_e const isDefaultAllowed,
+ ZSTD_strategy const strategy);
+
+size_t
+ZSTD_buildCTable(void* dst, size_t dstCapacity,
+ FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
+ unsigned* count, U32 max,
+ const BYTE* codeTable, size_t nbSeq,
+ const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
+ const FSE_CTable* prevCTable, size_t prevCTableSize,
+ void* entropyWorkspace, size_t entropyWorkspaceSize);
+
+size_t ZSTD_encodeSequences(
+ void* dst, size_t dstCapacity,
+ FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
+ FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
+ FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
+ seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
+
+size_t ZSTD_fseBitCost(
+ FSE_CTable const* ctable,
+ unsigned const* count,
+ unsigned const max);
+
+size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
+ unsigned const* count, unsigned const max);
+#endif /* ZSTD_COMPRESS_SEQUENCES_H */
diff --git a/lib/zstd/compress/zstd_compress_superblock.c b/lib/zstd/compress/zstd_compress_superblock.c
new file mode 100644
index 000000000000..ee03e0aedb03
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_superblock.c
@@ -0,0 +1,850 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+ /*-*************************************
+ * Dependencies
+ ***************************************/
+#include "zstd_compress_superblock.h"
+
+#include "../common/zstd_internal.h" /* ZSTD_getSequenceLength */
+#include "hist.h" /* HIST_countFast_wksp */
+#include "zstd_compress_internal.h"
+#include "zstd_compress_sequences.h"
+#include "zstd_compress_literals.h"
+
+/*-*************************************
+* Superblock entropy buffer structs
+***************************************/
+/* ZSTD_hufCTablesMetadata_t :
+ * Stores Literals Block Type for a super-block in hType, and
+ * huffman tree description in hufDesBuffer.
+ * hufDesSize refers to the size of huffman tree description in bytes.
+ * This metadata is populated in ZSTD_buildSuperBlockEntropy_literal() */
+typedef struct {
+ symbolEncodingType_e hType;
+ BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
+ size_t hufDesSize;
+} ZSTD_hufCTablesMetadata_t;
+
+/* ZSTD_fseCTablesMetadata_t :
+ * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
+ * fse tables in fseTablesBuffer.
+ * fseTablesSize refers to the size of fse tables in bytes.
+ * This metadata is populated in ZSTD_buildSuperBlockEntropy_sequences() */
+typedef struct {
+ symbolEncodingType_e llType;
+ symbolEncodingType_e ofType;
+ symbolEncodingType_e mlType;
+ BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
+ size_t fseTablesSize;
+ size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_compressSubBlock_sequences() */
+} ZSTD_fseCTablesMetadata_t;
+
+typedef struct {
+ ZSTD_hufCTablesMetadata_t hufMetadata;
+ ZSTD_fseCTablesMetadata_t fseMetadata;
+} ZSTD_entropyCTablesMetadata_t;
+
+
+/* ZSTD_buildSuperBlockEntropy_literal() :
+ * Builds entropy for the super-block literals.
+ * Stores literals block type (raw, rle, compressed, repeat) and
+ * huffman description table to hufMetadata.
+ * @return : size of huffman description table or error code */
+static size_t ZSTD_buildSuperBlockEntropy_literal(void* const src, size_t srcSize,
+ const ZSTD_hufCTables_t* prevHuf,
+ ZSTD_hufCTables_t* nextHuf,
+ ZSTD_hufCTablesMetadata_t* hufMetadata,
+ const int disableLiteralsCompression,
+ void* workspace, size_t wkspSize)
+{
+ BYTE* const wkspStart = (BYTE*)workspace;
+ BYTE* const wkspEnd = wkspStart + wkspSize;
+ BYTE* const countWkspStart = wkspStart;
+ unsigned* const countWksp = (unsigned*)workspace;
+ const size_t countWkspSize = (HUF_SYMBOLVALUE_MAX + 1) * sizeof(unsigned);
+ BYTE* const nodeWksp = countWkspStart + countWkspSize;
+ const size_t nodeWkspSize = wkspEnd-nodeWksp;
+ unsigned maxSymbolValue = 255;
+ unsigned huffLog = HUF_TABLELOG_DEFAULT;
+ HUF_repeat repeat = prevHuf->repeatMode;
+
+ DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy_literal (srcSize=%zu)", srcSize);
+
+ /* Prepare nextEntropy assuming reusing the existing table */
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+
+ if (disableLiteralsCompression) {
+ DEBUGLOG(5, "set_basic - disabled");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+
+ /* small ? don't even attempt compression (speed opt) */
+# define COMPRESS_LITERALS_SIZE_MIN 63
+ { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
+ if (srcSize <= minLitSize) {
+ DEBUGLOG(5, "set_basic - too small");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ }
+
+ /* Scan input and build symbol stats */
+ { size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)src, srcSize, workspace, wkspSize);
+ FORWARD_IF_ERROR(largest, "HIST_count_wksp failed");
+ if (largest == srcSize) {
+ DEBUGLOG(5, "set_rle");
+ hufMetadata->hType = set_rle;
+ return 0;
+ }
+ if (largest <= (srcSize >> 7)+4) {
+ DEBUGLOG(5, "set_basic - no gain");
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ }
+
+ /* Validate the previous Huffman table */
+ if (repeat == HUF_repeat_check && !HUF_validateCTable((HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue)) {
+ repeat = HUF_repeat_none;
+ }
+
+ /* Build Huffman Tree */
+ ZSTD_memset(nextHuf->CTable, 0, sizeof(nextHuf->CTable));
+ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
+ { size_t const maxBits = HUF_buildCTable_wksp((HUF_CElt*)nextHuf->CTable, countWksp,
+ maxSymbolValue, huffLog,
+ nodeWksp, nodeWkspSize);
+ FORWARD_IF_ERROR(maxBits, "HUF_buildCTable_wksp");
+ huffLog = (U32)maxBits;
+ { /* Build and write the CTable */
+ size_t const newCSize = HUF_estimateCompressedSize(
+ (HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue);
+ size_t const hSize = HUF_writeCTable_wksp(
+ hufMetadata->hufDesBuffer, sizeof(hufMetadata->hufDesBuffer),
+ (HUF_CElt*)nextHuf->CTable, maxSymbolValue, huffLog,
+ nodeWksp, nodeWkspSize);
+ /* Check against repeating the previous CTable */
+ if (repeat != HUF_repeat_none) {
+ size_t const oldCSize = HUF_estimateCompressedSize(
+ (HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue);
+ if (oldCSize < srcSize && (oldCSize <= hSize + newCSize || hSize + 12 >= srcSize)) {
+ DEBUGLOG(5, "set_repeat - smaller");
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ hufMetadata->hType = set_repeat;
+ return 0;
+ }
+ }
+ if (newCSize + hSize >= srcSize) {
+ DEBUGLOG(5, "set_basic - no gains");
+ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
+ hufMetadata->hType = set_basic;
+ return 0;
+ }
+ DEBUGLOG(5, "set_compressed (hSize=%u)", (U32)hSize);
+ hufMetadata->hType = set_compressed;
+ nextHuf->repeatMode = HUF_repeat_check;
+ return hSize;
+ }
+ }
+}
+
+/* ZSTD_buildSuperBlockEntropy_sequences() :
+ * Builds entropy for the super-block sequences.
+ * Stores symbol compression modes and fse table to fseMetadata.
+ * @return : size of fse tables or error code */
+static size_t ZSTD_buildSuperBlockEntropy_sequences(seqStore_t* seqStorePtr,
+ const ZSTD_fseCTables_t* prevEntropy,
+ ZSTD_fseCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ ZSTD_fseCTablesMetadata_t* fseMetadata,
+ void* workspace, size_t wkspSize)
+{
+ BYTE* const wkspStart = (BYTE*)workspace;
+ BYTE* const wkspEnd = wkspStart + wkspSize;
+ BYTE* const countWkspStart = wkspStart;
+ unsigned* const countWksp = (unsigned*)workspace;
+ const size_t countWkspSize = (MaxSeq + 1) * sizeof(unsigned);
+ BYTE* const cTableWksp = countWkspStart + countWkspSize;
+ const size_t cTableWkspSize = wkspEnd-cTableWksp;
+ ZSTD_strategy const strategy = cctxParams->cParams.strategy;
+ FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable;
+ FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable;
+ FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable;
+ const BYTE* const ofCodeTable = seqStorePtr->ofCode;
+ const BYTE* const llCodeTable = seqStorePtr->llCode;
+ const BYTE* const mlCodeTable = seqStorePtr->mlCode;
+ size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
+ BYTE* const ostart = fseMetadata->fseTablesBuffer;
+ BYTE* const oend = ostart + sizeof(fseMetadata->fseTablesBuffer);
+ BYTE* op = ostart;
+
+ assert(cTableWkspSize >= (1 << MaxFSELog) * sizeof(FSE_FUNCTION_TYPE));
+ DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy_sequences (nbSeq=%zu)", nbSeq);
+ ZSTD_memset(workspace, 0, wkspSize);
+
+ fseMetadata->lastCountSize = 0;
+ /* convert length/distances into codes */
+ ZSTD_seqToCodes(seqStorePtr);
+ /* build CTable for Literal Lengths */
+ { U32 LLtype;
+ unsigned max = MaxLL;
+ size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, llCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ DEBUGLOG(5, "Building LL table");
+ nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode;
+ LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode,
+ countWksp, max, mostFrequent, nbSeq,
+ LLFSELog, prevEntropy->litlengthCTable,
+ LL_defaultNorm, LL_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(set_basic < set_compressed && set_rle < set_compressed);
+ assert(!(LLtype < set_compressed && nextEntropy->litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
+ countWksp, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ prevEntropy->litlengthCTable, sizeof(prevEntropy->litlengthCTable),
+ cTableWksp, cTableWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for LitLens failed");
+ if (LLtype == set_compressed)
+ fseMetadata->lastCountSize = countSize;
+ op += countSize;
+ fseMetadata->llType = (symbolEncodingType_e) LLtype;
+ } }
+ /* build CTable for Offsets */
+ { U32 Offtype;
+ unsigned max = MaxOff;
+ size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, ofCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
+ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
+ DEBUGLOG(5, "Building OF table");
+ nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode;
+ Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode,
+ countWksp, max, mostFrequent, nbSeq,
+ OffFSELog, prevEntropy->offcodeCTable,
+ OF_defaultNorm, OF_defaultNormLog,
+ defaultPolicy, strategy);
+ assert(!(Offtype < set_compressed && nextEntropy->offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
+ countWksp, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ prevEntropy->offcodeCTable, sizeof(prevEntropy->offcodeCTable),
+ cTableWksp, cTableWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for Offsets failed");
+ if (Offtype == set_compressed)
+ fseMetadata->lastCountSize = countSize;
+ op += countSize;
+ fseMetadata->ofType = (symbolEncodingType_e) Offtype;
+ } }
+ /* build CTable for MatchLengths */
+ { U32 MLtype;
+ unsigned max = MaxML;
+ size_t const mostFrequent = HIST_countFast_wksp(countWksp, &max, mlCodeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op));
+ nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode;
+ MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode,
+ countWksp, max, mostFrequent, nbSeq,
+ MLFSELog, prevEntropy->matchlengthCTable,
+ ML_defaultNorm, ML_defaultNormLog,
+ ZSTD_defaultAllowed, strategy);
+ assert(!(MLtype < set_compressed && nextEntropy->matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */
+ { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
+ countWksp, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML,
+ prevEntropy->matchlengthCTable, sizeof(prevEntropy->matchlengthCTable),
+ cTableWksp, cTableWkspSize);
+ FORWARD_IF_ERROR(countSize, "ZSTD_buildCTable for MatchLengths failed");
+ if (MLtype == set_compressed)
+ fseMetadata->lastCountSize = countSize;
+ op += countSize;
+ fseMetadata->mlType = (symbolEncodingType_e) MLtype;
+ } }
+ assert((size_t) (op-ostart) <= sizeof(fseMetadata->fseTablesBuffer));
+ return op-ostart;
+}
+
+
+/* ZSTD_buildSuperBlockEntropy() :
+ * Builds entropy for the super-block.
+ * @return : 0 on success or error code */
+static size_t
+ZSTD_buildSuperBlockEntropy(seqStore_t* seqStorePtr,
+ const ZSTD_entropyCTables_t* prevEntropy,
+ ZSTD_entropyCTables_t* nextEntropy,
+ const ZSTD_CCtx_params* cctxParams,
+ ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ void* workspace, size_t wkspSize)
+{
+ size_t const litSize = seqStorePtr->lit - seqStorePtr->litStart;
+ DEBUGLOG(5, "ZSTD_buildSuperBlockEntropy");
+ entropyMetadata->hufMetadata.hufDesSize =
+ ZSTD_buildSuperBlockEntropy_literal(seqStorePtr->litStart, litSize,
+ &prevEntropy->huf, &nextEntropy->huf,
+ &entropyMetadata->hufMetadata,
+ ZSTD_disableLiteralsCompression(cctxParams),
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(entropyMetadata->hufMetadata.hufDesSize, "ZSTD_buildSuperBlockEntropy_literal failed");
+ entropyMetadata->fseMetadata.fseTablesSize =
+ ZSTD_buildSuperBlockEntropy_sequences(seqStorePtr,
+ &prevEntropy->fse, &nextEntropy->fse,
+ cctxParams,
+ &entropyMetadata->fseMetadata,
+ workspace, wkspSize);
+ FORWARD_IF_ERROR(entropyMetadata->fseMetadata.fseTablesSize, "ZSTD_buildSuperBlockEntropy_sequences failed");
+ return 0;
+}
+
+/* ZSTD_compressSubBlock_literal() :
+ * Compresses literals section for a sub-block.
+ * When we have to write the Huffman table we will sometimes choose a header
+ * size larger than necessary. This is because we have to pick the header size
+ * before we know the table size + compressed size, so we have a bound on the
+ * table size. If we guessed incorrectly, we fall back to uncompressed literals.
+ *
+ * We write the header when writeEntropy=1 and set entropyWritten=1 when we succeeded
+ * in writing the header, otherwise it is set to 0.
+ *
+ * hufMetadata->hType has literals block type info.
+ * If it is set_basic, all sub-blocks literals section will be Raw_Literals_Block.
+ * If it is set_rle, all sub-blocks literals section will be RLE_Literals_Block.
+ * If it is set_compressed, first sub-block's literals section will be Compressed_Literals_Block
+ * If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block
+ * and the following sub-blocks' literals sections will be Treeless_Literals_Block.
+ * @return : compressed size of literals section of a sub-block
+ * Or 0 if it unable to compress.
+ * Or error code */
+static size_t ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
+ const ZSTD_hufCTablesMetadata_t* hufMetadata,
+ const BYTE* literals, size_t litSize,
+ void* dst, size_t dstSize,
+ const int bmi2, int writeEntropy, int* entropyWritten)
+{
+ size_t const header = writeEntropy ? 200 : 0;
+ size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header));
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* op = ostart + lhSize;
+ U32 const singleStream = lhSize == 3;
+ symbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat;
+ size_t cLitSize = 0;
+
+ (void)bmi2; /* TODO bmi2... */
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy);
+
+ *entropyWritten = 0;
+ if (litSize == 0 || hufMetadata->hType == set_basic) {
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal");
+ return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
+ } else if (hufMetadata->hType == set_rle) {
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal using rle literal");
+ return ZSTD_compressRleLiteralsBlock(dst, dstSize, literals, litSize);
+ }
+
+ assert(litSize > 0);
+ assert(hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat);
+
+ if (writeEntropy && hufMetadata->hType == set_compressed) {
+ ZSTD_memcpy(op, hufMetadata->hufDesBuffer, hufMetadata->hufDesSize);
+ op += hufMetadata->hufDesSize;
+ cLitSize += hufMetadata->hufDesSize;
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize);
+ }
+
+ /* TODO bmi2 */
+ { const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable)
+ : HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable);
+ op += cSize;
+ cLitSize += cSize;
+ if (cSize == 0 || ERR_isError(cSize)) {
+ DEBUGLOG(5, "Failed to write entropy tables %s", ZSTD_getErrorName(cSize));
+ return 0;
+ }
+ /* If we expand and we aren't writing a header then emit uncompressed */
+ if (!writeEntropy && cLitSize >= litSize) {
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal because uncompressible");
+ return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
+ }
+ /* If we are writing headers then allow expansion that doesn't change our header size. */
+ if (lhSize < (size_t)(3 + (cLitSize >= 1 KB) + (cLitSize >= 16 KB))) {
+ assert(cLitSize > litSize);
+ DEBUGLOG(5, "Literals expanded beyond allowed header size");
+ return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
+ }
+ DEBUGLOG(5, "ZSTD_compressSubBlock_literal (cSize=%zu)", cSize);
+ }
+
+ /* Build header */
+ switch(lhSize)
+ {
+ case 3: /* 2 - 2 - 10 - 10 */
+ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
+ MEM_writeLE24(ostart, lhc);
+ break;
+ }
+ case 4: /* 2 - 2 - 14 - 14 */
+ { U32 const lhc = hType + (2 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<18);
+ MEM_writeLE32(ostart, lhc);
+ break;
+ }
+ case 5: /* 2 - 2 - 18 - 18 */
+ { U32 const lhc = hType + (3 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<22);
+ MEM_writeLE32(ostart, lhc);
+ ostart[4] = (BYTE)(cLitSize >> 10);
+ break;
+ }
+ default: /* not possible : lhSize is {3,4,5} */
+ assert(0);
+ }
+ *entropyWritten = 1;
+ DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart));
+ return op-ostart;
+}
+
+static size_t ZSTD_seqDecompressedSize(seqStore_t const* seqStore, const seqDef* sequences, size_t nbSeq, size_t litSize, int lastSequence) {
+ const seqDef* const sstart = sequences;
+ const seqDef* const send = sequences + nbSeq;
+ const seqDef* sp = sstart;
+ size_t matchLengthSum = 0;
+ size_t litLengthSum = 0;
+ while (send-sp > 0) {
+ ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp);
+ litLengthSum += seqLen.litLength;
+ matchLengthSum += seqLen.matchLength;
+ sp++;
+ }
+ assert(litLengthSum <= litSize);
+ if (!lastSequence) {
+ assert(litLengthSum == litSize);
+ }
+ return matchLengthSum + litSize;
+}
+
+/* ZSTD_compressSubBlock_sequences() :
+ * Compresses sequences section for a sub-block.
+ * fseMetadata->llType, fseMetadata->ofType, and fseMetadata->mlType have
+ * symbol compression modes for the super-block.
+ * The first successfully compressed block will have these in its header.
+ * We set entropyWritten=1 when we succeed in compressing the sequences.
+ * The following sub-blocks will always have repeat mode.
+ * @return : compressed size of sequences section of a sub-block
+ * Or 0 if it is unable to compress
+ * Or error code. */
+static size_t ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
+ const ZSTD_fseCTablesMetadata_t* fseMetadata,
+ const seqDef* sequences, size_t nbSeq,
+ const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ const int bmi2, int writeEntropy, int* entropyWritten)
+{
+ const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ BYTE* seqHead;
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (nbSeq=%zu, writeEntropy=%d, longOffsets=%d)", nbSeq, writeEntropy, longOffsets);
+
+ *entropyWritten = 0;
+ /* Sequences Header */
+ RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
+ dstSize_tooSmall, "");
+ if (nbSeq < 0x7F)
+ *op++ = (BYTE)nbSeq;
+ else if (nbSeq < LONGNBSEQ)
+ op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
+ else
+ op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
+ if (nbSeq==0) {
+ return op - ostart;
+ }
+
+ /* seqHead : flags for FSE encoding type */
+ seqHead = op++;
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (seqHeadSize=%u)", (unsigned)(op-ostart));
+
+ if (writeEntropy) {
+ const U32 LLtype = fseMetadata->llType;
+ const U32 Offtype = fseMetadata->ofType;
+ const U32 MLtype = fseMetadata->mlType;
+ DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (fseTablesSize=%zu)", fseMetadata->fseTablesSize);
+ *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
+ ZSTD_memcpy(op, fseMetadata->fseTablesBuffer, fseMetadata->fseTablesSize);
+ op += fseMetadata->fseTablesSize;
+ } else {
+ const U32 repeat = set_repeat;
+ *seqHead = (BYTE)((repeat<<6) + (repeat<<4) + (repeat<<2));
+ }
+
+ { size_t const bitstreamSize = ZSTD_encodeSequences(
+ op, oend - op,
+ fseTables->matchlengthCTable, mlCode,
+ fseTables->offcodeCTable, ofCode,
+ fseTables->litlengthCTable, llCode,
+ sequences, nbSeq,
+ longOffsets, bmi2);
+ FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
+ op += bitstreamSize;
+ /* zstd versions <= 1.3.4 mistakenly report corruption when
+ * FSE_readNCount() receives a buffer < 4 bytes.
+ * Fixed by https://github.com/facebook/zstd/pull/1146.
+ * This can happen when the last set_compressed table present is 2
+ * bytes and the bitstream is only one byte.
+ * In this exceedingly rare case, we will simply emit an uncompressed
+ * block, since it isn't worth optimizing.
+ */
+#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ if (writeEntropy && fseMetadata->lastCountSize && fseMetadata->lastCountSize + bitstreamSize < 4) {
+ /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
+ assert(fseMetadata->lastCountSize + bitstreamSize == 3);
+ DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
+ "emitting an uncompressed block.");
+ return 0;
+ }
+#endif
+ DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (bitstreamSize=%zu)", bitstreamSize);
+ }
+
+ /* zstd versions <= 1.4.0 mistakenly report error when
+ * sequences section body size is less than 3 bytes.
+ * Fixed by https://github.com/facebook/zstd/pull/1664.
+ * This can happen when the previous sequences section block is compressed
+ * with rle mode and the current block's sequences section is compressed
+ * with repeat mode where sequences section body size can be 1 byte.
+ */
+#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ if (op-seqHead < 4) {
+ DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.4.0 by emitting "
+ "an uncompressed block when sequences are < 4 bytes");
+ return 0;
+ }
+#endif
+
+ *entropyWritten = 1;
+ return op - ostart;
+}
+
+/* ZSTD_compressSubBlock() :
+ * Compresses a single sub-block.
+ * @return : compressed size of the sub-block
+ * Or 0 if it failed to compress. */
+static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
+ const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ const seqDef* sequences, size_t nbSeq,
+ const BYTE* literals, size_t litSize,
+ const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ const int bmi2,
+ int writeLitEntropy, int writeSeqEntropy,
+ int* litEntropyWritten, int* seqEntropyWritten,
+ U32 lastBlock)
+{
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart + ZSTD_blockHeaderSize;
+ DEBUGLOG(5, "ZSTD_compressSubBlock (litSize=%zu, nbSeq=%zu, writeLitEntropy=%d, writeSeqEntropy=%d, lastBlock=%d)",
+ litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock);
+ { size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable,
+ &entropyMetadata->hufMetadata, literals, litSize,
+ op, oend-op, bmi2, writeLitEntropy, litEntropyWritten);
+ FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed");
+ if (cLitSize == 0) return 0;
+ op += cLitSize;
+ }
+ { size_t cSeqSize = ZSTD_compressSubBlock_sequences(&entropy->fse,
+ &entropyMetadata->fseMetadata,
+ sequences, nbSeq,
+ llCode, mlCode, ofCode,
+ cctxParams,
+ op, oend-op,
+ bmi2, writeSeqEntropy, seqEntropyWritten);
+ FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed");
+ if (cSeqSize == 0) return 0;
+ op += cSeqSize;
+ }
+ /* Write block header */
+ { size_t cSize = (op-ostart)-ZSTD_blockHeaderSize;
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
+ MEM_writeLE24(ostart, cBlockHeader24);
+ }
+ return op-ostart;
+}
+
+static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize,
+ const ZSTD_hufCTables_t* huf,
+ const ZSTD_hufCTablesMetadata_t* hufMetadata,
+ void* workspace, size_t wkspSize,
+ int writeEntropy)
+{
+ unsigned* const countWksp = (unsigned*)workspace;
+ unsigned maxSymbolValue = 255;
+ size_t literalSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
+
+ if (hufMetadata->hType == set_basic) return litSize;
+ else if (hufMetadata->hType == set_rle) return 1;
+ else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) {
+ size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize);
+ if (ZSTD_isError(largest)) return litSize;
+ { size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue);
+ if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize;
+ return cLitSizeEstimate + literalSectionHeaderSize;
+ } }
+ assert(0); /* impossible */
+ return 0;
+}
+
+static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type,
+ const BYTE* codeTable, unsigned maxCode,
+ size_t nbSeq, const FSE_CTable* fseCTable,
+ const U32* additionalBits,
+ short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
+ void* workspace, size_t wkspSize)
+{
+ unsigned* const countWksp = (unsigned*)workspace;
+ const BYTE* ctp = codeTable;
+ const BYTE* const ctStart = ctp;
+ const BYTE* const ctEnd = ctStart + nbSeq;
+ size_t cSymbolTypeSizeEstimateInBits = 0;
+ unsigned max = maxCode;
+
+ HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */
+ if (type == set_basic) {
+ /* We selected this encoding type, so it must be valid. */
+ assert(max <= defaultMax);
+ cSymbolTypeSizeEstimateInBits = max <= defaultMax
+ ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max)
+ : ERROR(GENERIC);
+ } else if (type == set_rle) {
+ cSymbolTypeSizeEstimateInBits = 0;
+ } else if (type == set_compressed || type == set_repeat) {
+ cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max);
+ }
+ if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) return nbSeq * 10;
+ while (ctp < ctEnd) {
+ if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp];
+ else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */
+ ctp++;
+ }
+ return cSymbolTypeSizeEstimateInBits / 8;
+}
+
+static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable,
+ const BYTE* llCodeTable,
+ const BYTE* mlCodeTable,
+ size_t nbSeq,
+ const ZSTD_fseCTables_t* fseTables,
+ const ZSTD_fseCTablesMetadata_t* fseMetadata,
+ void* workspace, size_t wkspSize,
+ int writeEntropy)
+{
+ size_t sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
+ size_t cSeqSizeEstimate = 0;
+ cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, MaxOff,
+ nbSeq, fseTables->offcodeCTable, NULL,
+ OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
+ workspace, wkspSize);
+ cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->llType, llCodeTable, MaxLL,
+ nbSeq, fseTables->litlengthCTable, LL_bits,
+ LL_defaultNorm, LL_defaultNormLog, MaxLL,
+ workspace, wkspSize);
+ cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, MaxML,
+ nbSeq, fseTables->matchlengthCTable, ML_bits,
+ ML_defaultNorm, ML_defaultNormLog, MaxML,
+ workspace, wkspSize);
+ if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize;
+ return cSeqSizeEstimate + sequencesSectionHeaderSize;
+}
+
+static size_t ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
+ const BYTE* ofCodeTable,
+ const BYTE* llCodeTable,
+ const BYTE* mlCodeTable,
+ size_t nbSeq,
+ const ZSTD_entropyCTables_t* entropy,
+ const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ void* workspace, size_t wkspSize,
+ int writeLitEntropy, int writeSeqEntropy) {
+ size_t cSizeEstimate = 0;
+ cSizeEstimate += ZSTD_estimateSubBlockSize_literal(literals, litSize,
+ &entropy->huf, &entropyMetadata->hufMetadata,
+ workspace, wkspSize, writeLitEntropy);
+ cSizeEstimate += ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
+ nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
+ workspace, wkspSize, writeSeqEntropy);
+ return cSizeEstimate + ZSTD_blockHeaderSize;
+}
+
+static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata)
+{
+ if (fseMetadata->llType == set_compressed || fseMetadata->llType == set_rle)
+ return 1;
+ if (fseMetadata->mlType == set_compressed || fseMetadata->mlType == set_rle)
+ return 1;
+ if (fseMetadata->ofType == set_compressed || fseMetadata->ofType == set_rle)
+ return 1;
+ return 0;
+}
+
+/* ZSTD_compressSubBlock_multi() :
+ * Breaks super-block into multiple sub-blocks and compresses them.
+ * Entropy will be written to the first block.
+ * The following blocks will use repeat mode to compress.
+ * All sub-blocks are compressed blocks (no raw or rle blocks).
+ * @return : compressed size of the super block (which is multiple ZSTD blocks)
+ * Or 0 if it failed to compress. */
+static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
+ const ZSTD_compressedBlockState_t* prevCBlock,
+ ZSTD_compressedBlockState_t* nextCBlock,
+ const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
+ const ZSTD_CCtx_params* cctxParams,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const int bmi2, U32 lastBlock,
+ void* workspace, size_t wkspSize)
+{
+ const seqDef* const sstart = seqStorePtr->sequencesStart;
+ const seqDef* const send = seqStorePtr->sequences;
+ const seqDef* sp = sstart;
+ const BYTE* const lstart = seqStorePtr->litStart;
+ const BYTE* const lend = seqStorePtr->lit;
+ const BYTE* lp = lstart;
+ BYTE const* ip = (BYTE const*)src;
+ BYTE const* const iend = ip + srcSize;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + dstCapacity;
+ BYTE* op = ostart;
+ const BYTE* llCodePtr = seqStorePtr->llCode;
+ const BYTE* mlCodePtr = seqStorePtr->mlCode;
+ const BYTE* ofCodePtr = seqStorePtr->ofCode;
+ size_t targetCBlockSize = cctxParams->targetCBlockSize;
+ size_t litSize, seqCount;
+ int writeLitEntropy = entropyMetadata->hufMetadata.hType == set_compressed;
+ int writeSeqEntropy = 1;
+ int lastSequence = 0;
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi (litSize=%u, nbSeq=%u)",
+ (unsigned)(lend-lp), (unsigned)(send-sstart));
+
+ litSize = 0;
+ seqCount = 0;
+ do {
+ size_t cBlockSizeEstimate = 0;
+ if (sstart == send) {
+ lastSequence = 1;
+ } else {
+ const seqDef* const sequence = sp + seqCount;
+ lastSequence = sequence == send - 1;
+ litSize += ZSTD_getSequenceLength(seqStorePtr, sequence).litLength;
+ seqCount++;
+ }
+ if (lastSequence) {
+ assert(lp <= lend);
+ assert(litSize <= (size_t)(lend - lp));
+ litSize = (size_t)(lend - lp);
+ }
+ /* I think there is an optimization opportunity here.
+ * Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful
+ * since it recalculates estimate from scratch.
+ * For example, it would recount literal distribution and symbol codes everytime.
+ */
+ cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount,
+ &nextCBlock->entropy, entropyMetadata,
+ workspace, wkspSize, writeLitEntropy, writeSeqEntropy);
+ if (cBlockSizeEstimate > targetCBlockSize || lastSequence) {
+ int litEntropyWritten = 0;
+ int seqEntropyWritten = 0;
+ const size_t decompressedSize = ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, lastSequence);
+ const size_t cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
+ sp, seqCount,
+ lp, litSize,
+ llCodePtr, mlCodePtr, ofCodePtr,
+ cctxParams,
+ op, oend-op,
+ bmi2, writeLitEntropy, writeSeqEntropy,
+ &litEntropyWritten, &seqEntropyWritten,
+ lastBlock && lastSequence);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
+ if (cSize > 0 && cSize < decompressedSize) {
+ DEBUGLOG(5, "Committed the sub-block");
+ assert(ip + decompressedSize <= iend);
+ ip += decompressedSize;
+ sp += seqCount;
+ lp += litSize;
+ op += cSize;
+ llCodePtr += seqCount;
+ mlCodePtr += seqCount;
+ ofCodePtr += seqCount;
+ litSize = 0;
+ seqCount = 0;
+ /* Entropy only needs to be written once */
+ if (litEntropyWritten) {
+ writeLitEntropy = 0;
+ }
+ if (seqEntropyWritten) {
+ writeSeqEntropy = 0;
+ }
+ }
+ }
+ } while (!lastSequence);
+ if (writeLitEntropy) {
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi has literal entropy tables unwritten");
+ ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf));
+ }
+ if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) {
+ /* If we haven't written our entropy tables, then we've violated our contract and
+ * must emit an uncompressed block.
+ */
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi has sequence entropy tables unwritten");
+ return 0;
+ }
+ if (ip < iend) {
+ size_t const cSize = ZSTD_noCompressBlock(op, oend - op, ip, iend - ip, lastBlock);
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi last sub-block uncompressed, %zu bytes", (size_t)(iend - ip));
+ FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
+ assert(cSize != 0);
+ op += cSize;
+ /* We have to regenerate the repcodes because we've skipped some sequences */
+ if (sp < send) {
+ seqDef const* seq;
+ repcodes_t rep;
+ ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
+ for (seq = sstart; seq < sp; ++seq) {
+ rep = ZSTD_updateRep(rep.rep, seq->offset - 1, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
+ }
+ ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
+ }
+ }
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed");
+ return op-ostart;
+}
+
+size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ void const* src, size_t srcSize,
+ unsigned lastBlock) {
+ ZSTD_entropyCTablesMetadata_t entropyMetadata;
+
+ FORWARD_IF_ERROR(ZSTD_buildSuperBlockEntropy(&zc->seqStore,
+ &zc->blockState.prevCBlock->entropy,
+ &zc->blockState.nextCBlock->entropy,
+ &zc->appliedParams,
+ &entropyMetadata,
+ zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */), "");
+
+ return ZSTD_compressSubBlock_multi(&zc->seqStore,
+ zc->blockState.prevCBlock,
+ zc->blockState.nextCBlock,
+ &entropyMetadata,
+ &zc->appliedParams,
+ dst, dstCapacity,
+ src, srcSize,
+ zc->bmi2, lastBlock,
+ zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */);
+}
diff --git a/lib/zstd/compress/zstd_compress_superblock.h b/lib/zstd/compress/zstd_compress_superblock.h
new file mode 100644
index 000000000000..224ece79546e
--- /dev/null
+++ b/lib/zstd/compress/zstd_compress_superblock.h
@@ -0,0 +1,32 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_COMPRESS_ADVANCED_H
+#define ZSTD_COMPRESS_ADVANCED_H
+
+/*-*************************************
+* Dependencies
+***************************************/
+
+#include <linux/zstd.h> /* ZSTD_CCtx */
+
+/*-*************************************
+* Target Compressed Block Size
+***************************************/
+
+/* ZSTD_compressSuperBlock() :
+ * Used to compress a super block when targetCBlockSize is being used.
+ * The given block will be compressed into multiple sub blocks that are around targetCBlockSize. */
+size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
+ void* dst, size_t dstCapacity,
+ void const* src, size_t srcSize,
+ unsigned lastBlock);
+
+#endif /* ZSTD_COMPRESS_ADVANCED_H */
diff --git a/lib/zstd/compress/zstd_cwksp.h b/lib/zstd/compress/zstd_cwksp.h
new file mode 100644
index 000000000000..98e359adf5d4
--- /dev/null
+++ b/lib/zstd/compress/zstd_cwksp.h
@@ -0,0 +1,482 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_CWKSP_H
+#define ZSTD_CWKSP_H
+
+/*-*************************************
+* Dependencies
+***************************************/
+#include "../common/zstd_internal.h"
+
+
+/*-*************************************
+* Constants
+***************************************/
+
+/* Since the workspace is effectively its own little malloc implementation /
+ * arena, when we run under ASAN, we should similarly insert redzones between
+ * each internal element of the workspace, so ASAN will catch overruns that
+ * reach outside an object but that stay inside the workspace.
+ *
+ * This defines the size of that redzone.
+ */
+#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
+#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
+#endif
+
+/*-*************************************
+* Structures
+***************************************/
+typedef enum {
+ ZSTD_cwksp_alloc_objects,
+ ZSTD_cwksp_alloc_buffers,
+ ZSTD_cwksp_alloc_aligned
+} ZSTD_cwksp_alloc_phase_e;
+
+/*
+ * Used to describe whether the workspace is statically allocated (and will not
+ * necessarily ever be freed), or if it's dynamically allocated and we can
+ * expect a well-formed caller to free this.
+ */
+typedef enum {
+ ZSTD_cwksp_dynamic_alloc,
+ ZSTD_cwksp_static_alloc
+} ZSTD_cwksp_static_alloc_e;
+
+/*
+ * Zstd fits all its internal datastructures into a single continuous buffer,
+ * so that it only needs to perform a single OS allocation (or so that a buffer
+ * can be provided to it and it can perform no allocations at all). This buffer
+ * is called the workspace.
+ *
+ * Several optimizations complicate that process of allocating memory ranges
+ * from this workspace for each internal datastructure:
+ *
+ * - These different internal datastructures have different setup requirements:
+ *
+ * - The static objects need to be cleared once and can then be trivially
+ * reused for each compression.
+ *
+ * - Various buffers don't need to be initialized at all--they are always
+ * written into before they're read.
+ *
+ * - The matchstate tables have a unique requirement that they don't need
+ * their memory to be totally cleared, but they do need the memory to have
+ * some bound, i.e., a guarantee that all values in the memory they've been
+ * allocated is less than some maximum value (which is the starting value
+ * for the indices that they will then use for compression). When this
+ * guarantee is provided to them, they can use the memory without any setup
+ * work. When it can't, they have to clear the area.
+ *
+ * - These buffers also have different alignment requirements.
+ *
+ * - We would like to reuse the objects in the workspace for multiple
+ * compressions without having to perform any expensive reallocation or
+ * reinitialization work.
+ *
+ * - We would like to be able to efficiently reuse the workspace across
+ * multiple compressions **even when the compression parameters change** and
+ * we need to resize some of the objects (where possible).
+ *
+ * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
+ * abstraction was created. It works as follows:
+ *
+ * Workspace Layout:
+ *
+ * [ ... workspace ... ]
+ * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
+ *
+ * The various objects that live in the workspace are divided into the
+ * following categories, and are allocated separately:
+ *
+ * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
+ * so that literally everything fits in a single buffer. Note: if present,
+ * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
+ * CDict}() rely on a pointer comparison to see whether one or two frees are
+ * required.
+ *
+ * - Fixed size objects: these are fixed-size, fixed-count objects that are
+ * nonetheless "dynamically" allocated in the workspace so that we can
+ * control how they're initialized separately from the broader ZSTD_CCtx.
+ * Examples:
+ * - Entropy Workspace
+ * - 2 x ZSTD_compressedBlockState_t
+ * - CDict dictionary contents
+ *
+ * - Tables: these are any of several different datastructures (hash tables,
+ * chain tables, binary trees) that all respect a common format: they are
+ * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
+ * Their sizes depend on the cparams.
+ *
+ * - Aligned: these buffers are used for various purposes that require 4 byte
+ * alignment, but don't require any initialization before they're used.
+ *
+ * - Buffers: these buffers are used for various purposes that don't require
+ * any alignment or initialization before they're used. This means they can
+ * be moved around at no cost for a new compression.
+ *
+ * Allocating Memory:
+ *
+ * The various types of objects must be allocated in order, so they can be
+ * correctly packed into the workspace buffer. That order is:
+ *
+ * 1. Objects
+ * 2. Buffers
+ * 3. Aligned
+ * 4. Tables
+ *
+ * Attempts to reserve objects of different types out of order will fail.
+ */
+typedef struct {
+ void* workspace;
+ void* workspaceEnd;
+
+ void* objectEnd;
+ void* tableEnd;
+ void* tableValidEnd;
+ void* allocStart;
+
+ BYTE allocFailed;
+ int workspaceOversizedDuration;
+ ZSTD_cwksp_alloc_phase_e phase;
+ ZSTD_cwksp_static_alloc_e isStatic;
+} ZSTD_cwksp;
+
+/*-*************************************
+* Functions
+***************************************/
+
+MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
+
+MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
+ (void)ws;
+ assert(ws->workspace <= ws->objectEnd);
+ assert(ws->objectEnd <= ws->tableEnd);
+ assert(ws->objectEnd <= ws->tableValidEnd);
+ assert(ws->tableEnd <= ws->allocStart);
+ assert(ws->tableValidEnd <= ws->allocStart);
+ assert(ws->allocStart <= ws->workspaceEnd);
+}
+
+/*
+ * Align must be a power of 2.
+ */
+MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
+ size_t const mask = align - 1;
+ assert((align & mask) == 0);
+ return (size + mask) & ~mask;
+}
+
+/*
+ * Use this to determine how much space in the workspace we will consume to
+ * allocate this object. (Normally it should be exactly the size of the object,
+ * but under special conditions, like ASAN, where we pad each object, it might
+ * be larger.)
+ *
+ * Since tables aren't currently redzoned, you don't need to call through this
+ * to figure out how much space you need for the matchState tables. Everything
+ * else is though.
+ */
+MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
+ if (size == 0)
+ return 0;
+ return size;
+}
+
+MEM_STATIC void ZSTD_cwksp_internal_advance_phase(
+ ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) {
+ assert(phase >= ws->phase);
+ if (phase > ws->phase) {
+ if (ws->phase < ZSTD_cwksp_alloc_buffers &&
+ phase >= ZSTD_cwksp_alloc_buffers) {
+ ws->tableValidEnd = ws->objectEnd;
+ }
+ if (ws->phase < ZSTD_cwksp_alloc_aligned &&
+ phase >= ZSTD_cwksp_alloc_aligned) {
+ /* If unaligned allocations down from a too-large top have left us
+ * unaligned, we need to realign our alloc ptr. Technically, this
+ * can consume space that is unaccounted for in the neededSpace
+ * calculation. However, I believe this can only happen when the
+ * workspace is too large, and specifically when it is too large
+ * by a larger margin than the space that will be consumed. */
+ /* TODO: cleaner, compiler warning friendly way to do this??? */
+ ws->allocStart = (BYTE*)ws->allocStart - ((size_t)ws->allocStart & (sizeof(U32)-1));
+ if (ws->allocStart < ws->tableValidEnd) {
+ ws->tableValidEnd = ws->allocStart;
+ }
+ }
+ ws->phase = phase;
+ }
+}
+
+/*
+ * Returns whether this object/buffer/etc was allocated in this workspace.
+ */
+MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) {
+ return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
+}
+
+/*
+ * Internal function. Do not use directly.
+ */
+MEM_STATIC void* ZSTD_cwksp_reserve_internal(
+ ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) {
+ void* alloc;
+ void* bottom = ws->tableEnd;
+ ZSTD_cwksp_internal_advance_phase(ws, phase);
+ alloc = (BYTE *)ws->allocStart - bytes;
+
+ if (bytes == 0)
+ return NULL;
+
+
+ DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
+ alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
+ ZSTD_cwksp_assert_internal_consistency(ws);
+ assert(alloc >= bottom);
+ if (alloc < bottom) {
+ DEBUGLOG(4, "cwksp: alloc failed!");
+ ws->allocFailed = 1;
+ return NULL;
+ }
+ if (alloc < ws->tableValidEnd) {
+ ws->tableValidEnd = alloc;
+ }
+ ws->allocStart = alloc;
+
+
+ return alloc;
+}
+
+/*
+ * Reserves and returns unaligned memory.
+ */
+MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) {
+ return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
+}
+
+/*
+ * Reserves and returns memory sized on and aligned on sizeof(unsigned).
+ */
+MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
+ assert((bytes & (sizeof(U32)-1)) == 0);
+ return ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, sizeof(U32)), ZSTD_cwksp_alloc_aligned);
+}
+
+/*
+ * Aligned on sizeof(unsigned). These buffers have the special property that
+ * their values remain constrained, allowing us to re-use them without
+ * memset()-ing them.
+ */
+MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
+ const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
+ void* alloc = ws->tableEnd;
+ void* end = (BYTE *)alloc + bytes;
+ void* top = ws->allocStart;
+
+ DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
+ alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
+ assert((bytes & (sizeof(U32)-1)) == 0);
+ ZSTD_cwksp_internal_advance_phase(ws, phase);
+ ZSTD_cwksp_assert_internal_consistency(ws);
+ assert(end <= top);
+ if (end > top) {
+ DEBUGLOG(4, "cwksp: table alloc failed!");
+ ws->allocFailed = 1;
+ return NULL;
+ }
+ ws->tableEnd = end;
+
+
+ return alloc;
+}
+
+/*
+ * Aligned on sizeof(void*).
+ */
+MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
+ size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
+ void* alloc = ws->objectEnd;
+ void* end = (BYTE*)alloc + roundedBytes;
+
+
+ DEBUGLOG(5,
+ "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
+ alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
+ assert(((size_t)alloc & (sizeof(void*)-1)) == 0);
+ assert((bytes & (sizeof(void*)-1)) == 0);
+ ZSTD_cwksp_assert_internal_consistency(ws);
+ /* we must be in the first phase, no advance is possible */
+ if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
+ DEBUGLOG(4, "cwksp: object alloc failed!");
+ ws->allocFailed = 1;
+ return NULL;
+ }
+ ws->objectEnd = end;
+ ws->tableEnd = end;
+ ws->tableValidEnd = end;
+
+
+ return alloc;
+}
+
+MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) {
+ DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
+
+
+ assert(ws->tableValidEnd >= ws->objectEnd);
+ assert(ws->tableValidEnd <= ws->allocStart);
+ ws->tableValidEnd = ws->objectEnd;
+ ZSTD_cwksp_assert_internal_consistency(ws);
+}
+
+MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
+ DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
+ assert(ws->tableValidEnd >= ws->objectEnd);
+ assert(ws->tableValidEnd <= ws->allocStart);
+ if (ws->tableValidEnd < ws->tableEnd) {
+ ws->tableValidEnd = ws->tableEnd;
+ }
+ ZSTD_cwksp_assert_internal_consistency(ws);
+}
+
+/*
+ * Zero the part of the allocated tables not already marked clean.
+ */
+MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
+ DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
+ assert(ws->tableValidEnd >= ws->objectEnd);
+ assert(ws->tableValidEnd <= ws->allocStart);
+ if (ws->tableValidEnd < ws->tableEnd) {
+ ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
+ }
+ ZSTD_cwksp_mark_tables_clean(ws);
+}
+
+/*
+ * Invalidates table allocations.
+ * All other allocations remain valid.
+ */
+MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
+ DEBUGLOG(4, "cwksp: clearing tables!");
+
+
+ ws->tableEnd = ws->objectEnd;
+ ZSTD_cwksp_assert_internal_consistency(ws);
+}
+
+/*
+ * Invalidates all buffer, aligned, and table allocations.
+ * Object allocations remain valid.
+ */
+MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
+ DEBUGLOG(4, "cwksp: clearing!");
+
+
+
+ ws->tableEnd = ws->objectEnd;
+ ws->allocStart = ws->workspaceEnd;
+ ws->allocFailed = 0;
+ if (ws->phase > ZSTD_cwksp_alloc_buffers) {
+ ws->phase = ZSTD_cwksp_alloc_buffers;
+ }
+ ZSTD_cwksp_assert_internal_consistency(ws);
+}
+
+/*
+ * The provided workspace takes ownership of the buffer [start, start+size).
+ * Any existing values in the workspace are ignored (the previously managed
+ * buffer, if present, must be separately freed).
+ */
+MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
+ DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
+ assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
+ ws->workspace = start;
+ ws->workspaceEnd = (BYTE*)start + size;
+ ws->objectEnd = ws->workspace;
+ ws->tableValidEnd = ws->objectEnd;
+ ws->phase = ZSTD_cwksp_alloc_objects;
+ ws->isStatic = isStatic;
+ ZSTD_cwksp_clear(ws);
+ ws->workspaceOversizedDuration = 0;
+ ZSTD_cwksp_assert_internal_consistency(ws);
+}
+
+MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
+ void* workspace = ZSTD_customMalloc(size, customMem);
+ DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
+ RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
+ ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
+ return 0;
+}
+
+MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
+ void *ptr = ws->workspace;
+ DEBUGLOG(4, "cwksp: freeing workspace");
+ ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
+ ZSTD_customFree(ptr, customMem);
+}
+
+/*
+ * Moves the management of a workspace from one cwksp to another. The src cwksp
+ * is left in an invalid state (src must be re-init()'ed before it's used again).
+ */
+MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
+ *dst = *src;
+ ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
+}
+
+MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
+ return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
+}
+
+MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
+ return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
+}
+
+MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
+ return ws->allocFailed;
+}
+
+/*-*************************************
+* Functions Checking Free Space
+***************************************/
+
+MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
+ return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
+}
+
+MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
+ return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
+}
+
+MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
+ return ZSTD_cwksp_check_available(
+ ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
+}
+
+MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
+ return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
+ && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
+}
+
+MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
+ ZSTD_cwksp* ws, size_t additionalNeededSpace) {
+ if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
+ ws->workspaceOversizedDuration++;
+ } else {
+ ws->workspaceOversizedDuration = 0;
+ }
+}
+
+
+#endif /* ZSTD_CWKSP_H */
diff --git a/lib/zstd/compress/zstd_double_fast.c b/lib/zstd/compress/zstd_double_fast.c
new file mode 100644
index 000000000000..b0424d23ac57
--- /dev/null
+++ b/lib/zstd/compress/zstd_double_fast.c
@@ -0,0 +1,519 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "zstd_double_fast.h"
+
+
+void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashLarge = ms->hashTable;
+ U32 const hBitsL = cParams->hashLog;
+ U32 const mls = cParams->minMatch;
+ U32* const hashSmall = ms->chainTable;
+ U32 const hBitsS = cParams->chainLog;
+ const BYTE* const base = ms->window.base;
+ const BYTE* ip = base + ms->nextToUpdate;
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+ const U32 fastHashFillStep = 3;
+
+ /* Always insert every fastHashFillStep position into the hash tables.
+ * Insert the other positions into the large hash table if their entry
+ * is empty.
+ */
+ for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
+ U32 const curr = (U32)(ip - base);
+ U32 i;
+ for (i = 0; i < fastHashFillStep; ++i) {
+ size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
+ size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
+ if (i == 0)
+ hashSmall[smHash] = curr + i;
+ if (i == 0 || hashLarge[lgHash] == 0)
+ hashLarge[lgHash] = curr + i;
+ /* Only load extra positions for ZSTD_dtlm_full */
+ if (dtlm == ZSTD_dtlm_fast)
+ break;
+ } }
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_doubleFast_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls /* template */, ZSTD_dictMode_e const dictMode)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32* const hashLong = ms->hashTable;
+ const U32 hBitsL = cParams->hashLog;
+ U32* const hashSmall = ms->chainTable;
+ const U32 hBitsS = cParams->chainLog;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ /* presumes that, if there is a dictionary, it must be using Attach mode */
+ const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
+ const BYTE* const prefixLowest = base + prefixLowestIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dictCParams =
+ dictMode == ZSTD_dictMatchState ?
+ &dms->cParams : NULL;
+ const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ?
+ dms->hashTable : NULL;
+ const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ?
+ dms->chainTable : NULL;
+ const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
+ dms->window.dictLimit : 0;
+ const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
+ dms->window.base : NULL;
+ const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
+ dictBase + dictStartIndex : NULL;
+ const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
+ dms->window.nextSrc : NULL;
+ const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
+ prefixLowestIndex - (U32)(dictEnd - dictBase) :
+ 0;
+ const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ?
+ dictCParams->hashLog : hBitsL;
+ const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ?
+ dictCParams->chainLog : hBitsS;
+ const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
+
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_generic");
+
+ assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
+
+ /* if a dictionary is attached, it must be within window range */
+ if (dictMode == ZSTD_dictMatchState) {
+ assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
+ }
+
+ /* init */
+ ip += (dictAndPrefixLength == 0);
+ if (dictMode == ZSTD_noDict) {
+ U32 const curr = (U32)(ip - base);
+ U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
+ U32 const maxRep = curr - windowLow;
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ }
+ if (dictMode == ZSTD_dictMatchState) {
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+ }
+
+ /* Main Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
+ size_t mLength;
+ U32 offset;
+ size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
+ size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
+ size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8);
+ size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls);
+ U32 const curr = (U32)(ip-base);
+ U32 const matchIndexL = hashLong[h2];
+ U32 matchIndexS = hashSmall[h];
+ const BYTE* matchLong = base + matchIndexL;
+ const BYTE* match = base + matchIndexS;
+ const U32 repIndex = curr + 1 - offset_1;
+ const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
+ && repIndex < prefixLowestIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
+
+ /* check dictMatchState repcode */
+ if (dictMode == ZSTD_dictMatchState
+ && ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ goto _match_stored;
+ }
+
+ /* check noDict repcode */
+ if ( dictMode == ZSTD_noDict
+ && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
+ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ goto _match_stored;
+ }
+
+ if (matchIndexL > prefixLowestIndex) {
+ /* check prefix long match */
+ if (MEM_read64(matchLong) == MEM_read64(ip)) {
+ mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
+ offset = (U32)(ip-matchLong);
+ while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dictMatchState long match */
+ U32 const dictMatchIndexL = dictHashLong[dictHL];
+ const BYTE* dictMatchL = dictBase + dictMatchIndexL;
+ assert(dictMatchL < dictEnd);
+
+ if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
+ mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
+ offset = (U32)(curr - dictMatchIndexL - dictIndexDelta);
+ while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
+ goto _match_found;
+ } }
+
+ if (matchIndexS > prefixLowestIndex) {
+ /* check prefix short match */
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ goto _search_next_long;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dictMatchState short match */
+ U32 const dictMatchIndexS = dictHashSmall[dictHS];
+ match = dictBase + dictMatchIndexS;
+ matchIndexS = dictMatchIndexS + dictIndexDelta;
+
+ if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
+ goto _search_next_long;
+ } }
+
+ ip += ((ip-anchor) >> kSearchStrength) + 1;
+#if defined(__aarch64__)
+ PREFETCH_L1(ip+256);
+#endif
+ continue;
+
+_search_next_long:
+
+ { size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+ size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
+ U32 const matchIndexL3 = hashLong[hl3];
+ const BYTE* matchL3 = base + matchIndexL3;
+ hashLong[hl3] = curr + 1;
+
+ /* check prefix long +1 match */
+ if (matchIndexL3 > prefixLowestIndex) {
+ if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
+ mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
+ ip++;
+ offset = (U32)(ip-matchL3);
+ while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
+ goto _match_found;
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ /* check dict long +1 match */
+ U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
+ const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
+ assert(dictMatchL3 < dictEnd);
+ if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
+ mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
+ ip++;
+ offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta);
+ while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
+ goto _match_found;
+ } } }
+
+ /* if no long +1 match, explore the short match we found */
+ if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
+ offset = (U32)(curr - matchIndexS);
+ while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ } else {
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+ offset = (U32)(ip - match);
+ while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ }
+
+_match_found:
+ offset_2 = offset_1;
+ offset_1 = offset;
+
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+_match_stored:
+ /* match found */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Complementary insertion */
+ /* done after iLimit test, as candidates could be > iend-8 */
+ { U32 const indexToInsert = curr+2;
+ hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+ hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
+ hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
+ }
+
+ /* check immediate repcode */
+ if (dictMode == ZSTD_dictMatchState) {
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState
+ && repIndex2 < prefixLowestIndex ?
+ dictBase + repIndex2 - dictIndexDelta :
+ base + repIndex2;
+ if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } }
+
+ if (dictMode == ZSTD_noDict) {
+ while ( (ip <= ilimit)
+ && ( (offset_2>0)
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, rLength-MINMATCH);
+ ip += rLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ } } }
+ } /* while (ip < ilimit) */
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_doubleFast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const U32 mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
+ }
+}
+
+
+size_t ZSTD_compressBlock_doubleFast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const U32 mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
+ }
+}
+
+
+static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls /* template */)
+{
+ ZSTD_compressionParameters const* cParams = &ms->cParams;
+ U32* const hashLong = ms->hashTable;
+ U32 const hBitsL = cParams->hashLog;
+ U32* const hashSmall = ms->chainTable;
+ U32 const hBitsS = cParams->chainLog;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
+ const U32 dictStartIndex = lowLimit;
+ const U32 dictLimit = ms->window.dictLimit;
+ const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const BYTE* const dictEnd = dictBase + prefixStartIndex;
+ U32 offset_1=rep[0], offset_2=rep[1];
+
+ DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
+
+ /* if extDict is invalidated due to maxDistance, switch to "regular" variant */
+ if (prefixStartIndex == dictStartIndex)
+ return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, mls, ZSTD_noDict);
+
+ /* Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
+ const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
+ const U32 matchIndex = hashSmall[hSmall];
+ const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* match = matchBase + matchIndex;
+
+ const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
+ const U32 matchLongIndex = hashLong[hLong];
+ const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* matchLong = matchLongBase + matchLongIndex;
+
+ const U32 curr = (U32)(ip-base);
+ const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
+ const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ size_t mLength;
+ hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
+
+ if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
+ & (repIndex > dictStartIndex))
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ } else {
+ if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
+ const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
+ U32 offset;
+ mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
+ offset = curr - matchLongIndex;
+ while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+ } else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
+ size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+ U32 const matchIndex3 = hashLong[h3];
+ const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
+ const BYTE* match3 = match3Base + matchIndex3;
+ U32 offset;
+ hashLong[h3] = curr + 1;
+ if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
+ const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
+ mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
+ ip++;
+ offset = curr+1 - matchIndex3;
+ while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
+ } else {
+ const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
+ offset = curr - matchIndex;
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ }
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+ } else {
+ ip += ((ip-anchor) >> kSearchStrength) + 1;
+ continue;
+ } }
+
+ /* move to next sequence start */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Complementary insertion */
+ /* done after iLimit test, as candidates could be > iend-8 */
+ { U32 const indexToInsert = curr+2;
+ hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+ hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
+ hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
+ }
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
+ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
+ & (repIndex2 > dictStartIndex))
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } } }
+
+ /* save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_doubleFast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ U32 const mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
diff --git a/lib/zstd/compress/zstd_double_fast.h b/lib/zstd/compress/zstd_double_fast.h
new file mode 100644
index 000000000000..6822bde65a1d
--- /dev/null
+++ b/lib/zstd/compress/zstd_double_fast.h
@@ -0,0 +1,32 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_DOUBLE_FAST_H
+#define ZSTD_DOUBLE_FAST_H
+
+
+#include "../common/mem.h" /* U32 */
+#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
+
+void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm);
+size_t ZSTD_compressBlock_doubleFast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_doubleFast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_doubleFast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+
+#endif /* ZSTD_DOUBLE_FAST_H */
diff --git a/lib/zstd/compress/zstd_fast.c b/lib/zstd/compress/zstd_fast.c
new file mode 100644
index 000000000000..96b7d48e2868
--- /dev/null
+++ b/lib/zstd/compress/zstd_fast.c
@@ -0,0 +1,496 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
+#include "zstd_fast.h"
+
+
+void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
+ const void* const end,
+ ZSTD_dictTableLoadMethod_e dtlm)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hBits = cParams->hashLog;
+ U32 const mls = cParams->minMatch;
+ const BYTE* const base = ms->window.base;
+ const BYTE* ip = base + ms->nextToUpdate;
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+ const U32 fastHashFillStep = 3;
+
+ /* Always insert every fastHashFillStep position into the hash table.
+ * Insert the other positions if their hash entry is empty.
+ */
+ for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
+ U32 const curr = (U32)(ip - base);
+ size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
+ hashTable[hash0] = curr;
+ if (dtlm == ZSTD_dtlm_fast) continue;
+ /* Only load extra positions for ZSTD_dtlm_full */
+ { U32 p;
+ for (p = 1; p < fastHashFillStep; ++p) {
+ size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
+ if (hashTable[hash] == 0) { /* not yet filled */
+ hashTable[hash] = curr + p;
+ } } } }
+}
+
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_compressBlock_fast_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize,
+ U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ /* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */
+ const BYTE* ip0 = istart;
+ const BYTE* ip1;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ /* init */
+ DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
+ ip0 += (ip0 == prefixStart);
+ ip1 = ip0 + 1;
+ { U32 const curr = (U32)(ip0 - base);
+ U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
+ U32 const maxRep = curr - windowLow;
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+ }
+
+ /* Main Search Loop */
+#ifdef __INTEL_COMPILER
+ /* From intel 'The vector pragma indicates that the loop should be
+ * vectorized if it is legal to do so'. Can be used together with
+ * #pragma ivdep (but have opted to exclude that because intel
+ * warns against using it).*/
+ #pragma vector always
+#endif
+ while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */
+ size_t mLength;
+ BYTE const* ip2 = ip0 + 2;
+ size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls);
+ U32 const val0 = MEM_read32(ip0);
+ size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls);
+ U32 const val1 = MEM_read32(ip1);
+ U32 const current0 = (U32)(ip0-base);
+ U32 const current1 = (U32)(ip1-base);
+ U32 const matchIndex0 = hashTable[h0];
+ U32 const matchIndex1 = hashTable[h1];
+ BYTE const* repMatch = ip2 - offset_1;
+ const BYTE* match0 = base + matchIndex0;
+ const BYTE* match1 = base + matchIndex1;
+ U32 offcode;
+
+#if defined(__aarch64__)
+ PREFETCH_L1(ip0+256);
+#endif
+
+ hashTable[h0] = current0; /* update hash table */
+ hashTable[h1] = current1; /* update hash table */
+
+ assert(ip0 + 1 == ip1);
+
+ if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) {
+ mLength = (ip2[-1] == repMatch[-1]) ? 1 : 0;
+ ip0 = ip2 - mLength;
+ match0 = repMatch - mLength;
+ mLength += 4;
+ offcode = 0;
+ goto _match;
+ }
+ if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) {
+ /* found a regular match */
+ goto _offset;
+ }
+ if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) {
+ /* found a regular match after one literal */
+ ip0 = ip1;
+ match0 = match1;
+ goto _offset;
+ }
+ { size_t const step = ((size_t)(ip0-anchor) >> (kSearchStrength - 1)) + stepSize;
+ assert(step >= 2);
+ ip0 += step;
+ ip1 += step;
+ continue;
+ }
+_offset: /* Requires: ip0, match0 */
+ /* Compute the offset code */
+ offset_2 = offset_1;
+ offset_1 = (U32)(ip0-match0);
+ offcode = offset_1 + ZSTD_REP_MOVE;
+ mLength = 4;
+ /* Count the backwards match length */
+ while (((ip0>anchor) & (match0>prefixStart))
+ && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */
+
+_match: /* Requires: ip0, match0, offcode */
+ /* Count the forward length */
+ mLength += ZSTD_count(ip0+mLength, match0+mLength, iend);
+ ZSTD_storeSeq(seqStore, (size_t)(ip0-anchor), anchor, iend, offcode, mLength-MINMATCH);
+ /* match found */
+ ip0 += mLength;
+ anchor = ip0;
+
+ if (ip0 <= ilimit) {
+ /* Fill Table */
+ assert(base+current0+2 > istart); /* check base overflow */
+ hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
+ hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
+
+ if (offset_2 > 0) { /* offset_2==0 means offset_2 is invalidated */
+ while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) ) {
+ /* store sequence */
+ size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4;
+ { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
+ hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
+ ip0 += rLength;
+ ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, 0 /*offCode*/, rLength-MINMATCH);
+ anchor = ip0;
+ continue; /* faster when present (confirmed on gcc-8) ... (?) */
+ } } }
+ ip1 = ip0 + 1;
+ }
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_fast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ U32 const mls = ms->cParams.minMatch;
+ assert(ms->dictMatchState == NULL);
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_fast_dictMatchState_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize, U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
+ const BYTE* const base = ms->window.base;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 prefixStartIndex = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
+ U32 offset_1=rep[0], offset_2=rep[1];
+ U32 offsetSaved = 0;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
+ const U32* const dictHashTable = dms->hashTable;
+ const U32 dictStartIndex = dms->window.dictLimit;
+ const BYTE* const dictBase = dms->window.base;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const BYTE* const dictEnd = dms->window.nextSrc;
+ const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
+ const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
+ const U32 dictHLog = dictCParams->hashLog;
+
+ /* if a dictionary is still attached, it necessarily means that
+ * it is within window size. So we just check it. */
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 endIndex = (U32)((size_t)(ip - base) + srcSize);
+ assert(endIndex - prefixStartIndex <= maxDistance);
+ (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
+
+ /* ensure there will be no underflow
+ * when translating a dict index into a local index */
+ assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
+
+ /* init */
+ DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
+ ip += (dictAndPrefixLength == 0);
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+
+ /* Main Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
+ size_t mLength;
+ size_t const h = ZSTD_hashPtr(ip, hlog, mls);
+ U32 const curr = (U32)(ip-base);
+ U32 const matchIndex = hashTable[h];
+ const BYTE* match = base + matchIndex;
+ const U32 repIndex = curr + 1 - offset_1;
+ const BYTE* repMatch = (repIndex < prefixStartIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ hashTable[h] = curr; /* update hash table */
+
+ if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
+ } else if ( (matchIndex <= prefixStartIndex) ) {
+ size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
+ U32 const dictMatchIndex = dictHashTable[dictHash];
+ const BYTE* dictMatch = dictBase + dictMatchIndex;
+ if (dictMatchIndex <= dictStartIndex ||
+ MEM_read32(dictMatch) != MEM_read32(ip)) {
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ } else {
+ /* found a dict match */
+ U32 const offset = (U32)(curr-dictMatchIndex-dictIndexDelta);
+ mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
+ while (((ip>anchor) & (dictMatch>dictStart))
+ && (ip[-1] == dictMatch[-1])) {
+ ip--; dictMatch--; mLength++;
+ } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ }
+ } else if (MEM_read32(match) != MEM_read32(ip)) {
+ /* it's not a match, and we're not going to check the dictionary */
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ } else {
+ /* found a regular match */
+ U32 const offset = (U32)(ip-match);
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+ while (((ip>anchor) & (match>prefixStart))
+ && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ offset_2 = offset_1;
+ offset_1 = offset;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ }
+
+ /* match found */
+ ip += mLength;
+ anchor = ip;
+
+ if (ip <= ilimit) {
+ /* Fill Table */
+ assert(base+curr+2 > istart); /* check base overflow */
+ hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
+ hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
+ dictBase - dictIndexDelta + repIndex2 :
+ base + repIndex2;
+ if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
+ hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ }
+ }
+ }
+
+ /* save reps for next block */
+ rep[0] = offset_1 ? offset_1 : offsetSaved;
+ rep[1] = offset_2 ? offset_2 : offsetSaved;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+size_t ZSTD_compressBlock_fast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ U32 const mls = ms->cParams.minMatch;
+ assert(ms->dictMatchState != NULL);
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
+
+
+static size_t ZSTD_compressBlock_fast_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize, U32 const mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hlog = cParams->hashLog;
+ /* support stepSize of 0 */
+ U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
+ const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
+ const U32 dictStartIndex = lowLimit;
+ const BYTE* const dictStart = dictBase + dictStartIndex;
+ const U32 dictLimit = ms->window.dictLimit;
+ const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
+ const BYTE* const prefixStart = base + prefixStartIndex;
+ const BYTE* const dictEnd = dictBase + prefixStartIndex;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ U32 offset_1=rep[0], offset_2=rep[1];
+
+ DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
+
+ /* switch to "regular" variant if extDict is invalidated due to maxDistance */
+ if (prefixStartIndex == dictStartIndex)
+ return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, mls);
+
+ /* Search Loop */
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
+ const size_t h = ZSTD_hashPtr(ip, hlog, mls);
+ const U32 matchIndex = hashTable[h];
+ const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* match = matchBase + matchIndex;
+ const U32 curr = (U32)(ip-base);
+ const U32 repIndex = curr + 1 - offset_1;
+ const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ hashTable[h] = curr; /* update hash table */
+ DEBUGLOG(7, "offset_1 = %u , curr = %u", offset_1, curr);
+ assert(offset_1 <= curr +1); /* check repIndex */
+
+ if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
+ size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4;
+ ip++;
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, rLength-MINMATCH);
+ ip += rLength;
+ anchor = ip;
+ } else {
+ if ( (matchIndex < dictStartIndex) ||
+ (MEM_read32(match) != MEM_read32(ip)) ) {
+ assert(stepSize >= 1);
+ ip += ((ip-anchor) >> kSearchStrength) + stepSize;
+ continue;
+ }
+ { const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
+ const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
+ U32 const offset = curr - matchIndex;
+ size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+ offset_2 = offset_1; offset_1 = offset; /* update offset history */
+ ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+ ip += mLength;
+ anchor = ip;
+ } }
+
+ if (ip <= ilimit) {
+ /* Fill Table */
+ hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2;
+ hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex2 = current2 - offset_2;
+ const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
+ if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
+ size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
+ { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, 0 /*offcode*/, repLength2-MINMATCH);
+ hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
+ ip += repLength2;
+ anchor = ip;
+ continue;
+ }
+ break;
+ } } }
+
+ /* save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_fast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ U32 const mls = ms->cParams.minMatch;
+ switch(mls)
+ {
+ default: /* includes case 3 */
+ case 4 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
+ case 5 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
+ case 6 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
+ case 7 :
+ return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
+ }
+}
diff --git a/lib/zstd/compress/zstd_fast.h b/lib/zstd/compress/zstd_fast.h
new file mode 100644
index 000000000000..fddc2f532d21
--- /dev/null
+++ b/lib/zstd/compress/zstd_fast.h
@@ -0,0 +1,31 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_FAST_H
+#define ZSTD_FAST_H
+
+
+#include "../common/mem.h" /* U32 */
+#include "zstd_compress_internal.h"
+
+void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
+ void const* end, ZSTD_dictTableLoadMethod_e dtlm);
+size_t ZSTD_compressBlock_fast(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_fast_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_fast_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+#endif /* ZSTD_FAST_H */
diff --git a/lib/zstd/compress/zstd_lazy.c b/lib/zstd/compress/zstd_lazy.c
new file mode 100644
index 000000000000..fb54d4e28a2b
--- /dev/null
+++ b/lib/zstd/compress/zstd_lazy.c
@@ -0,0 +1,1414 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "zstd_lazy.h"
+
+
+/*-*************************************
+* Binary Tree search
+***************************************/
+
+static void
+ZSTD_updateDUBT(ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iend,
+ U32 mls)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+
+ const BYTE* const base = ms->window.base;
+ U32 const target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+
+ if (idx != target)
+ DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
+ idx, target, ms->window.dictLimit);
+ assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
+ (void)iend;
+
+ assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
+ for ( ; idx < target ; idx++) {
+ size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
+ U32 const matchIndex = hashTable[h];
+
+ U32* const nextCandidatePtr = bt + 2*(idx&btMask);
+ U32* const sortMarkPtr = nextCandidatePtr + 1;
+
+ DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
+ hashTable[h] = idx; /* Update Hash Table */
+ *nextCandidatePtr = matchIndex; /* update BT like a chain */
+ *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
+ }
+ ms->nextToUpdate = target;
+}
+
+
+/* ZSTD_insertDUBT1() :
+ * sort one already inserted but unsorted position
+ * assumption : curr >= btlow == (curr - btmask)
+ * doesn't fail */
+static void
+ZSTD_insertDUBT1(ZSTD_matchState_t* ms,
+ U32 curr, const BYTE* inputEnd,
+ U32 nbCompares, U32 btLow,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
+ const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* match;
+ U32* smallerPtr = bt + 2*(curr&btMask);
+ U32* largerPtr = smallerPtr + 1;
+ U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
+ U32 dummy32; /* to be nullified at the end */
+ U32 const windowValid = ms->window.lowLimit;
+ U32 const maxDistance = 1U << cParams->windowLog;
+ U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
+
+
+ DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
+ curr, dictLimit, windowLow);
+ assert(curr >= btLow);
+ assert(ip < iend); /* condition for ZSTD_count */
+
+ for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ assert(matchIndex < curr);
+ /* note : all candidates are now supposed sorted,
+ * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
+ * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
+
+ if ( (dictMode != ZSTD_extDict)
+ || (matchIndex+matchLength >= dictLimit) /* both in current segment*/
+ || (curr < dictLimit) /* both in extDict */) {
+ const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
+ || (matchIndex+matchLength >= dictLimit)) ?
+ base : dictBase;
+ assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
+ || (curr < dictLimit) );
+ match = mBase + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* preparation for next read of match[matchLength] */
+ }
+
+ DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
+ curr, matchIndex, (U32)matchLength);
+
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
+ }
+
+ if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
+ matchIndex, btLow, nextPtr[1]);
+ smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
+ matchIndex, btLow, nextPtr[0]);
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+}
+
+
+static size_t
+ZSTD_DUBT_findBetterDictMatch (
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ size_t* offsetPtr,
+ size_t bestLength,
+ U32 nbCompares,
+ U32 const mls,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_matchState_t * const dms = ms->dictMatchState;
+ const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
+ const U32 * const dictHashTable = dms->hashTable;
+ U32 const hashLog = dmsCParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 dictMatchIndex = dictHashTable[h];
+
+ const BYTE* const base = ms->window.base;
+ const BYTE* const prefixStart = base + ms->window.dictLimit;
+ U32 const curr = (U32)(ip-base);
+ const BYTE* const dictBase = dms->window.base;
+ const BYTE* const dictEnd = dms->window.nextSrc;
+ U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
+ U32 const dictLowLimit = dms->window.lowLimit;
+ U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
+
+ U32* const dictBt = dms->chainTable;
+ U32 const btLog = dmsCParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
+
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+
+ (void)dictMode;
+ assert(dictMode == ZSTD_dictMatchState);
+
+ for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
+ U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match = dictBase + dictMatchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (dictMatchIndex+matchLength >= dictHighLimit)
+ match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
+
+ if (matchLength > bestLength) {
+ U32 matchIndex = dictMatchIndex + dictIndexDelta;
+ if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
+ DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
+ curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, ZSTD_REP_MOVE + curr - matchIndex, dictMatchIndex, matchIndex);
+ bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
+ }
+ if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
+ commonLengthLarger = matchLength;
+ dictMatchIndex = nextPtr[0];
+ }
+ }
+
+ if (bestLength >= MINMATCH) {
+ U32 const mIndex = curr - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
+ curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
+ }
+ return bestLength;
+
+}
+
+
+static size_t
+ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ size_t* offsetPtr,
+ U32 const mls,
+ const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 matchIndex = hashTable[h];
+
+ const BYTE* const base = ms->window.base;
+ U32 const curr = (U32)(ip-base);
+ U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
+
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
+ U32 const unsortLimit = MAX(btLow, windowLow);
+
+ U32* nextCandidate = bt + 2*(matchIndex&btMask);
+ U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
+ U32 nbCompares = 1U << cParams->searchLog;
+ U32 nbCandidates = nbCompares;
+ U32 previousCandidate = 0;
+
+ DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
+ assert(ip <= iend-8); /* required for h calculation */
+ assert(dictMode != ZSTD_dedicatedDictSearch);
+
+ /* reach end of unsorted candidates list */
+ while ( (matchIndex > unsortLimit)
+ && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
+ && (nbCandidates > 1) ) {
+ DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
+ matchIndex);
+ *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
+ previousCandidate = matchIndex;
+ matchIndex = *nextCandidate;
+ nextCandidate = bt + 2*(matchIndex&btMask);
+ unsortedMark = bt + 2*(matchIndex&btMask) + 1;
+ nbCandidates --;
+ }
+
+ /* nullify last candidate if it's still unsorted
+ * simplification, detrimental to compression ratio, beneficial for speed */
+ if ( (matchIndex > unsortLimit)
+ && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
+ DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
+ matchIndex);
+ *nextCandidate = *unsortedMark = 0;
+ }
+
+ /* batch sort stacked candidates */
+ matchIndex = previousCandidate;
+ while (matchIndex) { /* will end on matchIndex == 0 */
+ U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
+ U32 const nextCandidateIdx = *nextCandidateIdxPtr;
+ ZSTD_insertDUBT1(ms, matchIndex, iend,
+ nbCandidates, unsortLimit, dictMode);
+ matchIndex = nextCandidateIdx;
+ nbCandidates++;
+ }
+
+ /* find longest match */
+ { size_t commonLengthSmaller = 0, commonLengthLarger = 0;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ U32* smallerPtr = bt + 2*(curr&btMask);
+ U32* largerPtr = bt + 2*(curr&btMask) + 1;
+ U32 matchEndIdx = curr + 8 + 1;
+ U32 dummy32; /* to be nullified at the end */
+ size_t bestLength = 0;
+
+ matchIndex = hashTable[h];
+ hashTable[h] = curr; /* Update Hash Table */
+
+ for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match;
+
+ if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
+ match = base + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
+ }
+
+ if (matchLength > bestLength) {
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
+ bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ if (dictMode == ZSTD_dictMatchState) {
+ nbCompares = 0; /* in addition to avoiding checking any
+ * further in this loop, make sure we
+ * skip checking in the dictionary. */
+ }
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+
+ assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
+ if (dictMode == ZSTD_dictMatchState && nbCompares) {
+ bestLength = ZSTD_DUBT_findBetterDictMatch(
+ ms, ip, iend,
+ offsetPtr, bestLength, nbCompares,
+ mls, dictMode);
+ }
+
+ assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
+ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
+ if (bestLength >= MINMATCH) {
+ U32 const mIndex = curr - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
+ DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
+ curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
+ }
+ return bestLength;
+ }
+}
+
+
+/* ZSTD_BtFindBestMatch() : Tree updater, providing best match */
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iLimit,
+ size_t* offsetPtr,
+ const U32 mls /* template */,
+ const ZSTD_dictMode_e dictMode)
+{
+ DEBUGLOG(7, "ZSTD_BtFindBestMatch");
+ if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
+ ZSTD_updateDUBT(ms, ip, iLimit, mls);
+ return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode);
+}
+
+
+static size_t
+ZSTD_BtFindBestMatch_selectMLS ( ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
+ }
+}
+
+
+static size_t ZSTD_BtFindBestMatch_dictMatchState_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
+ }
+}
+
+
+static size_t ZSTD_BtFindBestMatch_extDict_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
+ case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
+ case 7 :
+ case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
+ }
+}
+
+
+
+/* *********************************
+* Hash Chain
+***********************************/
+#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
+
+/* Update chains up to ip (excluded)
+ Assumption : always within prefix (i.e. not within extDict) */
+FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
+ ZSTD_matchState_t* ms,
+ const ZSTD_compressionParameters* const cParams,
+ const BYTE* ip, U32 const mls)
+{
+ U32* const hashTable = ms->hashTable;
+ const U32 hashLog = cParams->hashLog;
+ U32* const chainTable = ms->chainTable;
+ const U32 chainMask = (1 << cParams->chainLog) - 1;
+ const BYTE* const base = ms->window.base;
+ const U32 target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+
+ while(idx < target) { /* catch up */
+ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
+ NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
+ hashTable[h] = idx;
+ idx++;
+ }
+
+ ms->nextToUpdate = target;
+ return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
+}
+
+U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
+}
+
+void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
+{
+ const BYTE* const base = ms->window.base;
+ U32 const target = (U32)(ip - base);
+ U32* const hashTable = ms->hashTable;
+ U32* const chainTable = ms->chainTable;
+ U32 const chainSize = 1 << ms->cParams.chainLog;
+ U32 idx = ms->nextToUpdate;
+ U32 const minChain = chainSize < target ? target - chainSize : idx;
+ U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
+ U32 const cacheSize = bucketSize - 1;
+ U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
+ U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
+
+ /* We know the hashtable is oversized by a factor of `bucketSize`.
+ * We are going to temporarily pretend `bucketSize == 1`, keeping only a
+ * single entry. We will use the rest of the space to construct a temporary
+ * chaintable.
+ */
+ U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
+ U32* const tmpHashTable = hashTable;
+ U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
+ U32 const tmpChainSize = ((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
+ U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
+
+ U32 hashIdx;
+
+ assert(ms->cParams.chainLog <= 24);
+ assert(ms->cParams.hashLog >= ms->cParams.chainLog);
+ assert(idx != 0);
+ assert(tmpMinChain <= minChain);
+
+ /* fill conventional hash table and conventional chain table */
+ for ( ; idx < target; idx++) {
+ U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
+ if (idx >= tmpMinChain) {
+ tmpChainTable[idx - tmpMinChain] = hashTable[h];
+ }
+ tmpHashTable[h] = idx;
+ }
+
+ /* sort chains into ddss chain table */
+ {
+ U32 chainPos = 0;
+ for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
+ U32 count;
+ U32 countBeyondMinChain = 0;
+ U32 i = tmpHashTable[hashIdx];
+ for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
+ /* skip through the chain to the first position that won't be
+ * in the hash cache bucket */
+ if (i < minChain) {
+ countBeyondMinChain++;
+ }
+ i = tmpChainTable[i - tmpMinChain];
+ }
+ if (count == cacheSize) {
+ for (count = 0; count < chainLimit;) {
+ if (i < minChain) {
+ if (!i || countBeyondMinChain++ > cacheSize) {
+ /* only allow pulling `cacheSize` number of entries
+ * into the cache or chainTable beyond `minChain`,
+ * to replace the entries pulled out of the
+ * chainTable into the cache. This lets us reach
+ * back further without increasing the total number
+ * of entries in the chainTable, guaranteeing the
+ * DDSS chain table will fit into the space
+ * allocated for the regular one. */
+ break;
+ }
+ }
+ chainTable[chainPos++] = i;
+ count++;
+ if (i < tmpMinChain) {
+ break;
+ }
+ i = tmpChainTable[i - tmpMinChain];
+ }
+ } else {
+ count = 0;
+ }
+ if (count) {
+ tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
+ } else {
+ tmpHashTable[hashIdx] = 0;
+ }
+ }
+ assert(chainPos <= chainSize); /* I believe this is guaranteed... */
+ }
+
+ /* move chain pointers into the last entry of each hash bucket */
+ for (hashIdx = (1 << hashLog); hashIdx; ) {
+ U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
+ U32 const chainPackedPointer = tmpHashTable[hashIdx];
+ U32 i;
+ for (i = 0; i < cacheSize; i++) {
+ hashTable[bucketIdx + i] = 0;
+ }
+ hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
+ }
+
+ /* fill the buckets of the hash table */
+ for (idx = ms->nextToUpdate; idx < target; idx++) {
+ U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
+ << ZSTD_LAZY_DDSS_BUCKET_LOG;
+ U32 i;
+ /* Shift hash cache down 1. */
+ for (i = cacheSize - 1; i; i--)
+ hashTable[h + i] = hashTable[h + i - 1];
+ hashTable[h] = idx;
+ }
+
+ ms->nextToUpdate = target;
+}
+
+
+/* inlining is important to hardwire a hot branch (template emulation) */
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_HcFindBestMatch_generic (
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iLimit,
+ size_t* offsetPtr,
+ const U32 mls, const ZSTD_dictMode_e dictMode)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const chainTable = ms->chainTable;
+ const U32 chainSize = (1 << cParams->chainLog);
+ const U32 chainMask = chainSize-1;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const U32 curr = (U32)(ip-base);
+ const U32 maxDistance = 1U << cParams->windowLog;
+ const U32 lowestValid = ms->window.lowLimit;
+ const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
+ const U32 isDictionary = (ms->loadedDictEnd != 0);
+ const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
+ const U32 minChain = curr > chainSize ? curr - chainSize : 0;
+ U32 nbAttempts = 1U << cParams->searchLog;
+ size_t ml=4-1;
+
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
+ ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
+ const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
+ ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
+
+ U32 matchIndex;
+
+ if (dictMode == ZSTD_dedicatedDictSearch) {
+ const U32* entry = &dms->hashTable[ddsIdx];
+ PREFETCH_L1(entry);
+ }
+
+ /* HC4 match finder */
+ matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
+
+ for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
+ size_t currentMl=0;
+ if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
+ const BYTE* const match = base + matchIndex;
+ assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
+ if (match[ml] == ip[ml]) /* potentially better */
+ currentMl = ZSTD_count(ip, match, iLimit);
+ } else {
+ const BYTE* const match = dictBase + matchIndex;
+ assert(match+4 <= dictEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = curr - matchIndex + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+
+ if (matchIndex <= minChain) break;
+ matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
+ }
+
+ assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
+ if (dictMode == ZSTD_dedicatedDictSearch) {
+ const U32 ddsLowestIndex = dms->window.dictLimit;
+ const BYTE* const ddsBase = dms->window.base;
+ const BYTE* const ddsEnd = dms->window.nextSrc;
+ const U32 ddsSize = (U32)(ddsEnd - ddsBase);
+ const U32 ddsIndexDelta = dictLimit - ddsSize;
+ const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
+ const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
+ U32 ddsAttempt;
+
+ for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
+ PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
+ }
+
+ {
+ U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
+ U32 const chainIndex = chainPackedPointer >> 8;
+
+ PREFETCH_L1(&dms->chainTable[chainIndex]);
+ }
+
+ for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
+ size_t currentMl=0;
+ const BYTE* match;
+ matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
+ match = ddsBase + matchIndex;
+
+ if (!matchIndex) {
+ return ml;
+ }
+
+ /* guaranteed by table construction */
+ (void)ddsLowestIndex;
+ assert(matchIndex >= ddsLowestIndex);
+ assert(match+4 <= ddsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = curr - (matchIndex + ddsIndexDelta) + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) {
+ /* best possible, avoids read overflow on next attempt */
+ return ml;
+ }
+ }
+ }
+
+ {
+ U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
+ U32 chainIndex = chainPackedPointer >> 8;
+ U32 const chainLength = chainPackedPointer & 0xFF;
+ U32 const chainAttempts = nbAttempts - ddsAttempt;
+ U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
+ U32 chainAttempt;
+
+ for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
+ PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
+ }
+
+ for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
+ size_t currentMl=0;
+ const BYTE* match;
+ matchIndex = dms->chainTable[chainIndex];
+ match = ddsBase + matchIndex;
+
+ /* guaranteed by table construction */
+ assert(matchIndex >= ddsLowestIndex);
+ assert(match+4 <= ddsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) {
+ /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
+ }
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = curr - (matchIndex + ddsIndexDelta) + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+ }
+ }
+ } else if (dictMode == ZSTD_dictMatchState) {
+ const U32* const dmsChainTable = dms->chainTable;
+ const U32 dmsChainSize = (1 << dms->cParams.chainLog);
+ const U32 dmsChainMask = dmsChainSize - 1;
+ const U32 dmsLowestIndex = dms->window.dictLimit;
+ const BYTE* const dmsBase = dms->window.base;
+ const BYTE* const dmsEnd = dms->window.nextSrc;
+ const U32 dmsSize = (U32)(dmsEnd - dmsBase);
+ const U32 dmsIndexDelta = dictLimit - dmsSize;
+ const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
+
+ matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
+
+ for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
+ size_t currentMl=0;
+ const BYTE* const match = dmsBase + matchIndex;
+ assert(match+4 <= dmsEnd);
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+ currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
+
+ /* save best solution */
+ if (currentMl > ml) {
+ ml = currentMl;
+ *offsetPtr = curr - (matchIndex + dmsIndexDelta) + ZSTD_REP_MOVE;
+ if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
+ }
+
+ if (matchIndex <= dmsMinChain) break;
+
+ matchIndex = dmsChainTable[matchIndex & dmsChainMask];
+ }
+ }
+
+ return ml;
+}
+
+
+FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict);
+ }
+}
+
+
+static size_t ZSTD_HcFindBestMatch_dictMatchState_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState);
+ }
+}
+
+
+static size_t ZSTD_HcFindBestMatch_dedicatedDictSearch_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dedicatedDictSearch);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dedicatedDictSearch);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dedicatedDictSearch);
+ }
+}
+
+
+FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* const iLimit,
+ size_t* offsetPtr)
+{
+ switch(ms->cParams.minMatch)
+ {
+ default : /* includes case 3 */
+ case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict);
+ case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict);
+ case 7 :
+ case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict);
+ }
+}
+
+
+/* *******************************
+* Common parser - lazy strategy
+*********************************/
+typedef enum { search_hashChain, search_binaryTree } searchMethod_e;
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_compressBlock_lazy_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const searchMethod_e searchMethod, const U32 depth,
+ ZSTD_dictMode_e const dictMode)
+{
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 prefixLowestIndex = ms->window.dictLimit;
+ const BYTE* const prefixLowest = base + prefixLowestIndex;
+
+ typedef size_t (*searchMax_f)(
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
+
+ /*
+ * This table is indexed first by the four ZSTD_dictMode_e values, and then
+ * by the two searchMethod_e values. NULLs are placed for configurations
+ * that should never occur (extDict modes go to the other implementation
+ * below and there is no DDSS for binary tree search yet).
+ */
+ const searchMax_f searchFuncs[4][2] = {
+ {
+ ZSTD_HcFindBestMatch_selectMLS,
+ ZSTD_BtFindBestMatch_selectMLS
+ },
+ {
+ NULL,
+ NULL
+ },
+ {
+ ZSTD_HcFindBestMatch_dictMatchState_selectMLS,
+ ZSTD_BtFindBestMatch_dictMatchState_selectMLS
+ },
+ {
+ ZSTD_HcFindBestMatch_dedicatedDictSearch_selectMLS,
+ NULL
+ }
+ };
+
+ searchMax_f const searchMax = searchFuncs[dictMode][searchMethod == search_binaryTree];
+ U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
+
+ const int isDMS = dictMode == ZSTD_dictMatchState;
+ const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
+ const int isDxS = isDMS || isDDS;
+ const ZSTD_matchState_t* const dms = ms->dictMatchState;
+ const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
+ const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
+ const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
+ const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
+ const U32 dictIndexDelta = isDxS ?
+ prefixLowestIndex - (U32)(dictEnd - dictBase) :
+ 0;
+ const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
+
+ assert(searchMax != NULL);
+
+ DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u)", (U32)dictMode);
+
+ /* init */
+ ip += (dictAndPrefixLength == 0);
+ if (dictMode == ZSTD_noDict) {
+ U32 const curr = (U32)(ip - base);
+ U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
+ U32 const maxRep = curr - windowLow;
+ if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
+ if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
+ }
+ if (isDxS) {
+ /* dictMatchState repCode checks don't currently handle repCode == 0
+ * disabling. */
+ assert(offset_1 <= dictAndPrefixLength);
+ assert(offset_2 <= dictAndPrefixLength);
+ }
+
+ /* Match Loop */
+#if defined(__x86_64__)
+ /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
+ * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
+ */
+ __asm__(".p2align 5");
+#endif
+ while (ip < ilimit) {
+ size_t matchLength=0;
+ size_t offset=0;
+ const BYTE* start=ip+1;
+
+ /* check repCode */
+ if (isDxS) {
+ const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
+ const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
+ && repIndex < prefixLowestIndex) ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ if (depth==0) goto _storeSequence;
+ }
+ }
+ if ( dictMode == ZSTD_noDict
+ && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
+ matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+ if (depth==0) goto _storeSequence;
+ }
+
+ /* first search (depth 0) */
+ { size_t offsetFound = 999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
+ if (ml2 > matchLength)
+ matchLength = ml2, start = ip, offset=offsetFound;
+ }
+
+ if (matchLength < 4) {
+ ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
+ continue;
+ }
+
+ /* let's try to find a better solution */
+ if (depth>=1)
+ while (ip<ilimit) {
+ ip ++;
+ if ( (dictMode == ZSTD_noDict)
+ && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
+ int const gain2 = (int)(mlRep * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ if (isDxS) {
+ const U32 repIndex = (U32)(ip - base) - offset_1;
+ const BYTE* repMatch = repIndex < prefixLowestIndex ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ int const gain2 = (int)(mlRep * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ }
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue; /* search a better one */
+ } }
+
+ /* let's find an even better one */
+ if ((depth==2) && (ip<ilimit)) {
+ ip ++;
+ if ( (dictMode == ZSTD_noDict)
+ && (offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+ size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
+ int const gain2 = (int)(mlRep * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ if (isDxS) {
+ const U32 repIndex = (U32)(ip - base) - offset_1;
+ const BYTE* repMatch = repIndex < prefixLowestIndex ?
+ dictBase + (repIndex - dictIndexDelta) :
+ base + repIndex;
+ if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
+ size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
+ int const gain2 = (int)(mlRep * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((mlRep >= 4) && (gain2 > gain1))
+ matchLength = mlRep, offset = 0, start = ip;
+ }
+ }
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue;
+ } } }
+ break; /* nothing found : store previous solution */
+ }
+
+ /* NOTE:
+ * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior.
+ * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which
+ * overflows the pointer, which is undefined behavior.
+ */
+ /* catch up */
+ if (offset) {
+ if (dictMode == ZSTD_noDict) {
+ while ( ((start > anchor) & (start - (offset-ZSTD_REP_MOVE) > prefixLowest))
+ && (start[-1] == (start-(offset-ZSTD_REP_MOVE))[-1]) ) /* only search for offset within prefix */
+ { start--; matchLength++; }
+ }
+ if (isDxS) {
+ U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
+ const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
+ while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
+ }
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ }
+ /* store sequence */
+_storeSequence:
+ { size_t const litLength = start - anchor;
+ ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
+ anchor = ip = start + matchLength;
+ }
+
+ /* check immediate repcode */
+ if (isDxS) {
+ while (ip <= ilimit) {
+ U32 const current2 = (U32)(ip-base);
+ U32 const repIndex = current2 - offset_2;
+ const BYTE* repMatch = repIndex < prefixLowestIndex ?
+ dictBase - dictIndexDelta + repIndex :
+ base + repIndex;
+ if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
+ && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
+ const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset_2 <=> offset_1 */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue;
+ }
+ break;
+ }
+ }
+
+ if (dictMode == ZSTD_noDict) {
+ while ( ((ip <= ilimit) & (offset_2>0))
+ && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
+ /* store sequence */
+ matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ } } }
+
+ /* Save reps for next block */
+ rep[0] = offset_1 ? offset_1 : savedOffset;
+ rep[1] = offset_2 ? offset_2 : savedOffset;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_btlazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_lazy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_greedy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_lazy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_greedy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
+}
+
+
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
+}
+
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
+}
+
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
+}
+
+
+FORCE_INLINE_TEMPLATE
+size_t ZSTD_compressBlock_lazy_extDict_generic(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const searchMethod_e searchMethod, const U32 depth)
+{
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const dictStart = dictBase + ms->window.lowLimit;
+ const U32 windowLog = ms->cParams.windowLog;
+
+ typedef size_t (*searchMax_f)(
+ ZSTD_matchState_t* ms,
+ const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
+ searchMax_f searchMax = searchMethod==search_binaryTree ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS;
+
+ U32 offset_1 = rep[0], offset_2 = rep[1];
+
+ DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic");
+
+ /* init */
+ ip += (ip == prefixStart);
+
+ /* Match Loop */
+#if defined(__x86_64__)
+ /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
+ * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
+ */
+ __asm__(".p2align 5");
+#endif
+ while (ip < ilimit) {
+ size_t matchLength=0;
+ size_t offset=0;
+ const BYTE* start=ip+1;
+ U32 curr = (U32)(ip-base);
+
+ /* check repCode */
+ { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
+ const U32 repIndex = (U32)(curr+1 - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
+ /* repcode detected we should take it */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ if (depth==0) goto _storeSequence;
+ } }
+
+ /* first search (depth 0) */
+ { size_t offsetFound = 999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
+ if (ml2 > matchLength)
+ matchLength = ml2, start = ip, offset=offsetFound;
+ }
+
+ if (matchLength < 4) {
+ ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
+ continue;
+ }
+
+ /* let's try to find a better solution */
+ if (depth>=1)
+ while (ip<ilimit) {
+ ip ++;
+ curr++;
+ /* check repCode */
+ if (offset) {
+ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
+ const U32 repIndex = (U32)(curr - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ int const gain2 = (int)(repLength * 3);
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((repLength >= 4) && (gain2 > gain1))
+ matchLength = repLength, offset = 0, start = ip;
+ } }
+
+ /* search match, depth 1 */
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue; /* search a better one */
+ } }
+
+ /* let's find an even better one */
+ if ((depth==2) && (ip<ilimit)) {
+ ip ++;
+ curr++;
+ /* check repCode */
+ if (offset) {
+ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
+ const U32 repIndex = (U32)(curr - offset_1);
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ int const gain2 = (int)(repLength * 4);
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+ if ((repLength >= 4) && (gain2 > gain1))
+ matchLength = repLength, offset = 0, start = ip;
+ } }
+
+ /* search match, depth 2 */
+ { size_t offset2=999999999;
+ size_t const ml2 = searchMax(ms, ip, iend, &offset2);
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+ if ((ml2 >= 4) && (gain2 > gain1)) {
+ matchLength = ml2, offset = offset2, start = ip;
+ continue;
+ } } }
+ break; /* nothing found : store previous solution */
+ }
+
+ /* catch up */
+ if (offset) {
+ U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+ const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
+ const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
+ while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+ }
+
+ /* store sequence */
+_storeSequence:
+ { size_t const litLength = start - anchor;
+ ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
+ anchor = ip = start + matchLength;
+ }
+
+ /* check immediate repcode */
+ while (ip <= ilimit) {
+ const U32 repCurrent = (U32)(ip-base);
+ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
+ const U32 repIndex = repCurrent - offset_2;
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+ const BYTE* const repMatch = repBase + repIndex;
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > windowLow)) /* intentional overflow */
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
+ /* repcode detected we should take it */
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+ matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
+ ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
+ ip += matchLength;
+ anchor = ip;
+ continue; /* faster when present ... (?) */
+ }
+ break;
+ } }
+
+ /* Save reps for next block */
+ rep[0] = offset_1;
+ rep[1] = offset_2;
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_greedy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
+}
+
+size_t ZSTD_compressBlock_lazy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
+}
+
+size_t ZSTD_compressBlock_lazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
+}
+
+size_t ZSTD_compressBlock_btlazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+
+{
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
+}
diff --git a/lib/zstd/compress/zstd_lazy.h b/lib/zstd/compress/zstd_lazy.h
new file mode 100644
index 000000000000..2fc5a6182134
--- /dev/null
+++ b/lib/zstd/compress/zstd_lazy.h
@@ -0,0 +1,81 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LAZY_H
+#define ZSTD_LAZY_H
+
+
+#include "zstd_compress_internal.h"
+
+/*
+ * Dedicated Dictionary Search Structure bucket log. In the
+ * ZSTD_dedicatedDictSearch mode, the hashTable has
+ * 2 ** ZSTD_LAZY_DDSS_BUCKET_LOG entries in each bucket, rather than just
+ * one.
+ */
+#define ZSTD_LAZY_DDSS_BUCKET_LOG 2
+
+U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
+
+void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip);
+
+void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
+
+size_t ZSTD_compressBlock_btlazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_greedy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_lazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btlazy2_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+#endif /* ZSTD_LAZY_H */
diff --git a/lib/zstd/compress/zstd_ldm.c b/lib/zstd/compress/zstd_ldm.c
new file mode 100644
index 000000000000..8ef7e88a5add
--- /dev/null
+++ b/lib/zstd/compress/zstd_ldm.c
@@ -0,0 +1,686 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_ldm.h"
+
+#include "../common/debug.h"
+#include <linux/xxhash.h>
+#include "zstd_fast.h" /* ZSTD_fillHashTable() */
+#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
+#include "zstd_ldm_geartab.h"
+
+#define LDM_BUCKET_SIZE_LOG 3
+#define LDM_MIN_MATCH_LENGTH 64
+#define LDM_HASH_RLOG 7
+
+typedef struct {
+ U64 rolling;
+ U64 stopMask;
+} ldmRollingHashState_t;
+
+/* ZSTD_ldm_gear_init():
+ *
+ * Initializes the rolling hash state such that it will honor the
+ * settings in params. */
+static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
+{
+ unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
+ unsigned hashRateLog = params->hashRateLog;
+
+ state->rolling = ~(U32)0;
+
+ /* The choice of the splitting criterion is subject to two conditions:
+ * 1. it has to trigger on average every 2^(hashRateLog) bytes;
+ * 2. ideally, it has to depend on a window of minMatchLength bytes.
+ *
+ * In the gear hash algorithm, bit n depends on the last n bytes;
+ * so in order to obtain a good quality splitting criterion it is
+ * preferable to use bits with high weight.
+ *
+ * To match condition 1 we use a mask with hashRateLog bits set
+ * and, because of the previous remark, we make sure these bits
+ * have the highest possible weight while still respecting
+ * condition 2.
+ */
+ if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
+ state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
+ } else {
+ /* In this degenerate case we simply honor the hash rate. */
+ state->stopMask = ((U64)1 << hashRateLog) - 1;
+ }
+}
+
+/* ZSTD_ldm_gear_feed():
+ *
+ * Registers in the splits array all the split points found in the first
+ * size bytes following the data pointer. This function terminates when
+ * either all the data has been processed or LDM_BATCH_SIZE splits are
+ * present in the splits array.
+ *
+ * Precondition: The splits array must not be full.
+ * Returns: The number of bytes processed. */
+static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
+ BYTE const* data, size_t size,
+ size_t* splits, unsigned* numSplits)
+{
+ size_t n;
+ U64 hash, mask;
+
+ hash = state->rolling;
+ mask = state->stopMask;
+ n = 0;
+
+#define GEAR_ITER_ONCE() do { \
+ hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
+ n += 1; \
+ if (UNLIKELY((hash & mask) == 0)) { \
+ splits[*numSplits] = n; \
+ *numSplits += 1; \
+ if (*numSplits == LDM_BATCH_SIZE) \
+ goto done; \
+ } \
+ } while (0)
+
+ while (n + 3 < size) {
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ GEAR_ITER_ONCE();
+ }
+ while (n < size) {
+ GEAR_ITER_ONCE();
+ }
+
+#undef GEAR_ITER_ONCE
+
+done:
+ state->rolling = hash;
+ return n;
+}
+
+void ZSTD_ldm_adjustParameters(ldmParams_t* params,
+ ZSTD_compressionParameters const* cParams)
+{
+ params->windowLog = cParams->windowLog;
+ ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
+ DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
+ if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
+ if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
+ if (params->hashLog == 0) {
+ params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
+ assert(params->hashLog <= ZSTD_HASHLOG_MAX);
+ }
+ if (params->hashRateLog == 0) {
+ params->hashRateLog = params->windowLog < params->hashLog
+ ? 0
+ : params->windowLog - params->hashLog;
+ }
+ params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
+}
+
+size_t ZSTD_ldm_getTableSize(ldmParams_t params)
+{
+ size_t const ldmHSize = ((size_t)1) << params.hashLog;
+ size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
+ size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
+ size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
+ return params.enableLdm ? totalSize : 0;
+}
+
+size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
+{
+ return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
+}
+
+/* ZSTD_ldm_getBucket() :
+ * Returns a pointer to the start of the bucket associated with hash. */
+static ldmEntry_t* ZSTD_ldm_getBucket(
+ ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
+{
+ return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
+}
+
+/* ZSTD_ldm_insertEntry() :
+ * Insert the entry with corresponding hash into the hash table */
+static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
+ size_t const hash, const ldmEntry_t entry,
+ ldmParams_t const ldmParams)
+{
+ BYTE* const pOffset = ldmState->bucketOffsets + hash;
+ unsigned const offset = *pOffset;
+
+ *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
+ *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
+
+}
+
+/* ZSTD_ldm_countBackwardsMatch() :
+ * Returns the number of bytes that match backwards before pIn and pMatch.
+ *
+ * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
+static size_t ZSTD_ldm_countBackwardsMatch(
+ const BYTE* pIn, const BYTE* pAnchor,
+ const BYTE* pMatch, const BYTE* pMatchBase)
+{
+ size_t matchLength = 0;
+ while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
+ pIn--;
+ pMatch--;
+ matchLength++;
+ }
+ return matchLength;
+}
+
+/* ZSTD_ldm_countBackwardsMatch_2segments() :
+ * Returns the number of bytes that match backwards from pMatch,
+ * even with the backwards match spanning 2 different segments.
+ *
+ * On reaching `pMatchBase`, start counting from mEnd */
+static size_t ZSTD_ldm_countBackwardsMatch_2segments(
+ const BYTE* pIn, const BYTE* pAnchor,
+ const BYTE* pMatch, const BYTE* pMatchBase,
+ const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
+{
+ size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
+ if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
+ /* If backwards match is entirely in the extDict or prefix, immediately return */
+ return matchLength;
+ }
+ DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
+ matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
+ DEBUGLOG(7, "final backwards match length = %zu", matchLength);
+ return matchLength;
+}
+
+/* ZSTD_ldm_fillFastTables() :
+ *
+ * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
+ * This is similar to ZSTD_loadDictionaryContent.
+ *
+ * The tables for the other strategies are filled within their
+ * block compressors. */
+static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
+ void const* end)
+{
+ const BYTE* const iend = (const BYTE*)end;
+
+ switch(ms->cParams.strategy)
+ {
+ case ZSTD_fast:
+ ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
+ break;
+
+ case ZSTD_dfast:
+ ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
+ break;
+
+ case ZSTD_greedy:
+ case ZSTD_lazy:
+ case ZSTD_lazy2:
+ case ZSTD_btlazy2:
+ case ZSTD_btopt:
+ case ZSTD_btultra:
+ case ZSTD_btultra2:
+ break;
+ default:
+ assert(0); /* not possible : not a valid strategy id */
+ }
+
+ return 0;
+}
+
+void ZSTD_ldm_fillHashTable(
+ ldmState_t* ldmState, const BYTE* ip,
+ const BYTE* iend, ldmParams_t const* params)
+{
+ U32 const minMatchLength = params->minMatchLength;
+ U32 const hBits = params->hashLog - params->bucketSizeLog;
+ BYTE const* const base = ldmState->window.base;
+ BYTE const* const istart = ip;
+ ldmRollingHashState_t hashState;
+ size_t* const splits = ldmState->splitIndices;
+ unsigned numSplits;
+
+ DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
+
+ ZSTD_ldm_gear_init(&hashState, params);
+ while (ip < iend) {
+ size_t hashed;
+ unsigned n;
+
+ numSplits = 0;
+ hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
+
+ for (n = 0; n < numSplits; n++) {
+ if (ip + splits[n] >= istart + minMatchLength) {
+ BYTE const* const split = ip + splits[n] - minMatchLength;
+ U64 const xxhash = xxh64(split, minMatchLength, 0);
+ U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
+ ldmEntry_t entry;
+
+ entry.offset = (U32)(split - base);
+ entry.checksum = (U32)(xxhash >> 32);
+ ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
+ }
+ }
+
+ ip += hashed;
+ }
+}
+
+
+/* ZSTD_ldm_limitTableUpdate() :
+ *
+ * Sets cctx->nextToUpdate to a position corresponding closer to anchor
+ * if it is far way
+ * (after a long match, only update tables a limited amount). */
+static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
+{
+ U32 const curr = (U32)(anchor - ms->window.base);
+ if (curr > ms->nextToUpdate + 1024) {
+ ms->nextToUpdate =
+ curr - MIN(512, curr - ms->nextToUpdate - 1024);
+ }
+}
+
+static size_t ZSTD_ldm_generateSequences_internal(
+ ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
+ ldmParams_t const* params, void const* src, size_t srcSize)
+{
+ /* LDM parameters */
+ int const extDict = ZSTD_window_hasExtDict(ldmState->window);
+ U32 const minMatchLength = params->minMatchLength;
+ U32 const entsPerBucket = 1U << params->bucketSizeLog;
+ U32 const hBits = params->hashLog - params->bucketSizeLog;
+ /* Prefix and extDict parameters */
+ U32 const dictLimit = ldmState->window.dictLimit;
+ U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
+ BYTE const* const base = ldmState->window.base;
+ BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
+ BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
+ BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
+ BYTE const* const lowPrefixPtr = base + dictLimit;
+ /* Input bounds */
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ BYTE const* const ilimit = iend - HASH_READ_SIZE;
+ /* Input positions */
+ BYTE const* anchor = istart;
+ BYTE const* ip = istart;
+ /* Rolling hash state */
+ ldmRollingHashState_t hashState;
+ /* Arrays for staged-processing */
+ size_t* const splits = ldmState->splitIndices;
+ ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
+ unsigned numSplits;
+
+ if (srcSize < minMatchLength)
+ return iend - anchor;
+
+ /* Initialize the rolling hash state with the first minMatchLength bytes */
+ ZSTD_ldm_gear_init(&hashState, params);
+ {
+ size_t n = 0;
+
+ while (n < minMatchLength) {
+ numSplits = 0;
+ n += ZSTD_ldm_gear_feed(&hashState, ip + n, minMatchLength - n,
+ splits, &numSplits);
+ }
+ ip += minMatchLength;
+ }
+
+ while (ip < ilimit) {
+ size_t hashed;
+ unsigned n;
+
+ numSplits = 0;
+ hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
+ splits, &numSplits);
+
+ for (n = 0; n < numSplits; n++) {
+ BYTE const* const split = ip + splits[n] - minMatchLength;
+ U64 const xxhash = xxh64(split, minMatchLength, 0);
+ U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
+
+ candidates[n].split = split;
+ candidates[n].hash = hash;
+ candidates[n].checksum = (U32)(xxhash >> 32);
+ candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
+ PREFETCH_L1(candidates[n].bucket);
+ }
+
+ for (n = 0; n < numSplits; n++) {
+ size_t forwardMatchLength = 0, backwardMatchLength = 0,
+ bestMatchLength = 0, mLength;
+ BYTE const* const split = candidates[n].split;
+ U32 const checksum = candidates[n].checksum;
+ U32 const hash = candidates[n].hash;
+ ldmEntry_t* const bucket = candidates[n].bucket;
+ ldmEntry_t const* cur;
+ ldmEntry_t const* bestEntry = NULL;
+ ldmEntry_t newEntry;
+
+ newEntry.offset = (U32)(split - base);
+ newEntry.checksum = checksum;
+
+ /* If a split point would generate a sequence overlapping with
+ * the previous one, we merely register it in the hash table and
+ * move on */
+ if (split < anchor) {
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
+ continue;
+ }
+
+ for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
+ size_t curForwardMatchLength, curBackwardMatchLength,
+ curTotalMatchLength;
+ if (cur->checksum != checksum || cur->offset <= lowestIndex) {
+ continue;
+ }
+ if (extDict) {
+ BYTE const* const curMatchBase =
+ cur->offset < dictLimit ? dictBase : base;
+ BYTE const* const pMatch = curMatchBase + cur->offset;
+ BYTE const* const matchEnd =
+ cur->offset < dictLimit ? dictEnd : iend;
+ BYTE const* const lowMatchPtr =
+ cur->offset < dictLimit ? dictStart : lowPrefixPtr;
+ curForwardMatchLength =
+ ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
+ if (curForwardMatchLength < minMatchLength) {
+ continue;
+ }
+ curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
+ split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
+ } else { /* !extDict */
+ BYTE const* const pMatch = base + cur->offset;
+ curForwardMatchLength = ZSTD_count(split, pMatch, iend);
+ if (curForwardMatchLength < minMatchLength) {
+ continue;
+ }
+ curBackwardMatchLength =
+ ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
+ }
+ curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
+
+ if (curTotalMatchLength > bestMatchLength) {
+ bestMatchLength = curTotalMatchLength;
+ forwardMatchLength = curForwardMatchLength;
+ backwardMatchLength = curBackwardMatchLength;
+ bestEntry = cur;
+ }
+ }
+
+ /* No match found -- insert an entry into the hash table
+ * and process the next candidate match */
+ if (bestEntry == NULL) {
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
+ continue;
+ }
+
+ /* Match found */
+ mLength = forwardMatchLength + backwardMatchLength;
+ {
+ U32 const offset = (U32)(split - base) - bestEntry->offset;
+ rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
+
+ /* Out of sequence storage */
+ if (rawSeqStore->size == rawSeqStore->capacity)
+ return ERROR(dstSize_tooSmall);
+ seq->litLength = (U32)(split - backwardMatchLength - anchor);
+ seq->matchLength = (U32)mLength;
+ seq->offset = offset;
+ rawSeqStore->size++;
+ }
+
+ /* Insert the current entry into the hash table --- it must be
+ * done after the previous block to avoid clobbering bestEntry */
+ ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
+
+ anchor = split + forwardMatchLength;
+ }
+
+ ip += hashed;
+ }
+
+ return iend - anchor;
+}
+
+/*! ZSTD_ldm_reduceTable() :
+ * reduce table indexes by `reducerValue` */
+static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
+ U32 const reducerValue)
+{
+ U32 u;
+ for (u = 0; u < size; u++) {
+ if (table[u].offset < reducerValue) table[u].offset = 0;
+ else table[u].offset -= reducerValue;
+ }
+}
+
+size_t ZSTD_ldm_generateSequences(
+ ldmState_t* ldmState, rawSeqStore_t* sequences,
+ ldmParams_t const* params, void const* src, size_t srcSize)
+{
+ U32 const maxDist = 1U << params->windowLog;
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ size_t const kMaxChunkSize = 1 << 20;
+ size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
+ size_t chunk;
+ size_t leftoverSize = 0;
+
+ assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
+ /* Check that ZSTD_window_update() has been called for this chunk prior
+ * to passing it to this function.
+ */
+ assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
+ /* The input could be very large (in zstdmt), so it must be broken up into
+ * chunks to enforce the maximum distance and handle overflow correction.
+ */
+ assert(sequences->pos <= sequences->size);
+ assert(sequences->size <= sequences->capacity);
+ for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
+ BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
+ size_t const remaining = (size_t)(iend - chunkStart);
+ BYTE const *const chunkEnd =
+ (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
+ size_t const chunkSize = chunkEnd - chunkStart;
+ size_t newLeftoverSize;
+ size_t const prevSize = sequences->size;
+
+ assert(chunkStart < iend);
+ /* 1. Perform overflow correction if necessary. */
+ if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
+ U32 const ldmHSize = 1U << params->hashLog;
+ U32 const correction = ZSTD_window_correctOverflow(
+ &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
+ ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
+ /* invalidate dictionaries on overflow correction */
+ ldmState->loadedDictEnd = 0;
+ }
+ /* 2. We enforce the maximum offset allowed.
+ *
+ * kMaxChunkSize should be small enough that we don't lose too much of
+ * the window through early invalidation.
+ * TODO: * Test the chunk size.
+ * * Try invalidation after the sequence generation and test the
+ * the offset against maxDist directly.
+ *
+ * NOTE: Because of dictionaries + sequence splitting we MUST make sure
+ * that any offset used is valid at the END of the sequence, since it may
+ * be split into two sequences. This condition holds when using
+ * ZSTD_window_enforceMaxDist(), but if we move to checking offsets
+ * against maxDist directly, we'll have to carefully handle that case.
+ */
+ ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
+ /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
+ newLeftoverSize = ZSTD_ldm_generateSequences_internal(
+ ldmState, sequences, params, chunkStart, chunkSize);
+ if (ZSTD_isError(newLeftoverSize))
+ return newLeftoverSize;
+ /* 4. We add the leftover literals from previous iterations to the first
+ * newly generated sequence, or add the `newLeftoverSize` if none are
+ * generated.
+ */
+ /* Prepend the leftover literals from the last call */
+ if (prevSize < sequences->size) {
+ sequences->seq[prevSize].litLength += (U32)leftoverSize;
+ leftoverSize = newLeftoverSize;
+ } else {
+ assert(newLeftoverSize == chunkSize);
+ leftoverSize += chunkSize;
+ }
+ }
+ return 0;
+}
+
+void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
+ while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
+ rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
+ if (srcSize <= seq->litLength) {
+ /* Skip past srcSize literals */
+ seq->litLength -= (U32)srcSize;
+ return;
+ }
+ srcSize -= seq->litLength;
+ seq->litLength = 0;
+ if (srcSize < seq->matchLength) {
+ /* Skip past the first srcSize of the match */
+ seq->matchLength -= (U32)srcSize;
+ if (seq->matchLength < minMatch) {
+ /* The match is too short, omit it */
+ if (rawSeqStore->pos + 1 < rawSeqStore->size) {
+ seq[1].litLength += seq[0].matchLength;
+ }
+ rawSeqStore->pos++;
+ }
+ return;
+ }
+ srcSize -= seq->matchLength;
+ seq->matchLength = 0;
+ rawSeqStore->pos++;
+ }
+}
+
+/*
+ * If the sequence length is longer than remaining then the sequence is split
+ * between this block and the next.
+ *
+ * Returns the current sequence to handle, or if the rest of the block should
+ * be literals, it returns a sequence with offset == 0.
+ */
+static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
+ U32 const remaining, U32 const minMatch)
+{
+ rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
+ assert(sequence.offset > 0);
+ /* Likely: No partial sequence */
+ if (remaining >= sequence.litLength + sequence.matchLength) {
+ rawSeqStore->pos++;
+ return sequence;
+ }
+ /* Cut the sequence short (offset == 0 ==> rest is literals). */
+ if (remaining <= sequence.litLength) {
+ sequence.offset = 0;
+ } else if (remaining < sequence.litLength + sequence.matchLength) {
+ sequence.matchLength = remaining - sequence.litLength;
+ if (sequence.matchLength < minMatch) {
+ sequence.offset = 0;
+ }
+ }
+ /* Skip past `remaining` bytes for the future sequences. */
+ ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
+ return sequence;
+}
+
+void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
+ U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
+ while (currPos && rawSeqStore->pos < rawSeqStore->size) {
+ rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
+ if (currPos >= currSeq.litLength + currSeq.matchLength) {
+ currPos -= currSeq.litLength + currSeq.matchLength;
+ rawSeqStore->pos++;
+ } else {
+ rawSeqStore->posInSequence = currPos;
+ break;
+ }
+ }
+ if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
+ rawSeqStore->posInSequence = 0;
+ }
+}
+
+size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ unsigned const minMatch = cParams->minMatch;
+ ZSTD_blockCompressor const blockCompressor =
+ ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
+ /* Input bounds */
+ BYTE const* const istart = (BYTE const*)src;
+ BYTE const* const iend = istart + srcSize;
+ /* Input positions */
+ BYTE const* ip = istart;
+
+ DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
+ /* If using opt parser, use LDMs only as candidates rather than always accepting them */
+ if (cParams->strategy >= ZSTD_btopt) {
+ size_t lastLLSize;
+ ms->ldmSeqStore = rawSeqStore;
+ lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
+ ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
+ return lastLLSize;
+ }
+
+ assert(rawSeqStore->pos <= rawSeqStore->size);
+ assert(rawSeqStore->size <= rawSeqStore->capacity);
+ /* Loop through each sequence and apply the block compressor to the literals */
+ while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
+ /* maybeSplitSequence updates rawSeqStore->pos */
+ rawSeq const sequence = maybeSplitSequence(rawSeqStore,
+ (U32)(iend - ip), minMatch);
+ int i;
+ /* End signal */
+ if (sequence.offset == 0)
+ break;
+
+ assert(ip + sequence.litLength + sequence.matchLength <= iend);
+
+ /* Fill tables for block compressor */
+ ZSTD_ldm_limitTableUpdate(ms, ip);
+ ZSTD_ldm_fillFastTables(ms, ip);
+ /* Run the block compressor */
+ DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
+ {
+ size_t const newLitLength =
+ blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
+ ip += sequence.litLength;
+ /* Update the repcodes */
+ for (i = ZSTD_REP_NUM - 1; i > 0; i--)
+ rep[i] = rep[i-1];
+ rep[0] = sequence.offset;
+ /* Store the sequence */
+ ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
+ sequence.offset + ZSTD_REP_MOVE,
+ sequence.matchLength - MINMATCH);
+ ip += sequence.matchLength;
+ }
+ }
+ /* Fill the tables for the block compressor */
+ ZSTD_ldm_limitTableUpdate(ms, ip);
+ ZSTD_ldm_fillFastTables(ms, ip);
+ /* Compress the last literals */
+ return blockCompressor(ms, seqStore, rep, ip, iend - ip);
+}
diff --git a/lib/zstd/compress/zstd_ldm.h b/lib/zstd/compress/zstd_ldm.h
new file mode 100644
index 000000000000..25b25270b72e
--- /dev/null
+++ b/lib/zstd/compress/zstd_ldm.h
@@ -0,0 +1,110 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LDM_H
+#define ZSTD_LDM_H
+
+
+#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
+#include <linux/zstd.h> /* ZSTD_CCtx, size_t */
+
+/*-*************************************
+* Long distance matching
+***************************************/
+
+#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT
+
+void ZSTD_ldm_fillHashTable(
+ ldmState_t* state, const BYTE* ip,
+ const BYTE* iend, ldmParams_t const* params);
+
+/*
+ * ZSTD_ldm_generateSequences():
+ *
+ * Generates the sequences using the long distance match finder.
+ * Generates long range matching sequences in `sequences`, which parse a prefix
+ * of the source. `sequences` must be large enough to store every sequence,
+ * which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
+ * @returns 0 or an error code.
+ *
+ * NOTE: The user must have called ZSTD_window_update() for all of the input
+ * they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
+ * NOTE: This function returns an error if it runs out of space to store
+ * sequences.
+ */
+size_t ZSTD_ldm_generateSequences(
+ ldmState_t* ldms, rawSeqStore_t* sequences,
+ ldmParams_t const* params, void const* src, size_t srcSize);
+
+/*
+ * ZSTD_ldm_blockCompress():
+ *
+ * Compresses a block using the predefined sequences, along with a secondary
+ * block compressor. The literals section of every sequence is passed to the
+ * secondary block compressor, and those sequences are interspersed with the
+ * predefined sequences. Returns the length of the last literals.
+ * Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
+ * `rawSeqStore.seq` may also be updated to split the last sequence between two
+ * blocks.
+ * @return The length of the last literals.
+ *
+ * NOTE: The source must be at most the maximum block size, but the predefined
+ * sequences can be any size, and may be longer than the block. In the case that
+ * they are longer than the block, the last sequences may need to be split into
+ * two. We handle that case correctly, and update `rawSeqStore` appropriately.
+ * NOTE: This function does not return any errors.
+ */
+size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+/*
+ * ZSTD_ldm_skipSequences():
+ *
+ * Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
+ * Avoids emitting matches less than `minMatch` bytes.
+ * Must be called for data that is not passed to ZSTD_ldm_blockCompress().
+ */
+void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
+ U32 const minMatch);
+
+/* ZSTD_ldm_skipRawSeqStoreBytes():
+ * Moves forward in rawSeqStore by nbBytes, updating fields 'pos' and 'posInSequence'.
+ * Not to be used in conjunction with ZSTD_ldm_skipSequences().
+ * Must be called for data with is not passed to ZSTD_ldm_blockCompress().
+ */
+void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes);
+
+/* ZSTD_ldm_getTableSize() :
+ * Estimate the space needed for long distance matching tables or 0 if LDM is
+ * disabled.
+ */
+size_t ZSTD_ldm_getTableSize(ldmParams_t params);
+
+/* ZSTD_ldm_getSeqSpace() :
+ * Return an upper bound on the number of sequences that can be produced by
+ * the long distance matcher, or 0 if LDM is disabled.
+ */
+size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
+
+/* ZSTD_ldm_adjustParameters() :
+ * If the params->hashRateLog is not set, set it to its default value based on
+ * windowLog and params->hashLog.
+ *
+ * Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
+ * params->hashLog if it is not).
+ *
+ * Ensures that the minMatchLength >= targetLength during optimal parsing.
+ */
+void ZSTD_ldm_adjustParameters(ldmParams_t* params,
+ ZSTD_compressionParameters const* cParams);
+
+
+#endif /* ZSTD_FAST_H */
diff --git a/lib/zstd/compress/zstd_ldm_geartab.h b/lib/zstd/compress/zstd_ldm_geartab.h
new file mode 100644
index 000000000000..e5c24d856b0a
--- /dev/null
+++ b/lib/zstd/compress/zstd_ldm_geartab.h
@@ -0,0 +1,103 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_LDM_GEARTAB_H
+#define ZSTD_LDM_GEARTAB_H
+
+static U64 ZSTD_ldm_gearTab[256] = {
+ 0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc,
+ 0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05,
+ 0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e,
+ 0x9c8528f65badeaca, 0x86563706e2097529, 0x2902475fa375d889,
+ 0xafb32a9739a5ebe6, 0xce2714da3883e639, 0x21eaf821722e69e,
+ 0x37b628620b628, 0x49a8d455d88caf5, 0x8556d711e6958140,
+ 0x4f7ae74fc605c1f, 0x829f0c3468bd3a20, 0x4ffdc885c625179e,
+ 0x8473de048a3daf1b, 0x51008822b05646b2, 0x69d75d12b2d1cc5f,
+ 0x8c9d4a19159154bc, 0xc3cc10f4abbd4003, 0xd06ddc1cecb97391,
+ 0xbe48e6e7ed80302e, 0x3481db31cee03547, 0xacc3f67cdaa1d210,
+ 0x65cb771d8c7f96cc, 0x8eb27177055723dd, 0xc789950d44cd94be,
+ 0x934feadc3700b12b, 0x5e485f11edbdf182, 0x1e2e2a46fd64767a,
+ 0x2969ca71d82efa7c, 0x9d46e9935ebbba2e, 0xe056b67e05e6822b,
+ 0x94d73f55739d03a0, 0xcd7010bdb69b5a03, 0x455ef9fcd79b82f4,
+ 0x869cb54a8749c161, 0x38d1a4fa6185d225, 0xb475166f94bbe9bb,
+ 0xa4143548720959f1, 0x7aed4780ba6b26ba, 0xd0ce264439e02312,
+ 0x84366d746078d508, 0xa8ce973c72ed17be, 0x21c323a29a430b01,
+ 0x9962d617e3af80ee, 0xab0ce91d9c8cf75b, 0x530e8ee6d19a4dbc,
+ 0x2ef68c0cf53f5d72, 0xc03a681640a85506, 0x496e4e9f9c310967,
+ 0x78580472b59b14a0, 0x273824c23b388577, 0x66bf923ad45cb553,
+ 0x47ae1a5a2492ba86, 0x35e304569e229659, 0x4765182a46870b6f,
+ 0x6cbab625e9099412, 0xddac9a2e598522c1, 0x7172086e666624f2,
+ 0xdf5003ca503b7837, 0x88c0c1db78563d09, 0x58d51865acfc289d,
+ 0x177671aec65224f1, 0xfb79d8a241e967d7, 0x2be1e101cad9a49a,
+ 0x6625682f6e29186b, 0x399553457ac06e50, 0x35dffb4c23abb74,
+ 0x429db2591f54aade, 0xc52802a8037d1009, 0x6acb27381f0b25f3,
+ 0xf45e2551ee4f823b, 0x8b0ea2d99580c2f7, 0x3bed519cbcb4e1e1,
+ 0xff452823dbb010a, 0x9d42ed614f3dd267, 0x5b9313c06257c57b,
+ 0xa114b8008b5e1442, 0xc1fe311c11c13d4b, 0x66e8763ea34c5568,
+ 0x8b982af1c262f05d, 0xee8876faaa75fbb7, 0x8a62a4d0d172bb2a,
+ 0xc13d94a3b7449a97, 0x6dbbba9dc15d037c, 0xc786101f1d92e0f1,
+ 0xd78681a907a0b79b, 0xf61aaf2962c9abb9, 0x2cfd16fcd3cb7ad9,
+ 0x868c5b6744624d21, 0x25e650899c74ddd7, 0xba042af4a7c37463,
+ 0x4eb1a539465a3eca, 0xbe09dbf03b05d5ca, 0x774e5a362b5472ba,
+ 0x47a1221229d183cd, 0x504b0ca18ef5a2df, 0xdffbdfbde2456eb9,
+ 0x46cd2b2fbee34634, 0xf2aef8fe819d98c3, 0x357f5276d4599d61,
+ 0x24a5483879c453e3, 0x88026889192b4b9, 0x28da96671782dbec,
+ 0x4ef37c40588e9aaa, 0x8837b90651bc9fb3, 0xc164f741d3f0e5d6,
+ 0xbc135a0a704b70ba, 0x69cd868f7622ada, 0xbc37ba89e0b9c0ab,
+ 0x47c14a01323552f6, 0x4f00794bacee98bb, 0x7107de7d637a69d5,
+ 0x88af793bb6f2255e, 0xf3c6466b8799b598, 0xc288c616aa7f3b59,
+ 0x81ca63cf42fca3fd, 0x88d85ace36a2674b, 0xd056bd3792389e7,
+ 0xe55c396c4e9dd32d, 0xbefb504571e6c0a6, 0x96ab32115e91e8cc,
+ 0xbf8acb18de8f38d1, 0x66dae58801672606, 0x833b6017872317fb,
+ 0xb87c16f2d1c92864, 0xdb766a74e58b669c, 0x89659f85c61417be,
+ 0xc8daad856011ea0c, 0x76a4b565b6fe7eae, 0xa469d085f6237312,
+ 0xaaf0365683a3e96c, 0x4dbb746f8424f7b8, 0x638755af4e4acc1,
+ 0x3d7807f5bde64486, 0x17be6d8f5bbb7639, 0x903f0cd44dc35dc,
+ 0x67b672eafdf1196c, 0xa676ff93ed4c82f1, 0x521d1004c5053d9d,
+ 0x37ba9ad09ccc9202, 0x84e54d297aacfb51, 0xa0b4b776a143445,
+ 0x820d471e20b348e, 0x1874383cb83d46dc, 0x97edeec7a1efe11c,
+ 0xb330e50b1bdc42aa, 0x1dd91955ce70e032, 0xa514cdb88f2939d5,
+ 0x2791233fd90db9d3, 0x7b670a4cc50f7a9b, 0x77c07d2a05c6dfa5,
+ 0xe3778b6646d0a6fa, 0xb39c8eda47b56749, 0x933ed448addbef28,
+ 0xaf846af6ab7d0bf4, 0xe5af208eb666e49, 0x5e6622f73534cd6a,
+ 0x297daeca42ef5b6e, 0x862daef3d35539a6, 0xe68722498f8e1ea9,
+ 0x981c53093dc0d572, 0xfa09b0bfbf86fbf5, 0x30b1e96166219f15,
+ 0x70e7d466bdc4fb83, 0x5a66736e35f2a8e9, 0xcddb59d2b7c1baef,
+ 0xd6c7d247d26d8996, 0xea4e39eac8de1ba3, 0x539c8bb19fa3aff2,
+ 0x9f90e4c5fd508d8, 0xa34e5956fbaf3385, 0x2e2f8e151d3ef375,
+ 0x173691e9b83faec1, 0xb85a8d56bf016379, 0x8382381267408ae3,
+ 0xb90f901bbdc0096d, 0x7c6ad32933bcec65, 0x76bb5e2f2c8ad595,
+ 0x390f851a6cf46d28, 0xc3e6064da1c2da72, 0xc52a0c101cfa5389,
+ 0xd78eaf84a3fbc530, 0x3781b9e2288b997e, 0x73c2f6dea83d05c4,
+ 0x4228e364c5b5ed7, 0x9d7a3edf0da43911, 0x8edcfeda24686756,
+ 0x5e7667a7b7a9b3a1, 0x4c4f389fa143791d, 0xb08bc1023da7cddc,
+ 0x7ab4be3ae529b1cc, 0x754e6132dbe74ff9, 0x71635442a839df45,
+ 0x2f6fb1643fbe52de, 0x961e0a42cf7a8177, 0xf3b45d83d89ef2ea,
+ 0xee3de4cf4a6e3e9b, 0xcd6848542c3295e7, 0xe4cee1664c78662f,
+ 0x9947548b474c68c4, 0x25d73777a5ed8b0b, 0xc915b1d636b7fc,
+ 0x21c2ba75d9b0d2da, 0x5f6b5dcf608a64a1, 0xdcf333255ff9570c,
+ 0x633b922418ced4ee, 0xc136dde0b004b34a, 0x58cc83b05d4b2f5a,
+ 0x5eb424dda28e42d2, 0x62df47369739cd98, 0xb4e0b42485e4ce17,
+ 0x16e1f0c1f9a8d1e7, 0x8ec3916707560ebf, 0x62ba6e2df2cc9db3,
+ 0xcbf9f4ff77d83a16, 0x78d9d7d07d2bbcc4, 0xef554ce1e02c41f4,
+ 0x8d7581127eccf94d, 0xa9b53336cb3c8a05, 0x38c42c0bf45c4f91,
+ 0x640893cdf4488863, 0x80ec34bc575ea568, 0x39f324f5b48eaa40,
+ 0xe9d9ed1f8eff527f, 0x9224fc058cc5a214, 0xbaba00b04cfe7741,
+ 0x309a9f120fcf52af, 0xa558f3ec65626212, 0x424bec8b7adabe2f,
+ 0x41622513a6aea433, 0xb88da2d5324ca798, 0xd287733b245528a4,
+ 0x9a44697e6d68aec3, 0x7b1093be2f49bb28, 0x50bbec632e3d8aad,
+ 0x6cd90723e1ea8283, 0x897b9e7431b02bf3, 0x219efdcb338a7047,
+ 0x3b0311f0a27c0656, 0xdb17bf91c0db96e7, 0x8cd4fd6b4e85a5b2,
+ 0xfab071054ba6409d, 0x40d6fe831fa9dfd9, 0xaf358debad7d791e,
+ 0xeb8d0e25a65e3e58, 0xbbcbd3df14e08580, 0xcf751f27ecdab2b,
+ 0x2b4da14f2613d8f4
+};
+
+#endif /* ZSTD_LDM_GEARTAB_H */
diff --git a/lib/zstd/compress/zstd_opt.c b/lib/zstd/compress/zstd_opt.c
new file mode 100644
index 000000000000..04337050fe9a
--- /dev/null
+++ b/lib/zstd/compress/zstd_opt.c
@@ -0,0 +1,1346 @@
+/*
+ * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include "zstd_compress_internal.h"
+#include "hist.h"
+#include "zstd_opt.h"
+
+
+#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
+#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */
+#define ZSTD_MAX_PRICE (1<<30)
+
+#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
+
+
+/*-*************************************
+* Price functions for optimal parser
+***************************************/
+
+#if 0 /* approximation at bit level */
+# define BITCOST_ACCURACY 0
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat))
+#elif 0 /* fractional bit accuracy */
+# define BITCOST_ACCURACY 8
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
+#else /* opt==approx, ultra==accurate */
+# define BITCOST_ACCURACY 8
+# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
+# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
+#endif
+
+MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
+{
+ return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
+}
+
+MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
+{
+ U32 const stat = rawStat + 1;
+ U32 const hb = ZSTD_highbit32(stat);
+ U32 const BWeight = hb * BITCOST_MULTIPLIER;
+ U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
+ U32 const weight = BWeight + FWeight;
+ assert(hb + BITCOST_ACCURACY < 31);
+ return weight;
+}
+
+#if (DEBUGLEVEL>=2)
+/* debugging function,
+ * @return price in bytes as fractional value
+ * for debug messages only */
+MEM_STATIC double ZSTD_fCost(U32 price)
+{
+ return (double)price / (BITCOST_MULTIPLIER*8);
+}
+#endif
+
+static int ZSTD_compressedLiterals(optState_t const* const optPtr)
+{
+ return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
+}
+
+static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
+{
+ if (ZSTD_compressedLiterals(optPtr))
+ optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
+ optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
+ optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
+ optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
+}
+
+
+/* ZSTD_downscaleStat() :
+ * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus)
+ * return the resulting sum of elements */
+static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus)
+{
+ U32 s, sum=0;
+ DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1);
+ assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
+ for (s=0; s<lastEltIndex+1; s++) {
+ table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
+ sum += table[s];
+ }
+ return sum;
+}
+
+/* ZSTD_rescaleFreqs() :
+ * if first block (detected by optPtr->litLengthSum == 0) : init statistics
+ * take hints from dictionary if there is one
+ * or init from zero, using src for literals stats, or flat 1 for match symbols
+ * otherwise downscale existing stats, to be used as seed for next block.
+ */
+static void
+ZSTD_rescaleFreqs(optState_t* const optPtr,
+ const BYTE* const src, size_t const srcSize,
+ int const optLevel)
+{
+ int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
+ DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
+ optPtr->priceType = zop_dynamic;
+
+ if (optPtr->litLengthSum == 0) { /* first block : init */
+ if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */
+ DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
+ optPtr->priceType = zop_predef;
+ }
+
+ assert(optPtr->symbolCosts != NULL);
+ if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
+ /* huffman table presumed generated by dictionary */
+ optPtr->priceType = zop_dynamic;
+
+ if (compressedLiterals) {
+ unsigned lit;
+ assert(optPtr->litFreq != NULL);
+ optPtr->litSum = 0;
+ for (lit=0; lit<=MaxLit; lit++) {
+ U32 const scaleLog = 11; /* scale to 2K */
+ U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
+ assert(bitCost <= scaleLog);
+ optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->litSum += optPtr->litFreq[lit];
+ } }
+
+ { unsigned ll;
+ FSE_CState_t llstate;
+ FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
+ optPtr->litLengthSum = 0;
+ for (ll=0; ll<=MaxLL; ll++) {
+ U32 const scaleLog = 10; /* scale to 1K */
+ U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
+ assert(bitCost < scaleLog);
+ optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->litLengthSum += optPtr->litLengthFreq[ll];
+ } }
+
+ { unsigned ml;
+ FSE_CState_t mlstate;
+ FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
+ optPtr->matchLengthSum = 0;
+ for (ml=0; ml<=MaxML; ml++) {
+ U32 const scaleLog = 10;
+ U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
+ assert(bitCost < scaleLog);
+ optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
+ } }
+
+ { unsigned of;
+ FSE_CState_t ofstate;
+ FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
+ optPtr->offCodeSum = 0;
+ for (of=0; of<=MaxOff; of++) {
+ U32 const scaleLog = 10;
+ U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
+ assert(bitCost < scaleLog);
+ optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
+ optPtr->offCodeSum += optPtr->offCodeFreq[of];
+ } }
+
+ } else { /* not a dictionary */
+
+ assert(optPtr->litFreq != NULL);
+ if (compressedLiterals) {
+ unsigned lit = MaxLit;
+ HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
+ optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
+ }
+
+ { unsigned ll;
+ for (ll=0; ll<=MaxLL; ll++)
+ optPtr->litLengthFreq[ll] = 1;
+ }
+ optPtr->litLengthSum = MaxLL+1;
+
+ { unsigned ml;
+ for (ml=0; ml<=MaxML; ml++)
+ optPtr->matchLengthFreq[ml] = 1;
+ }
+ optPtr->matchLengthSum = MaxML+1;
+
+ { unsigned of;
+ for (of=0; of<=MaxOff; of++)
+ optPtr->offCodeFreq[of] = 1;
+ }
+ optPtr->offCodeSum = MaxOff+1;
+
+ }
+
+ } else { /* new block : re-use previous statistics, scaled down */
+
+ if (compressedLiterals)
+ optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
+ optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
+ optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
+ optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
+ }
+
+ ZSTD_setBasePrices(optPtr, optLevel);
+}
+
+/* ZSTD_rawLiteralsCost() :
+ * price of literals (only) in specified segment (which length can be 0).
+ * does not include price of literalLength symbol */
+static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
+ const optState_t* const optPtr,
+ int optLevel)
+{
+ if (litLength == 0) return 0;
+
+ if (!ZSTD_compressedLiterals(optPtr))
+ return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */
+
+ if (optPtr->priceType == zop_predef)
+ return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */
+
+ /* dynamic statistics */
+ { U32 price = litLength * optPtr->litSumBasePrice;
+ U32 u;
+ for (u=0; u < litLength; u++) {
+ assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */
+ price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
+ }
+ return price;
+ }
+}
+
+/* ZSTD_litLengthPrice() :
+ * cost of literalLength symbol */
+static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
+{
+ if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel);
+
+ /* dynamic statistics */
+ { U32 const llCode = ZSTD_LLcode(litLength);
+ return (LL_bits[llCode] * BITCOST_MULTIPLIER)
+ + optPtr->litLengthSumBasePrice
+ - WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
+ }
+}
+
+/* ZSTD_getMatchPrice() :
+ * Provides the cost of the match part (offset + matchLength) of a sequence
+ * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
+ * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */
+FORCE_INLINE_TEMPLATE U32
+ZSTD_getMatchPrice(U32 const offset,
+ U32 const matchLength,
+ const optState_t* const optPtr,
+ int const optLevel)
+{
+ U32 price;
+ U32 const offCode = ZSTD_highbit32(offset+1);
+ U32 const mlBase = matchLength - MINMATCH;
+ assert(matchLength >= MINMATCH);
+
+ if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */
+ return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
+
+ /* dynamic statistics */
+ price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
+ if ((optLevel<2) /*static*/ && offCode >= 20)
+ price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */
+
+ /* match Length */
+ { U32 const mlCode = ZSTD_MLcode(mlBase);
+ price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
+ }
+
+ price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */
+
+ DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
+ return price;
+}
+
+/* ZSTD_updateStats() :
+ * assumption : literals + litLengtn <= iend */
+static void ZSTD_updateStats(optState_t* const optPtr,
+ U32 litLength, const BYTE* literals,
+ U32 offsetCode, U32 matchLength)
+{
+ /* literals */
+ if (ZSTD_compressedLiterals(optPtr)) {
+ U32 u;
+ for (u=0; u < litLength; u++)
+ optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
+ optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
+ }
+
+ /* literal Length */
+ { U32 const llCode = ZSTD_LLcode(litLength);
+ optPtr->litLengthFreq[llCode]++;
+ optPtr->litLengthSum++;
+ }
+
+ /* match offset code (0-2=>repCode; 3+=>offset+2) */
+ { U32 const offCode = ZSTD_highbit32(offsetCode+1);
+ assert(offCode <= MaxOff);
+ optPtr->offCodeFreq[offCode]++;
+ optPtr->offCodeSum++;
+ }
+
+ /* match Length */
+ { U32 const mlBase = matchLength - MINMATCH;
+ U32 const mlCode = ZSTD_MLcode(mlBase);
+ optPtr->matchLengthFreq[mlCode]++;
+ optPtr->matchLengthSum++;
+ }
+}
+
+
+/* ZSTD_readMINMATCH() :
+ * function safe only for comparisons
+ * assumption : memPtr must be at least 4 bytes before end of buffer */
+MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
+{
+ switch (length)
+ {
+ default :
+ case 4 : return MEM_read32(memPtr);
+ case 3 : if (MEM_isLittleEndian())
+ return MEM_read32(memPtr)<<8;
+ else
+ return MEM_read32(memPtr)>>8;
+ }
+}
+
+
+/* Update hashTable3 up to ip (excluded)
+ Assumption : always within prefix (i.e. not within extDict) */
+static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* const ip)
+{
+ U32* const hashTable3 = ms->hashTable3;
+ U32 const hashLog3 = ms->hashLog3;
+ const BYTE* const base = ms->window.base;
+ U32 idx = *nextToUpdate3;
+ U32 const target = (U32)(ip - base);
+ size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
+ assert(hashLog3 > 0);
+
+ while(idx < target) {
+ hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
+ idx++;
+ }
+
+ *nextToUpdate3 = target;
+ return hashTable3[hash3];
+}
+
+
+/*-*************************************
+* Binary Tree search
+***************************************/
+/* ZSTD_insertBt1() : add one or multiple positions to tree.
+ * ip : assumed <= iend-8 .
+ * @return : nb of positions added */
+static U32 ZSTD_insertBt1(
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ U32 const mls, const int extDict)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32* const hashTable = ms->hashTable;
+ U32 const hashLog = cParams->hashLog;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask = (1 << btLog) - 1;
+ U32 matchIndex = hashTable[h];
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const dictBase = ms->window.dictBase;
+ const U32 dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ const BYTE* match;
+ const U32 curr = (U32)(ip-base);
+ const U32 btLow = btMask >= curr ? 0 : curr - btMask;
+ U32* smallerPtr = bt + 2*(curr&btMask);
+ U32* largerPtr = smallerPtr + 1;
+ U32 dummy32; /* to be nullified at the end */
+ U32 const windowLow = ms->window.lowLimit;
+ U32 matchEndIdx = curr+8+1;
+ size_t bestLength = 8;
+ U32 nbCompares = 1U << cParams->searchLog;
+#ifdef ZSTD_C_PREDICT
+ U32 predictedSmall = *(bt + 2*((curr-1)&btMask) + 0);
+ U32 predictedLarge = *(bt + 2*((curr-1)&btMask) + 1);
+ predictedSmall += (predictedSmall>0);
+ predictedLarge += (predictedLarge>0);
+#endif /* ZSTD_C_PREDICT */
+
+ DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr);
+
+ assert(ip <= iend-8); /* required for h calculation */
+ hashTable[h] = curr; /* Update Hash Table */
+
+ assert(windowLow > 0);
+ for (; nbCompares && (matchIndex >= windowLow); --nbCompares) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ assert(matchIndex < curr);
+
+#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
+ const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */
+ if (matchIndex == predictedSmall) {
+ /* no need to check length, result known */
+ *smallerPtr = matchIndex;
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ predictedSmall = predictPtr[1] + (predictPtr[1]>0);
+ continue;
+ }
+ if (matchIndex == predictedLarge) {
+ *largerPtr = matchIndex;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ predictedLarge = predictPtr[0] + (predictPtr[0]>0);
+ continue;
+ }
+#endif
+
+ if (!extDict || (matchIndex+matchLength >= dictLimit)) {
+ assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */
+ match = base + matchIndex;
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
+ } else {
+ match = dictBase + matchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
+ }
+
+ if (matchLength > bestLength) {
+ bestLength = matchLength;
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ }
+
+ if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
+ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
+ }
+
+ if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
+ /* match is smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
+ } else {
+ /* match is larger than current */
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+ { U32 positions = 0;
+ if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */
+ assert(matchEndIdx > curr + 8);
+ return MAX(positions, matchEndIdx - (curr + 8));
+ }
+}
+
+FORCE_INLINE_TEMPLATE
+void ZSTD_updateTree_internal(
+ ZSTD_matchState_t* ms,
+ const BYTE* const ip, const BYTE* const iend,
+ const U32 mls, const ZSTD_dictMode_e dictMode)
+{
+ const BYTE* const base = ms->window.base;
+ U32 const target = (U32)(ip - base);
+ U32 idx = ms->nextToUpdate;
+ DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
+ idx, target, dictMode);
+
+ while(idx < target) {
+ U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
+ assert(idx < (U32)(idx + forward));
+ idx += forward;
+ }
+ assert((size_t)(ip - base) <= (size_t)(U32)(-1));
+ assert((size_t)(iend - base) <= (size_t)(U32)(-1));
+ ms->nextToUpdate = target;
+}
+
+void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
+ ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
+}
+
+FORCE_INLINE_TEMPLATE
+U32 ZSTD_insertBtAndGetAllMatches (
+ ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
+ ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
+ const U32 lengthToBeat,
+ U32 const mls /* template */)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
+ const BYTE* const base = ms->window.base;
+ U32 const curr = (U32)(ip-base);
+ U32 const hashLog = cParams->hashLog;
+ U32 const minMatch = (mls==3) ? 3 : 4;
+ U32* const hashTable = ms->hashTable;
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
+ U32 matchIndex = hashTable[h];
+ U32* const bt = ms->chainTable;
+ U32 const btLog = cParams->chainLog - 1;
+ U32 const btMask= (1U << btLog) - 1;
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
+ const BYTE* const dictBase = ms->window.dictBase;
+ U32 const dictLimit = ms->window.dictLimit;
+ const BYTE* const dictEnd = dictBase + dictLimit;
+ const BYTE* const prefixStart = base + dictLimit;
+ U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
+ U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
+ U32 const matchLow = windowLow ? windowLow : 1;
+ U32* smallerPtr = bt + 2*(curr&btMask);
+ U32* largerPtr = bt + 2*(curr&btMask) + 1;
+ U32 matchEndIdx = curr+8+1; /* farthest referenced position of any match => detects repetitive patterns */
+ U32 dummy32; /* to be nullified at the end */
+ U32 mnum = 0;
+ U32 nbCompares = 1U << cParams->searchLog;
+
+ const ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
+ const ZSTD_compressionParameters* const dmsCParams =
+ dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
+ const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
+ const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
+ U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
+ U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
+ U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
+ U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
+ U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
+ U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
+ U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;
+
+ size_t bestLength = lengthToBeat-1;
+ DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", curr);
+
+ /* check repCode */
+ assert(ll0 <= 1); /* necessarily 1 or 0 */
+ { U32 const lastR = ZSTD_REP_NUM + ll0;
+ U32 repCode;
+ for (repCode = ll0; repCode < lastR; repCode++) {
+ U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
+ U32 const repIndex = curr - repOffset;
+ U32 repLen = 0;
+ assert(curr >= dictLimit);
+ if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < curr-dictLimit) { /* equivalent to `curr > repIndex >= dictLimit` */
+ /* We must validate the repcode offset because when we're using a dictionary the
+ * valid offset range shrinks when the dictionary goes out of bounds.
+ */
+ if ((repIndex >= windowLow) & (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch))) {
+ repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
+ }
+ } else { /* repIndex < dictLimit || repIndex >= curr */
+ const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ?
+ dmsBase + repIndex - dmsIndexDelta :
+ dictBase + repIndex;
+ assert(curr >= windowLow);
+ if ( dictMode == ZSTD_extDict
+ && ( ((repOffset-1) /*intentional overflow*/ < curr - windowLow) /* equivalent to `curr > repIndex >= windowLow` */
+ & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */)
+ && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
+ repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
+ }
+ if (dictMode == ZSTD_dictMatchState
+ && ( ((repOffset-1) /*intentional overflow*/ < curr - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `curr > repIndex >= dmsLowLimit` */
+ & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */
+ && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
+ repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
+ } }
+ /* save longer solution */
+ if (repLen > bestLength) {
+ DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
+ repCode, ll0, repOffset, repLen);
+ bestLength = repLen;
+ matches[mnum].off = repCode - ll0;
+ matches[mnum].len = (U32)repLen;
+ mnum++;
+ if ( (repLen > sufficient_len)
+ | (ip+repLen == iLimit) ) { /* best possible */
+ return mnum;
+ } } } }
+
+ /* HC3 match finder */
+ if ((mls == 3) /*static*/ && (bestLength < mls)) {
+ U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
+ if ((matchIndex3 >= matchLow)
+ & (curr - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
+ size_t mlen;
+ if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) {
+ const BYTE* const match = base + matchIndex3;
+ mlen = ZSTD_count(ip, match, iLimit);
+ } else {
+ const BYTE* const match = dictBase + matchIndex3;
+ mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
+ }
+
+ /* save best solution */
+ if (mlen >= mls /* == 3 > bestLength */) {
+ DEBUGLOG(8, "found small match with hlog3, of length %u",
+ (U32)mlen);
+ bestLength = mlen;
+ assert(curr > matchIndex3);
+ assert(mnum==0); /* no prior solution */
+ matches[0].off = (curr - matchIndex3) + ZSTD_REP_MOVE;
+ matches[0].len = (U32)mlen;
+ mnum = 1;
+ if ( (mlen > sufficient_len) |
+ (ip+mlen == iLimit) ) { /* best possible length */
+ ms->nextToUpdate = curr+1; /* skip insertion */
+ return 1;
+ } } }
+ /* no dictMatchState lookup: dicts don't have a populated HC3 table */
+ }
+
+ hashTable[h] = curr; /* Update Hash Table */
+
+ for (; nbCompares && (matchIndex >= matchLow); --nbCompares) {
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
+ const BYTE* match;
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ assert(curr > matchIndex);
+
+ if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
+ assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */
+ match = base + matchIndex;
+ if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
+ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
+ } else {
+ match = dictBase + matchIndex;
+ assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
+ if (matchIndex+matchLength >= dictLimit)
+ match = base + matchIndex; /* prepare for match[matchLength] read */
+ }
+
+ if (matchLength > bestLength) {
+ DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
+ (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
+ assert(matchEndIdx > matchIndex);
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ bestLength = matchLength;
+ matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].len = (U32)matchLength;
+ mnum++;
+ if ( (matchLength > ZSTD_OPT_NUM)
+ | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
+ if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
+ break; /* drop, to preserve bt consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (match[matchLength] < ip[matchLength]) {
+ /* match smaller than current */
+ *smallerPtr = matchIndex; /* update smaller idx */
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */
+ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */
+ } else {
+ *largerPtr = matchIndex;
+ commonLengthLarger = matchLength;
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
+ largerPtr = nextPtr;
+ matchIndex = nextPtr[0];
+ } }
+
+ *smallerPtr = *largerPtr = 0;
+
+ assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
+ if (dictMode == ZSTD_dictMatchState && nbCompares) {
+ size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
+ U32 dictMatchIndex = dms->hashTable[dmsH];
+ const U32* const dmsBt = dms->chainTable;
+ commonLengthSmaller = commonLengthLarger = 0;
+ for (; nbCompares && (dictMatchIndex > dmsLowLimit); --nbCompares) {
+ const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
+ const BYTE* match = dmsBase + dictMatchIndex;
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
+ if (dictMatchIndex+matchLength >= dmsHighLimit)
+ match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */
+
+ if (matchLength > bestLength) {
+ matchIndex = dictMatchIndex + dmsIndexDelta;
+ DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
+ (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
+ if (matchLength > matchEndIdx - matchIndex)
+ matchEndIdx = matchIndex + (U32)matchLength;
+ bestLength = matchLength;
+ matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
+ matches[mnum].len = (U32)matchLength;
+ mnum++;
+ if ( (matchLength > ZSTD_OPT_NUM)
+ | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
+ }
+ }
+
+ if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */
+ if (match[matchLength] < ip[matchLength]) {
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
+ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
+ } else {
+ /* match is larger than current */
+ commonLengthLarger = matchLength;
+ dictMatchIndex = nextPtr[0];
+ }
+ }
+ }
+
+ assert(matchEndIdx > curr+8);
+ ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
+ return mnum;
+}
+
+
+FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
+ ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */
+ ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
+ const U32 rep[ZSTD_REP_NUM],
+ U32 const ll0,
+ U32 const lengthToBeat)
+{
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+ U32 const matchLengthSearch = cParams->minMatch;
+ DEBUGLOG(8, "ZSTD_BtGetAllMatches");
+ if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
+ ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
+ switch(matchLengthSearch)
+ {
+ case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
+ default :
+ case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
+ case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
+ case 7 :
+ case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
+ }
+}
+
+/* ***********************
+* LDM helper functions *
+*************************/
+
+/* Struct containing info needed to make decision about ldm inclusion */
+typedef struct {
+ rawSeqStore_t seqStore; /* External match candidates store for this block */
+ U32 startPosInBlock; /* Start position of the current match candidate */
+ U32 endPosInBlock; /* End position of the current match candidate */
+ U32 offset; /* Offset of the match candidate */
+} ZSTD_optLdm_t;
+
+/* ZSTD_optLdm_skipRawSeqStoreBytes():
+ * Moves forward in rawSeqStore by nbBytes, which will update the fields 'pos' and 'posInSequence'.
+ */
+static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
+ U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
+ while (currPos && rawSeqStore->pos < rawSeqStore->size) {
+ rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
+ if (currPos >= currSeq.litLength + currSeq.matchLength) {
+ currPos -= currSeq.litLength + currSeq.matchLength;
+ rawSeqStore->pos++;
+ } else {
+ rawSeqStore->posInSequence = currPos;
+ break;
+ }
+ }
+ if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
+ rawSeqStore->posInSequence = 0;
+ }
+}
+
+/* ZSTD_opt_getNextMatchAndUpdateSeqStore():
+ * Calculates the beginning and end of the next match in the current block.
+ * Updates 'pos' and 'posInSequence' of the ldmSeqStore.
+ */
+static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock,
+ U32 blockBytesRemaining) {
+ rawSeq currSeq;
+ U32 currBlockEndPos;
+ U32 literalsBytesRemaining;
+ U32 matchBytesRemaining;
+
+ /* Setting match end position to MAX to ensure we never use an LDM during this block */
+ if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
+ optLdm->startPosInBlock = UINT_MAX;
+ optLdm->endPosInBlock = UINT_MAX;
+ return;
+ }
+ /* Calculate appropriate bytes left in matchLength and litLength after adjusting
+ based on ldmSeqStore->posInSequence */
+ currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos];
+ assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength);
+ currBlockEndPos = currPosInBlock + blockBytesRemaining;
+ literalsBytesRemaining = (optLdm->seqStore.posInSequence < currSeq.litLength) ?
+ currSeq.litLength - (U32)optLdm->seqStore.posInSequence :
+ 0;
+ matchBytesRemaining = (literalsBytesRemaining == 0) ?
+ currSeq.matchLength - ((U32)optLdm->seqStore.posInSequence - currSeq.litLength) :
+ currSeq.matchLength;
+
+ /* If there are more literal bytes than bytes remaining in block, no ldm is possible */
+ if (literalsBytesRemaining >= blockBytesRemaining) {
+ optLdm->startPosInBlock = UINT_MAX;
+ optLdm->endPosInBlock = UINT_MAX;
+ ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, blockBytesRemaining);
+ return;
+ }
+
+ /* Matches may be < MINMATCH by this process. In that case, we will reject them
+ when we are deciding whether or not to add the ldm */
+ optLdm->startPosInBlock = currPosInBlock + literalsBytesRemaining;
+ optLdm->endPosInBlock = optLdm->startPosInBlock + matchBytesRemaining;
+ optLdm->offset = currSeq.offset;
+
+ if (optLdm->endPosInBlock > currBlockEndPos) {
+ /* Match ends after the block ends, we can't use the whole match */
+ optLdm->endPosInBlock = currBlockEndPos;
+ ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, currBlockEndPos - currPosInBlock);
+ } else {
+ /* Consume nb of bytes equal to size of sequence left */
+ ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, literalsBytesRemaining + matchBytesRemaining);
+ }
+}
+
+/* ZSTD_optLdm_maybeAddMatch():
+ * Adds a match if it's long enough, based on it's 'matchStartPosInBlock'
+ * and 'matchEndPosInBlock', into 'matches'. Maintains the correct ordering of 'matches'
+ */
+static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
+ ZSTD_optLdm_t* optLdm, U32 currPosInBlock) {
+ U32 posDiff = currPosInBlock - optLdm->startPosInBlock;
+ /* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */
+ U32 candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
+ U32 candidateOffCode = optLdm->offset + ZSTD_REP_MOVE;
+
+ /* Ensure that current block position is not outside of the match */
+ if (currPosInBlock < optLdm->startPosInBlock
+ || currPosInBlock >= optLdm->endPosInBlock
+ || candidateMatchLength < MINMATCH) {
+ return;
+ }
+
+ if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) {
+ DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u",
+ candidateOffCode, candidateMatchLength, currPosInBlock);
+ matches[*nbMatches].len = candidateMatchLength;
+ matches[*nbMatches].off = candidateOffCode;
+ (*nbMatches)++;
+ }
+}
+
+/* ZSTD_optLdm_processMatchCandidate():
+ * Wrapper function to update ldm seq store and call ldm functions as necessary.
+ */
+static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_t* matches, U32* nbMatches,
+ U32 currPosInBlock, U32 remainingBytes) {
+ if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
+ return;
+ }
+
+ if (currPosInBlock >= optLdm->endPosInBlock) {
+ if (currPosInBlock > optLdm->endPosInBlock) {
+ /* The position at which ZSTD_optLdm_processMatchCandidate() is called is not necessarily
+ * at the end of a match from the ldm seq store, and will often be some bytes
+ * over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots"
+ */
+ U32 posOvershoot = currPosInBlock - optLdm->endPosInBlock;
+ ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot);
+ }
+ ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes);
+ }
+ ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock);
+}
+
+/*-*******************************
+* Optimal parser
+*********************************/
+
+
+static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
+{
+ return sol.litlen + sol.mlen;
+}
+
+#if 0 /* debug */
+
+static void
+listStats(const U32* table, int lastEltID)
+{
+ int const nbElts = lastEltID + 1;
+ int enb;
+ for (enb=0; enb < nbElts; enb++) {
+ (void)table;
+ /* RAWLOG(2, "%3i:%3i, ", enb, table[enb]); */
+ RAWLOG(2, "%4i,", table[enb]);
+ }
+ RAWLOG(2, " \n");
+}
+
+#endif
+
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
+ seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize,
+ const int optLevel,
+ const ZSTD_dictMode_e dictMode)
+{
+ optState_t* const optStatePtr = &ms->opt;
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* ip = istart;
+ const BYTE* anchor = istart;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* const ilimit = iend - 8;
+ const BYTE* const base = ms->window.base;
+ const BYTE* const prefixStart = base + ms->window.dictLimit;
+ const ZSTD_compressionParameters* const cParams = &ms->cParams;
+
+ U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
+ U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
+ U32 nextToUpdate3 = ms->nextToUpdate;
+
+ ZSTD_optimal_t* const opt = optStatePtr->priceTable;
+ ZSTD_match_t* const matches = optStatePtr->matchTable;
+ ZSTD_optimal_t lastSequence;
+ ZSTD_optLdm_t optLdm;
+
+ optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore;
+ optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0;
+ ZSTD_opt_getNextMatchAndUpdateSeqStore(&optLdm, (U32)(ip-istart), (U32)(iend-ip));
+
+ /* init */
+ DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
+ (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
+ assert(optLevel <= 2);
+ ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
+ ip += (ip==prefixStart);
+
+ /* Match Loop */
+ while (ip < ilimit) {
+ U32 cur, last_pos = 0;
+
+ /* find first match */
+ { U32 const litlen = (U32)(ip - anchor);
+ U32 const ll0 = !litlen;
+ U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
+ ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
+ (U32)(ip-istart), (U32)(iend - ip));
+ if (!nbMatches) { ip++; continue; }
+
+ /* initialize opt[0] */
+ { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
+ opt[0].mlen = 0; /* means is_a_literal */
+ opt[0].litlen = litlen;
+ /* We don't need to include the actual price of the literals because
+ * it is static for the duration of the forward pass, and is included
+ * in every price. We include the literal length to avoid negative
+ * prices when we subtract the previous literal length.
+ */
+ opt[0].price = ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
+
+ /* large match -> immediate encoding */
+ { U32 const maxML = matches[nbMatches-1].len;
+ U32 const maxOffset = matches[nbMatches-1].off;
+ DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
+ nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
+
+ if (maxML > sufficient_len) {
+ lastSequence.litlen = litlen;
+ lastSequence.mlen = maxML;
+ lastSequence.off = maxOffset;
+ DEBUGLOG(6, "large match (%u>%u), immediate encoding",
+ maxML, sufficient_len);
+ cur = 0;
+ last_pos = ZSTD_totalLen(lastSequence);
+ goto _shortestPath;
+ } }
+
+ /* set prices for first matches starting position == 0 */
+ { U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ U32 pos;
+ U32 matchNb;
+ for (pos = 1; pos < minMatch; pos++) {
+ opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
+ }
+ for (matchNb = 0; matchNb < nbMatches; matchNb++) {
+ U32 const offset = matches[matchNb].off;
+ U32 const end = matches[matchNb].len;
+ for ( ; pos <= end ; pos++ ) {
+ U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
+ U32 const sequencePrice = literalsPrice + matchPrice;
+ DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
+ pos, ZSTD_fCost(sequencePrice));
+ opt[pos].mlen = pos;
+ opt[pos].off = offset;
+ opt[pos].litlen = litlen;
+ opt[pos].price = sequencePrice;
+ } }
+ last_pos = pos-1;
+ }
+ }
+
+ /* check further positions */
+ for (cur = 1; cur <= last_pos; cur++) {
+ const BYTE* const inr = ip + cur;
+ assert(cur < ZSTD_OPT_NUM);
+ DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)
+
+ /* Fix current position with one literal if cheaper */
+ { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
+ int const price = opt[cur-1].price
+ + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
+ + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
+ - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
+ assert(price < 1000000000); /* overflow check */
+ if (price <= opt[cur].price) {
+ DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
+ inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
+ opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
+ opt[cur].mlen = 0;
+ opt[cur].off = 0;
+ opt[cur].litlen = litlen;
+ opt[cur].price = price;
+ } else {
+ DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
+ inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
+ opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
+ }
+ }
+
+ /* Set the repcodes of the current position. We must do it here
+ * because we rely on the repcodes of the 2nd to last sequence being
+ * correct to set the next chunks repcodes during the backward
+ * traversal.
+ */
+ ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(repcodes_t));
+ assert(cur >= opt[cur].mlen);
+ if (opt[cur].mlen != 0) {
+ U32 const prev = cur - opt[cur].mlen;
+ repcodes_t newReps = ZSTD_updateRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
+ ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
+ } else {
+ ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
+ }
+
+ /* last match must start at a minimum distance of 8 from oend */
+ if (inr > ilimit) continue;
+
+ if (cur == last_pos) break;
+
+ if ( (optLevel==0) /*static_test*/
+ && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
+ DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
+ continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
+ }
+
+ { U32 const ll0 = (opt[cur].mlen != 0);
+ U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
+ U32 const previousPrice = opt[cur].price;
+ U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
+ U32 matchNb;
+
+ ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
+ (U32)(inr-istart), (U32)(iend-inr));
+
+ if (!nbMatches) {
+ DEBUGLOG(7, "rPos:%u : no match found", cur);
+ continue;
+ }
+
+ { U32 const maxML = matches[nbMatches-1].len;
+ DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
+ inr-istart, cur, nbMatches, maxML);
+
+ if ( (maxML > sufficient_len)
+ || (cur + maxML >= ZSTD_OPT_NUM) ) {
+ lastSequence.mlen = maxML;
+ lastSequence.off = matches[nbMatches-1].off;
+ lastSequence.litlen = litlen;
+ cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
+ last_pos = cur + ZSTD_totalLen(lastSequence);
+ if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */
+ goto _shortestPath;
+ } }
+
+ /* set prices using matches found at position == cur */
+ for (matchNb = 0; matchNb < nbMatches; matchNb++) {
+ U32 const offset = matches[matchNb].off;
+ U32 const lastML = matches[matchNb].len;
+ U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
+ U32 mlen;
+
+ DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
+ matchNb, matches[matchNb].off, lastML, litlen);
+
+ for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
+ U32 const pos = cur + mlen;
+ int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
+
+ if ((pos > last_pos) || (price < opt[pos].price)) {
+ DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
+ pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
+ while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */
+ opt[pos].mlen = mlen;
+ opt[pos].off = offset;
+ opt[pos].litlen = litlen;
+ opt[pos].price = price;
+ } else {
+ DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
+ pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
+ if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
+ }
+ } } }
+ } /* for (cur = 1; cur <= last_pos; cur++) */
+
+ lastSequence = opt[last_pos];
+ cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */
+ assert(cur < ZSTD_OPT_NUM); /* control overflow*/
+
+_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
+ assert(opt[0].mlen == 0);
+
+ /* Set the next chunk's repcodes based on the repcodes of the beginning
+ * of the last match, and the last sequence. This avoids us having to
+ * update them while traversing the sequences.
+ */
+ if (lastSequence.mlen != 0) {
+ repcodes_t reps = ZSTD_updateRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
+ ZSTD_memcpy(rep, &reps, sizeof(reps));
+ } else {
+ ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
+ }
+
+ { U32 const storeEnd = cur + 1;
+ U32 storeStart = storeEnd;
+ U32 seqPos = cur;
+
+ DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
+ last_pos, cur); (void)last_pos;
+ assert(storeEnd < ZSTD_OPT_NUM);
+ DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
+ storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
+ opt[storeEnd] = lastSequence;
+ while (seqPos > 0) {
+ U32 const backDist = ZSTD_totalLen(opt[seqPos]);
+ storeStart--;
+ DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
+ seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
+ opt[storeStart] = opt[seqPos];
+ seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
+ }
+
+ /* save sequences */
+ DEBUGLOG(6, "sending selected sequences into seqStore")
+ { U32 storePos;
+ for (storePos=storeStart; storePos <= storeEnd; storePos++) {
+ U32 const llen = opt[storePos].litlen;
+ U32 const mlen = opt[storePos].mlen;
+ U32 const offCode = opt[storePos].off;
+ U32 const advance = llen + mlen;
+ DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
+ anchor - istart, (unsigned)llen, (unsigned)mlen);
+
+ if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */
+ assert(storePos == storeEnd); /* must be last sequence */
+ ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */
+ continue; /* will finish */
+ }
+
+ assert(anchor + llen <= iend);
+ ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
+ ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
+ anchor += advance;
+ ip = anchor;
+ } }
+ ZSTD_setBasePrices(optStatePtr, optLevel);
+ }
+ } /* while (ip < ilimit) */
+
+ /* Return the last literals size */
+ return (size_t)(iend - anchor);
+}
+
+
+size_t ZSTD_compressBlock_btopt(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressBlock_btopt");
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict);
+}
+
+
+/* used in 2-pass strategy */
+static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
+{
+ U32 s, sum=0;
+ assert(ZSTD_FREQ_DIV+bonus >= 0);
+ for (s=0; s<lastEltIndex+1; s++) {
+ table[s] <<= ZSTD_FREQ_DIV+bonus;
+ table[s]--;
+ sum += table[s];
+ }
+ return sum;
+}
+
+/* used in 2-pass strategy */
+MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
+{
+ if (ZSTD_compressedLiterals(optPtr))
+ optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
+ optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
+ optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
+ optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
+}
+
+/* ZSTD_initStats_ultra():
+ * make a first compression pass, just to seed stats with more accurate starting values.
+ * only works on first block, with no dictionary and no ldm.
+ * this function cannot error, hence its contract must be respected.
+ */
+static void
+ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
+ seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */
+ ZSTD_memcpy(tmpRep, rep, sizeof(tmpRep));
+
+ DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize);
+ assert(ms->opt.litLengthSum == 0); /* first block */
+ assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */
+ assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */
+ assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */
+
+ ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/
+
+ /* invalidate first scan from history */
+ ZSTD_resetSeqStore(seqStore);
+ ms->window.base -= srcSize;
+ ms->window.dictLimit += (U32)srcSize;
+ ms->window.lowLimit = ms->window.dictLimit;
+ ms->nextToUpdate = ms->window.dictLimit;
+
+ /* re-inforce weight of collected statistics */
+ ZSTD_upscaleStats(&ms->opt);
+}
+
+size_t ZSTD_compressBlock_btultra(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btultra2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ U32 const curr = (U32)((const BYTE*)src - ms->window.base);
+ DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);
+
+ /* 2-pass strategy:
+ * this strategy makes a first pass over first block to collect statistics
+ * and seed next round's statistics with it.
+ * After 1st pass, function forgets everything, and starts a new block.
+ * Consequently, this can only work if no data has been previously loaded in tables,
+ * aka, no dictionary, no prefix, no ldm preprocessing.
+ * The compression ratio gain is generally small (~0.5% on first block),
+ * the cost is 2x cpu time on first block. */
+ assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
+ if ( (ms->opt.litLengthSum==0) /* first block */
+ && (seqStore->sequences == seqStore->sequencesStart) /* no ldm */
+ && (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */
+ && (curr == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */
+ && (srcSize > ZSTD_PREDEF_THRESHOLD)
+ ) {
+ ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
+ }
+
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
+}
+
+size_t ZSTD_compressBlock_btopt_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_btultra_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState);
+}
+
+size_t ZSTD_compressBlock_btopt_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict);
+}
+
+size_t ZSTD_compressBlock_btultra_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
+{
+ return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict);
+}
+
+/* note : no btultra2 variant for extDict nor dictMatchState,
+ * because btultra2 is not meant to work with dictionaries
+ * and is only specific for the first block (no prefix) */
diff --git a/lib/zstd/compress/zstd_opt.h b/lib/zstd/compress/zstd_opt.h
new file mode 100644
index 000000000000..22b862858ba7
--- /dev/null
+++ b/lib/zstd/compress/zstd_opt.h
@@ -0,0 +1,50 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#ifndef ZSTD_OPT_H
+#define ZSTD_OPT_H
+
+
+#include "zstd_compress_internal.h"
+
+/* used in ZSTD_loadDictionaryContent() */
+void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
+
+size_t ZSTD_compressBlock_btopt(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+
+size_t ZSTD_compressBlock_btopt_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra_dictMatchState(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+size_t ZSTD_compressBlock_btopt_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+size_t ZSTD_compressBlock_btultra_extDict(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+ /* note : no btultra2 variant for extDict nor dictMatchState,
+ * because btultra2 is not meant to work with dictionaries
+ * and is only specific for the first block (no prefix) */
+
+
+#endif /* ZSTD_OPT_H */
diff --git a/lib/zstd/decompress.c b/lib/zstd/decompress.c
deleted file mode 100644
index 66cd487a326a..000000000000
--- a/lib/zstd/decompress.c
+++ /dev/null
@@ -1,2531 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-/* ***************************************************************
-* Tuning parameters
-*****************************************************************/
-/*!
-* MAXWINDOWSIZE_DEFAULT :
-* maximum window size accepted by DStream, by default.
-* Frames requiring more memory will be rejected.
-*/
-#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
-#define ZSTD_MAXWINDOWSIZE_DEFAULT ((1 << ZSTD_WINDOWLOG_MAX) + 1) /* defined within zstd.h */
-#endif
-
-/*-*******************************************************
-* Dependencies
-*********************************************************/
-#include "fse.h"
-#include "huf.h"
-#include "mem.h" /* low level memory routines */
-#include "zstd_internal.h"
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/string.h> /* memcpy, memmove, memset */
-
-#define ZSTD_PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0)
-
-/*-*************************************
-* Macros
-***************************************/
-#define ZSTD_isError ERR_isError /* for inlining */
-#define FSE_isError ERR_isError
-#define HUF_isError ERR_isError
-
-/*_*******************************************************
-* Memory operations
-**********************************************************/
-static void ZSTD_copy4(void *dst, const void *src) { memcpy(dst, src, 4); }
-
-/*-*************************************************************
-* Context management
-***************************************************************/
-typedef enum {
- ZSTDds_getFrameHeaderSize,
- ZSTDds_decodeFrameHeader,
- ZSTDds_decodeBlockHeader,
- ZSTDds_decompressBlock,
- ZSTDds_decompressLastBlock,
- ZSTDds_checkChecksum,
- ZSTDds_decodeSkippableHeader,
- ZSTDds_skipFrame
-} ZSTD_dStage;
-
-typedef struct {
- FSE_DTable LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
- FSE_DTable OFTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
- FSE_DTable MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
- HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
- U64 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32 / 2];
- U32 rep[ZSTD_REP_NUM];
-} ZSTD_entropyTables_t;
-
-struct ZSTD_DCtx_s {
- const FSE_DTable *LLTptr;
- const FSE_DTable *MLTptr;
- const FSE_DTable *OFTptr;
- const HUF_DTable *HUFptr;
- ZSTD_entropyTables_t entropy;
- const void *previousDstEnd; /* detect continuity */
- const void *base; /* start of curr segment */
- const void *vBase; /* virtual start of previous segment if it was just before curr one */
- const void *dictEnd; /* end of previous segment */
- size_t expected;
- ZSTD_frameParams fParams;
- blockType_e bType; /* used in ZSTD_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
- ZSTD_dStage stage;
- U32 litEntropy;
- U32 fseEntropy;
- struct xxh64_state xxhState;
- size_t headerSize;
- U32 dictID;
- const BYTE *litPtr;
- ZSTD_customMem customMem;
- size_t litSize;
- size_t rleSize;
- BYTE litBuffer[ZSTD_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH];
- BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
-}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
-
-size_t ZSTD_DCtxWorkspaceBound(void) { return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_DCtx)); }
-
-size_t ZSTD_decompressBegin(ZSTD_DCtx *dctx)
-{
- dctx->expected = ZSTD_frameHeaderSize_prefix;
- dctx->stage = ZSTDds_getFrameHeaderSize;
- dctx->previousDstEnd = NULL;
- dctx->base = NULL;
- dctx->vBase = NULL;
- dctx->dictEnd = NULL;
- dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
- dctx->litEntropy = dctx->fseEntropy = 0;
- dctx->dictID = 0;
- ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
- memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
- dctx->LLTptr = dctx->entropy.LLTable;
- dctx->MLTptr = dctx->entropy.MLTable;
- dctx->OFTptr = dctx->entropy.OFTable;
- dctx->HUFptr = dctx->entropy.hufTable;
- return 0;
-}
-
-ZSTD_DCtx *ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
-{
- ZSTD_DCtx *dctx;
-
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
-
- dctx = (ZSTD_DCtx *)ZSTD_malloc(sizeof(ZSTD_DCtx), customMem);
- if (!dctx)
- return NULL;
- memcpy(&dctx->customMem, &customMem, sizeof(customMem));
- ZSTD_decompressBegin(dctx);
- return dctx;
-}
-
-ZSTD_DCtx *ZSTD_initDCtx(void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- return ZSTD_createDCtx_advanced(stackMem);
-}
-
-size_t ZSTD_freeDCtx(ZSTD_DCtx *dctx)
-{
- if (dctx == NULL)
- return 0; /* support free on NULL */
- ZSTD_free(dctx, dctx->customMem);
- return 0; /* reserved as a potential error code in the future */
-}
-
-void ZSTD_copyDCtx(ZSTD_DCtx *dstDCtx, const ZSTD_DCtx *srcDCtx)
-{
- size_t const workSpaceSize = (ZSTD_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH) + ZSTD_frameHeaderSize_max;
- memcpy(dstDCtx, srcDCtx, sizeof(ZSTD_DCtx) - workSpaceSize); /* no need to copy workspace */
-}
-
-static void ZSTD_refDDict(ZSTD_DCtx *dstDCtx, const ZSTD_DDict *ddict);
-
-/*-*************************************************************
-* Decompression section
-***************************************************************/
-
-/*! ZSTD_isFrame() :
- * Tells if the content of `buffer` starts with a valid Frame Identifier.
- * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
- * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
- * Note 3 : Skippable Frame Identifiers are considered valid. */
-unsigned ZSTD_isFrame(const void *buffer, size_t size)
-{
- if (size < 4)
- return 0;
- {
- U32 const magic = ZSTD_readLE32(buffer);
- if (magic == ZSTD_MAGICNUMBER)
- return 1;
- if ((magic & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START)
- return 1;
- }
- return 0;
-}
-
-/** ZSTD_frameHeaderSize() :
-* srcSize must be >= ZSTD_frameHeaderSize_prefix.
-* @return : size of the Frame Header */
-static size_t ZSTD_frameHeaderSize(const void *src, size_t srcSize)
-{
- if (srcSize < ZSTD_frameHeaderSize_prefix)
- return ERROR(srcSize_wrong);
- {
- BYTE const fhd = ((const BYTE *)src)[4];
- U32 const dictID = fhd & 3;
- U32 const singleSegment = (fhd >> 5) & 1;
- U32 const fcsId = fhd >> 6;
- return ZSTD_frameHeaderSize_prefix + !singleSegment + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] + (singleSegment && !fcsId);
- }
-}
-
-/** ZSTD_getFrameParams() :
-* decode Frame Header, or require larger `srcSize`.
-* @return : 0, `fparamsPtr` is correctly filled,
-* >0, `srcSize` is too small, result is expected `srcSize`,
-* or an error code, which can be tested using ZSTD_isError() */
-size_t ZSTD_getFrameParams(ZSTD_frameParams *fparamsPtr, const void *src, size_t srcSize)
-{
- const BYTE *ip = (const BYTE *)src;
-
- if (srcSize < ZSTD_frameHeaderSize_prefix)
- return ZSTD_frameHeaderSize_prefix;
- if (ZSTD_readLE32(src) != ZSTD_MAGICNUMBER) {
- if ((ZSTD_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
- if (srcSize < ZSTD_skippableHeaderSize)
- return ZSTD_skippableHeaderSize; /* magic number + skippable frame length */
- memset(fparamsPtr, 0, sizeof(*fparamsPtr));
- fparamsPtr->frameContentSize = ZSTD_readLE32((const char *)src + 4);
- fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
- return 0;
- }
- return ERROR(prefix_unknown);
- }
-
- /* ensure there is enough `srcSize` to fully read/decode frame header */
- {
- size_t const fhsize = ZSTD_frameHeaderSize(src, srcSize);
- if (srcSize < fhsize)
- return fhsize;
- }
-
- {
- BYTE const fhdByte = ip[4];
- size_t pos = 5;
- U32 const dictIDSizeCode = fhdByte & 3;
- U32 const checksumFlag = (fhdByte >> 2) & 1;
- U32 const singleSegment = (fhdByte >> 5) & 1;
- U32 const fcsID = fhdByte >> 6;
- U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX;
- U32 windowSize = 0;
- U32 dictID = 0;
- U64 frameContentSize = 0;
- if ((fhdByte & 0x08) != 0)
- return ERROR(frameParameter_unsupported); /* reserved bits, which must be zero */
- if (!singleSegment) {
- BYTE const wlByte = ip[pos++];
- U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
- if (windowLog > ZSTD_WINDOWLOG_MAX)
- return ERROR(frameParameter_windowTooLarge); /* avoids issue with 1 << windowLog */
- windowSize = (1U << windowLog);
- windowSize += (windowSize >> 3) * (wlByte & 7);
- }
-
- switch (dictIDSizeCode) {
- default: /* impossible */
- case 0: break;
- case 1:
- dictID = ip[pos];
- pos++;
- break;
- case 2:
- dictID = ZSTD_readLE16(ip + pos);
- pos += 2;
- break;
- case 3:
- dictID = ZSTD_readLE32(ip + pos);
- pos += 4;
- break;
- }
- switch (fcsID) {
- default: /* impossible */
- case 0:
- if (singleSegment)
- frameContentSize = ip[pos];
- break;
- case 1: frameContentSize = ZSTD_readLE16(ip + pos) + 256; break;
- case 2: frameContentSize = ZSTD_readLE32(ip + pos); break;
- case 3: frameContentSize = ZSTD_readLE64(ip + pos); break;
- }
- if (!windowSize)
- windowSize = (U32)frameContentSize;
- if (windowSize > windowSizeMax)
- return ERROR(frameParameter_windowTooLarge);
- fparamsPtr->frameContentSize = frameContentSize;
- fparamsPtr->windowSize = windowSize;
- fparamsPtr->dictID = dictID;
- fparamsPtr->checksumFlag = checksumFlag;
- }
- return 0;
-}
-
-/** ZSTD_getFrameContentSize() :
-* compatible with legacy mode
-* @return : decompressed size of the single frame pointed to be `src` if known, otherwise
-* - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
-* - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
-unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
-{
- {
- ZSTD_frameParams fParams;
- if (ZSTD_getFrameParams(&fParams, src, srcSize) != 0)
- return ZSTD_CONTENTSIZE_ERROR;
- if (fParams.windowSize == 0) {
- /* Either skippable or empty frame, size == 0 either way */
- return 0;
- } else if (fParams.frameContentSize != 0) {
- return fParams.frameContentSize;
- } else {
- return ZSTD_CONTENTSIZE_UNKNOWN;
- }
- }
-}
-
-/** ZSTD_findDecompressedSize() :
- * compatible with legacy mode
- * `srcSize` must be the exact length of some number of ZSTD compressed and/or
- * skippable frames
- * @return : decompressed size of the frames contained */
-unsigned long long ZSTD_findDecompressedSize(const void *src, size_t srcSize)
-{
- {
- unsigned long long totalDstSize = 0;
- while (srcSize >= ZSTD_frameHeaderSize_prefix) {
- const U32 magicNumber = ZSTD_readLE32(src);
-
- if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
- size_t skippableSize;
- if (srcSize < ZSTD_skippableHeaderSize)
- return ERROR(srcSize_wrong);
- skippableSize = ZSTD_readLE32((const BYTE *)src + 4) + ZSTD_skippableHeaderSize;
- if (srcSize < skippableSize) {
- return ZSTD_CONTENTSIZE_ERROR;
- }
-
- src = (const BYTE *)src + skippableSize;
- srcSize -= skippableSize;
- continue;
- }
-
- {
- unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
- if (ret >= ZSTD_CONTENTSIZE_ERROR)
- return ret;
-
- /* check for overflow */
- if (totalDstSize + ret < totalDstSize)
- return ZSTD_CONTENTSIZE_ERROR;
- totalDstSize += ret;
- }
- {
- size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
- if (ZSTD_isError(frameSrcSize)) {
- return ZSTD_CONTENTSIZE_ERROR;
- }
-
- src = (const BYTE *)src + frameSrcSize;
- srcSize -= frameSrcSize;
- }
- }
-
- if (srcSize) {
- return ZSTD_CONTENTSIZE_ERROR;
- }
-
- return totalDstSize;
- }
-}
-
-/** ZSTD_decodeFrameHeader() :
-* `headerSize` must be the size provided by ZSTD_frameHeaderSize().
-* @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
-static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx *dctx, const void *src, size_t headerSize)
-{
- size_t const result = ZSTD_getFrameParams(&(dctx->fParams), src, headerSize);
- if (ZSTD_isError(result))
- return result; /* invalid header */
- if (result > 0)
- return ERROR(srcSize_wrong); /* headerSize too small */
- if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID))
- return ERROR(dictionary_wrong);
- if (dctx->fParams.checksumFlag)
- xxh64_reset(&dctx->xxhState, 0);
- return 0;
-}
-
-typedef struct {
- blockType_e blockType;
- U32 lastBlock;
- U32 origSize;
-} blockProperties_t;
-
-/*! ZSTD_getcBlockSize() :
-* Provides the size of compressed block from block header `src` */
-size_t ZSTD_getcBlockSize(const void *src, size_t srcSize, blockProperties_t *bpPtr)
-{
- if (srcSize < ZSTD_blockHeaderSize)
- return ERROR(srcSize_wrong);
- {
- U32 const cBlockHeader = ZSTD_readLE24(src);
- U32 const cSize = cBlockHeader >> 3;
- bpPtr->lastBlock = cBlockHeader & 1;
- bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
- bpPtr->origSize = cSize; /* only useful for RLE */
- if (bpPtr->blockType == bt_rle)
- return 1;
- if (bpPtr->blockType == bt_reserved)
- return ERROR(corruption_detected);
- return cSize;
- }
-}
-
-static size_t ZSTD_copyRawBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- if (srcSize > dstCapacity)
- return ERROR(dstSize_tooSmall);
- memcpy(dst, src, srcSize);
- return srcSize;
-}
-
-static size_t ZSTD_setRleBlock(void *dst, size_t dstCapacity, const void *src, size_t srcSize, size_t regenSize)
-{
- if (srcSize != 1)
- return ERROR(srcSize_wrong);
- if (regenSize > dstCapacity)
- return ERROR(dstSize_tooSmall);
- memset(dst, *(const BYTE *)src, regenSize);
- return regenSize;
-}
-
-/*! ZSTD_decodeLiteralsBlock() :
- @return : nb of bytes read from src (< srcSize ) */
-size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx *dctx, const void *src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
-{
- if (srcSize < MIN_CBLOCK_SIZE)
- return ERROR(corruption_detected);
-
- {
- const BYTE *const istart = (const BYTE *)src;
- symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
-
- switch (litEncType) {
- case set_repeat:
- if (dctx->litEntropy == 0)
- return ERROR(dictionary_corrupted);
- fallthrough;
- case set_compressed:
- if (srcSize < 5)
- return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
- {
- size_t lhSize, litSize, litCSize;
- U32 singleStream = 0;
- U32 const lhlCode = (istart[0] >> 2) & 3;
- U32 const lhc = ZSTD_readLE32(istart);
- switch (lhlCode) {
- case 0:
- case 1:
- default: /* note : default is impossible, since lhlCode into [0..3] */
- /* 2 - 2 - 10 - 10 */
- singleStream = !lhlCode;
- lhSize = 3;
- litSize = (lhc >> 4) & 0x3FF;
- litCSize = (lhc >> 14) & 0x3FF;
- break;
- case 2:
- /* 2 - 2 - 14 - 14 */
- lhSize = 4;
- litSize = (lhc >> 4) & 0x3FFF;
- litCSize = lhc >> 18;
- break;
- case 3:
- /* 2 - 2 - 18 - 18 */
- lhSize = 5;
- litSize = (lhc >> 4) & 0x3FFFF;
- litCSize = (lhc >> 22) + (istart[4] << 10);
- break;
- }
- if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX)
- return ERROR(corruption_detected);
- if (litCSize + lhSize > srcSize)
- return ERROR(corruption_detected);
-
- if (HUF_isError(
- (litEncType == set_repeat)
- ? (singleStream ? HUF_decompress1X_usingDTable(dctx->litBuffer, litSize, istart + lhSize, litCSize, dctx->HUFptr)
- : HUF_decompress4X_usingDTable(dctx->litBuffer, litSize, istart + lhSize, litCSize, dctx->HUFptr))
- : (singleStream
- ? HUF_decompress1X2_DCtx_wksp(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart + lhSize, litCSize,
- dctx->entropy.workspace, sizeof(dctx->entropy.workspace))
- : HUF_decompress4X_hufOnly_wksp(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart + lhSize, litCSize,
- dctx->entropy.workspace, sizeof(dctx->entropy.workspace)))))
- return ERROR(corruption_detected);
-
- dctx->litPtr = dctx->litBuffer;
- dctx->litSize = litSize;
- dctx->litEntropy = 1;
- if (litEncType == set_compressed)
- dctx->HUFptr = dctx->entropy.hufTable;
- memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
- return litCSize + lhSize;
- }
-
- case set_basic: {
- size_t litSize, lhSize;
- U32 const lhlCode = ((istart[0]) >> 2) & 3;
- switch (lhlCode) {
- case 0:
- case 2:
- default: /* note : default is impossible, since lhlCode into [0..3] */
- lhSize = 1;
- litSize = istart[0] >> 3;
- break;
- case 1:
- lhSize = 2;
- litSize = ZSTD_readLE16(istart) >> 4;
- break;
- case 3:
- lhSize = 3;
- litSize = ZSTD_readLE24(istart) >> 4;
- break;
- }
-
- if (lhSize + litSize + WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
- if (litSize + lhSize > srcSize)
- return ERROR(corruption_detected);
- memcpy(dctx->litBuffer, istart + lhSize, litSize);
- dctx->litPtr = dctx->litBuffer;
- dctx->litSize = litSize;
- memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
- return lhSize + litSize;
- }
- /* direct reference into compressed stream */
- dctx->litPtr = istart + lhSize;
- dctx->litSize = litSize;
- return lhSize + litSize;
- }
-
- case set_rle: {
- U32 const lhlCode = ((istart[0]) >> 2) & 3;
- size_t litSize, lhSize;
- switch (lhlCode) {
- case 0:
- case 2:
- default: /* note : default is impossible, since lhlCode into [0..3] */
- lhSize = 1;
- litSize = istart[0] >> 3;
- break;
- case 1:
- lhSize = 2;
- litSize = ZSTD_readLE16(istart) >> 4;
- break;
- case 3:
- lhSize = 3;
- litSize = ZSTD_readLE24(istart) >> 4;
- if (srcSize < 4)
- return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
- break;
- }
- if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX)
- return ERROR(corruption_detected);
- memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
- dctx->litPtr = dctx->litBuffer;
- dctx->litSize = litSize;
- return lhSize + 1;
- }
- default:
- return ERROR(corruption_detected); /* impossible */
- }
- }
-}
-
-typedef union {
- FSE_decode_t realData;
- U32 alignedBy4;
-} FSE_decode_t4;
-
-static const FSE_decode_t4 LL_defaultDTable[(1 << LL_DEFAULTNORMLOG) + 1] = {
- {{LL_DEFAULTNORMLOG, 1, 1}}, /* header : tableLog, fastMode, fastMode */
- {{0, 0, 4}}, /* 0 : base, symbol, bits */
- {{16, 0, 4}},
- {{32, 1, 5}},
- {{0, 3, 5}},
- {{0, 4, 5}},
- {{0, 6, 5}},
- {{0, 7, 5}},
- {{0, 9, 5}},
- {{0, 10, 5}},
- {{0, 12, 5}},
- {{0, 14, 6}},
- {{0, 16, 5}},
- {{0, 18, 5}},
- {{0, 19, 5}},
- {{0, 21, 5}},
- {{0, 22, 5}},
- {{0, 24, 5}},
- {{32, 25, 5}},
- {{0, 26, 5}},
- {{0, 27, 6}},
- {{0, 29, 6}},
- {{0, 31, 6}},
- {{32, 0, 4}},
- {{0, 1, 4}},
- {{0, 2, 5}},
- {{32, 4, 5}},
- {{0, 5, 5}},
- {{32, 7, 5}},
- {{0, 8, 5}},
- {{32, 10, 5}},
- {{0, 11, 5}},
- {{0, 13, 6}},
- {{32, 16, 5}},
- {{0, 17, 5}},
- {{32, 19, 5}},
- {{0, 20, 5}},
- {{32, 22, 5}},
- {{0, 23, 5}},
- {{0, 25, 4}},
- {{16, 25, 4}},
- {{32, 26, 5}},
- {{0, 28, 6}},
- {{0, 30, 6}},
- {{48, 0, 4}},
- {{16, 1, 4}},
- {{32, 2, 5}},
- {{32, 3, 5}},
- {{32, 5, 5}},
- {{32, 6, 5}},
- {{32, 8, 5}},
- {{32, 9, 5}},
- {{32, 11, 5}},
- {{32, 12, 5}},
- {{0, 15, 6}},
- {{32, 17, 5}},
- {{32, 18, 5}},
- {{32, 20, 5}},
- {{32, 21, 5}},
- {{32, 23, 5}},
- {{32, 24, 5}},
- {{0, 35, 6}},
- {{0, 34, 6}},
- {{0, 33, 6}},
- {{0, 32, 6}},
-}; /* LL_defaultDTable */
-
-static const FSE_decode_t4 ML_defaultDTable[(1 << ML_DEFAULTNORMLOG) + 1] = {
- {{ML_DEFAULTNORMLOG, 1, 1}}, /* header : tableLog, fastMode, fastMode */
- {{0, 0, 6}}, /* 0 : base, symbol, bits */
- {{0, 1, 4}},
- {{32, 2, 5}},
- {{0, 3, 5}},
- {{0, 5, 5}},
- {{0, 6, 5}},
- {{0, 8, 5}},
- {{0, 10, 6}},
- {{0, 13, 6}},
- {{0, 16, 6}},
- {{0, 19, 6}},
- {{0, 22, 6}},
- {{0, 25, 6}},
- {{0, 28, 6}},
- {{0, 31, 6}},
- {{0, 33, 6}},
- {{0, 35, 6}},
- {{0, 37, 6}},
- {{0, 39, 6}},
- {{0, 41, 6}},
- {{0, 43, 6}},
- {{0, 45, 6}},
- {{16, 1, 4}},
- {{0, 2, 4}},
- {{32, 3, 5}},
- {{0, 4, 5}},
- {{32, 6, 5}},
- {{0, 7, 5}},
- {{0, 9, 6}},
- {{0, 12, 6}},
- {{0, 15, 6}},
- {{0, 18, 6}},
- {{0, 21, 6}},
- {{0, 24, 6}},
- {{0, 27, 6}},
- {{0, 30, 6}},
- {{0, 32, 6}},
- {{0, 34, 6}},
- {{0, 36, 6}},
- {{0, 38, 6}},
- {{0, 40, 6}},
- {{0, 42, 6}},
- {{0, 44, 6}},
- {{32, 1, 4}},
- {{48, 1, 4}},
- {{16, 2, 4}},
- {{32, 4, 5}},
- {{32, 5, 5}},
- {{32, 7, 5}},
- {{32, 8, 5}},
- {{0, 11, 6}},
- {{0, 14, 6}},
- {{0, 17, 6}},
- {{0, 20, 6}},
- {{0, 23, 6}},
- {{0, 26, 6}},
- {{0, 29, 6}},
- {{0, 52, 6}},
- {{0, 51, 6}},
- {{0, 50, 6}},
- {{0, 49, 6}},
- {{0, 48, 6}},
- {{0, 47, 6}},
- {{0, 46, 6}},
-}; /* ML_defaultDTable */
-
-static const FSE_decode_t4 OF_defaultDTable[(1 << OF_DEFAULTNORMLOG) + 1] = {
- {{OF_DEFAULTNORMLOG, 1, 1}}, /* header : tableLog, fastMode, fastMode */
- {{0, 0, 5}}, /* 0 : base, symbol, bits */
- {{0, 6, 4}},
- {{0, 9, 5}},
- {{0, 15, 5}},
- {{0, 21, 5}},
- {{0, 3, 5}},
- {{0, 7, 4}},
- {{0, 12, 5}},
- {{0, 18, 5}},
- {{0, 23, 5}},
- {{0, 5, 5}},
- {{0, 8, 4}},
- {{0, 14, 5}},
- {{0, 20, 5}},
- {{0, 2, 5}},
- {{16, 7, 4}},
- {{0, 11, 5}},
- {{0, 17, 5}},
- {{0, 22, 5}},
- {{0, 4, 5}},
- {{16, 8, 4}},
- {{0, 13, 5}},
- {{0, 19, 5}},
- {{0, 1, 5}},
- {{16, 6, 4}},
- {{0, 10, 5}},
- {{0, 16, 5}},
- {{0, 28, 5}},
- {{0, 27, 5}},
- {{0, 26, 5}},
- {{0, 25, 5}},
- {{0, 24, 5}},
-}; /* OF_defaultDTable */
-
-/*! ZSTD_buildSeqTable() :
- @return : nb bytes read from src,
- or an error code if it fails, testable with ZSTD_isError()
-*/
-static size_t ZSTD_buildSeqTable(FSE_DTable *DTableSpace, const FSE_DTable **DTablePtr, symbolEncodingType_e type, U32 max, U32 maxLog, const void *src,
- size_t srcSize, const FSE_decode_t4 *defaultTable, U32 flagRepeatTable, void *workspace, size_t workspaceSize)
-{
- const void *const tmpPtr = defaultTable; /* bypass strict aliasing */
- switch (type) {
- case set_rle:
- if (!srcSize)
- return ERROR(srcSize_wrong);
- if ((*(const BYTE *)src) > max)
- return ERROR(corruption_detected);
- FSE_buildDTable_rle(DTableSpace, *(const BYTE *)src);
- *DTablePtr = DTableSpace;
- return 1;
- case set_basic: *DTablePtr = (const FSE_DTable *)tmpPtr; return 0;
- case set_repeat:
- if (!flagRepeatTable)
- return ERROR(corruption_detected);
- return 0;
- default: /* impossible */
- case set_compressed: {
- U32 tableLog;
- S16 *norm = (S16 *)workspace;
- size_t const spaceUsed32 = ALIGN(sizeof(S16) * (MaxSeq + 1), sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(GENERIC);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
- {
- size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
- if (FSE_isError(headerSize))
- return ERROR(corruption_detected);
- if (tableLog > maxLog)
- return ERROR(corruption_detected);
- FSE_buildDTable_wksp(DTableSpace, norm, max, tableLog, workspace, workspaceSize);
- *DTablePtr = DTableSpace;
- return headerSize;
- }
- }
- }
-}
-
-size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx *dctx, int *nbSeqPtr, const void *src, size_t srcSize)
-{
- const BYTE *const istart = (const BYTE *const)src;
- const BYTE *const iend = istart + srcSize;
- const BYTE *ip = istart;
-
- /* check */
- if (srcSize < MIN_SEQUENCES_SIZE)
- return ERROR(srcSize_wrong);
-
- /* SeqHead */
- {
- int nbSeq = *ip++;
- if (!nbSeq) {
- *nbSeqPtr = 0;
- return 1;
- }
- if (nbSeq > 0x7F) {
- if (nbSeq == 0xFF) {
- if (ip + 2 > iend)
- return ERROR(srcSize_wrong);
- nbSeq = ZSTD_readLE16(ip) + LONGNBSEQ, ip += 2;
- } else {
- if (ip >= iend)
- return ERROR(srcSize_wrong);
- nbSeq = ((nbSeq - 0x80) << 8) + *ip++;
- }
- }
- *nbSeqPtr = nbSeq;
- }
-
- /* FSE table descriptors */
- if (ip + 4 > iend)
- return ERROR(srcSize_wrong); /* minimum possible size */
- {
- symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
- symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
- symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
- ip++;
-
- /* Build DTables */
- {
- size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, LLtype, MaxLL, LLFSELog, ip, iend - ip,
- LL_defaultDTable, dctx->fseEntropy, dctx->entropy.workspace, sizeof(dctx->entropy.workspace));
- if (ZSTD_isError(llhSize))
- return ERROR(corruption_detected);
- ip += llhSize;
- }
- {
- size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, OFtype, MaxOff, OffFSELog, ip, iend - ip,
- OF_defaultDTable, dctx->fseEntropy, dctx->entropy.workspace, sizeof(dctx->entropy.workspace));
- if (ZSTD_isError(ofhSize))
- return ERROR(corruption_detected);
- ip += ofhSize;
- }
- {
- size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, MLtype, MaxML, MLFSELog, ip, iend - ip,
- ML_defaultDTable, dctx->fseEntropy, dctx->entropy.workspace, sizeof(dctx->entropy.workspace));
- if (ZSTD_isError(mlhSize))
- return ERROR(corruption_detected);
- ip += mlhSize;
- }
- }
-
- return ip - istart;
-}
-
-typedef struct {
- size_t litLength;
- size_t matchLength;
- size_t offset;
- const BYTE *match;
-} seq_t;
-
-typedef struct {
- BIT_DStream_t DStream;
- FSE_DState_t stateLL;
- FSE_DState_t stateOffb;
- FSE_DState_t stateML;
- size_t prevOffset[ZSTD_REP_NUM];
- const BYTE *base;
- size_t pos;
- uPtrDiff gotoDict;
-} seqState_t;
-
-FORCE_NOINLINE
-size_t ZSTD_execSequenceLast7(BYTE *op, BYTE *const oend, seq_t sequence, const BYTE **litPtr, const BYTE *const litLimit, const BYTE *const base,
- const BYTE *const vBase, const BYTE *const dictEnd)
-{
- BYTE *const oLitEnd = op + sequence.litLength;
- size_t const sequenceLength = sequence.litLength + sequence.matchLength;
- BYTE *const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
- BYTE *const oend_w = oend - WILDCOPY_OVERLENGTH;
- const BYTE *const iLitEnd = *litPtr + sequence.litLength;
- const BYTE *match = oLitEnd - sequence.offset;
-
- /* check */
- if (oMatchEnd > oend)
- return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
- if (iLitEnd > litLimit)
- return ERROR(corruption_detected); /* over-read beyond lit buffer */
- if (oLitEnd <= oend_w)
- return ERROR(GENERIC); /* Precondition */
-
- /* copy literals */
- if (op < oend_w) {
- ZSTD_wildcopy(op, *litPtr, oend_w - op);
- *litPtr += oend_w - op;
- op = oend_w;
- }
- while (op < oLitEnd)
- *op++ = *(*litPtr)++;
-
- /* copy Match */
- if (sequence.offset > (size_t)(oLitEnd - base)) {
- /* offset beyond prefix */
- if (sequence.offset > (size_t)(oLitEnd - vBase))
- return ERROR(corruption_detected);
- match = dictEnd - (base - match);
- if (match + sequence.matchLength <= dictEnd) {
- memmove(oLitEnd, match, sequence.matchLength);
- return sequenceLength;
- }
- /* span extDict & currPrefixSegment */
- {
- size_t const length1 = dictEnd - match;
- memmove(oLitEnd, match, length1);
- op = oLitEnd + length1;
- sequence.matchLength -= length1;
- match = base;
- }
- }
- while (op < oMatchEnd)
- *op++ = *match++;
- return sequenceLength;
-}
-
-static seq_t ZSTD_decodeSequence(seqState_t *seqState)
-{
- seq_t seq;
-
- U32 const llCode = FSE_peekSymbol(&seqState->stateLL);
- U32 const mlCode = FSE_peekSymbol(&seqState->stateML);
- U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */
-
- U32 const llBits = LL_bits[llCode];
- U32 const mlBits = ML_bits[mlCode];
- U32 const ofBits = ofCode;
- U32 const totalBits = llBits + mlBits + ofBits;
-
- static const U32 LL_base[MaxLL + 1] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
- 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000};
-
- static const U32 ML_base[MaxML + 1] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 41,
- 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 0x1003, 0x2003, 0x4003, 0x8003, 0x10003};
-
- static const U32 OF_base[MaxOff + 1] = {0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 0xFD, 0x1FD,
- 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD,
- 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD};
-
- /* sequence */
- {
- size_t offset;
- if (!ofCode)
- offset = 0;
- else {
- offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
- if (ZSTD_32bits())
- BIT_reloadDStream(&seqState->DStream);
- }
-
- if (ofCode <= 1) {
- offset += (llCode == 0);
- if (offset) {
- size_t temp = (offset == 3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
- temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
- if (offset != 1)
- seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset = temp;
- } else {
- offset = seqState->prevOffset[0];
- }
- } else {
- seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset;
- }
- seq.offset = offset;
- }
-
- seq.matchLength = ML_base[mlCode] + ((mlCode > 31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
- if (ZSTD_32bits() && (mlBits + llBits > 24))
- BIT_reloadDStream(&seqState->DStream);
-
- seq.litLength = LL_base[llCode] + ((llCode > 15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
- if (ZSTD_32bits() || (totalBits > 64 - 7 - (LLFSELog + MLFSELog + OffFSELog)))
- BIT_reloadDStream(&seqState->DStream);
-
- /* ANS state update */
- FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
- FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
- if (ZSTD_32bits())
- BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
- FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
-
- seq.match = NULL;
-
- return seq;
-}
-
-FORCE_INLINE
-size_t ZSTD_execSequence(BYTE *op, BYTE *const oend, seq_t sequence, const BYTE **litPtr, const BYTE *const litLimit, const BYTE *const base,
- const BYTE *const vBase, const BYTE *const dictEnd)
-{
- BYTE *const oLitEnd = op + sequence.litLength;
- size_t const sequenceLength = sequence.litLength + sequence.matchLength;
- BYTE *const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
- BYTE *const oend_w = oend - WILDCOPY_OVERLENGTH;
- const BYTE *const iLitEnd = *litPtr + sequence.litLength;
- const BYTE *match = oLitEnd - sequence.offset;
-
- /* check */
- if (oMatchEnd > oend)
- return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
- if (iLitEnd > litLimit)
- return ERROR(corruption_detected); /* over-read beyond lit buffer */
- if (oLitEnd > oend_w)
- return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd);
-
- /* copy Literals */
- ZSTD_copy8(op, *litPtr);
- if (sequence.litLength > 8)
- ZSTD_wildcopy(op + 8, (*litPtr) + 8,
- sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
- op = oLitEnd;
- *litPtr = iLitEnd; /* update for next sequence */
-
- /* copy Match */
- if (sequence.offset > (size_t)(oLitEnd - base)) {
- /* offset beyond prefix */
- if (sequence.offset > (size_t)(oLitEnd - vBase))
- return ERROR(corruption_detected);
- match = dictEnd + (match - base);
- if (match + sequence.matchLength <= dictEnd) {
- memmove(oLitEnd, match, sequence.matchLength);
- return sequenceLength;
- }
- /* span extDict & currPrefixSegment */
- {
- size_t const length1 = dictEnd - match;
- memmove(oLitEnd, match, length1);
- op = oLitEnd + length1;
- sequence.matchLength -= length1;
- match = base;
- if (op > oend_w || sequence.matchLength < MINMATCH) {
- U32 i;
- for (i = 0; i < sequence.matchLength; ++i)
- op[i] = match[i];
- return sequenceLength;
- }
- }
- }
- /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
-
- /* match within prefix */
- if (sequence.offset < 8) {
- /* close range match, overlap */
- static const U32 dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
- static const int dec64table[] = {8, 8, 8, 7, 8, 9, 10, 11}; /* subtracted */
- int const sub2 = dec64table[sequence.offset];
- op[0] = match[0];
- op[1] = match[1];
- op[2] = match[2];
- op[3] = match[3];
- match += dec32table[sequence.offset];
- ZSTD_copy4(op + 4, match);
- match -= sub2;
- } else {
- ZSTD_copy8(op, match);
- }
- op += 8;
- match += 8;
-
- if (oMatchEnd > oend - (16 - MINMATCH)) {
- if (op < oend_w) {
- ZSTD_wildcopy(op, match, oend_w - op);
- match += oend_w - op;
- op = oend_w;
- }
- while (op < oMatchEnd)
- *op++ = *match++;
- } else {
- ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8); /* works even if matchLength < 8 */
- }
- return sequenceLength;
-}
-
-static size_t ZSTD_decompressSequences(ZSTD_DCtx *dctx, void *dst, size_t maxDstSize, const void *seqStart, size_t seqSize)
-{
- const BYTE *ip = (const BYTE *)seqStart;
- const BYTE *const iend = ip + seqSize;
- BYTE *const ostart = (BYTE * const)dst;
- BYTE *const oend = ostart + maxDstSize;
- BYTE *op = ostart;
- const BYTE *litPtr = dctx->litPtr;
- const BYTE *const litEnd = litPtr + dctx->litSize;
- const BYTE *const base = (const BYTE *)(dctx->base);
- const BYTE *const vBase = (const BYTE *)(dctx->vBase);
- const BYTE *const dictEnd = (const BYTE *)(dctx->dictEnd);
- int nbSeq;
-
- /* Build Decoding Tables */
- {
- size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize);
- if (ZSTD_isError(seqHSize))
- return seqHSize;
- ip += seqHSize;
- }
-
- /* Regen sequences */
- if (nbSeq) {
- seqState_t seqState;
- dctx->fseEntropy = 1;
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- seqState.prevOffset[i] = dctx->entropy.rep[i];
- }
- CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend - ip), corruption_detected);
- FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
- FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
- FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
-
- for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq;) {
- nbSeq--;
- {
- seq_t const sequence = ZSTD_decodeSequence(&seqState);
- size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
- if (ZSTD_isError(oneSeqSize))
- return oneSeqSize;
- op += oneSeqSize;
- }
- }
-
- /* check if reached exact end */
- if (nbSeq)
- return ERROR(corruption_detected);
- /* save reps for next block */
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]);
- }
- }
-
- /* last literal segment */
- {
- size_t const lastLLSize = litEnd - litPtr;
- if (lastLLSize > (size_t)(oend - op))
- return ERROR(dstSize_tooSmall);
- memcpy(op, litPtr, lastLLSize);
- op += lastLLSize;
- }
-
- return op - ostart;
-}
-
-FORCE_INLINE seq_t ZSTD_decodeSequenceLong_generic(seqState_t *seqState, int const longOffsets)
-{
- seq_t seq;
-
- U32 const llCode = FSE_peekSymbol(&seqState->stateLL);
- U32 const mlCode = FSE_peekSymbol(&seqState->stateML);
- U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */
-
- U32 const llBits = LL_bits[llCode];
- U32 const mlBits = ML_bits[mlCode];
- U32 const ofBits = ofCode;
- U32 const totalBits = llBits + mlBits + ofBits;
-
- static const U32 LL_base[MaxLL + 1] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
- 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000};
-
- static const U32 ML_base[MaxML + 1] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 41,
- 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 0x1003, 0x2003, 0x4003, 0x8003, 0x10003};
-
- static const U32 OF_base[MaxOff + 1] = {0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 0xFD, 0x1FD,
- 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD,
- 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD};
-
- /* sequence */
- {
- size_t offset;
- if (!ofCode)
- offset = 0;
- else {
- if (longOffsets) {
- int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN);
- offset = OF_base[ofCode] + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
- if (ZSTD_32bits() || extraBits)
- BIT_reloadDStream(&seqState->DStream);
- if (extraBits)
- offset += BIT_readBitsFast(&seqState->DStream, extraBits);
- } else {
- offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
- if (ZSTD_32bits())
- BIT_reloadDStream(&seqState->DStream);
- }
- }
-
- if (ofCode <= 1) {
- offset += (llCode == 0);
- if (offset) {
- size_t temp = (offset == 3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
- temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
- if (offset != 1)
- seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset = temp;
- } else {
- offset = seqState->prevOffset[0];
- }
- } else {
- seqState->prevOffset[2] = seqState->prevOffset[1];
- seqState->prevOffset[1] = seqState->prevOffset[0];
- seqState->prevOffset[0] = offset;
- }
- seq.offset = offset;
- }
-
- seq.matchLength = ML_base[mlCode] + ((mlCode > 31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
- if (ZSTD_32bits() && (mlBits + llBits > 24))
- BIT_reloadDStream(&seqState->DStream);
-
- seq.litLength = LL_base[llCode] + ((llCode > 15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
- if (ZSTD_32bits() || (totalBits > 64 - 7 - (LLFSELog + MLFSELog + OffFSELog)))
- BIT_reloadDStream(&seqState->DStream);
-
- {
- size_t const pos = seqState->pos + seq.litLength;
- seq.match = seqState->base + pos - seq.offset; /* single memory segment */
- if (seq.offset > pos)
- seq.match += seqState->gotoDict; /* separate memory segment */
- seqState->pos = pos + seq.matchLength;
- }
-
- /* ANS state update */
- FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
- FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
- if (ZSTD_32bits())
- BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
- FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
-
- return seq;
-}
-
-static seq_t ZSTD_decodeSequenceLong(seqState_t *seqState, unsigned const windowSize)
-{
- if (ZSTD_highbit32(windowSize) > STREAM_ACCUMULATOR_MIN) {
- return ZSTD_decodeSequenceLong_generic(seqState, 1);
- } else {
- return ZSTD_decodeSequenceLong_generic(seqState, 0);
- }
-}
-
-FORCE_INLINE
-size_t ZSTD_execSequenceLong(BYTE *op, BYTE *const oend, seq_t sequence, const BYTE **litPtr, const BYTE *const litLimit, const BYTE *const base,
- const BYTE *const vBase, const BYTE *const dictEnd)
-{
- BYTE *const oLitEnd = op + sequence.litLength;
- size_t const sequenceLength = sequence.litLength + sequence.matchLength;
- BYTE *const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
- BYTE *const oend_w = oend - WILDCOPY_OVERLENGTH;
- const BYTE *const iLitEnd = *litPtr + sequence.litLength;
- const BYTE *match = sequence.match;
-
- /* check */
- if (oMatchEnd > oend)
- return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
- if (iLitEnd > litLimit)
- return ERROR(corruption_detected); /* over-read beyond lit buffer */
- if (oLitEnd > oend_w)
- return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd);
-
- /* copy Literals */
- ZSTD_copy8(op, *litPtr);
- if (sequence.litLength > 8)
- ZSTD_wildcopy(op + 8, (*litPtr) + 8,
- sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
- op = oLitEnd;
- *litPtr = iLitEnd; /* update for next sequence */
-
- /* copy Match */
- if (sequence.offset > (size_t)(oLitEnd - base)) {
- /* offset beyond prefix */
- if (sequence.offset > (size_t)(oLitEnd - vBase))
- return ERROR(corruption_detected);
- if (match + sequence.matchLength <= dictEnd) {
- memmove(oLitEnd, match, sequence.matchLength);
- return sequenceLength;
- }
- /* span extDict & currPrefixSegment */
- {
- size_t const length1 = dictEnd - match;
- memmove(oLitEnd, match, length1);
- op = oLitEnd + length1;
- sequence.matchLength -= length1;
- match = base;
- if (op > oend_w || sequence.matchLength < MINMATCH) {
- U32 i;
- for (i = 0; i < sequence.matchLength; ++i)
- op[i] = match[i];
- return sequenceLength;
- }
- }
- }
- /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
-
- /* match within prefix */
- if (sequence.offset < 8) {
- /* close range match, overlap */
- static const U32 dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
- static const int dec64table[] = {8, 8, 8, 7, 8, 9, 10, 11}; /* subtracted */
- int const sub2 = dec64table[sequence.offset];
- op[0] = match[0];
- op[1] = match[1];
- op[2] = match[2];
- op[3] = match[3];
- match += dec32table[sequence.offset];
- ZSTD_copy4(op + 4, match);
- match -= sub2;
- } else {
- ZSTD_copy8(op, match);
- }
- op += 8;
- match += 8;
-
- if (oMatchEnd > oend - (16 - MINMATCH)) {
- if (op < oend_w) {
- ZSTD_wildcopy(op, match, oend_w - op);
- match += oend_w - op;
- op = oend_w;
- }
- while (op < oMatchEnd)
- *op++ = *match++;
- } else {
- ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8); /* works even if matchLength < 8 */
- }
- return sequenceLength;
-}
-
-static size_t ZSTD_decompressSequencesLong(ZSTD_DCtx *dctx, void *dst, size_t maxDstSize, const void *seqStart, size_t seqSize)
-{
- const BYTE *ip = (const BYTE *)seqStart;
- const BYTE *const iend = ip + seqSize;
- BYTE *const ostart = (BYTE * const)dst;
- BYTE *const oend = ostart + maxDstSize;
- BYTE *op = ostart;
- const BYTE *litPtr = dctx->litPtr;
- const BYTE *const litEnd = litPtr + dctx->litSize;
- const BYTE *const base = (const BYTE *)(dctx->base);
- const BYTE *const vBase = (const BYTE *)(dctx->vBase);
- const BYTE *const dictEnd = (const BYTE *)(dctx->dictEnd);
- unsigned const windowSize = dctx->fParams.windowSize;
- int nbSeq;
-
- /* Build Decoding Tables */
- {
- size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize);
- if (ZSTD_isError(seqHSize))
- return seqHSize;
- ip += seqHSize;
- }
-
- /* Regen sequences */
- if (nbSeq) {
-#define STORED_SEQS 4
-#define STOSEQ_MASK (STORED_SEQS - 1)
-#define ADVANCED_SEQS 4
- seq_t *sequences = (seq_t *)dctx->entropy.workspace;
- int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
- seqState_t seqState;
- int seqNb;
- ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.workspace) >= sizeof(seq_t) * STORED_SEQS);
- dctx->fseEntropy = 1;
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- seqState.prevOffset[i] = dctx->entropy.rep[i];
- }
- seqState.base = base;
- seqState.pos = (size_t)(op - base);
- seqState.gotoDict = (uPtrDiff)dictEnd - (uPtrDiff)base; /* cast to avoid undefined behaviour */
- CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend - ip), corruption_detected);
- FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
- FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
- FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
-
- /* prepare in advance */
- for (seqNb = 0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && seqNb < seqAdvance; seqNb++) {
- sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, windowSize);
- }
- if (seqNb < seqAdvance)
- return ERROR(corruption_detected);
-
- /* decode and decompress */
- for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && seqNb < nbSeq; seqNb++) {
- seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, windowSize);
- size_t const oneSeqSize =
- ZSTD_execSequenceLong(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STOSEQ_MASK], &litPtr, litEnd, base, vBase, dictEnd);
- if (ZSTD_isError(oneSeqSize))
- return oneSeqSize;
- ZSTD_PREFETCH(sequence.match);
- sequences[seqNb & STOSEQ_MASK] = sequence;
- op += oneSeqSize;
- }
- if (seqNb < nbSeq)
- return ERROR(corruption_detected);
-
- /* finish queue */
- seqNb -= seqAdvance;
- for (; seqNb < nbSeq; seqNb++) {
- size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[seqNb & STOSEQ_MASK], &litPtr, litEnd, base, vBase, dictEnd);
- if (ZSTD_isError(oneSeqSize))
- return oneSeqSize;
- op += oneSeqSize;
- }
-
- /* save reps for next block */
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]);
- }
- }
-
- /* last literal segment */
- {
- size_t const lastLLSize = litEnd - litPtr;
- if (lastLLSize > (size_t)(oend - op))
- return ERROR(dstSize_tooSmall);
- memcpy(op, litPtr, lastLLSize);
- op += lastLLSize;
- }
-
- return op - ostart;
-}
-
-static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{ /* blockType == blockCompressed */
- const BYTE *ip = (const BYTE *)src;
-
- if (srcSize >= ZSTD_BLOCKSIZE_ABSOLUTEMAX)
- return ERROR(srcSize_wrong);
-
- /* Decode literals section */
- {
- size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
- if (ZSTD_isError(litCSize))
- return litCSize;
- ip += litCSize;
- srcSize -= litCSize;
- }
- if (sizeof(size_t) > 4) /* do not enable prefetching on 32-bits x86, as it's performance detrimental */
- /* likely because of register pressure */
- /* if that's the correct cause, then 32-bits ARM should be affected differently */
- /* it would be good to test this on ARM real hardware, to see if prefetch version improves speed */
- if (dctx->fParams.windowSize > (1 << 23))
- return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize);
- return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
-}
-
-static void ZSTD_checkContinuity(ZSTD_DCtx *dctx, const void *dst)
-{
- if (dst != dctx->previousDstEnd) { /* not contiguous */
- dctx->dictEnd = dctx->previousDstEnd;
- dctx->vBase = (const char *)dst - ((const char *)(dctx->previousDstEnd) - (const char *)(dctx->base));
- dctx->base = dst;
- dctx->previousDstEnd = dst;
- }
-}
-
-size_t ZSTD_decompressBlock(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t dSize;
- ZSTD_checkContinuity(dctx, dst);
- dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
- dctx->previousDstEnd = (char *)dst + dSize;
- return dSize;
-}
-
-/** ZSTD_insertBlock() :
- insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
-size_t ZSTD_insertBlock(ZSTD_DCtx *dctx, const void *blockStart, size_t blockSize)
-{
- ZSTD_checkContinuity(dctx, blockStart);
- dctx->previousDstEnd = (const char *)blockStart + blockSize;
- return blockSize;
-}
-
-size_t ZSTD_generateNxBytes(void *dst, size_t dstCapacity, BYTE byte, size_t length)
-{
- if (length > dstCapacity)
- return ERROR(dstSize_tooSmall);
- memset(dst, byte, length);
- return length;
-}
-
-/** ZSTD_findFrameCompressedSize() :
- * compatible with legacy mode
- * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
- * `srcSize` must be at least as large as the frame contained
- * @return : the compressed size of the frame starting at `src` */
-size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
-{
- if (srcSize >= ZSTD_skippableHeaderSize && (ZSTD_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
- return ZSTD_skippableHeaderSize + ZSTD_readLE32((const BYTE *)src + 4);
- } else {
- const BYTE *ip = (const BYTE *)src;
- const BYTE *const ipstart = ip;
- size_t remainingSize = srcSize;
- ZSTD_frameParams fParams;
-
- size_t const headerSize = ZSTD_frameHeaderSize(ip, remainingSize);
- if (ZSTD_isError(headerSize))
- return headerSize;
-
- /* Frame Header */
- {
- size_t const ret = ZSTD_getFrameParams(&fParams, ip, remainingSize);
- if (ZSTD_isError(ret))
- return ret;
- if (ret > 0)
- return ERROR(srcSize_wrong);
- }
-
- ip += headerSize;
- remainingSize -= headerSize;
-
- /* Loop on each block */
- while (1) {
- blockProperties_t blockProperties;
- size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
- if (ZSTD_isError(cBlockSize))
- return cBlockSize;
-
- if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
- return ERROR(srcSize_wrong);
-
- ip += ZSTD_blockHeaderSize + cBlockSize;
- remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
-
- if (blockProperties.lastBlock)
- break;
- }
-
- if (fParams.checksumFlag) { /* Frame content checksum */
- if (remainingSize < 4)
- return ERROR(srcSize_wrong);
- ip += 4;
- remainingSize -= 4;
- }
-
- return ip - ipstart;
- }
-}
-
-/*! ZSTD_decompressFrame() :
-* @dctx must be properly initialized */
-static size_t ZSTD_decompressFrame(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void **srcPtr, size_t *srcSizePtr)
-{
- const BYTE *ip = (const BYTE *)(*srcPtr);
- BYTE *const ostart = (BYTE * const)dst;
- BYTE *const oend = ostart + dstCapacity;
- BYTE *op = ostart;
- size_t remainingSize = *srcSizePtr;
-
- /* check */
- if (remainingSize < ZSTD_frameHeaderSize_min + ZSTD_blockHeaderSize)
- return ERROR(srcSize_wrong);
-
- /* Frame Header */
- {
- size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_frameHeaderSize_prefix);
- if (ZSTD_isError(frameHeaderSize))
- return frameHeaderSize;
- if (remainingSize < frameHeaderSize + ZSTD_blockHeaderSize)
- return ERROR(srcSize_wrong);
- CHECK_F(ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize));
- ip += frameHeaderSize;
- remainingSize -= frameHeaderSize;
- }
-
- /* Loop on each block */
- while (1) {
- size_t decodedSize;
- blockProperties_t blockProperties;
- size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
- if (ZSTD_isError(cBlockSize))
- return cBlockSize;
-
- ip += ZSTD_blockHeaderSize;
- remainingSize -= ZSTD_blockHeaderSize;
- if (cBlockSize > remainingSize)
- return ERROR(srcSize_wrong);
-
- switch (blockProperties.blockType) {
- case bt_compressed: decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend - op, ip, cBlockSize); break;
- case bt_raw: decodedSize = ZSTD_copyRawBlock(op, oend - op, ip, cBlockSize); break;
- case bt_rle: decodedSize = ZSTD_generateNxBytes(op, oend - op, *ip, blockProperties.origSize); break;
- case bt_reserved:
- default: return ERROR(corruption_detected);
- }
-
- if (ZSTD_isError(decodedSize))
- return decodedSize;
- if (dctx->fParams.checksumFlag)
- xxh64_update(&dctx->xxhState, op, decodedSize);
- op += decodedSize;
- ip += cBlockSize;
- remainingSize -= cBlockSize;
- if (blockProperties.lastBlock)
- break;
- }
-
- if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
- U32 const checkCalc = (U32)xxh64_digest(&dctx->xxhState);
- U32 checkRead;
- if (remainingSize < 4)
- return ERROR(checksum_wrong);
- checkRead = ZSTD_readLE32(ip);
- if (checkRead != checkCalc)
- return ERROR(checksum_wrong);
- ip += 4;
- remainingSize -= 4;
- }
-
- /* Allow caller to get size read */
- *srcPtr = ip;
- *srcSizePtr = remainingSize;
- return op - ostart;
-}
-
-static const void *ZSTD_DDictDictContent(const ZSTD_DDict *ddict);
-static size_t ZSTD_DDictDictSize(const ZSTD_DDict *ddict);
-
-static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize,
- const ZSTD_DDict *ddict)
-{
- void *const dststart = dst;
-
- if (ddict) {
- if (dict) {
- /* programmer error, these two cases should be mutually exclusive */
- return ERROR(GENERIC);
- }
-
- dict = ZSTD_DDictDictContent(ddict);
- dictSize = ZSTD_DDictDictSize(ddict);
- }
-
- while (srcSize >= ZSTD_frameHeaderSize_prefix) {
- U32 magicNumber;
-
- magicNumber = ZSTD_readLE32(src);
- if (magicNumber != ZSTD_MAGICNUMBER) {
- if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
- size_t skippableSize;
- if (srcSize < ZSTD_skippableHeaderSize)
- return ERROR(srcSize_wrong);
- skippableSize = ZSTD_readLE32((const BYTE *)src + 4) + ZSTD_skippableHeaderSize;
- if (srcSize < skippableSize) {
- return ERROR(srcSize_wrong);
- }
-
- src = (const BYTE *)src + skippableSize;
- srcSize -= skippableSize;
- continue;
- } else {
- return ERROR(prefix_unknown);
- }
- }
-
- if (ddict) {
- /* we were called from ZSTD_decompress_usingDDict */
- ZSTD_refDDict(dctx, ddict);
- } else {
- /* this will initialize correctly with no dict if dict == NULL, so
- * use this in all cases but ddict */
- CHECK_F(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
- }
- ZSTD_checkContinuity(dctx, dst);
-
- {
- const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, &src, &srcSize);
- if (ZSTD_isError(res))
- return res;
- /* don't need to bounds check this, ZSTD_decompressFrame will have
- * already */
- dst = (BYTE *)dst + res;
- dstCapacity -= res;
- }
- }
-
- if (srcSize)
- return ERROR(srcSize_wrong); /* input not entirely consumed */
-
- return (BYTE *)dst - (BYTE *)dststart;
-}
-
-size_t ZSTD_decompress_usingDict(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const void *dict, size_t dictSize)
-{
- return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
-}
-
-size_t ZSTD_decompressDCtx(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
-}
-
-/*-**************************************
-* Advanced Streaming Decompression API
-* Bufferless and synchronous
-****************************************/
-size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx *dctx) { return dctx->expected; }
-
-ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx *dctx)
-{
- switch (dctx->stage) {
- default: /* should not happen */
- case ZSTDds_getFrameHeaderSize:
- case ZSTDds_decodeFrameHeader: return ZSTDnit_frameHeader;
- case ZSTDds_decodeBlockHeader: return ZSTDnit_blockHeader;
- case ZSTDds_decompressBlock: return ZSTDnit_block;
- case ZSTDds_decompressLastBlock: return ZSTDnit_lastBlock;
- case ZSTDds_checkChecksum: return ZSTDnit_checksum;
- case ZSTDds_decodeSkippableHeader:
- case ZSTDds_skipFrame: return ZSTDnit_skippableFrame;
- }
-}
-
-int ZSTD_isSkipFrame(ZSTD_DCtx *dctx) { return dctx->stage == ZSTDds_skipFrame; } /* for zbuff */
-
-/** ZSTD_decompressContinue() :
-* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
-* or an error code, which can be tested using ZSTD_isError() */
-size_t ZSTD_decompressContinue(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- /* Sanity check */
- if (srcSize != dctx->expected)
- return ERROR(srcSize_wrong);
- if (dstCapacity)
- ZSTD_checkContinuity(dctx, dst);
-
- switch (dctx->stage) {
- case ZSTDds_getFrameHeaderSize:
- if (srcSize != ZSTD_frameHeaderSize_prefix)
- return ERROR(srcSize_wrong); /* impossible */
- if ((ZSTD_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
- memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
- dctx->expected = ZSTD_skippableHeaderSize - ZSTD_frameHeaderSize_prefix; /* magic number + skippable frame length */
- dctx->stage = ZSTDds_decodeSkippableHeader;
- return 0;
- }
- dctx->headerSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_prefix);
- if (ZSTD_isError(dctx->headerSize))
- return dctx->headerSize;
- memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
- if (dctx->headerSize > ZSTD_frameHeaderSize_prefix) {
- dctx->expected = dctx->headerSize - ZSTD_frameHeaderSize_prefix;
- dctx->stage = ZSTDds_decodeFrameHeader;
- return 0;
- }
- dctx->expected = 0; /* not necessary to copy more */
- fallthrough;
-
- case ZSTDds_decodeFrameHeader:
- memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
- CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
- dctx->expected = ZSTD_blockHeaderSize;
- dctx->stage = ZSTDds_decodeBlockHeader;
- return 0;
-
- case ZSTDds_decodeBlockHeader: {
- blockProperties_t bp;
- size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
- if (ZSTD_isError(cBlockSize))
- return cBlockSize;
- dctx->expected = cBlockSize;
- dctx->bType = bp.blockType;
- dctx->rleSize = bp.origSize;
- if (cBlockSize) {
- dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
- return 0;
- }
- /* empty block */
- if (bp.lastBlock) {
- if (dctx->fParams.checksumFlag) {
- dctx->expected = 4;
- dctx->stage = ZSTDds_checkChecksum;
- } else {
- dctx->expected = 0; /* end of frame */
- dctx->stage = ZSTDds_getFrameHeaderSize;
- }
- } else {
- dctx->expected = 3; /* go directly to next header */
- dctx->stage = ZSTDds_decodeBlockHeader;
- }
- return 0;
- }
- case ZSTDds_decompressLastBlock:
- case ZSTDds_decompressBlock: {
- size_t rSize;
- switch (dctx->bType) {
- case bt_compressed: rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); break;
- case bt_raw: rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); break;
- case bt_rle: rSize = ZSTD_setRleBlock(dst, dstCapacity, src, srcSize, dctx->rleSize); break;
- case bt_reserved: /* should never happen */
- default: return ERROR(corruption_detected);
- }
- if (ZSTD_isError(rSize))
- return rSize;
- if (dctx->fParams.checksumFlag)
- xxh64_update(&dctx->xxhState, dst, rSize);
-
- if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
- if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
- dctx->expected = 4;
- dctx->stage = ZSTDds_checkChecksum;
- } else {
- dctx->expected = 0; /* ends here */
- dctx->stage = ZSTDds_getFrameHeaderSize;
- }
- } else {
- dctx->stage = ZSTDds_decodeBlockHeader;
- dctx->expected = ZSTD_blockHeaderSize;
- dctx->previousDstEnd = (char *)dst + rSize;
- }
- return rSize;
- }
- case ZSTDds_checkChecksum: {
- U32 const h32 = (U32)xxh64_digest(&dctx->xxhState);
- U32 const check32 = ZSTD_readLE32(src); /* srcSize == 4, guaranteed by dctx->expected */
- if (check32 != h32)
- return ERROR(checksum_wrong);
- dctx->expected = 0;
- dctx->stage = ZSTDds_getFrameHeaderSize;
- return 0;
- }
- case ZSTDds_decodeSkippableHeader: {
- memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
- dctx->expected = ZSTD_readLE32(dctx->headerBuffer + 4);
- dctx->stage = ZSTDds_skipFrame;
- return 0;
- }
- case ZSTDds_skipFrame: {
- dctx->expected = 0;
- dctx->stage = ZSTDds_getFrameHeaderSize;
- return 0;
- }
- default:
- return ERROR(GENERIC); /* impossible */
- }
-}
-
-static size_t ZSTD_refDictContent(ZSTD_DCtx *dctx, const void *dict, size_t dictSize)
-{
- dctx->dictEnd = dctx->previousDstEnd;
- dctx->vBase = (const char *)dict - ((const char *)(dctx->previousDstEnd) - (const char *)(dctx->base));
- dctx->base = dict;
- dctx->previousDstEnd = (const char *)dict + dictSize;
- return 0;
-}
-
-/* ZSTD_loadEntropy() :
- * dict : must point at beginning of a valid zstd dictionary
- * @return : size of entropy tables read */
-static size_t ZSTD_loadEntropy(ZSTD_entropyTables_t *entropy, const void *const dict, size_t const dictSize)
-{
- const BYTE *dictPtr = (const BYTE *)dict;
- const BYTE *const dictEnd = dictPtr + dictSize;
-
- if (dictSize <= 8)
- return ERROR(dictionary_corrupted);
- dictPtr += 8; /* skip header = magic + dictID */
-
- {
- size_t const hSize = HUF_readDTableX4_wksp(entropy->hufTable, dictPtr, dictEnd - dictPtr, entropy->workspace, sizeof(entropy->workspace));
- if (HUF_isError(hSize))
- return ERROR(dictionary_corrupted);
- dictPtr += hSize;
- }
-
- {
- short offcodeNCount[MaxOff + 1];
- U32 offcodeMaxValue = MaxOff, offcodeLog;
- size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(offcodeHeaderSize))
- return ERROR(dictionary_corrupted);
- if (offcodeLog > OffFSELog)
- return ERROR(dictionary_corrupted);
- CHECK_E(FSE_buildDTable_wksp(entropy->OFTable, offcodeNCount, offcodeMaxValue, offcodeLog, entropy->workspace, sizeof(entropy->workspace)), dictionary_corrupted);
- dictPtr += offcodeHeaderSize;
- }
-
- {
- short matchlengthNCount[MaxML + 1];
- unsigned matchlengthMaxValue = MaxML, matchlengthLog;
- size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(matchlengthHeaderSize))
- return ERROR(dictionary_corrupted);
- if (matchlengthLog > MLFSELog)
- return ERROR(dictionary_corrupted);
- CHECK_E(FSE_buildDTable_wksp(entropy->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, entropy->workspace, sizeof(entropy->workspace)), dictionary_corrupted);
- dictPtr += matchlengthHeaderSize;
- }
-
- {
- short litlengthNCount[MaxLL + 1];
- unsigned litlengthMaxValue = MaxLL, litlengthLog;
- size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd - dictPtr);
- if (FSE_isError(litlengthHeaderSize))
- return ERROR(dictionary_corrupted);
- if (litlengthLog > LLFSELog)
- return ERROR(dictionary_corrupted);
- CHECK_E(FSE_buildDTable_wksp(entropy->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog, entropy->workspace, sizeof(entropy->workspace)), dictionary_corrupted);
- dictPtr += litlengthHeaderSize;
- }
-
- if (dictPtr + 12 > dictEnd)
- return ERROR(dictionary_corrupted);
- {
- int i;
- size_t const dictContentSize = (size_t)(dictEnd - (dictPtr + 12));
- for (i = 0; i < 3; i++) {
- U32 const rep = ZSTD_readLE32(dictPtr);
- dictPtr += 4;
- if (rep == 0 || rep >= dictContentSize)
- return ERROR(dictionary_corrupted);
- entropy->rep[i] = rep;
- }
- }
-
- return dictPtr - (const BYTE *)dict;
-}
-
-static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx *dctx, const void *dict, size_t dictSize)
-{
- if (dictSize < 8)
- return ZSTD_refDictContent(dctx, dict, dictSize);
- {
- U32 const magic = ZSTD_readLE32(dict);
- if (magic != ZSTD_DICT_MAGIC) {
- return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
- }
- }
- dctx->dictID = ZSTD_readLE32((const char *)dict + 4);
-
- /* load entropy tables */
- {
- size_t const eSize = ZSTD_loadEntropy(&dctx->entropy, dict, dictSize);
- if (ZSTD_isError(eSize))
- return ERROR(dictionary_corrupted);
- dict = (const char *)dict + eSize;
- dictSize -= eSize;
- }
- dctx->litEntropy = dctx->fseEntropy = 1;
-
- /* reference dictionary content */
- return ZSTD_refDictContent(dctx, dict, dictSize);
-}
-
-size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx *dctx, const void *dict, size_t dictSize)
-{
- CHECK_F(ZSTD_decompressBegin(dctx));
- if (dict && dictSize)
- CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted);
- return 0;
-}
-
-/* ====== ZSTD_DDict ====== */
-
-struct ZSTD_DDict_s {
- void *dictBuffer;
- const void *dictContent;
- size_t dictSize;
- ZSTD_entropyTables_t entropy;
- U32 dictID;
- U32 entropyPresent;
- ZSTD_customMem cMem;
-}; /* typedef'd to ZSTD_DDict within "zstd.h" */
-
-size_t ZSTD_DDictWorkspaceBound(void) { return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_DDict)); }
-
-static const void *ZSTD_DDictDictContent(const ZSTD_DDict *ddict) { return ddict->dictContent; }
-
-static size_t ZSTD_DDictDictSize(const ZSTD_DDict *ddict) { return ddict->dictSize; }
-
-static void ZSTD_refDDict(ZSTD_DCtx *dstDCtx, const ZSTD_DDict *ddict)
-{
- ZSTD_decompressBegin(dstDCtx); /* init */
- if (ddict) { /* support refDDict on NULL */
- dstDCtx->dictID = ddict->dictID;
- dstDCtx->base = ddict->dictContent;
- dstDCtx->vBase = ddict->dictContent;
- dstDCtx->dictEnd = (const BYTE *)ddict->dictContent + ddict->dictSize;
- dstDCtx->previousDstEnd = dstDCtx->dictEnd;
- if (ddict->entropyPresent) {
- dstDCtx->litEntropy = 1;
- dstDCtx->fseEntropy = 1;
- dstDCtx->LLTptr = ddict->entropy.LLTable;
- dstDCtx->MLTptr = ddict->entropy.MLTable;
- dstDCtx->OFTptr = ddict->entropy.OFTable;
- dstDCtx->HUFptr = ddict->entropy.hufTable;
- dstDCtx->entropy.rep[0] = ddict->entropy.rep[0];
- dstDCtx->entropy.rep[1] = ddict->entropy.rep[1];
- dstDCtx->entropy.rep[2] = ddict->entropy.rep[2];
- } else {
- dstDCtx->litEntropy = 0;
- dstDCtx->fseEntropy = 0;
- }
- }
-}
-
-static size_t ZSTD_loadEntropy_inDDict(ZSTD_DDict *ddict)
-{
- ddict->dictID = 0;
- ddict->entropyPresent = 0;
- if (ddict->dictSize < 8)
- return 0;
- {
- U32 const magic = ZSTD_readLE32(ddict->dictContent);
- if (magic != ZSTD_DICT_MAGIC)
- return 0; /* pure content mode */
- }
- ddict->dictID = ZSTD_readLE32((const char *)ddict->dictContent + 4);
-
- /* load entropy tables */
- CHECK_E(ZSTD_loadEntropy(&ddict->entropy, ddict->dictContent, ddict->dictSize), dictionary_corrupted);
- ddict->entropyPresent = 1;
- return 0;
-}
-
-static ZSTD_DDict *ZSTD_createDDict_advanced(const void *dict, size_t dictSize, unsigned byReference, ZSTD_customMem customMem)
-{
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
-
- {
- ZSTD_DDict *const ddict = (ZSTD_DDict *)ZSTD_malloc(sizeof(ZSTD_DDict), customMem);
- if (!ddict)
- return NULL;
- ddict->cMem = customMem;
-
- if ((byReference) || (!dict) || (!dictSize)) {
- ddict->dictBuffer = NULL;
- ddict->dictContent = dict;
- } else {
- void *const internalBuffer = ZSTD_malloc(dictSize, customMem);
- if (!internalBuffer) {
- ZSTD_freeDDict(ddict);
- return NULL;
- }
- memcpy(internalBuffer, dict, dictSize);
- ddict->dictBuffer = internalBuffer;
- ddict->dictContent = internalBuffer;
- }
- ddict->dictSize = dictSize;
- ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
- /* parse dictionary content */
- {
- size_t const errorCode = ZSTD_loadEntropy_inDDict(ddict);
- if (ZSTD_isError(errorCode)) {
- ZSTD_freeDDict(ddict);
- return NULL;
- }
- }
-
- return ddict;
- }
-}
-
-/*! ZSTD_initDDict() :
-* Create a digested dictionary, to start decompression without startup delay.
-* `dict` content is copied inside DDict.
-* Consequently, `dict` can be released after `ZSTD_DDict` creation */
-ZSTD_DDict *ZSTD_initDDict(const void *dict, size_t dictSize, void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- return ZSTD_createDDict_advanced(dict, dictSize, 1, stackMem);
-}
-
-size_t ZSTD_freeDDict(ZSTD_DDict *ddict)
-{
- if (ddict == NULL)
- return 0; /* support free on NULL */
- {
- ZSTD_customMem const cMem = ddict->cMem;
- ZSTD_free(ddict->dictBuffer, cMem);
- ZSTD_free(ddict, cMem);
- return 0;
- }
-}
-
-/*! ZSTD_getDictID_fromDict() :
- * Provides the dictID stored within dictionary.
- * if @return == 0, the dictionary is not conformant with Zstandard specification.
- * It can still be loaded, but as a content-only dictionary. */
-unsigned ZSTD_getDictID_fromDict(const void *dict, size_t dictSize)
-{
- if (dictSize < 8)
- return 0;
- if (ZSTD_readLE32(dict) != ZSTD_DICT_MAGIC)
- return 0;
- return ZSTD_readLE32((const char *)dict + 4);
-}
-
-/*! ZSTD_getDictID_fromDDict() :
- * Provides the dictID of the dictionary loaded into `ddict`.
- * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
- * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
-unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict *ddict)
-{
- if (ddict == NULL)
- return 0;
- return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
-}
-
-/*! ZSTD_getDictID_fromFrame() :
- * Provides the dictID required to decompressed the frame stored within `src`.
- * If @return == 0, the dictID could not be decoded.
- * This could for one of the following reasons :
- * - The frame does not require a dictionary to be decoded (most common case).
- * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
- * Note : this use case also happens when using a non-conformant dictionary.
- * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
- * - This is not a Zstandard frame.
- * When identifying the exact failure cause, it's possible to used ZSTD_getFrameParams(), which will provide a more precise error code. */
-unsigned ZSTD_getDictID_fromFrame(const void *src, size_t srcSize)
-{
- ZSTD_frameParams zfp = {0, 0, 0, 0};
- size_t const hError = ZSTD_getFrameParams(&zfp, src, srcSize);
- if (ZSTD_isError(hError))
- return 0;
- return zfp.dictID;
-}
-
-/*! ZSTD_decompress_usingDDict() :
-* Decompression using a pre-digested Dictionary
-* Use dictionary without significant overhead. */
-size_t ZSTD_decompress_usingDDict(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const ZSTD_DDict *ddict)
-{
- /* pass content and size in case legacy frames are encountered */
- return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, NULL, 0, ddict);
-}
-
-/*=====================================
-* Streaming decompression
-*====================================*/
-
-typedef enum { zdss_init, zdss_loadHeader, zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
-
-/* *** Resource management *** */
-struct ZSTD_DStream_s {
- ZSTD_DCtx *dctx;
- ZSTD_DDict *ddictLocal;
- const ZSTD_DDict *ddict;
- ZSTD_frameParams fParams;
- ZSTD_dStreamStage stage;
- char *inBuff;
- size_t inBuffSize;
- size_t inPos;
- size_t maxWindowSize;
- char *outBuff;
- size_t outBuffSize;
- size_t outStart;
- size_t outEnd;
- size_t blockSize;
- BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; /* tmp buffer to store frame header */
- size_t lhSize;
- ZSTD_customMem customMem;
- void *legacyContext;
- U32 previousLegacyVersion;
- U32 legacyVersion;
- U32 hostageByte;
-}; /* typedef'd to ZSTD_DStream within "zstd.h" */
-
-size_t ZSTD_DStreamWorkspaceBound(size_t maxWindowSize)
-{
- size_t const blockSize = MIN(maxWindowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
- size_t const inBuffSize = blockSize;
- size_t const outBuffSize = maxWindowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
- return ZSTD_DCtxWorkspaceBound() + ZSTD_ALIGN(sizeof(ZSTD_DStream)) + ZSTD_ALIGN(inBuffSize) + ZSTD_ALIGN(outBuffSize);
-}
-
-static ZSTD_DStream *ZSTD_createDStream_advanced(ZSTD_customMem customMem)
-{
- ZSTD_DStream *zds;
-
- if (!customMem.customAlloc || !customMem.customFree)
- return NULL;
-
- zds = (ZSTD_DStream *)ZSTD_malloc(sizeof(ZSTD_DStream), customMem);
- if (zds == NULL)
- return NULL;
- memset(zds, 0, sizeof(ZSTD_DStream));
- memcpy(&zds->customMem, &customMem, sizeof(ZSTD_customMem));
- zds->dctx = ZSTD_createDCtx_advanced(customMem);
- if (zds->dctx == NULL) {
- ZSTD_freeDStream(zds);
- return NULL;
- }
- zds->stage = zdss_init;
- zds->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
- return zds;
-}
-
-ZSTD_DStream *ZSTD_initDStream(size_t maxWindowSize, void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
- ZSTD_DStream *zds = ZSTD_createDStream_advanced(stackMem);
- if (!zds) {
- return NULL;
- }
-
- zds->maxWindowSize = maxWindowSize;
- zds->stage = zdss_loadHeader;
- zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
- ZSTD_freeDDict(zds->ddictLocal);
- zds->ddictLocal = NULL;
- zds->ddict = zds->ddictLocal;
- zds->legacyVersion = 0;
- zds->hostageByte = 0;
-
- {
- size_t const blockSize = MIN(zds->maxWindowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
- size_t const neededOutSize = zds->maxWindowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
-
- zds->inBuff = (char *)ZSTD_malloc(blockSize, zds->customMem);
- zds->inBuffSize = blockSize;
- zds->outBuff = (char *)ZSTD_malloc(neededOutSize, zds->customMem);
- zds->outBuffSize = neededOutSize;
- if (zds->inBuff == NULL || zds->outBuff == NULL) {
- ZSTD_freeDStream(zds);
- return NULL;
- }
- }
- return zds;
-}
-
-ZSTD_DStream *ZSTD_initDStream_usingDDict(size_t maxWindowSize, const ZSTD_DDict *ddict, void *workspace, size_t workspaceSize)
-{
- ZSTD_DStream *zds = ZSTD_initDStream(maxWindowSize, workspace, workspaceSize);
- if (zds) {
- zds->ddict = ddict;
- }
- return zds;
-}
-
-size_t ZSTD_freeDStream(ZSTD_DStream *zds)
-{
- if (zds == NULL)
- return 0; /* support free on null */
- {
- ZSTD_customMem const cMem = zds->customMem;
- ZSTD_freeDCtx(zds->dctx);
- zds->dctx = NULL;
- ZSTD_freeDDict(zds->ddictLocal);
- zds->ddictLocal = NULL;
- ZSTD_free(zds->inBuff, cMem);
- zds->inBuff = NULL;
- ZSTD_free(zds->outBuff, cMem);
- zds->outBuff = NULL;
- ZSTD_free(zds, cMem);
- return 0;
- }
-}
-
-/* *** Initialization *** */
-
-size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX + ZSTD_blockHeaderSize; }
-size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
-
-size_t ZSTD_resetDStream(ZSTD_DStream *zds)
-{
- zds->stage = zdss_loadHeader;
- zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
- zds->legacyVersion = 0;
- zds->hostageByte = 0;
- return ZSTD_frameHeaderSize_prefix;
-}
-
-/* ***** Decompression ***** */
-
-ZSTD_STATIC size_t ZSTD_limitCopy(void *dst, size_t dstCapacity, const void *src, size_t srcSize)
-{
- size_t const length = MIN(dstCapacity, srcSize);
- memcpy(dst, src, length);
- return length;
-}
-
-size_t ZSTD_decompressStream(ZSTD_DStream *zds, ZSTD_outBuffer *output, ZSTD_inBuffer *input)
-{
- const char *const istart = (const char *)(input->src) + input->pos;
- const char *const iend = (const char *)(input->src) + input->size;
- const char *ip = istart;
- char *const ostart = (char *)(output->dst) + output->pos;
- char *const oend = (char *)(output->dst) + output->size;
- char *op = ostart;
- U32 someMoreWork = 1;
-
- while (someMoreWork) {
- switch (zds->stage) {
- case zdss_init:
- ZSTD_resetDStream(zds); /* transparent reset on starting decoding a new frame */
- fallthrough;
-
- case zdss_loadHeader: {
- size_t const hSize = ZSTD_getFrameParams(&zds->fParams, zds->headerBuffer, zds->lhSize);
- if (ZSTD_isError(hSize))
- return hSize;
- if (hSize != 0) { /* need more input */
- size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
- if (toLoad > (size_t)(iend - ip)) { /* not enough input to load full header */
- memcpy(zds->headerBuffer + zds->lhSize, ip, iend - ip);
- zds->lhSize += iend - ip;
- input->pos = input->size;
- return (MAX(ZSTD_frameHeaderSize_min, hSize) - zds->lhSize) +
- ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
- }
- memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad);
- zds->lhSize = hSize;
- ip += toLoad;
- break;
- }
-
- /* check for single-pass mode opportunity */
- if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */
- && (U64)(size_t)(oend - op) >= zds->fParams.frameContentSize) {
- size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend - istart);
- if (cSize <= (size_t)(iend - istart)) {
- size_t const decompressedSize = ZSTD_decompress_usingDDict(zds->dctx, op, oend - op, istart, cSize, zds->ddict);
- if (ZSTD_isError(decompressedSize))
- return decompressedSize;
- ip = istart + cSize;
- op += decompressedSize;
- zds->dctx->expected = 0;
- zds->stage = zdss_init;
- someMoreWork = 0;
- break;
- }
- }
-
- /* Consume header */
- ZSTD_refDDict(zds->dctx, zds->ddict);
- {
- size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zds->dctx); /* == ZSTD_frameHeaderSize_prefix */
- CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer, h1Size));
- {
- size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zds->dctx);
- CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer + h1Size, h2Size));
- }
- }
-
- zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
- if (zds->fParams.windowSize > zds->maxWindowSize)
- return ERROR(frameParameter_windowTooLarge);
-
- /* Buffers are preallocated, but double check */
- {
- size_t const blockSize = MIN(zds->maxWindowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
- size_t const neededOutSize = zds->maxWindowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
- if (zds->inBuffSize < blockSize) {
- return ERROR(GENERIC);
- }
- if (zds->outBuffSize < neededOutSize) {
- return ERROR(GENERIC);
- }
- zds->blockSize = blockSize;
- }
- zds->stage = zdss_read;
- }
- fallthrough;
-
- case zdss_read: {
- size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
- if (neededInSize == 0) { /* end of frame */
- zds->stage = zdss_init;
- someMoreWork = 0;
- break;
- }
- if ((size_t)(iend - ip) >= neededInSize) { /* decode directly from src */
- const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
- size_t const decodedSize = ZSTD_decompressContinue(zds->dctx, zds->outBuff + zds->outStart,
- (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart), ip, neededInSize);
- if (ZSTD_isError(decodedSize))
- return decodedSize;
- ip += neededInSize;
- if (!decodedSize && !isSkipFrame)
- break; /* this was just a header */
- zds->outEnd = zds->outStart + decodedSize;
- zds->stage = zdss_flush;
- break;
- }
- if (ip == iend) {
- someMoreWork = 0;
- break;
- } /* no more input */
- zds->stage = zdss_load;
- /* pass-through */
- }
- fallthrough;
-
- case zdss_load: {
- size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
- size_t const toLoad = neededInSize - zds->inPos; /* should always be <= remaining space within inBuff */
- size_t loadedSize;
- if (toLoad > zds->inBuffSize - zds->inPos)
- return ERROR(corruption_detected); /* should never happen */
- loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend - ip);
- ip += loadedSize;
- zds->inPos += loadedSize;
- if (loadedSize < toLoad) {
- someMoreWork = 0;
- break;
- } /* not enough input, wait for more */
-
- /* decode loaded input */
- {
- const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
- size_t const decodedSize = ZSTD_decompressContinue(zds->dctx, zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart,
- zds->inBuff, neededInSize);
- if (ZSTD_isError(decodedSize))
- return decodedSize;
- zds->inPos = 0; /* input is consumed */
- if (!decodedSize && !isSkipFrame) {
- zds->stage = zdss_read;
- break;
- } /* this was just a header */
- zds->outEnd = zds->outStart + decodedSize;
- zds->stage = zdss_flush;
- /* pass-through */
- }
- }
- fallthrough;
-
- case zdss_flush: {
- size_t const toFlushSize = zds->outEnd - zds->outStart;
- size_t const flushedSize = ZSTD_limitCopy(op, oend - op, zds->outBuff + zds->outStart, toFlushSize);
- op += flushedSize;
- zds->outStart += flushedSize;
- if (flushedSize == toFlushSize) { /* flush completed */
- zds->stage = zdss_read;
- if (zds->outStart + zds->blockSize > zds->outBuffSize)
- zds->outStart = zds->outEnd = 0;
- break;
- }
- /* cannot complete flush */
- someMoreWork = 0;
- break;
- }
- default:
- return ERROR(GENERIC); /* impossible */
- }
- }
-
- /* result */
- input->pos += (size_t)(ip - istart);
- output->pos += (size_t)(op - ostart);
- {
- size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds->dctx);
- if (!nextSrcSizeHint) { /* frame fully decoded */
- if (zds->outEnd == zds->outStart) { /* output fully flushed */
- if (zds->hostageByte) {
- if (input->pos >= input->size) {
- zds->stage = zdss_read;
- return 1;
- } /* can't release hostage (not present) */
- input->pos++; /* release hostage */
- }
- return 0;
- }
- if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
- input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
- zds->hostageByte = 1;
- }
- return 1;
- }
- nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds->dctx) == ZSTDnit_block); /* preload header of next block */
- if (zds->inPos > nextSrcSizeHint)
- return ERROR(GENERIC); /* should never happen */
- nextSrcSizeHint -= zds->inPos; /* already loaded*/
- return nextSrcSizeHint;
- }
-}
-
-EXPORT_SYMBOL(ZSTD_DCtxWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initDCtx);
-EXPORT_SYMBOL(ZSTD_decompressDCtx);
-EXPORT_SYMBOL(ZSTD_decompress_usingDict);
-
-EXPORT_SYMBOL(ZSTD_DDictWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initDDict);
-EXPORT_SYMBOL(ZSTD_decompress_usingDDict);
-
-EXPORT_SYMBOL(ZSTD_DStreamWorkspaceBound);
-EXPORT_SYMBOL(ZSTD_initDStream);
-EXPORT_SYMBOL(ZSTD_initDStream_usingDDict);
-EXPORT_SYMBOL(ZSTD_resetDStream);
-EXPORT_SYMBOL(ZSTD_decompressStream);
-EXPORT_SYMBOL(ZSTD_DStreamInSize);
-EXPORT_SYMBOL(ZSTD_DStreamOutSize);
-
-EXPORT_SYMBOL(ZSTD_findFrameCompressedSize);
-EXPORT_SYMBOL(ZSTD_getFrameContentSize);
-EXPORT_SYMBOL(ZSTD_findDecompressedSize);
-
-EXPORT_SYMBOL(ZSTD_isFrame);
-EXPORT_SYMBOL(ZSTD_getDictID_fromDict);
-EXPORT_SYMBOL(ZSTD_getDictID_fromDDict);
-EXPORT_SYMBOL(ZSTD_getDictID_fromFrame);
-
-EXPORT_SYMBOL(ZSTD_getFrameParams);
-EXPORT_SYMBOL(ZSTD_decompressBegin);
-EXPORT_SYMBOL(ZSTD_decompressBegin_usingDict);
-EXPORT_SYMBOL(ZSTD_copyDCtx);
-EXPORT_SYMBOL(ZSTD_nextSrcSizeToDecompress);
-EXPORT_SYMBOL(ZSTD_decompressContinue);
-EXPORT_SYMBOL(ZSTD_nextInputType);
-
-EXPORT_SYMBOL(ZSTD_decompressBlock);
-EXPORT_SYMBOL(ZSTD_insertBlock);
-
-MODULE_LICENSE("Dual BSD/GPL");
-MODULE_DESCRIPTION("Zstd Decompressor");
diff --git a/lib/zstd/decompress/huf_decompress.c b/lib/zstd/decompress/huf_decompress.c
new file mode 100644
index 000000000000..5105e59ac04a
--- /dev/null
+++ b/lib/zstd/decompress/huf_decompress.c
@@ -0,0 +1,1206 @@
+/* ******************************************************************
+ * huff0 huffman decoder,
+ * part of Finite State Entropy library
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ *
+ * You can contact the author at :
+ * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+****************************************************************** */
+
+/* **************************************************************
+* Dependencies
+****************************************************************/
+#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
+#include "../common/compiler.h"
+#include "../common/bitstream.h" /* BIT_* */
+#include "../common/fse.h" /* to compress headers */
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include "../common/error_private.h"
+
+/* **************************************************************
+* Macros
+****************************************************************/
+
+/* These two optional macros force the use one way or another of the two
+ * Huffman decompression implementations. You can't force in both directions
+ * at the same time.
+ */
+#if defined(HUF_FORCE_DECOMPRESS_X1) && \
+ defined(HUF_FORCE_DECOMPRESS_X2)
+#error "Cannot force the use of the X1 and X2 decoders at the same time!"
+#endif
+
+
+/* **************************************************************
+* Error Management
+****************************************************************/
+#define HUF_isError ERR_isError
+
+
+/* **************************************************************
+* Byte alignment for workSpace management
+****************************************************************/
+#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
+#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
+
+
+/* **************************************************************
+* BMI2 Variant Wrappers
+****************************************************************/
+#if DYNAMIC_BMI2
+
+#define HUF_DGEN(fn) \
+ \
+ static size_t fn##_default( \
+ void* dst, size_t dstSize, \
+ const void* cSrc, size_t cSrcSize, \
+ const HUF_DTable* DTable) \
+ { \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ \
+ static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \
+ void* dst, size_t dstSize, \
+ const void* cSrc, size_t cSrcSize, \
+ const HUF_DTable* DTable) \
+ { \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ \
+ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
+ { \
+ if (bmi2) { \
+ return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
+ } \
+ return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
+ }
+
+#else
+
+#define HUF_DGEN(fn) \
+ static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
+ size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
+ { \
+ (void)bmi2; \
+ return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
+ }
+
+#endif
+
+
+/*-***************************/
+/* generic DTableDesc */
+/*-***************************/
+typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
+
+static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
+{
+ DTableDesc dtd;
+ ZSTD_memcpy(&dtd, table, sizeof(dtd));
+ return dtd;
+}
+
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+
+/*-***************************/
+/* single-symbol decoding */
+/*-***************************/
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */
+
+/*
+ * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
+ * a time.
+ */
+static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
+ U64 D4;
+ if (MEM_isLittleEndian()) {
+ D4 = symbol + (nbBits << 8);
+ } else {
+ D4 = (symbol << 8) + nbBits;
+ }
+ D4 *= 0x0001000100010001ULL;
+ return D4;
+}
+
+typedef struct {
+ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
+ U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
+ U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
+ BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
+} HUF_ReadDTableX1_Workspace;
+
+
+size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
+{
+ return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
+}
+
+size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
+{
+ U32 tableLog = 0;
+ U32 nbSymbols = 0;
+ size_t iSize;
+ void* const dtPtr = DTable + 1;
+ HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
+ HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
+
+ DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
+ if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
+
+ DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
+ /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* Table header */
+ { DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
+ dtd.tableType = 0;
+ dtd.tableLog = (BYTE)tableLog;
+ ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
+ }
+
+ /* Compute symbols and rankStart given rankVal:
+ *
+ * rankVal already contains the number of values of each weight.
+ *
+ * symbols contains the symbols ordered by weight. First are the rankVal[0]
+ * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
+ * symbols[0] is filled (but unused) to avoid a branch.
+ *
+ * rankStart contains the offset where each rank belongs in the DTable.
+ * rankStart[0] is not filled because there are no entries in the table for
+ * weight 0.
+ */
+ {
+ int n;
+ int nextRankStart = 0;
+ int const unroll = 4;
+ int const nLimit = (int)nbSymbols - unroll + 1;
+ for (n=0; n<(int)tableLog+1; n++) {
+ U32 const curr = nextRankStart;
+ nextRankStart += wksp->rankVal[n];
+ wksp->rankStart[n] = curr;
+ }
+ for (n=0; n < nLimit; n += unroll) {
+ int u;
+ for (u=0; u < unroll; ++u) {
+ size_t const w = wksp->huffWeight[n+u];
+ wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
+ }
+ }
+ for (; n < (int)nbSymbols; ++n) {
+ size_t const w = wksp->huffWeight[n];
+ wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
+ }
+ }
+
+ /* fill DTable
+ * We fill all entries of each weight in order.
+ * That way length is a constant for each iteration of the outter loop.
+ * We can switch based on the length to a different inner loop which is
+ * optimized for that particular case.
+ */
+ {
+ U32 w;
+ int symbol=wksp->rankVal[0];
+ int rankStart=0;
+ for (w=1; w<tableLog+1; ++w) {
+ int const symbolCount = wksp->rankVal[w];
+ int const length = (1 << w) >> 1;
+ int uStart = rankStart;
+ BYTE const nbBits = (BYTE)(tableLog + 1 - w);
+ int s;
+ int u;
+ switch (length) {
+ case 1:
+ for (s=0; s<symbolCount; ++s) {
+ HUF_DEltX1 D;
+ D.byte = wksp->symbols[symbol + s];
+ D.nbBits = nbBits;
+ dt[uStart] = D;
+ uStart += 1;
+ }
+ break;
+ case 2:
+ for (s=0; s<symbolCount; ++s) {
+ HUF_DEltX1 D;
+ D.byte = wksp->symbols[symbol + s];
+ D.nbBits = nbBits;
+ dt[uStart+0] = D;
+ dt[uStart+1] = D;
+ uStart += 2;
+ }
+ break;
+ case 4:
+ for (s=0; s<symbolCount; ++s) {
+ U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
+ MEM_write64(dt + uStart, D4);
+ uStart += 4;
+ }
+ break;
+ case 8:
+ for (s=0; s<symbolCount; ++s) {
+ U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
+ MEM_write64(dt + uStart, D4);
+ MEM_write64(dt + uStart + 4, D4);
+ uStart += 8;
+ }
+ break;
+ default:
+ for (s=0; s<symbolCount; ++s) {
+ U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
+ for (u=0; u < length; u += 16) {
+ MEM_write64(dt + uStart + u + 0, D4);
+ MEM_write64(dt + uStart + u + 4, D4);
+ MEM_write64(dt + uStart + u + 8, D4);
+ MEM_write64(dt + uStart + u + 12, D4);
+ }
+ assert(u == length);
+ uStart += length;
+ }
+ break;
+ }
+ symbol += symbolCount;
+ rankStart += symbolCount * length;
+ }
+ }
+ return iSize;
+}
+
+FORCE_INLINE_TEMPLATE BYTE
+HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+ BYTE const c = dt[val].byte;
+ BIT_skipBits(Dstream, dt[val].nbBits);
+ return c;
+}
+
+#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
+ *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+
+HINT_INLINE size_t
+HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 4 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+ }
+
+ /* [0-3] symbols remaining */
+ if (MEM_32bits())
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+
+ /* no more data to retrieve from bitstream, no need to reload */
+ while (p < pEnd)
+ HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
+
+ return pEnd-pStart;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress1X1_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ BYTE* op = (BYTE*)dst;
+ BYTE* const oend = op + dstSize;
+ const void* dtPtr = DTable + 1;
+ const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
+ BIT_DStream_t bitD;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
+
+ HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
+
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ return dstSize;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress4X1_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ /* Check */
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* const olimit = oend - 3;
+ const void* const dtPtr = DTable + 1;
+ const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ const size_t segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+ U32 endSignal = 1;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
+ CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
+ CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
+ CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
+
+ /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
+ for ( ; (endSignal) & (op4 < olimit) ; ) {
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
+ endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
+ }
+
+ /* check corruption */
+ /* note : should not be necessary : op# advance in lock step, and we control op4.
+ * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 supposed already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endCheck) return ERROR(corruption_detected); }
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+
+typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
+ const void *cSrc,
+ size_t cSrcSize,
+ const HUF_DTable *DTable);
+
+HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
+HUF_DGEN(HUF_decompress4X1_usingDTable_internal)
+
+
+
+size_t HUF_decompress1X1_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
+}
+
+
+size_t HUF_decompress4X1_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 0) return ERROR(GENERIC);
+ return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+
+size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
+}
+
+
+#endif /* HUF_FORCE_DECOMPRESS_X2 */
+
+
+#ifndef HUF_FORCE_DECOMPRESS_X1
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
+typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
+
+
+/* HUF_fillDTableX2Level2() :
+ * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
+static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed,
+ const U32* rankValOrigin, const int minWeight,
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+ U32 nbBitsBaseline, U16 baseSeq, U32* wksp, size_t wkspSize)
+{
+ HUF_DEltX2 DElt;
+ U32* rankVal = wksp;
+
+ assert(wkspSize >= HUF_TABLELOG_MAX + 1);
+ (void)wkspSize;
+ /* get pre-calculated rankVal */
+ ZSTD_memcpy(rankVal, rankValOrigin, sizeof(U32) * (HUF_TABLELOG_MAX + 1));
+
+ /* fill skipped values */
+ if (minWeight>1) {
+ U32 i, skipSize = rankVal[minWeight];
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
+ DElt.nbBits = (BYTE)(consumed);
+ DElt.length = 1;
+ for (i = 0; i < skipSize; i++)
+ DTable[i] = DElt;
+ }
+
+ /* fill DTable */
+ { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
+ const U32 symbol = sortedSymbols[s].symbol;
+ const U32 weight = sortedSymbols[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 length = 1 << (sizeLog-nbBits);
+ const U32 start = rankVal[weight];
+ U32 i = start;
+ const U32 end = start + length;
+
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+ DElt.nbBits = (BYTE)(nbBits + consumed);
+ DElt.length = 2;
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
+
+ rankVal[weight] += length;
+ } }
+}
+
+
+static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+ const U32 nbBitsBaseline, U32* wksp, size_t wkspSize)
+{
+ U32* rankVal = wksp;
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+ const U32 minBits = nbBitsBaseline - maxWeight;
+ U32 s;
+
+ assert(wkspSize >= HUF_TABLELOG_MAX + 1);
+ wksp += HUF_TABLELOG_MAX + 1;
+ wkspSize -= HUF_TABLELOG_MAX + 1;
+
+ ZSTD_memcpy(rankVal, rankValOrigin, sizeof(U32) * (HUF_TABLELOG_MAX + 1));
+
+ /* fill DTable */
+ for (s=0; s<sortedListSize; s++) {
+ const U16 symbol = sortedList[s].symbol;
+ const U32 weight = sortedList[s].weight;
+ const U32 nbBits = nbBitsBaseline - weight;
+ const U32 start = rankVal[weight];
+ const U32 length = 1 << (targetLog-nbBits);
+
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
+ U32 sortedRank;
+ int minWeight = nbBits + scaleLog;
+ if (minWeight < 1) minWeight = 1;
+ sortedRank = rankStart[minWeight];
+ HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits,
+ rankValOrigin[nbBits], minWeight,
+ sortedList+sortedRank, sortedListSize-sortedRank,
+ nbBitsBaseline, symbol, wksp, wkspSize);
+ } else {
+ HUF_DEltX2 DElt;
+ MEM_writeLE16(&(DElt.sequence), symbol);
+ DElt.nbBits = (BYTE)(nbBits);
+ DElt.length = 1;
+ { U32 const end = start + length;
+ U32 u;
+ for (u = start; u < end; u++) DTable[u] = DElt;
+ } }
+ rankVal[weight] += length;
+ }
+}
+
+typedef struct {
+ rankValCol_t rankVal[HUF_TABLELOG_MAX];
+ U32 rankStats[HUF_TABLELOG_MAX + 1];
+ U32 rankStart0[HUF_TABLELOG_MAX + 2];
+ sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
+ BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
+ U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
+} HUF_ReadDTableX2_Workspace;
+
+size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
+ const void* src, size_t srcSize,
+ void* workSpace, size_t wkspSize)
+{
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ U32 const maxTableLog = dtd.maxTableLog;
+ size_t iSize;
+ void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
+ HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
+ U32 *rankStart;
+
+ HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
+
+ if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
+
+ rankStart = wksp->rankStart0 + 1;
+ ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
+ ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
+
+ DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
+ if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+ /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
+
+ iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), /* bmi2 */ 0);
+ if (HUF_isError(iSize)) return iSize;
+
+ /* check result */
+ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
+
+ /* find maxWeight */
+ for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
+
+ /* Get start index of each weight */
+ { U32 w, nextRankStart = 0;
+ for (w=1; w<maxW+1; w++) {
+ U32 curr = nextRankStart;
+ nextRankStart += wksp->rankStats[w];
+ rankStart[w] = curr;
+ }
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
+ sizeOfSort = nextRankStart;
+ }
+
+ /* sort symbols by weight */
+ { U32 s;
+ for (s=0; s<nbSymbols; s++) {
+ U32 const w = wksp->weightList[s];
+ U32 const r = rankStart[w]++;
+ wksp->sortedSymbol[r].symbol = (BYTE)s;
+ wksp->sortedSymbol[r].weight = (BYTE)w;
+ }
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
+ }
+
+ /* Build rankVal */
+ { U32* const rankVal0 = wksp->rankVal[0];
+ { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
+ U32 nextRankVal = 0;
+ U32 w;
+ for (w=1; w<maxW+1; w++) {
+ U32 curr = nextRankVal;
+ nextRankVal += wksp->rankStats[w] << (w+rescale);
+ rankVal0[w] = curr;
+ } }
+ { U32 const minBits = tableLog+1 - maxW;
+ U32 consumed;
+ for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
+ U32* const rankValPtr = wksp->rankVal[consumed];
+ U32 w;
+ for (w = 1; w < maxW+1; w++) {
+ rankValPtr[w] = rankVal0[w] >> consumed;
+ } } } }
+
+ HUF_fillDTableX2(dt, maxTableLog,
+ wksp->sortedSymbol, sizeOfSort,
+ wksp->rankStart0, wksp->rankVal, maxW,
+ tableLog+1,
+ wksp->calleeWksp, sizeof(wksp->calleeWksp) / sizeof(U32));
+
+ dtd.tableLog = (BYTE)maxTableLog;
+ dtd.tableType = 1;
+ ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
+ return iSize;
+}
+
+
+FORCE_INLINE_TEMPLATE U32
+HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ ZSTD_memcpy(op, dt+val, 2);
+ BIT_skipBits(DStream, dt[val].nbBits);
+ return dt[val].length;
+}
+
+FORCE_INLINE_TEMPLATE U32
+HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
+ ZSTD_memcpy(op, dt+val, 1);
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+ else {
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+ BIT_skipBits(DStream, dt[val].nbBits);
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+ /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
+ } }
+ return 1;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+
+HINT_INLINE size_t
+HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
+ const HUF_DEltX2* const dt, const U32 dtLog)
+{
+ BYTE* const pStart = p;
+
+ /* up to 8 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+ }
+
+ /* closer to end : up to 2 symbols at a time */
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+ while (p <= pEnd-2)
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
+
+ if (p < pEnd)
+ p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
+
+ return p-pStart;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress1X2_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ BIT_DStream_t bitD;
+
+ /* Init */
+ CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
+
+ /* decode */
+ { BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
+ }
+
+ /* check */
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+ /* decoded size */
+ return dstSize;
+}
+
+FORCE_INLINE_TEMPLATE size_t
+HUF_decompress4X2_usingDTable_internal_body(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+
+ { const BYTE* const istart = (const BYTE*) cSrc;
+ BYTE* const ostart = (BYTE*) dst;
+ BYTE* const oend = ostart + dstSize;
+ BYTE* const olimit = oend - (sizeof(size_t)-1);
+ const void* const dtPtr = DTable+1;
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+
+ /* Init */
+ BIT_DStream_t bitD1;
+ BIT_DStream_t bitD2;
+ BIT_DStream_t bitD3;
+ BIT_DStream_t bitD4;
+ size_t const length1 = MEM_readLE16(istart);
+ size_t const length2 = MEM_readLE16(istart+2);
+ size_t const length3 = MEM_readLE16(istart+4);
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
+ const BYTE* const istart2 = istart1 + length1;
+ const BYTE* const istart3 = istart2 + length2;
+ const BYTE* const istart4 = istart3 + length3;
+ size_t const segmentSize = (dstSize+3) / 4;
+ BYTE* const opStart2 = ostart + segmentSize;
+ BYTE* const opStart3 = opStart2 + segmentSize;
+ BYTE* const opStart4 = opStart3 + segmentSize;
+ BYTE* op1 = ostart;
+ BYTE* op2 = opStart2;
+ BYTE* op3 = opStart3;
+ BYTE* op4 = opStart4;
+ U32 endSignal = 1;
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+ U32 const dtLog = dtd.tableLog;
+
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
+ CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
+ CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
+ CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
+ CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
+
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
+ for ( ; (endSignal) & (op4 < olimit); ) {
+#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
+ endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
+#else
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+ endSignal = (U32)LIKELY((U32)
+ (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
+ & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
+#endif
+ }
+
+ /* check corruption */
+ if (op1 > opStart2) return ERROR(corruption_detected);
+ if (op2 > opStart3) return ERROR(corruption_detected);
+ if (op3 > opStart4) return ERROR(corruption_detected);
+ /* note : op4 already verified within main loop */
+
+ /* finish bitStreams one by one */
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
+
+ /* check */
+ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+ if (!endCheck) return ERROR(corruption_detected); }
+
+ /* decoded size */
+ return dstSize;
+ }
+}
+
+HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
+HUF_DGEN(HUF_decompress4X2_usingDTable_internal)
+
+size_t HUF_decompress1X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
+ workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
+}
+
+
+size_t HUF_decompress4X2_usingDTable(
+ void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
+ if (dtd.tableType != 1) return ERROR(GENERIC);
+ return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+}
+
+static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
+ workSpace, wkspSize);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+
+size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
+}
+
+
+#endif /* HUF_FORCE_DECOMPRESS_X1 */
+
+
+/* ***********************************/
+/* Universal decompression selectors */
+/* ***********************************/
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#else
+ return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
+ HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#endif
+}
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
+ const void* cSrc, size_t cSrcSize,
+ const HUF_DTable* DTable)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#else
+ return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
+ HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
+#endif
+}
+
+
+#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+ /* single, double, quad */
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
+};
+#endif
+
+/* HUF_selectDecoder() :
+ * Tells which decoder is likely to decode faster,
+ * based on a set of pre-computed metrics.
+ * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
+ * Assumption : 0 < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
+{
+ assert(dstSize > 0);
+ assert(dstSize <= 128*1024);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dstSize;
+ (void)cSrcSize;
+ return 0;
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dstSize;
+ (void)cSrcSize;
+ return 1;
+#else
+ /* decoder timing evaluation */
+ { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
+ U32 const D256 = (U32)(dstSize >> 8);
+ U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
+ U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
+ DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */
+ return DTime1 < DTime0;
+ }
+#endif
+}
+
+
+size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
+ size_t dstSize, const void* cSrc,
+ size_t cSrcSize, void* workSpace,
+ size_t wkspSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize == 0) return ERROR(corruption_detected);
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#else
+ return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize):
+ HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
+#endif
+ }
+}
+
+size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
+ const void* cSrc, size_t cSrcSize,
+ void* workSpace, size_t wkspSize)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
+ if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
+ if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#else
+ return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize):
+ HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
+ cSrcSize, workSpace, wkspSize);
+#endif
+ }
+}
+
+
+size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#else
+ return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
+ HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#endif
+}
+
+#ifndef HUF_FORCE_DECOMPRESS_X2
+size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
+{
+ const BYTE* ip = (const BYTE*) cSrc;
+
+ size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+ if (HUF_isError(hSize)) return hSize;
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+ ip += hSize; cSrcSize -= hSize;
+
+ return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
+}
+#endif
+
+size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
+{
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)dtd;
+ assert(dtd.tableType == 0);
+ return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)dtd;
+ assert(dtd.tableType == 1);
+ return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#else
+ return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
+ HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
+#endif
+}
+
+size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
+{
+ /* validation checks */
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
+ if (cSrcSize == 0) return ERROR(corruption_detected);
+
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+#if defined(HUF_FORCE_DECOMPRESS_X1)
+ (void)algoNb;
+ assert(algoNb == 0);
+ return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#elif defined(HUF_FORCE_DECOMPRESS_X2)
+ (void)algoNb;
+ assert(algoNb == 1);
+ return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#else
+ return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
+ HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
+#endif
+ }
+}
+
diff --git a/lib/zstd/decompress/zstd_ddict.c b/lib/zstd/decompress/zstd_ddict.c
new file mode 100644
index 000000000000..dbbc7919de53
--- /dev/null
+++ b/lib/zstd/decompress/zstd_ddict.c
@@ -0,0 +1,241 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* zstd_ddict.c :
+ * concentrates all logic that needs to know the internals of ZSTD_DDict object */
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
+#include "../common/cpu.h" /* bmi2 */
+#include "../common/mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "../common/fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include "zstd_decompress_internal.h"
+#include "zstd_ddict.h"
+
+
+
+
+/*-*******************************************************
+* Types
+*********************************************************/
+struct ZSTD_DDict_s {
+ void* dictBuffer;
+ const void* dictContent;
+ size_t dictSize;
+ ZSTD_entropyDTables_t entropy;
+ U32 dictID;
+ U32 entropyPresent;
+ ZSTD_customMem cMem;
+}; /* typedef'd to ZSTD_DDict within "zstd.h" */
+
+const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict)
+{
+ assert(ddict != NULL);
+ return ddict->dictContent;
+}
+
+size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict)
+{
+ assert(ddict != NULL);
+ return ddict->dictSize;
+}
+
+void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ DEBUGLOG(4, "ZSTD_copyDDictParameters");
+ assert(dctx != NULL);
+ assert(ddict != NULL);
+ dctx->dictID = ddict->dictID;
+ dctx->prefixStart = ddict->dictContent;
+ dctx->virtualStart = ddict->dictContent;
+ dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
+ dctx->previousDstEnd = dctx->dictEnd;
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ dctx->dictContentBeginForFuzzing = dctx->prefixStart;
+ dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
+#endif
+ if (ddict->entropyPresent) {
+ dctx->litEntropy = 1;
+ dctx->fseEntropy = 1;
+ dctx->LLTptr = ddict->entropy.LLTable;
+ dctx->MLTptr = ddict->entropy.MLTable;
+ dctx->OFTptr = ddict->entropy.OFTable;
+ dctx->HUFptr = ddict->entropy.hufTable;
+ dctx->entropy.rep[0] = ddict->entropy.rep[0];
+ dctx->entropy.rep[1] = ddict->entropy.rep[1];
+ dctx->entropy.rep[2] = ddict->entropy.rep[2];
+ } else {
+ dctx->litEntropy = 0;
+ dctx->fseEntropy = 0;
+ }
+}
+
+
+static size_t
+ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
+ ZSTD_dictContentType_e dictContentType)
+{
+ ddict->dictID = 0;
+ ddict->entropyPresent = 0;
+ if (dictContentType == ZSTD_dct_rawContent) return 0;
+
+ if (ddict->dictSize < 8) {
+ if (dictContentType == ZSTD_dct_fullDict)
+ return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
+ return 0; /* pure content mode */
+ }
+ { U32 const magic = MEM_readLE32(ddict->dictContent);
+ if (magic != ZSTD_MAGIC_DICTIONARY) {
+ if (dictContentType == ZSTD_dct_fullDict)
+ return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
+ return 0; /* pure content mode */
+ }
+ }
+ ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
+
+ /* load entropy tables */
+ RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
+ &ddict->entropy, ddict->dictContent, ddict->dictSize)),
+ dictionary_corrupted, "");
+ ddict->entropyPresent = 1;
+ return 0;
+}
+
+
+static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
+ ddict->dictBuffer = NULL;
+ ddict->dictContent = dict;
+ if (!dict) dictSize = 0;
+ } else {
+ void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem);
+ ddict->dictBuffer = internalBuffer;
+ ddict->dictContent = internalBuffer;
+ if (!internalBuffer) return ERROR(memory_allocation);
+ ZSTD_memcpy(internalBuffer, dict, dictSize);
+ }
+ ddict->dictSize = dictSize;
+ ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
+
+ /* parse dictionary content */
+ FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , "");
+
+ return 0;
+}
+
+ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType,
+ ZSTD_customMem customMem)
+{
+ if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
+
+ { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem);
+ if (ddict == NULL) return NULL;
+ ddict->cMem = customMem;
+ { size_t const initResult = ZSTD_initDDict_internal(ddict,
+ dict, dictSize,
+ dictLoadMethod, dictContentType);
+ if (ZSTD_isError(initResult)) {
+ ZSTD_freeDDict(ddict);
+ return NULL;
+ } }
+ return ddict;
+ }
+}
+
+/*! ZSTD_createDDict() :
+* Create a digested dictionary, to start decompression without startup delay.
+* `dict` content is copied inside DDict.
+* Consequently, `dict` can be released after `ZSTD_DDict` creation */
+ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
+{
+ ZSTD_customMem const allocator = { NULL, NULL, NULL };
+ return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
+}
+
+/*! ZSTD_createDDict_byReference() :
+ * Create a digested dictionary, to start decompression without startup delay.
+ * Dictionary content is simply referenced, it will be accessed during decompression.
+ * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
+ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
+{
+ ZSTD_customMem const allocator = { NULL, NULL, NULL };
+ return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
+}
+
+
+const ZSTD_DDict* ZSTD_initStaticDDict(
+ void* sBuffer, size_t sBufferSize,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ size_t const neededSpace = sizeof(ZSTD_DDict)
+ + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
+ ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
+ assert(sBuffer != NULL);
+ assert(dict != NULL);
+ if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
+ if (sBufferSize < neededSpace) return NULL;
+ if (dictLoadMethod == ZSTD_dlm_byCopy) {
+ ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */
+ dict = ddict+1;
+ }
+ if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
+ dict, dictSize,
+ ZSTD_dlm_byRef, dictContentType) ))
+ return NULL;
+ return ddict;
+}
+
+
+size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0; /* support free on NULL */
+ { ZSTD_customMem const cMem = ddict->cMem;
+ ZSTD_customFree(ddict->dictBuffer, cMem);
+ ZSTD_customFree(ddict, cMem);
+ return 0;
+ }
+}
+
+/*! ZSTD_estimateDDictSize() :
+ * Estimate amount of memory that will be needed to create a dictionary for decompression.
+ * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
+size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
+{
+ return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
+}
+
+size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0; /* support sizeof on NULL */
+ return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
+}
+
+/*! ZSTD_getDictID_fromDDict() :
+ * Provides the dictID of the dictionary loaded into `ddict`.
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
+unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
+{
+ if (ddict==NULL) return 0;
+ return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
+}
diff --git a/lib/zstd/decompress/zstd_ddict.h b/lib/zstd/decompress/zstd_ddict.h
new file mode 100644
index 000000000000..8c1a79d666f8
--- /dev/null
+++ b/lib/zstd/decompress/zstd_ddict.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#ifndef ZSTD_DDICT_H
+#define ZSTD_DDICT_H
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include "../common/zstd_deps.h" /* size_t */
+#include <linux/zstd.h> /* ZSTD_DDict, and several public functions */
+
+
+/*-*******************************************************
+ * Interface
+ *********************************************************/
+
+/* note: several prototypes are already published in `zstd.h` :
+ * ZSTD_createDDict()
+ * ZSTD_createDDict_byReference()
+ * ZSTD_createDDict_advanced()
+ * ZSTD_freeDDict()
+ * ZSTD_initStaticDDict()
+ * ZSTD_sizeof_DDict()
+ * ZSTD_estimateDDictSize()
+ * ZSTD_getDictID_fromDict()
+ */
+
+const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict);
+size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict);
+
+void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
+
+
+
+#endif /* ZSTD_DDICT_H */
diff --git a/lib/zstd/decompress/zstd_decompress.c b/lib/zstd/decompress/zstd_decompress.c
new file mode 100644
index 000000000000..b4d81d84479a
--- /dev/null
+++ b/lib/zstd/decompress/zstd_decompress.c
@@ -0,0 +1,2085 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* ***************************************************************
+* Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTD_decompress() allocates its context,
+ * on stack (0), or into heap (1, default; requires malloc()).
+ * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected.
+ */
+#ifndef ZSTD_HEAPMODE
+# define ZSTD_HEAPMODE 1
+#endif
+
+/*!
+* LEGACY_SUPPORT :
+* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+)
+*/
+
+/*!
+ * MAXWINDOWSIZE_DEFAULT :
+ * maximum window size accepted by DStream __by default__.
+ * Frames requiring more memory will be rejected.
+ * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize().
+ */
+#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
+# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1)
+#endif
+
+/*!
+ * NO_FORWARD_PROGRESS_MAX :
+ * maximum allowed nb of calls to ZSTD_decompressStream()
+ * without any forward progress
+ * (defined as: no byte read from input, and no byte flushed to output)
+ * before triggering an error.
+ */
+#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX
+# define ZSTD_NO_FORWARD_PROGRESS_MAX 16
+#endif
+
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
+#include "../common/cpu.h" /* bmi2 */
+#include "../common/mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "../common/fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include <linux/xxhash.h> /* xxh64_reset, xxh64_update, xxh64_digest, XXH64 */
+#include "../common/zstd_internal.h" /* blockProperties_t */
+#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
+#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
+#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */
+
+
+
+
+/* ***********************************
+ * Multiple DDicts Hashset internals *
+ *************************************/
+
+#define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4
+#define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float.
+ * Currently, that means a 0.75 load factor.
+ * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded
+ * the load factor of the ddict hash set.
+ */
+
+#define DDICT_HASHSET_TABLE_BASE_SIZE 64
+#define DDICT_HASHSET_RESIZE_FACTOR 2
+
+/* Hash function to determine starting position of dict insertion within the table
+ * Returns an index between [0, hashSet->ddictPtrTableSize]
+ */
+static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) {
+ const U64 hash = xxh64(&dictID, sizeof(U32), 0);
+ /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */
+ return hash & (hashSet->ddictPtrTableSize - 1);
+}
+
+/* Adds DDict to a hashset without resizing it.
+ * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set.
+ * Returns 0 if successful, or a zstd error code if something went wrong.
+ */
+static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) {
+ const U32 dictID = ZSTD_getDictID_fromDDict(ddict);
+ size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID);
+ const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1;
+ RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!");
+ DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx);
+ while (hashSet->ddictPtrTable[idx] != NULL) {
+ /* Replace existing ddict if inserting ddict with same dictID */
+ if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) {
+ DEBUGLOG(4, "DictID already exists, replacing rather than adding");
+ hashSet->ddictPtrTable[idx] = ddict;
+ return 0;
+ }
+ idx &= idxRangeMask;
+ idx++;
+ }
+ DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx);
+ hashSet->ddictPtrTable[idx] = ddict;
+ hashSet->ddictPtrCount++;
+ return 0;
+}
+
+/* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and
+ * rehashes all values, allocates new table, frees old table.
+ * Returns 0 on success, otherwise a zstd error code.
+ */
+static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) {
+ size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR;
+ const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem);
+ const ZSTD_DDict** oldTable = hashSet->ddictPtrTable;
+ size_t oldTableSize = hashSet->ddictPtrTableSize;
+ size_t i;
+
+ DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize);
+ RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!");
+ hashSet->ddictPtrTable = newTable;
+ hashSet->ddictPtrTableSize = newTableSize;
+ hashSet->ddictPtrCount = 0;
+ for (i = 0; i < oldTableSize; ++i) {
+ if (oldTable[i] != NULL) {
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), "");
+ }
+ }
+ ZSTD_customFree((void*)oldTable, customMem);
+ DEBUGLOG(4, "Finished re-hash");
+ return 0;
+}
+
+/* Fetches a DDict with the given dictID
+ * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL.
+ */
+static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) {
+ size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID);
+ const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1;
+ DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx);
+ for (;;) {
+ size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]);
+ if (currDictID == dictID || currDictID == 0) {
+ /* currDictID == 0 implies a NULL ddict entry */
+ break;
+ } else {
+ idx &= idxRangeMask; /* Goes to start of table when we reach the end */
+ idx++;
+ }
+ }
+ DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx);
+ return hashSet->ddictPtrTable[idx];
+}
+
+/* Allocates space for and returns a ddict hash set
+ * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with.
+ * Returns NULL if allocation failed.
+ */
+static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) {
+ ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem);
+ DEBUGLOG(4, "Allocating new hash set");
+ if (!ret)
+ return NULL;
+ ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem);
+ if (!ret->ddictPtrTable) {
+ ZSTD_customFree(ret, customMem);
+ return NULL;
+ }
+ ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE;
+ ret->ddictPtrCount = 0;
+ return ret;
+}
+
+/* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself.
+ * Note: The ZSTD_DDict* within the table are NOT freed.
+ */
+static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) {
+ DEBUGLOG(4, "Freeing ddict hash set");
+ if (hashSet && hashSet->ddictPtrTable) {
+ ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem);
+ }
+ if (hashSet) {
+ ZSTD_customFree(hashSet, customMem);
+ }
+}
+
+/* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set.
+ * Returns 0 on success, or a ZSTD error.
+ */
+static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) {
+ DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize);
+ if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) {
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), "");
+ }
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), "");
+ return 0;
+}
+
+/*-*************************************************************
+* Context management
+***************************************************************/
+size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx)
+{
+ if (dctx==NULL) return 0; /* support sizeof NULL */
+ return sizeof(*dctx)
+ + ZSTD_sizeof_DDict(dctx->ddictLocal)
+ + dctx->inBuffSize + dctx->outBuffSize;
+}
+
+size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
+
+
+static size_t ZSTD_startingInputLength(ZSTD_format_e format)
+{
+ size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format);
+ /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */
+ assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) );
+ return startingInputLength;
+}
+
+static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx)
+{
+ assert(dctx->streamStage == zdss_init);
+ dctx->format = ZSTD_f_zstd1;
+ dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
+ dctx->outBufferMode = ZSTD_bm_buffered;
+ dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum;
+ dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict;
+}
+
+static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
+{
+ dctx->staticSize = 0;
+ dctx->ddict = NULL;
+ dctx->ddictLocal = NULL;
+ dctx->dictEnd = NULL;
+ dctx->ddictIsCold = 0;
+ dctx->dictUses = ZSTD_dont_use;
+ dctx->inBuff = NULL;
+ dctx->inBuffSize = 0;
+ dctx->outBuffSize = 0;
+ dctx->streamStage = zdss_init;
+ dctx->legacyContext = NULL;
+ dctx->previousLegacyVersion = 0;
+ dctx->noForwardProgress = 0;
+ dctx->oversizedDuration = 0;
+ dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
+ dctx->ddictSet = NULL;
+ ZSTD_DCtx_resetParameters(dctx);
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ dctx->dictContentEndForFuzzing = NULL;
+#endif
+}
+
+ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize)
+{
+ ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace;
+
+ if ((size_t)workspace & 7) return NULL; /* 8-aligned */
+ if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */
+
+ ZSTD_initDCtx_internal(dctx);
+ dctx->staticSize = workspaceSize;
+ dctx->inBuff = (char*)(dctx+1);
+ return dctx;
+}
+
+ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
+{
+ if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
+
+ { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem);
+ if (!dctx) return NULL;
+ dctx->customMem = customMem;
+ ZSTD_initDCtx_internal(dctx);
+ return dctx;
+ }
+}
+
+ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+ DEBUGLOG(3, "ZSTD_createDCtx");
+ return ZSTD_createDCtx_advanced(ZSTD_defaultCMem);
+}
+
+static void ZSTD_clearDict(ZSTD_DCtx* dctx)
+{
+ ZSTD_freeDDict(dctx->ddictLocal);
+ dctx->ddictLocal = NULL;
+ dctx->ddict = NULL;
+ dctx->dictUses = ZSTD_dont_use;
+}
+
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+ if (dctx==NULL) return 0; /* support free on NULL */
+ RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx");
+ { ZSTD_customMem const cMem = dctx->customMem;
+ ZSTD_clearDict(dctx);
+ ZSTD_customFree(dctx->inBuff, cMem);
+ dctx->inBuff = NULL;
+ if (dctx->ddictSet) {
+ ZSTD_freeDDictHashSet(dctx->ddictSet, cMem);
+ dctx->ddictSet = NULL;
+ }
+ ZSTD_customFree(dctx, cMem);
+ return 0;
+ }
+}
+
+/* no longer useful */
+void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
+{
+ size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx);
+ ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */
+}
+
+/* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on
+ * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then
+ * accordingly sets the ddict to be used to decompress the frame.
+ *
+ * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is.
+ *
+ * ZSTD_d_refMultipleDDicts must be enabled for this function to be called.
+ */
+static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) {
+ assert(dctx->refMultipleDDicts && dctx->ddictSet);
+ DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame");
+ if (dctx->ddict) {
+ const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID);
+ if (frameDDict) {
+ DEBUGLOG(4, "DDict found!");
+ ZSTD_clearDict(dctx);
+ dctx->dictID = dctx->fParams.dictID;
+ dctx->ddict = frameDDict;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ }
+ }
+}
+
+
+/*-*************************************************************
+ * Frame header decoding
+ ***************************************************************/
+
+/*! ZSTD_isFrame() :
+ * Tells if the content of `buffer` starts with a valid Frame Identifier.
+ * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
+ * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
+ * Note 3 : Skippable Frame Identifiers are considered valid. */
+unsigned ZSTD_isFrame(const void* buffer, size_t size)
+{
+ if (size < ZSTD_FRAMEIDSIZE) return 0;
+ { U32 const magic = MEM_readLE32(buffer);
+ if (magic == ZSTD_MAGICNUMBER) return 1;
+ if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
+ }
+ return 0;
+}
+
+/* ZSTD_frameHeaderSize_internal() :
+ * srcSize must be large enough to reach header size fields.
+ * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless.
+ * @return : size of the Frame Header
+ * or an error code, which can be tested with ZSTD_isError() */
+static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format)
+{
+ size_t const minInputSize = ZSTD_startingInputLength(format);
+ RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, "");
+
+ { BYTE const fhd = ((const BYTE*)src)[minInputSize-1];
+ U32 const dictID= fhd & 3;
+ U32 const singleSegment = (fhd >> 5) & 1;
+ U32 const fcsId = fhd >> 6;
+ return minInputSize + !singleSegment
+ + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
+ + (singleSegment && !fcsId);
+ }
+}
+
+/* ZSTD_frameHeaderSize() :
+ * srcSize must be >= ZSTD_frameHeaderSize_prefix.
+ * @return : size of the Frame Header,
+ * or an error code (if srcSize is too small) */
+size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
+{
+ return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1);
+}
+
+
+/* ZSTD_getFrameHeader_advanced() :
+ * decode Frame Header, or require larger `srcSize`.
+ * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless
+ * @return : 0, `zfhPtr` is correctly filled,
+ * >0, `srcSize` is too small, value is wanted `srcSize` amount,
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format)
+{
+ const BYTE* ip = (const BYTE*)src;
+ size_t const minInputSize = ZSTD_startingInputLength(format);
+
+ ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
+ if (srcSize < minInputSize) return minInputSize;
+ RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter");
+
+ if ( (format != ZSTD_f_zstd1_magicless)
+ && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
+ if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ /* skippable frame */
+ if (srcSize < ZSTD_SKIPPABLEHEADERSIZE)
+ return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */
+ ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr));
+ zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE);
+ zfhPtr->frameType = ZSTD_skippableFrame;
+ return 0;
+ }
+ RETURN_ERROR(prefix_unknown, "");
+ }
+
+ /* ensure there is enough `srcSize` to fully read/decode frame header */
+ { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format);
+ if (srcSize < fhsize) return fhsize;
+ zfhPtr->headerSize = (U32)fhsize;
+ }
+
+ { BYTE const fhdByte = ip[minInputSize-1];
+ size_t pos = minInputSize;
+ U32 const dictIDSizeCode = fhdByte&3;
+ U32 const checksumFlag = (fhdByte>>2)&1;
+ U32 const singleSegment = (fhdByte>>5)&1;
+ U32 const fcsID = fhdByte>>6;
+ U64 windowSize = 0;
+ U32 dictID = 0;
+ U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN;
+ RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported,
+ "reserved bits, must be zero");
+
+ if (!singleSegment) {
+ BYTE const wlByte = ip[pos++];
+ U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
+ RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, "");
+ windowSize = (1ULL << windowLog);
+ windowSize += (windowSize >> 3) * (wlByte&7);
+ }
+ switch(dictIDSizeCode)
+ {
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
+ case 0 : break;
+ case 1 : dictID = ip[pos]; pos++; break;
+ case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
+ case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
+ }
+ switch(fcsID)
+ {
+ default:
+ assert(0); /* impossible */
+ ZSTD_FALLTHROUGH;
+ case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
+ case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
+ case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
+ case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
+ }
+ if (singleSegment) windowSize = frameContentSize;
+
+ zfhPtr->frameType = ZSTD_frame;
+ zfhPtr->frameContentSize = frameContentSize;
+ zfhPtr->windowSize = windowSize;
+ zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ zfhPtr->dictID = dictID;
+ zfhPtr->checksumFlag = checksumFlag;
+ }
+ return 0;
+}
+
+/* ZSTD_getFrameHeader() :
+ * decode Frame Header, or require larger `srcSize`.
+ * note : this function does not consume input, it only reads it.
+ * @return : 0, `zfhPtr` is correctly filled,
+ * >0, `srcSize` is too small, value is wanted `srcSize` amount,
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize)
+{
+ return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1);
+}
+
+
+/* ZSTD_getFrameContentSize() :
+ * compatible with legacy mode
+ * @return : decompressed size of the single frame pointed to be `src` if known, otherwise
+ * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
+ * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
+unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
+{
+ { ZSTD_frameHeader zfh;
+ if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0)
+ return ZSTD_CONTENTSIZE_ERROR;
+ if (zfh.frameType == ZSTD_skippableFrame) {
+ return 0;
+ } else {
+ return zfh.frameContentSize;
+ } }
+}
+
+static size_t readSkippableFrameSize(void const* src, size_t srcSize)
+{
+ size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE;
+ U32 sizeU32;
+
+ RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, "");
+
+ sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE);
+ RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32,
+ frameParameter_unsupported, "");
+ {
+ size_t const skippableSize = skippableHeaderSize + sizeU32;
+ RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, "");
+ return skippableSize;
+ }
+}
+
+/* ZSTD_findDecompressedSize() :
+ * compatible with legacy mode
+ * `srcSize` must be the exact length of some number of ZSTD compressed and/or
+ * skippable frames
+ * @return : decompressed size of the frames contained */
+unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
+{
+ unsigned long long totalDstSize = 0;
+
+ while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) {
+ U32 const magicNumber = MEM_readLE32(src);
+
+ if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ size_t const skippableSize = readSkippableFrameSize(src, srcSize);
+ if (ZSTD_isError(skippableSize)) {
+ return ZSTD_CONTENTSIZE_ERROR;
+ }
+ assert(skippableSize <= srcSize);
+
+ src = (const BYTE *)src + skippableSize;
+ srcSize -= skippableSize;
+ continue;
+ }
+
+ { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
+ if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
+
+ /* check for overflow */
+ if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
+ totalDstSize += ret;
+ }
+ { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
+ if (ZSTD_isError(frameSrcSize)) {
+ return ZSTD_CONTENTSIZE_ERROR;
+ }
+
+ src = (const BYTE *)src + frameSrcSize;
+ srcSize -= frameSrcSize;
+ }
+ } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
+
+ if (srcSize) return ZSTD_CONTENTSIZE_ERROR;
+
+ return totalDstSize;
+}
+
+/* ZSTD_getDecompressedSize() :
+ * compatible with legacy mode
+ * @return : decompressed size if known, 0 otherwise
+ note : 0 can mean any of the following :
+ - frame content is empty
+ - decompressed size field is not present in frame header
+ - frame header unknown / not supported
+ - frame header not complete (`srcSize` too small) */
+unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
+{
+ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
+ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN);
+ return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret;
+}
+
+
+/* ZSTD_decodeFrameHeader() :
+ * `headerSize` must be the size provided by ZSTD_frameHeaderSize().
+ * If multiple DDict references are enabled, also will choose the correct DDict to use.
+ * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
+static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
+{
+ size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format);
+ if (ZSTD_isError(result)) return result; /* invalid header */
+ RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small");
+
+ /* Reference DDict requested by frame if dctx references multiple ddicts */
+ if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) {
+ ZSTD_DCtx_selectFrameDDict(dctx);
+ }
+
+#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ /* Skip the dictID check in fuzzing mode, because it makes the search
+ * harder.
+ */
+ RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID),
+ dictionary_wrong, "");
+#endif
+ dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0;
+ if (dctx->validateChecksum) xxh64_reset(&dctx->xxhState, 0);
+ dctx->processedCSize += headerSize;
+ return 0;
+}
+
+static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret)
+{
+ ZSTD_frameSizeInfo frameSizeInfo;
+ frameSizeInfo.compressedSize = ret;
+ frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
+ return frameSizeInfo;
+}
+
+static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo frameSizeInfo;
+ ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo));
+
+
+ if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
+ && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize);
+ assert(ZSTD_isError(frameSizeInfo.compressedSize) ||
+ frameSizeInfo.compressedSize <= srcSize);
+ return frameSizeInfo;
+ } else {
+ const BYTE* ip = (const BYTE*)src;
+ const BYTE* const ipstart = ip;
+ size_t remainingSize = srcSize;
+ size_t nbBlocks = 0;
+ ZSTD_frameHeader zfh;
+
+ /* Extract Frame Header */
+ { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
+ if (ZSTD_isError(ret))
+ return ZSTD_errorFrameSizeInfo(ret);
+ if (ret > 0)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+ }
+
+ ip += zfh.headerSize;
+ remainingSize -= zfh.headerSize;
+
+ /* Iterate over each block */
+ while (1) {
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize))
+ return ZSTD_errorFrameSizeInfo(cBlockSize);
+
+ if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+
+ ip += ZSTD_blockHeaderSize + cBlockSize;
+ remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
+ nbBlocks++;
+
+ if (blockProperties.lastBlock) break;
+ }
+
+ /* Final frame content checksum */
+ if (zfh.checksumFlag) {
+ if (remainingSize < 4)
+ return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
+ ip += 4;
+ }
+
+ frameSizeInfo.compressedSize = (size_t)(ip - ipstart);
+ frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN)
+ ? zfh.frameContentSize
+ : nbBlocks * zfh.blockSizeMax;
+ return frameSizeInfo;
+ }
+}
+
+/* ZSTD_findFrameCompressedSize() :
+ * compatible with legacy mode
+ * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
+ * `srcSize` must be at least as large as the frame contained
+ * @return : the compressed size of the frame starting at `src` */
+size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
+{
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ return frameSizeInfo.compressedSize;
+}
+
+/* ZSTD_decompressBound() :
+ * compatible with legacy mode
+ * `src` must point to the start of a ZSTD frame or a skippeable frame
+ * `srcSize` must be at least as large as the frame contained
+ * @return : the maximum decompressed size of the compressed source
+ */
+unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
+{
+ unsigned long long bound = 0;
+ /* Iterate over each frame */
+ while (srcSize > 0) {
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ size_t const compressedSize = frameSizeInfo.compressedSize;
+ unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
+ if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
+ return ZSTD_CONTENTSIZE_ERROR;
+ assert(srcSize >= compressedSize);
+ src = (const BYTE*)src + compressedSize;
+ srcSize -= compressedSize;
+ bound += decompressedBound;
+ }
+ return bound;
+}
+
+
+/*-*************************************************************
+ * Frame decoding
+ ***************************************************************/
+
+/* ZSTD_insertBlock() :
+ * insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
+size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
+{
+ DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize);
+ ZSTD_checkContinuity(dctx, blockStart, blockSize);
+ dctx->previousDstEnd = (const char*)blockStart + blockSize;
+ return blockSize;
+}
+
+
+static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_copyRawBlock");
+ RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, "");
+ if (dst == NULL) {
+ if (srcSize == 0) return 0;
+ RETURN_ERROR(dstBuffer_null, "");
+ }
+ ZSTD_memcpy(dst, src, srcSize);
+ return srcSize;
+}
+
+static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity,
+ BYTE b,
+ size_t regenSize)
+{
+ RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, "");
+ if (dst == NULL) {
+ if (regenSize == 0) return 0;
+ RETURN_ERROR(dstBuffer_null, "");
+ }
+ ZSTD_memset(dst, b, regenSize);
+ return regenSize;
+}
+
+static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, unsigned streaming)
+{
+ (void)dctx;
+ (void)uncompressedSize;
+ (void)compressedSize;
+ (void)streaming;
+}
+
+
+/*! ZSTD_decompressFrame() :
+ * @dctx must be properly initialized
+ * will update *srcPtr and *srcSizePtr,
+ * to make *srcPtr progress by one frame. */
+static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void** srcPtr, size_t *srcSizePtr)
+{
+ const BYTE* const istart = (const BYTE*)(*srcPtr);
+ const BYTE* ip = istart;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart;
+ BYTE* op = ostart;
+ size_t remainingSrcSize = *srcSizePtr;
+
+ DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr);
+
+ /* check */
+ RETURN_ERROR_IF(
+ remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize,
+ srcSize_wrong, "");
+
+ /* Frame Header */
+ { size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal(
+ ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format);
+ if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
+ RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize,
+ srcSize_wrong, "");
+ FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , "");
+ ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize;
+ }
+
+ /* Loop on each block */
+ while (1) {
+ size_t decodedSize;
+ blockProperties_t blockProperties;
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+ ip += ZSTD_blockHeaderSize;
+ remainingSrcSize -= ZSTD_blockHeaderSize;
+ RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, "");
+
+ switch(blockProperties.blockType)
+ {
+ case bt_compressed:
+ decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1);
+ break;
+ case bt_raw :
+ decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize);
+ break;
+ case bt_rle :
+ decodedSize = ZSTD_setRleBlock(op, (size_t)(oend-op), *ip, blockProperties.origSize);
+ break;
+ case bt_reserved :
+ default:
+ RETURN_ERROR(corruption_detected, "invalid block type");
+ }
+
+ if (ZSTD_isError(decodedSize)) return decodedSize;
+ if (dctx->validateChecksum)
+ xxh64_update(&dctx->xxhState, op, decodedSize);
+ if (decodedSize != 0)
+ op += decodedSize;
+ assert(ip != NULL);
+ ip += cBlockSize;
+ remainingSrcSize -= cBlockSize;
+ if (blockProperties.lastBlock) break;
+ }
+
+ if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize,
+ corruption_detected, "");
+ }
+ if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
+ RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, "");
+ if (!dctx->forceIgnoreChecksum) {
+ U32 const checkCalc = (U32)xxh64_digest(&dctx->xxhState);
+ U32 checkRead;
+ checkRead = MEM_readLE32(ip);
+ RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, "");
+ }
+ ip += 4;
+ remainingSrcSize -= 4;
+ }
+ ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0);
+ /* Allow caller to get size read */
+ *srcPtr = ip;
+ *srcSizePtr = remainingSrcSize;
+ return (size_t)(op-ostart);
+}
+
+static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize,
+ const ZSTD_DDict* ddict)
+{
+ void* const dststart = dst;
+ int moreThan1Frame = 0;
+
+ DEBUGLOG(5, "ZSTD_decompressMultiFrame");
+ assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */
+
+ if (ddict) {
+ dict = ZSTD_DDict_dictContent(ddict);
+ dictSize = ZSTD_DDict_dictSize(ddict);
+ }
+
+ while (srcSize >= ZSTD_startingInputLength(dctx->format)) {
+
+
+ { U32 const magicNumber = MEM_readLE32(src);
+ DEBUGLOG(4, "reading magic number %08X (expecting %08X)",
+ (unsigned)magicNumber, ZSTD_MAGICNUMBER);
+ if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
+ size_t const skippableSize = readSkippableFrameSize(src, srcSize);
+ FORWARD_IF_ERROR(skippableSize, "readSkippableFrameSize failed");
+ assert(skippableSize <= srcSize);
+
+ src = (const BYTE *)src + skippableSize;
+ srcSize -= skippableSize;
+ continue;
+ } }
+
+ if (ddict) {
+ /* we were called from ZSTD_decompress_usingDDict */
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), "");
+ } else {
+ /* this will initialize correctly with no dict if dict == NULL, so
+ * use this in all cases but ddict */
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), "");
+ }
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
+
+ { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
+ &src, &srcSize);
+ RETURN_ERROR_IF(
+ (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
+ && (moreThan1Frame==1),
+ srcSize_wrong,
+ "At least one frame successfully completed, "
+ "but following bytes are garbage: "
+ "it's more likely to be a srcSize error, "
+ "specifying more input bytes than size of frame(s). "
+ "Note: one could be unlucky, it might be a corruption error instead, "
+ "happening right at the place where we expect zstd magic bytes. "
+ "But this is _much_ less likely than a srcSize field error.");
+ if (ZSTD_isError(res)) return res;
+ assert(res <= dstCapacity);
+ if (res != 0)
+ dst = (BYTE*)dst + res;
+ dstCapacity -= res;
+ }
+ moreThan1Frame = 1;
+ } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
+
+ RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed");
+
+ return (size_t)((BYTE*)dst - (BYTE*)dststart);
+}
+
+size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const void* dict, size_t dictSize)
+{
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
+}
+
+
+static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx)
+{
+ switch (dctx->dictUses) {
+ default:
+ assert(0 /* Impossible */);
+ ZSTD_FALLTHROUGH;
+ case ZSTD_dont_use:
+ ZSTD_clearDict(dctx);
+ return NULL;
+ case ZSTD_use_indefinitely:
+ return dctx->ddict;
+ case ZSTD_use_once:
+ dctx->dictUses = ZSTD_dont_use;
+ return dctx->ddict;
+ }
+}
+
+size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx));
+}
+
+
+size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
+ size_t regenSize;
+ ZSTD_DCtx* const dctx = ZSTD_createDCtx();
+ RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!");
+ regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
+ ZSTD_freeDCtx(dctx);
+ return regenSize;
+#else /* stack mode */
+ ZSTD_DCtx dctx;
+ ZSTD_initDCtx_internal(&dctx);
+ return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
+#endif
+}
+
+
+/*-**************************************
+* Advanced Streaming Decompression API
+* Bufferless and synchronous
+****************************************/
+size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
+
+/*
+ * Similar to ZSTD_nextSrcSizeToDecompress(), but when when a block input can be streamed,
+ * we allow taking a partial block as the input. Currently only raw uncompressed blocks can
+ * be streamed.
+ *
+ * For blocks that can be streamed, this allows us to reduce the latency until we produce
+ * output, and avoid copying the input.
+ *
+ * @param inputSize - The total amount of input that the caller currently has.
+ */
+static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) {
+ if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock))
+ return dctx->expected;
+ if (dctx->bType != bt_raw)
+ return dctx->expected;
+ return MIN(MAX(inputSize, 1), dctx->expected);
+}
+
+ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
+ switch(dctx->stage)
+ {
+ default: /* should not happen */
+ assert(0);
+ ZSTD_FALLTHROUGH;
+ case ZSTDds_getFrameHeaderSize:
+ ZSTD_FALLTHROUGH;
+ case ZSTDds_decodeFrameHeader:
+ return ZSTDnit_frameHeader;
+ case ZSTDds_decodeBlockHeader:
+ return ZSTDnit_blockHeader;
+ case ZSTDds_decompressBlock:
+ return ZSTDnit_block;
+ case ZSTDds_decompressLastBlock:
+ return ZSTDnit_lastBlock;
+ case ZSTDds_checkChecksum:
+ return ZSTDnit_checksum;
+ case ZSTDds_decodeSkippableHeader:
+ ZSTD_FALLTHROUGH;
+ case ZSTDds_skipFrame:
+ return ZSTDnit_skippableFrame;
+ }
+}
+
+static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; }
+
+/* ZSTD_decompressContinue() :
+ * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress())
+ * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
+ * or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+ DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize);
+ /* Sanity check */
+ RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed");
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
+
+ dctx->processedCSize += srcSize;
+
+ switch (dctx->stage)
+ {
+ case ZSTDds_getFrameHeaderSize :
+ assert(src != NULL);
+ if (dctx->format == ZSTD_f_zstd1) { /* allows header */
+ assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */
+ if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
+ ZSTD_memcpy(dctx->headerBuffer, src, srcSize);
+ dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */
+ dctx->stage = ZSTDds_decodeSkippableHeader;
+ return 0;
+ } }
+ dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format);
+ if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
+ ZSTD_memcpy(dctx->headerBuffer, src, srcSize);
+ dctx->expected = dctx->headerSize - srcSize;
+ dctx->stage = ZSTDds_decodeFrameHeader;
+ return 0;
+
+ case ZSTDds_decodeFrameHeader:
+ assert(src != NULL);
+ ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize);
+ FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), "");
+ dctx->expected = ZSTD_blockHeaderSize;
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ return 0;
+
+ case ZSTDds_decodeBlockHeader:
+ { blockProperties_t bp;
+ size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
+ RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum");
+ dctx->expected = cBlockSize;
+ dctx->bType = bp.blockType;
+ dctx->rleSize = bp.origSize;
+ if (cBlockSize) {
+ dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
+ return 0;
+ }
+ /* empty block */
+ if (bp.lastBlock) {
+ if (dctx->fParams.checksumFlag) {
+ dctx->expected = 4;
+ dctx->stage = ZSTDds_checkChecksum;
+ } else {
+ dctx->expected = 0; /* end of frame */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ }
+ } else {
+ dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ }
+ return 0;
+ }
+
+ case ZSTDds_decompressLastBlock:
+ case ZSTDds_decompressBlock:
+ DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock");
+ { size_t rSize;
+ switch(dctx->bType)
+ {
+ case bt_compressed:
+ DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
+ rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1);
+ dctx->expected = 0; /* Streaming not supported */
+ break;
+ case bt_raw :
+ assert(srcSize <= dctx->expected);
+ rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
+ FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed");
+ assert(rSize == srcSize);
+ dctx->expected -= rSize;
+ break;
+ case bt_rle :
+ rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize);
+ dctx->expected = 0; /* Streaming not supported */
+ break;
+ case bt_reserved : /* should never happen */
+ default:
+ RETURN_ERROR(corruption_detected, "invalid block type");
+ }
+ FORWARD_IF_ERROR(rSize, "");
+ RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum");
+ DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize);
+ dctx->decodedSize += rSize;
+ if (dctx->validateChecksum) xxh64_update(&dctx->xxhState, dst, rSize);
+ dctx->previousDstEnd = (char*)dst + rSize;
+
+ /* Stay on the same stage until we are finished streaming the block. */
+ if (dctx->expected > 0) {
+ return rSize;
+ }
+
+ if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
+ DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize);
+ RETURN_ERROR_IF(
+ dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
+ && dctx->decodedSize != dctx->fParams.frameContentSize,
+ corruption_detected, "");
+ if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
+ dctx->expected = 4;
+ dctx->stage = ZSTDds_checkChecksum;
+ } else {
+ ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1);
+ dctx->expected = 0; /* ends here */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ }
+ } else {
+ dctx->stage = ZSTDds_decodeBlockHeader;
+ dctx->expected = ZSTD_blockHeaderSize;
+ }
+ return rSize;
+ }
+
+ case ZSTDds_checkChecksum:
+ assert(srcSize == 4); /* guaranteed by dctx->expected */
+ {
+ if (dctx->validateChecksum) {
+ U32 const h32 = (U32)xxh64_digest(&dctx->xxhState);
+ U32 const check32 = MEM_readLE32(src);
+ DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32);
+ RETURN_ERROR_IF(check32 != h32, checksum_wrong, "");
+ }
+ ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1);
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ return 0;
+ }
+
+ case ZSTDds_decodeSkippableHeader:
+ assert(src != NULL);
+ assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE);
+ ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */
+ dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */
+ dctx->stage = ZSTDds_skipFrame;
+ return 0;
+
+ case ZSTDds_skipFrame:
+ dctx->expected = 0;
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ return 0;
+
+ default:
+ assert(0); /* impossible */
+ RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
+ }
+}
+
+
+static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
+ dctx->prefixStart = dict;
+ dctx->previousDstEnd = (const char*)dict + dictSize;
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ dctx->dictContentBeginForFuzzing = dctx->prefixStart;
+ dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
+#endif
+ return 0;
+}
+
+/*! ZSTD_loadDEntropy() :
+ * dict : must point at beginning of a valid zstd dictionary.
+ * @return : size of entropy tables read */
+size_t
+ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
+ const void* const dict, size_t const dictSize)
+{
+ const BYTE* dictPtr = (const BYTE*)dict;
+ const BYTE* const dictEnd = dictPtr + dictSize;
+
+ RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small");
+ assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */
+ dictPtr += 8; /* skip header = magic + dictID */
+
+ ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable));
+ ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable));
+ ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE);
+ { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */
+ size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable);
+#ifdef HUF_FORCE_DECOMPRESS_X1
+ /* in minimal huffman, we always use X1 variants */
+ size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable,
+ dictPtr, dictEnd - dictPtr,
+ workspace, workspaceSize);
+#else
+ size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable,
+ dictPtr, (size_t)(dictEnd - dictPtr),
+ workspace, workspaceSize);
+#endif
+ RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, "");
+ dictPtr += hSize;
+ }
+
+ { short offcodeNCount[MaxOff+1];
+ unsigned offcodeMaxValue = MaxOff, offcodeLog;
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr));
+ RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, "");
+ RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, "");
+ ZSTD_buildFSETable( entropy->OFTable,
+ offcodeNCount, offcodeMaxValue,
+ OF_base, OF_bits,
+ offcodeLog,
+ entropy->workspace, sizeof(entropy->workspace),
+ /* bmi2 */0);
+ dictPtr += offcodeHeaderSize;
+ }
+
+ { short matchlengthNCount[MaxML+1];
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr));
+ RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, "");
+ RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, "");
+ ZSTD_buildFSETable( entropy->MLTable,
+ matchlengthNCount, matchlengthMaxValue,
+ ML_base, ML_bits,
+ matchlengthLog,
+ entropy->workspace, sizeof(entropy->workspace),
+ /* bmi2 */ 0);
+ dictPtr += matchlengthHeaderSize;
+ }
+
+ { short litlengthNCount[MaxLL+1];
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr));
+ RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, "");
+ RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, "");
+ RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, "");
+ ZSTD_buildFSETable( entropy->LLTable,
+ litlengthNCount, litlengthMaxValue,
+ LL_base, LL_bits,
+ litlengthLog,
+ entropy->workspace, sizeof(entropy->workspace),
+ /* bmi2 */ 0);
+ dictPtr += litlengthHeaderSize;
+ }
+
+ RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, "");
+ { int i;
+ size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
+ for (i=0; i<3; i++) {
+ U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
+ RETURN_ERROR_IF(rep==0 || rep > dictContentSize,
+ dictionary_corrupted, "");
+ entropy->rep[i] = rep;
+ } }
+
+ return (size_t)(dictPtr - (const BYTE*)dict);
+}
+
+static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
+ { U32 const magic = MEM_readLE32(dict);
+ if (magic != ZSTD_MAGIC_DICTIONARY) {
+ return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
+ } }
+ dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
+
+ /* load entropy tables */
+ { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize);
+ RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, "");
+ dict = (const char*)dict + eSize;
+ dictSize -= eSize;
+ }
+ dctx->litEntropy = dctx->fseEntropy = 1;
+
+ /* reference dictionary content */
+ return ZSTD_refDictContent(dctx, dict, dictSize);
+}
+
+size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
+{
+ assert(dctx != NULL);
+ dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */
+ dctx->stage = ZSTDds_getFrameHeaderSize;
+ dctx->processedCSize = 0;
+ dctx->decodedSize = 0;
+ dctx->previousDstEnd = NULL;
+ dctx->prefixStart = NULL;
+ dctx->virtualStart = NULL;
+ dctx->dictEnd = NULL;
+ dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
+ dctx->litEntropy = dctx->fseEntropy = 0;
+ dctx->dictID = 0;
+ dctx->bType = bt_reserved;
+ ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
+ ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
+ dctx->LLTptr = dctx->entropy.LLTable;
+ dctx->MLTptr = dctx->entropy.MLTable;
+ dctx->OFTptr = dctx->entropy.OFTable;
+ dctx->HUFptr = dctx->entropy.hufTable;
+ return 0;
+}
+
+size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , "");
+ if (dict && dictSize)
+ RETURN_ERROR_IF(
+ ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)),
+ dictionary_corrupted, "");
+ return 0;
+}
+
+
+/* ====== ZSTD_DDict ====== */
+
+size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict");
+ assert(dctx != NULL);
+ if (ddict) {
+ const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict);
+ size_t const dictSize = ZSTD_DDict_dictSize(ddict);
+ const void* const dictEnd = dictStart + dictSize;
+ dctx->ddictIsCold = (dctx->dictEnd != dictEnd);
+ DEBUGLOG(4, "DDict is %s",
+ dctx->ddictIsCold ? "~cold~" : "hot!");
+ }
+ FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , "");
+ if (ddict) { /* NULL ddict is equivalent to no dictionary */
+ ZSTD_copyDDictParameters(dctx, ddict);
+ }
+ return 0;
+}
+
+/*! ZSTD_getDictID_fromDict() :
+ * Provides the dictID stored within dictionary.
+ * if @return == 0, the dictionary is not conformant with Zstandard specification.
+ * It can still be loaded, but as a content-only dictionary. */
+unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
+{
+ if (dictSize < 8) return 0;
+ if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0;
+ return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
+}
+
+/*! ZSTD_getDictID_fromFrame() :
+ * Provides the dictID required to decompress frame stored within `src`.
+ * If @return == 0, the dictID could not be decoded.
+ * This could for one of the following reasons :
+ * - The frame does not require a dictionary (most common case).
+ * - The frame was built with dictID intentionally removed.
+ * Needed dictionary is a hidden information.
+ * Note : this use case also happens when using a non-conformant dictionary.
+ * - `srcSize` is too small, and as a result, frame header could not be decoded.
+ * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`.
+ * - This is not a Zstandard frame.
+ * When identifying the exact failure cause, it's possible to use
+ * ZSTD_getFrameHeader(), which will provide a more precise error code. */
+unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
+{
+ ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 };
+ size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize);
+ if (ZSTD_isError(hError)) return 0;
+ return zfp.dictID;
+}
+
+
+/*! ZSTD_decompress_usingDDict() :
+* Decompression using a pre-digested Dictionary
+* Use dictionary without significant overhead. */
+size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize,
+ const ZSTD_DDict* ddict)
+{
+ /* pass content and size in case legacy frames are encountered */
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize,
+ NULL, 0,
+ ddict);
+}
+
+
+/*=====================================
+* Streaming decompression
+*====================================*/
+
+ZSTD_DStream* ZSTD_createDStream(void)
+{
+ DEBUGLOG(3, "ZSTD_createDStream");
+ return ZSTD_createDStream_advanced(ZSTD_defaultCMem);
+}
+
+ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
+{
+ return ZSTD_initStaticDCtx(workspace, workspaceSize);
+}
+
+ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
+{
+ return ZSTD_createDCtx_advanced(customMem);
+}
+
+size_t ZSTD_freeDStream(ZSTD_DStream* zds)
+{
+ return ZSTD_freeDCtx(zds);
+}
+
+
+/* *** Initialization *** */
+
+size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; }
+size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; }
+
+size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx,
+ const void* dict, size_t dictSize,
+ ZSTD_dictLoadMethod_e dictLoadMethod,
+ ZSTD_dictContentType_e dictContentType)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
+ ZSTD_clearDict(dctx);
+ if (dict && dictSize != 0) {
+ dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem);
+ RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!");
+ dctx->ddict = dctx->ddictLocal;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ }
+ return 0;
+}
+
+size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
+}
+
+size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+ return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
+}
+
+size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
+{
+ FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), "");
+ dctx->dictUses = ZSTD_use_once;
+ return 0;
+}
+
+size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize)
+{
+ return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent);
+}
+
+
+/* ZSTD_initDStream_usingDict() :
+ * return : expected size, aka ZSTD_startingInputLength().
+ * this function cannot fail */
+size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
+{
+ DEBUGLOG(4, "ZSTD_initDStream_usingDict");
+ FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , "");
+ return ZSTD_startingInputLength(zds->format);
+}
+
+/* note : this variant can't fail */
+size_t ZSTD_initDStream(ZSTD_DStream* zds)
+{
+ DEBUGLOG(4, "ZSTD_initDStream");
+ return ZSTD_initDStream_usingDDict(zds, NULL);
+}
+
+/* ZSTD_initDStream_usingDDict() :
+ * ddict will just be referenced, and must outlive decompression session
+ * this function cannot fail */
+size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
+{
+ FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , "");
+ FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , "");
+ return ZSTD_startingInputLength(dctx->format);
+}
+
+/* ZSTD_resetDStream() :
+ * return : expected size, aka ZSTD_startingInputLength().
+ * this function cannot fail */
+size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
+{
+ FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), "");
+ return ZSTD_startingInputLength(dctx->format);
+}
+
+
+size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
+ ZSTD_clearDict(dctx);
+ if (ddict) {
+ dctx->ddict = ddict;
+ dctx->dictUses = ZSTD_use_indefinitely;
+ if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) {
+ if (dctx->ddictSet == NULL) {
+ dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem);
+ if (!dctx->ddictSet) {
+ RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!");
+ }
+ }
+ assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */
+ FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), "");
+ }
+ }
+ return 0;
+}
+
+/* ZSTD_DCtx_setMaxWindowSize() :
+ * note : no direct equivalence in ZSTD_DCtx_setParameter,
+ * since this version sets windowSize, and the other sets windowLog */
+size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize)
+{
+ ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax);
+ size_t const min = (size_t)1 << bounds.lowerBound;
+ size_t const max = (size_t)1 << bounds.upperBound;
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
+ RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, "");
+ RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, "");
+ dctx->maxWindowSize = maxWindowSize;
+ return 0;
+}
+
+size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format)
+{
+ return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format);
+}
+
+ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam)
+{
+ ZSTD_bounds bounds = { 0, 0, 0 };
+ switch(dParam) {
+ case ZSTD_d_windowLogMax:
+ bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN;
+ bounds.upperBound = ZSTD_WINDOWLOG_MAX;
+ return bounds;
+ case ZSTD_d_format:
+ bounds.lowerBound = (int)ZSTD_f_zstd1;
+ bounds.upperBound = (int)ZSTD_f_zstd1_magicless;
+ ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless);
+ return bounds;
+ case ZSTD_d_stableOutBuffer:
+ bounds.lowerBound = (int)ZSTD_bm_buffered;
+ bounds.upperBound = (int)ZSTD_bm_stable;
+ return bounds;
+ case ZSTD_d_forceIgnoreChecksum:
+ bounds.lowerBound = (int)ZSTD_d_validateChecksum;
+ bounds.upperBound = (int)ZSTD_d_ignoreChecksum;
+ return bounds;
+ case ZSTD_d_refMultipleDDicts:
+ bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict;
+ bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts;
+ return bounds;
+ default:;
+ }
+ bounds.error = ERROR(parameter_unsupported);
+ return bounds;
+}
+
+/* ZSTD_dParam_withinBounds:
+ * @return 1 if value is within dParam bounds,
+ * 0 otherwise */
+static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value)
+{
+ ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam);
+ if (ZSTD_isError(bounds.error)) return 0;
+ if (value < bounds.lowerBound) return 0;
+ if (value > bounds.upperBound) return 0;
+ return 1;
+}
+
+#define CHECK_DBOUNDS(p,v) { \
+ RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \
+}
+
+size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value)
+{
+ switch (param) {
+ case ZSTD_d_windowLogMax:
+ *value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize);
+ return 0;
+ case ZSTD_d_format:
+ *value = (int)dctx->format;
+ return 0;
+ case ZSTD_d_stableOutBuffer:
+ *value = (int)dctx->outBufferMode;
+ return 0;
+ case ZSTD_d_forceIgnoreChecksum:
+ *value = (int)dctx->forceIgnoreChecksum;
+ return 0;
+ case ZSTD_d_refMultipleDDicts:
+ *value = (int)dctx->refMultipleDDicts;
+ return 0;
+ default:;
+ }
+ RETURN_ERROR(parameter_unsupported, "");
+}
+
+size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value)
+{
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
+ switch(dParam) {
+ case ZSTD_d_windowLogMax:
+ if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT;
+ CHECK_DBOUNDS(ZSTD_d_windowLogMax, value);
+ dctx->maxWindowSize = ((size_t)1) << value;
+ return 0;
+ case ZSTD_d_format:
+ CHECK_DBOUNDS(ZSTD_d_format, value);
+ dctx->format = (ZSTD_format_e)value;
+ return 0;
+ case ZSTD_d_stableOutBuffer:
+ CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value);
+ dctx->outBufferMode = (ZSTD_bufferMode_e)value;
+ return 0;
+ case ZSTD_d_forceIgnoreChecksum:
+ CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value);
+ dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value;
+ return 0;
+ case ZSTD_d_refMultipleDDicts:
+ CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value);
+ if (dctx->staticSize != 0) {
+ RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!");
+ }
+ dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value;
+ return 0;
+ default:;
+ }
+ RETURN_ERROR(parameter_unsupported, "");
+}
+
+size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset)
+{
+ if ( (reset == ZSTD_reset_session_only)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ dctx->streamStage = zdss_init;
+ dctx->noForwardProgress = 0;
+ }
+ if ( (reset == ZSTD_reset_parameters)
+ || (reset == ZSTD_reset_session_and_parameters) ) {
+ RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, "");
+ ZSTD_clearDict(dctx);
+ ZSTD_DCtx_resetParameters(dctx);
+ }
+ return 0;
+}
+
+
+size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
+{
+ return ZSTD_sizeof_DCtx(dctx);
+}
+
+size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
+{
+ size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2);
+ unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
+ size_t const minRBSize = (size_t) neededSize;
+ RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
+ frameParameter_windowTooLarge, "");
+ return minRBSize;
+}
+
+size_t ZSTD_estimateDStreamSize(size_t windowSize)
+{
+ size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
+ size_t const inBuffSize = blockSize; /* no block can be larger */
+ size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN);
+ return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize;
+}
+
+size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize)
+{
+ U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */
+ ZSTD_frameHeader zfh;
+ size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize);
+ if (ZSTD_isError(err)) return err;
+ RETURN_ERROR_IF(err>0, srcSize_wrong, "");
+ RETURN_ERROR_IF(zfh.windowSize > windowSizeMax,
+ frameParameter_windowTooLarge, "");
+ return ZSTD_estimateDStreamSize((size_t)zfh.windowSize);
+}
+
+
+/* ***** Decompression ***** */
+
+static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize)
+{
+ return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR;
+}
+
+static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize)
+{
+ if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize))
+ zds->oversizedDuration++;
+ else
+ zds->oversizedDuration = 0;
+}
+
+static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds)
+{
+ return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION;
+}
+
+/* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */
+static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output)
+{
+ ZSTD_outBuffer const expect = zds->expectedOutBuffer;
+ /* No requirement when ZSTD_obm_stable is not enabled. */
+ if (zds->outBufferMode != ZSTD_bm_stable)
+ return 0;
+ /* Any buffer is allowed in zdss_init, this must be the same for every other call until
+ * the context is reset.
+ */
+ if (zds->streamStage == zdss_init)
+ return 0;
+ /* The buffer must match our expectation exactly. */
+ if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size)
+ return 0;
+ RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!");
+}
+
+/* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream()
+ * and updates the stage and the output buffer state. This call is extracted so it can be
+ * used both when reading directly from the ZSTD_inBuffer, and in buffered input mode.
+ * NOTE: You must break after calling this function since the streamStage is modified.
+ */
+static size_t ZSTD_decompressContinueStream(
+ ZSTD_DStream* zds, char** op, char* oend,
+ void const* src, size_t srcSize) {
+ int const isSkipFrame = ZSTD_isSkipFrame(zds);
+ if (zds->outBufferMode == ZSTD_bm_buffered) {
+ size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart;
+ size_t const decodedSize = ZSTD_decompressContinue(zds,
+ zds->outBuff + zds->outStart, dstSize, src, srcSize);
+ FORWARD_IF_ERROR(decodedSize, "");
+ if (!decodedSize && !isSkipFrame) {
+ zds->streamStage = zdss_read;
+ } else {
+ zds->outEnd = zds->outStart + decodedSize;
+ zds->streamStage = zdss_flush;
+ }
+ } else {
+ /* Write directly into the output buffer */
+ size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op);
+ size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize);
+ FORWARD_IF_ERROR(decodedSize, "");
+ *op += decodedSize;
+ /* Flushing is not needed. */
+ zds->streamStage = zdss_read;
+ assert(*op <= oend);
+ assert(zds->outBufferMode == ZSTD_bm_stable);
+ }
+ return 0;
+}
+
+size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+ const char* const src = (const char*)input->src;
+ const char* const istart = input->pos != 0 ? src + input->pos : src;
+ const char* const iend = input->size != 0 ? src + input->size : src;
+ const char* ip = istart;
+ char* const dst = (char*)output->dst;
+ char* const ostart = output->pos != 0 ? dst + output->pos : dst;
+ char* const oend = output->size != 0 ? dst + output->size : dst;
+ char* op = ostart;
+ U32 someMoreWork = 1;
+
+ DEBUGLOG(5, "ZSTD_decompressStream");
+ RETURN_ERROR_IF(
+ input->pos > input->size,
+ srcSize_wrong,
+ "forbidden. in: pos: %u vs size: %u",
+ (U32)input->pos, (U32)input->size);
+ RETURN_ERROR_IF(
+ output->pos > output->size,
+ dstSize_tooSmall,
+ "forbidden. out: pos: %u vs size: %u",
+ (U32)output->pos, (U32)output->size);
+ DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos));
+ FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), "");
+
+ while (someMoreWork) {
+ switch(zds->streamStage)
+ {
+ case zdss_init :
+ DEBUGLOG(5, "stage zdss_init => transparent reset ");
+ zds->streamStage = zdss_loadHeader;
+ zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
+ zds->legacyVersion = 0;
+ zds->hostageByte = 0;
+ zds->expectedOutBuffer = *output;
+ ZSTD_FALLTHROUGH;
+
+ case zdss_loadHeader :
+ DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
+ { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format);
+ if (zds->refMultipleDDicts && zds->ddictSet) {
+ ZSTD_DCtx_selectFrameDDict(zds);
+ }
+ DEBUGLOG(5, "header size : %u", (U32)hSize);
+ if (ZSTD_isError(hSize)) {
+ return hSize; /* error */
+ }
+ if (hSize != 0) { /* need more input */
+ size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
+ size_t const remainingInput = (size_t)(iend-ip);
+ assert(iend >= ip);
+ if (toLoad > remainingInput) { /* not enough input to load full header */
+ if (remainingInput > 0) {
+ ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput);
+ zds->lhSize += remainingInput;
+ }
+ input->pos = input->size;
+ return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
+ }
+ assert(ip != NULL);
+ ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
+ break;
+ } }
+
+ /* check for single-pass mode opportunity */
+ if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
+ && zds->fParams.frameType != ZSTD_skippableFrame
+ && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
+ size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart));
+ if (cSize <= (size_t)(iend-istart)) {
+ /* shortcut : using single-pass mode */
+ size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds));
+ if (ZSTD_isError(decompressedSize)) return decompressedSize;
+ DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
+ ip = istart + cSize;
+ op += decompressedSize;
+ zds->expected = 0;
+ zds->streamStage = zdss_init;
+ someMoreWork = 0;
+ break;
+ } }
+
+ /* Check output buffer is large enough for ZSTD_odm_stable. */
+ if (zds->outBufferMode == ZSTD_bm_stable
+ && zds->fParams.frameType != ZSTD_skippableFrame
+ && zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
+ && (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) {
+ RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small");
+ }
+
+ /* Consume header (see ZSTDds_decodeFrameHeader) */
+ DEBUGLOG(4, "Consume header");
+ FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), "");
+
+ if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
+ zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
+ zds->stage = ZSTDds_skipFrame;
+ } else {
+ FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), "");
+ zds->expected = ZSTD_blockHeaderSize;
+ zds->stage = ZSTDds_decodeBlockHeader;
+ }
+
+ /* control buffer memory usage */
+ DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)",
+ (U32)(zds->fParams.windowSize >>10),
+ (U32)(zds->maxWindowSize >> 10) );
+ zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
+ RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize,
+ frameParameter_windowTooLarge, "");
+
+ /* Adapt buffer sizes to frame header instructions */
+ { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
+ size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered
+ ? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize)
+ : 0;
+
+ ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize);
+
+ { int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize);
+ int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds);
+
+ if (tooSmall || tooLarge) {
+ size_t const bufferSize = neededInBuffSize + neededOutBuffSize;
+ DEBUGLOG(4, "inBuff : from %u to %u",
+ (U32)zds->inBuffSize, (U32)neededInBuffSize);
+ DEBUGLOG(4, "outBuff : from %u to %u",
+ (U32)zds->outBuffSize, (U32)neededOutBuffSize);
+ if (zds->staticSize) { /* static DCtx */
+ DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize);
+ assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */
+ RETURN_ERROR_IF(
+ bufferSize > zds->staticSize - sizeof(ZSTD_DCtx),
+ memory_allocation, "");
+ } else {
+ ZSTD_customFree(zds->inBuff, zds->customMem);
+ zds->inBuffSize = 0;
+ zds->outBuffSize = 0;
+ zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem);
+ RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, "");
+ }
+ zds->inBuffSize = neededInBuffSize;
+ zds->outBuff = zds->inBuff + zds->inBuffSize;
+ zds->outBuffSize = neededOutBuffSize;
+ } } }
+ zds->streamStage = zdss_read;
+ ZSTD_FALLTHROUGH;
+
+ case zdss_read:
+ DEBUGLOG(5, "stage zdss_read");
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip));
+ DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize);
+ if (neededInSize==0) { /* end of frame */
+ zds->streamStage = zdss_init;
+ someMoreWork = 0;
+ break;
+ }
+ if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
+ FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), "");
+ ip += neededInSize;
+ /* Function modifies the stage so we must break */
+ break;
+ } }
+ if (ip==iend) { someMoreWork = 0; break; } /* no more input */
+ zds->streamStage = zdss_load;
+ ZSTD_FALLTHROUGH;
+
+ case zdss_load:
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
+ size_t const toLoad = neededInSize - zds->inPos;
+ int const isSkipFrame = ZSTD_isSkipFrame(zds);
+ size_t loadedSize;
+ /* At this point we shouldn't be decompressing a block that we can stream. */
+ assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, iend - ip));
+ if (isSkipFrame) {
+ loadedSize = MIN(toLoad, (size_t)(iend-ip));
+ } else {
+ RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos,
+ corruption_detected,
+ "should never happen");
+ loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip));
+ }
+ ip += loadedSize;
+ zds->inPos += loadedSize;
+ if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
+
+ /* decode loaded input */
+ zds->inPos = 0; /* input is consumed */
+ FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), "");
+ /* Function modifies the stage so we must break */
+ break;
+ }
+ case zdss_flush:
+ { size_t const toFlushSize = zds->outEnd - zds->outStart;
+ size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize);
+ op += flushedSize;
+ zds->outStart += flushedSize;
+ if (flushedSize == toFlushSize) { /* flush completed */
+ zds->streamStage = zdss_read;
+ if ( (zds->outBuffSize < zds->fParams.frameContentSize)
+ && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
+ DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)",
+ (int)(zds->outBuffSize - zds->outStart),
+ (U32)zds->fParams.blockSizeMax);
+ zds->outStart = zds->outEnd = 0;
+ }
+ break;
+ } }
+ /* cannot complete flush */
+ someMoreWork = 0;
+ break;
+
+ default:
+ assert(0); /* impossible */
+ RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */
+ } }
+
+ /* result */
+ input->pos = (size_t)(ip - (const char*)(input->src));
+ output->pos = (size_t)(op - (char*)(output->dst));
+
+ /* Update the expected output buffer for ZSTD_obm_stable. */
+ zds->expectedOutBuffer = *output;
+
+ if ((ip==istart) && (op==ostart)) { /* no forward progress */
+ zds->noForwardProgress ++;
+ if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
+ RETURN_ERROR_IF(op==oend, dstSize_tooSmall, "");
+ RETURN_ERROR_IF(ip==iend, srcSize_wrong, "");
+ assert(0);
+ }
+ } else {
+ zds->noForwardProgress = 0;
+ }
+ { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds);
+ if (!nextSrcSizeHint) { /* frame fully decoded */
+ if (zds->outEnd == zds->outStart) { /* output fully flushed */
+ if (zds->hostageByte) {
+ if (input->pos >= input->size) {
+ /* can't release hostage (not present) */
+ zds->streamStage = zdss_read;
+ return 1;
+ }
+ input->pos++; /* release hostage */
+ } /* zds->hostageByte */
+ return 0;
+ } /* zds->outEnd == zds->outStart */
+ if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
+ input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
+ zds->hostageByte=1;
+ }
+ return 1;
+ } /* nextSrcSizeHint==0 */
+ nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */
+ assert(zds->inPos <= nextSrcSizeHint);
+ nextSrcSizeHint -= zds->inPos; /* part already loaded*/
+ return nextSrcSizeHint;
+ }
+}
+
+size_t ZSTD_decompressStream_simpleArgs (
+ ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity, size_t* dstPos,
+ const void* src, size_t srcSize, size_t* srcPos)
+{
+ ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
+ ZSTD_inBuffer input = { src, srcSize, *srcPos };
+ /* ZSTD_compress_generic() will check validity of dstPos and srcPos */
+ size_t const cErr = ZSTD_decompressStream(dctx, &output, &input);
+ *dstPos = output.pos;
+ *srcPos = input.pos;
+ return cErr;
+}
diff --git a/lib/zstd/decompress/zstd_decompress_block.c b/lib/zstd/decompress/zstd_decompress_block.c
new file mode 100644
index 000000000000..2d101d9a842e
--- /dev/null
+++ b/lib/zstd/decompress/zstd_decompress_block.c
@@ -0,0 +1,1540 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/* zstd_decompress_block :
+ * this module takes care of decompressing _compressed_ block */
+
+/*-*******************************************************
+* Dependencies
+*********************************************************/
+#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
+#include "../common/compiler.h" /* prefetch */
+#include "../common/cpu.h" /* bmi2 */
+#include "../common/mem.h" /* low level memory routines */
+#define FSE_STATIC_LINKING_ONLY
+#include "../common/fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "../common/huf.h"
+#include "../common/zstd_internal.h"
+#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
+#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
+#include "zstd_decompress_block.h"
+
+/*_*******************************************************
+* Macros
+**********************************************************/
+
+/* These two optional macros force the use one way or another of the two
+ * ZSTD_decompressSequences implementations. You can't force in both directions
+ * at the same time.
+ */
+#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
+#endif
+
+
+/*_*******************************************************
+* Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
+
+
+/*-*************************************************************
+ * Block decoding
+ ***************************************************************/
+
+/*! ZSTD_getcBlockSize() :
+ * Provides the size of compressed block from block header `src` */
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
+ blockProperties_t* bpPtr)
+{
+ RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
+
+ { U32 const cBlockHeader = MEM_readLE24(src);
+ U32 const cSize = cBlockHeader >> 3;
+ bpPtr->lastBlock = cBlockHeader & 1;
+ bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
+ bpPtr->origSize = cSize; /* only useful for RLE */
+ if (bpPtr->blockType == bt_rle) return 1;
+ RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
+ return cSize;
+ }
+}
+
+
+/* Hidden declaration for fullbench */
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize);
+/*! ZSTD_decodeLiteralsBlock() :
+ * @return : nb of bytes read from src (< srcSize )
+ * note : symbol not declared but exposed for fullbench */
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
+{
+ DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
+ RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
+
+ { const BYTE* const istart = (const BYTE*) src;
+ symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
+
+ switch(litEncType)
+ {
+ case set_repeat:
+ DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
+ RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
+ ZSTD_FALLTHROUGH;
+
+ case set_compressed:
+ RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
+ { size_t lhSize, litSize, litCSize;
+ U32 singleStream=0;
+ U32 const lhlCode = (istart[0] >> 2) & 3;
+ U32 const lhc = MEM_readLE32(istart);
+ size_t hufSuccess;
+ switch(lhlCode)
+ {
+ case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
+ /* 2 - 2 - 10 - 10 */
+ singleStream = !lhlCode;
+ lhSize = 3;
+ litSize = (lhc >> 4) & 0x3FF;
+ litCSize = (lhc >> 14) & 0x3FF;
+ break;
+ case 2:
+ /* 2 - 2 - 14 - 14 */
+ lhSize = 4;
+ litSize = (lhc >> 4) & 0x3FFF;
+ litCSize = lhc >> 18;
+ break;
+ case 3:
+ /* 2 - 2 - 18 - 18 */
+ lhSize = 5;
+ litSize = (lhc >> 4) & 0x3FFFF;
+ litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
+ break;
+ }
+ RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
+ RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
+
+ /* prefetch huffman table if cold */
+ if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
+ PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
+ }
+
+ if (litEncType==set_repeat) {
+ if (singleStream) {
+ hufSuccess = HUF_decompress1X_usingDTable_bmi2(
+ dctx->litBuffer, litSize, istart+lhSize, litCSize,
+ dctx->HUFptr, dctx->bmi2);
+ } else {
+ hufSuccess = HUF_decompress4X_usingDTable_bmi2(
+ dctx->litBuffer, litSize, istart+lhSize, litCSize,
+ dctx->HUFptr, dctx->bmi2);
+ }
+ } else {
+ if (singleStream) {
+#if defined(HUF_FORCE_DECOMPRESS_X2)
+ hufSuccess = HUF_decompress1X_DCtx_wksp(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace));
+#else
+ hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace), dctx->bmi2);
+#endif
+ } else {
+ hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
+ dctx->entropy.hufTable, dctx->litBuffer, litSize,
+ istart+lhSize, litCSize, dctx->workspace,
+ sizeof(dctx->workspace), dctx->bmi2);
+ }
+ }
+
+ RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
+
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ dctx->litEntropy = 1;
+ if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
+ ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return litCSize + lhSize;
+ }
+
+ case set_basic:
+ { size_t litSize, lhSize;
+ U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ switch(lhlCode)
+ {
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] >> 3;
+ break;
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
+ break;
+ case 3:
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
+ break;
+ }
+
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
+ RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
+ ZSTD_memcpy(dctx->litBuffer, istart+lhSize, litSize);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
+ return lhSize+litSize;
+ }
+ /* direct reference into compressed stream */
+ dctx->litPtr = istart+lhSize;
+ dctx->litSize = litSize;
+ return lhSize+litSize;
+ }
+
+ case set_rle:
+ { U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ size_t litSize, lhSize;
+ switch(lhlCode)
+ {
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] >> 3;
+ break;
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
+ break;
+ case 3:
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
+ RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
+ break;
+ }
+ RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
+ ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
+ dctx->litPtr = dctx->litBuffer;
+ dctx->litSize = litSize;
+ return lhSize+1;
+ }
+ default:
+ RETURN_ERROR(corruption_detected, "impossible");
+ }
+ }
+}
+
+/* Default FSE distribution tables.
+ * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
+ * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
+ * They were generated programmatically with following method :
+ * - start from default distributions, present in /lib/common/zstd_internal.h
+ * - generate tables normally, using ZSTD_buildFSETable()
+ * - printout the content of tables
+ * - pretify output, report below, test with fuzzer to ensure it's correct */
+
+/* Default FSE distribution table for Literal Lengths */
+static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 4, 0}, { 16, 0, 4, 0},
+ { 32, 0, 5, 1}, { 0, 0, 5, 3},
+ { 0, 0, 5, 4}, { 0, 0, 5, 6},
+ { 0, 0, 5, 7}, { 0, 0, 5, 9},
+ { 0, 0, 5, 10}, { 0, 0, 5, 12},
+ { 0, 0, 6, 14}, { 0, 1, 5, 16},
+ { 0, 1, 5, 20}, { 0, 1, 5, 22},
+ { 0, 2, 5, 28}, { 0, 3, 5, 32},
+ { 0, 4, 5, 48}, { 32, 6, 5, 64},
+ { 0, 7, 5, 128}, { 0, 8, 6, 256},
+ { 0, 10, 6, 1024}, { 0, 12, 6, 4096},
+ { 32, 0, 4, 0}, { 0, 0, 4, 1},
+ { 0, 0, 5, 2}, { 32, 0, 5, 4},
+ { 0, 0, 5, 5}, { 32, 0, 5, 7},
+ { 0, 0, 5, 8}, { 32, 0, 5, 10},
+ { 0, 0, 5, 11}, { 0, 0, 6, 13},
+ { 32, 1, 5, 16}, { 0, 1, 5, 18},
+ { 32, 1, 5, 22}, { 0, 2, 5, 24},
+ { 32, 3, 5, 32}, { 0, 3, 5, 40},
+ { 0, 6, 4, 64}, { 16, 6, 4, 64},
+ { 32, 7, 5, 128}, { 0, 9, 6, 512},
+ { 0, 11, 6, 2048}, { 48, 0, 4, 0},
+ { 16, 0, 4, 1}, { 32, 0, 5, 2},
+ { 32, 0, 5, 3}, { 32, 0, 5, 5},
+ { 32, 0, 5, 6}, { 32, 0, 5, 8},
+ { 32, 0, 5, 9}, { 32, 0, 5, 11},
+ { 32, 0, 5, 12}, { 0, 0, 6, 15},
+ { 32, 1, 5, 18}, { 32, 1, 5, 20},
+ { 32, 2, 5, 24}, { 32, 2, 5, 28},
+ { 32, 3, 5, 40}, { 32, 4, 5, 48},
+ { 0, 16, 6,65536}, { 0, 15, 6,32768},
+ { 0, 14, 6,16384}, { 0, 13, 6, 8192},
+}; /* LL_defaultDTable */
+
+/* Default FSE distribution table for Offset Codes */
+static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 5, 0}, { 0, 6, 4, 61},
+ { 0, 9, 5, 509}, { 0, 15, 5,32765},
+ { 0, 21, 5,2097149}, { 0, 3, 5, 5},
+ { 0, 7, 4, 125}, { 0, 12, 5, 4093},
+ { 0, 18, 5,262141}, { 0, 23, 5,8388605},
+ { 0, 5, 5, 29}, { 0, 8, 4, 253},
+ { 0, 14, 5,16381}, { 0, 20, 5,1048573},
+ { 0, 2, 5, 1}, { 16, 7, 4, 125},
+ { 0, 11, 5, 2045}, { 0, 17, 5,131069},
+ { 0, 22, 5,4194301}, { 0, 4, 5, 13},
+ { 16, 8, 4, 253}, { 0, 13, 5, 8189},
+ { 0, 19, 5,524285}, { 0, 1, 5, 1},
+ { 16, 6, 4, 61}, { 0, 10, 5, 1021},
+ { 0, 16, 5,65533}, { 0, 28, 5,268435453},
+ { 0, 27, 5,134217725}, { 0, 26, 5,67108861},
+ { 0, 25, 5,33554429}, { 0, 24, 5,16777213},
+}; /* OF_defaultDTable */
+
+
+/* Default FSE distribution table for Match Lengths */
+static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
+ { 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
+ /* nextState, nbAddBits, nbBits, baseVal */
+ { 0, 0, 6, 3}, { 0, 0, 4, 4},
+ { 32, 0, 5, 5}, { 0, 0, 5, 6},
+ { 0, 0, 5, 8}, { 0, 0, 5, 9},
+ { 0, 0, 5, 11}, { 0, 0, 6, 13},
+ { 0, 0, 6, 16}, { 0, 0, 6, 19},
+ { 0, 0, 6, 22}, { 0, 0, 6, 25},
+ { 0, 0, 6, 28}, { 0, 0, 6, 31},
+ { 0, 0, 6, 34}, { 0, 1, 6, 37},
+ { 0, 1, 6, 41}, { 0, 2, 6, 47},
+ { 0, 3, 6, 59}, { 0, 4, 6, 83},
+ { 0, 7, 6, 131}, { 0, 9, 6, 515},
+ { 16, 0, 4, 4}, { 0, 0, 4, 5},
+ { 32, 0, 5, 6}, { 0, 0, 5, 7},
+ { 32, 0, 5, 9}, { 0, 0, 5, 10},
+ { 0, 0, 6, 12}, { 0, 0, 6, 15},
+ { 0, 0, 6, 18}, { 0, 0, 6, 21},
+ { 0, 0, 6, 24}, { 0, 0, 6, 27},
+ { 0, 0, 6, 30}, { 0, 0, 6, 33},
+ { 0, 1, 6, 35}, { 0, 1, 6, 39},
+ { 0, 2, 6, 43}, { 0, 3, 6, 51},
+ { 0, 4, 6, 67}, { 0, 5, 6, 99},
+ { 0, 8, 6, 259}, { 32, 0, 4, 4},
+ { 48, 0, 4, 4}, { 16, 0, 4, 5},
+ { 32, 0, 5, 7}, { 32, 0, 5, 8},
+ { 32, 0, 5, 10}, { 32, 0, 5, 11},
+ { 0, 0, 6, 14}, { 0, 0, 6, 17},
+ { 0, 0, 6, 20}, { 0, 0, 6, 23},
+ { 0, 0, 6, 26}, { 0, 0, 6, 29},
+ { 0, 0, 6, 32}, { 0, 16, 6,65539},
+ { 0, 15, 6,32771}, { 0, 14, 6,16387},
+ { 0, 13, 6, 8195}, { 0, 12, 6, 4099},
+ { 0, 11, 6, 2051}, { 0, 10, 6, 1027},
+}; /* ML_defaultDTable */
+
+
+static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
+{
+ void* ptr = dt;
+ ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
+ ZSTD_seqSymbol* const cell = dt + 1;
+
+ DTableH->tableLog = 0;
+ DTableH->fastMode = 0;
+
+ cell->nbBits = 0;
+ cell->nextState = 0;
+ assert(nbAddBits < 255);
+ cell->nbAdditionalBits = (BYTE)nbAddBits;
+ cell->baseValue = baseValue;
+}
+
+
+/* ZSTD_buildFSETable() :
+ * generate FSE decoding table for one symbol (ll, ml or off)
+ * cannot fail if input is valid =>
+ * all inputs are presumed validated at this stage */
+FORCE_INLINE_TEMPLATE
+void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog, void* wksp, size_t wkspSize)
+{
+ ZSTD_seqSymbol* const tableDecode = dt+1;
+ U32 const maxSV1 = maxSymbolValue + 1;
+ U32 const tableSize = 1 << tableLog;
+
+ U16* symbolNext = (U16*)wksp;
+ BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
+ U32 highThreshold = tableSize - 1;
+
+
+ /* Sanity Checks */
+ assert(maxSymbolValue <= MaxSeq);
+ assert(tableLog <= MaxFSELog);
+ assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
+ (void)wkspSize;
+ /* Init, lay down lowprob symbols */
+ { ZSTD_seqSymbol_header DTableH;
+ DTableH.tableLog = tableLog;
+ DTableH.fastMode = 1;
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
+ U32 s;
+ for (s=0; s<maxSV1; s++) {
+ if (normalizedCounter[s]==-1) {
+ tableDecode[highThreshold--].baseValue = s;
+ symbolNext[s] = 1;
+ } else {
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+ assert(normalizedCounter[s]>=0);
+ symbolNext[s] = (U16)normalizedCounter[s];
+ } } }
+ ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
+ }
+
+ /* Spread symbols */
+ assert(tableSize <= 512);
+ /* Specialized symbol spreading for the case when there are
+ * no low probability (-1 count) symbols. When compressing
+ * small blocks we avoid low probability symbols to hit this
+ * case, since header decoding speed matters more.
+ */
+ if (highThreshold == tableSize - 1) {
+ size_t const tableMask = tableSize-1;
+ size_t const step = FSE_TABLESTEP(tableSize);
+ /* First lay down the symbols in order.
+ * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
+ * misses since small blocks generally have small table logs, so nearly
+ * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
+ * our buffer to handle the over-write.
+ */
+ {
+ U64 const add = 0x0101010101010101ull;
+ size_t pos = 0;
+ U64 sv = 0;
+ U32 s;
+ for (s=0; s<maxSV1; ++s, sv += add) {
+ int i;
+ int const n = normalizedCounter[s];
+ MEM_write64(spread + pos, sv);
+ for (i = 8; i < n; i += 8) {
+ MEM_write64(spread + pos + i, sv);
+ }
+ pos += n;
+ }
+ }
+ /* Now we spread those positions across the table.
+ * The benefit of doing it in two stages is that we avoid the the
+ * variable size inner loop, which caused lots of branch misses.
+ * Now we can run through all the positions without any branch misses.
+ * We unroll the loop twice, since that is what emperically worked best.
+ */
+ {
+ size_t position = 0;
+ size_t s;
+ size_t const unroll = 2;
+ assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
+ for (s = 0; s < (size_t)tableSize; s += unroll) {
+ size_t u;
+ for (u = 0; u < unroll; ++u) {
+ size_t const uPosition = (position + (u * step)) & tableMask;
+ tableDecode[uPosition].baseValue = spread[s + u];
+ }
+ position = (position + (unroll * step)) & tableMask;
+ }
+ assert(position == 0);
+ }
+ } else {
+ U32 const tableMask = tableSize-1;
+ U32 const step = FSE_TABLESTEP(tableSize);
+ U32 s, position = 0;
+ for (s=0; s<maxSV1; s++) {
+ int i;
+ int const n = normalizedCounter[s];
+ for (i=0; i<n; i++) {
+ tableDecode[position].baseValue = s;
+ position = (position + step) & tableMask;
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
+ } }
+ assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+ }
+
+ /* Build Decoding table */
+ {
+ U32 u;
+ for (u=0; u<tableSize; u++) {
+ U32 const symbol = tableDecode[u].baseValue;
+ U32 const nextState = symbolNext[symbol]++;
+ tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
+ tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+ assert(nbAdditionalBits[symbol] < 255);
+ tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
+ tableDecode[u].baseValue = baseValue[symbol];
+ }
+ }
+}
+
+/* Avoids the FORCE_INLINE of the _body() function. */
+static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog, void* wksp, size_t wkspSize)
+{
+ ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
+ baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
+}
+
+#if DYNAMIC_BMI2
+TARGET_ATTRIBUTE("bmi2") static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog, void* wksp, size_t wkspSize)
+{
+ ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
+ baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
+}
+#endif
+
+void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
+{
+#if DYNAMIC_BMI2
+ if (bmi2) {
+ ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
+ baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
+ return;
+ }
+#endif
+ (void)bmi2;
+ ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
+ baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
+}
+
+
+/*! ZSTD_buildSeqTable() :
+ * @return : nb bytes read from src,
+ * or an error code if it fails */
+static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
+ symbolEncodingType_e type, unsigned max, U32 maxLog,
+ const void* src, size_t srcSize,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
+ int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
+ int bmi2)
+{
+ switch(type)
+ {
+ case set_rle :
+ RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
+ RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
+ { U32 const symbol = *(const BYTE*)src;
+ U32 const baseline = baseValue[symbol];
+ U32 const nbBits = nbAdditionalBits[symbol];
+ ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
+ }
+ *DTablePtr = DTableSpace;
+ return 1;
+ case set_basic :
+ *DTablePtr = defaultTable;
+ return 0;
+ case set_repeat:
+ RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
+ /* prefetch FSE table if used */
+ if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
+ const void* const pStart = *DTablePtr;
+ size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
+ PREFETCH_AREA(pStart, pSize);
+ }
+ return 0;
+ case set_compressed :
+ { unsigned tableLog;
+ S16 norm[MaxSeq+1];
+ size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
+ RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
+ RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
+ ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
+ *DTablePtr = DTableSpace;
+ return headerSize;
+ }
+ default :
+ assert(0);
+ RETURN_ERROR(GENERIC, "impossible");
+ }
+}
+
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
+ const void* src, size_t srcSize)
+{
+ const BYTE* const istart = (const BYTE*)src;
+ const BYTE* const iend = istart + srcSize;
+ const BYTE* ip = istart;
+ int nbSeq;
+ DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
+
+ /* check */
+ RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
+
+ /* SeqHead */
+ nbSeq = *ip++;
+ if (!nbSeq) {
+ *nbSeqPtr=0;
+ RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
+ return 1;
+ }
+ if (nbSeq > 0x7F) {
+ if (nbSeq == 0xFF) {
+ RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
+ nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
+ ip+=2;
+ } else {
+ RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
+ nbSeq = ((nbSeq-0x80)<<8) + *ip++;
+ }
+ }
+ *nbSeqPtr = nbSeq;
+
+ /* FSE table descriptors */
+ RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
+ { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
+ symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
+ symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
+ ip++;
+
+ /* Build DTables */
+ { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
+ LLtype, MaxLL, LLFSELog,
+ ip, iend-ip,
+ LL_base, LL_bits,
+ LL_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq,
+ dctx->workspace, sizeof(dctx->workspace),
+ dctx->bmi2);
+ RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
+ ip += llhSize;
+ }
+
+ { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
+ OFtype, MaxOff, OffFSELog,
+ ip, iend-ip,
+ OF_base, OF_bits,
+ OF_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq,
+ dctx->workspace, sizeof(dctx->workspace),
+ dctx->bmi2);
+ RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
+ ip += ofhSize;
+ }
+
+ { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
+ MLtype, MaxML, MLFSELog,
+ ip, iend-ip,
+ ML_base, ML_bits,
+ ML_defaultDTable, dctx->fseEntropy,
+ dctx->ddictIsCold, nbSeq,
+ dctx->workspace, sizeof(dctx->workspace),
+ dctx->bmi2);
+ RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
+ ip += mlhSize;
+ }
+ }
+
+ return ip-istart;
+}
+
+
+typedef struct {
+ size_t litLength;
+ size_t matchLength;
+ size_t offset;
+ const BYTE* match;
+} seq_t;
+
+typedef struct {
+ size_t state;
+ const ZSTD_seqSymbol* table;
+} ZSTD_fseState;
+
+typedef struct {
+ BIT_DStream_t DStream;
+ ZSTD_fseState stateLL;
+ ZSTD_fseState stateOffb;
+ ZSTD_fseState stateML;
+ size_t prevOffset[ZSTD_REP_NUM];
+ const BYTE* prefixStart;
+ const BYTE* dictEnd;
+ size_t pos;
+} seqState_t;
+
+/*! ZSTD_overlapCopy8() :
+ * Copies 8 bytes from ip to op and updates op and ip where ip <= op.
+ * If the offset is < 8 then the offset is spread to at least 8 bytes.
+ *
+ * Precondition: *ip <= *op
+ * Postcondition: *op - *op >= 8
+ */
+HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
+ assert(*ip <= *op);
+ if (offset < 8) {
+ /* close range match, overlap */
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
+ int const sub2 = dec64table[offset];
+ (*op)[0] = (*ip)[0];
+ (*op)[1] = (*ip)[1];
+ (*op)[2] = (*ip)[2];
+ (*op)[3] = (*ip)[3];
+ *ip += dec32table[offset];
+ ZSTD_copy4(*op+4, *ip);
+ *ip -= sub2;
+ } else {
+ ZSTD_copy8(*op, *ip);
+ }
+ *ip += 8;
+ *op += 8;
+ assert(*op - *ip >= 8);
+}
+
+/*! ZSTD_safecopy() :
+ * Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
+ * and write up to 16 bytes past oend_w (op >= oend_w is allowed).
+ * This function is only called in the uncommon case where the sequence is near the end of the block. It
+ * should be fast for a single long sequence, but can be slow for several short sequences.
+ *
+ * @param ovtype controls the overlap detection
+ * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
+ * - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
+ * The src buffer must be before the dst buffer.
+ */
+static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
+ ptrdiff_t const diff = op - ip;
+ BYTE* const oend = op + length;
+
+ assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
+ (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
+
+ if (length < 8) {
+ /* Handle short lengths. */
+ while (op < oend) *op++ = *ip++;
+ return;
+ }
+ if (ovtype == ZSTD_overlap_src_before_dst) {
+ /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
+ assert(length >= 8);
+ ZSTD_overlapCopy8(&op, &ip, diff);
+ assert(op - ip >= 8);
+ assert(op <= oend);
+ }
+
+ if (oend <= oend_w) {
+ /* No risk of overwrite. */
+ ZSTD_wildcopy(op, ip, length, ovtype);
+ return;
+ }
+ if (op <= oend_w) {
+ /* Wildcopy until we get close to the end. */
+ assert(oend > oend_w);
+ ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
+ ip += oend_w - op;
+ op = oend_w;
+ }
+ /* Handle the leftovers. */
+ while (op < oend) *op++ = *ip++;
+}
+
+/* ZSTD_execSequenceEnd():
+ * This version handles cases that are near the end of the output buffer. It requires
+ * more careful checks to make sure there is no overflow. By separating out these hard
+ * and unlikely cases, we can speed up the common cases.
+ *
+ * NOTE: This function needs to be fast for a single long sequence, but doesn't need
+ * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
+ */
+FORCE_NOINLINE
+size_t ZSTD_execSequenceEnd(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
+
+ /* bounds checks : careful of address space overflow in 32-bit mode */
+ RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
+ RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
+ assert(op < op + sequenceLength);
+ assert(oLitEnd < op + sequenceLength);
+
+ /* copy literals */
+ ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
+ op = oLitEnd;
+ *litPtr = iLitEnd;
+
+ /* copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix */
+ RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
+ match = dictEnd - (prefixStart-match);
+ if (match + sequence.matchLength <= dictEnd) {
+ ZSTD_memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ ZSTD_memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ } }
+ ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
+ return sequenceLength;
+}
+
+HINT_INLINE
+size_t ZSTD_execSequence(BYTE* op,
+ BYTE* const oend, seq_t sequence,
+ const BYTE** litPtr, const BYTE* const litLimit,
+ const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
+{
+ BYTE* const oLitEnd = op + sequence.litLength;
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+ const BYTE* match = oLitEnd - sequence.offset;
+
+ assert(op != NULL /* Precondition */);
+ assert(oend_w < oend /* No underflow */);
+ /* Handle edge cases in a slow path:
+ * - Read beyond end of literals
+ * - Match end is within WILDCOPY_OVERLIMIT of oend
+ * - 32-bit mode and the match length overflows
+ */
+ if (UNLIKELY(
+ iLitEnd > litLimit ||
+ oMatchEnd > oend_w ||
+ (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
+ return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
+
+ /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
+ assert(op <= oLitEnd /* No overflow */);
+ assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
+ assert(oMatchEnd <= oend /* No underflow */);
+ assert(iLitEnd <= litLimit /* Literal length is in bounds */);
+ assert(oLitEnd <= oend_w /* Can wildcopy literals */);
+ assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
+
+ /* Copy Literals:
+ * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
+ * We likely don't need the full 32-byte wildcopy.
+ */
+ assert(WILDCOPY_OVERLENGTH >= 16);
+ ZSTD_copy16(op, (*litPtr));
+ if (UNLIKELY(sequence.litLength > 16)) {
+ ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
+ }
+ op = oLitEnd;
+ *litPtr = iLitEnd; /* update for next sequence */
+
+ /* Copy Match */
+ if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
+ /* offset beyond prefix -> go into extDict */
+ RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
+ match = dictEnd + (match - prefixStart);
+ if (match + sequence.matchLength <= dictEnd) {
+ ZSTD_memmove(oLitEnd, match, sequence.matchLength);
+ return sequenceLength;
+ }
+ /* span extDict & currentPrefixSegment */
+ { size_t const length1 = dictEnd - match;
+ ZSTD_memmove(oLitEnd, match, length1);
+ op = oLitEnd + length1;
+ sequence.matchLength -= length1;
+ match = prefixStart;
+ } }
+ /* Match within prefix of 1 or more bytes */
+ assert(op <= oMatchEnd);
+ assert(oMatchEnd <= oend_w);
+ assert(match >= prefixStart);
+ assert(sequence.matchLength >= 1);
+
+ /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
+ * without overlap checking.
+ */
+ if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
+ /* We bet on a full wildcopy for matches, since we expect matches to be
+ * longer than literals (in general). In silesia, ~10% of matches are longer
+ * than 16 bytes.
+ */
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
+ return sequenceLength;
+ }
+ assert(sequence.offset < WILDCOPY_VECLEN);
+
+ /* Copy 8 bytes and spread the offset to be >= 8. */
+ ZSTD_overlapCopy8(&op, &match, sequence.offset);
+
+ /* If the match length is > 8 bytes, then continue with the wildcopy. */
+ if (sequence.matchLength > 8) {
+ assert(op < oMatchEnd);
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
+ }
+ return sequenceLength;
+}
+
+static void
+ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
+{
+ const void* ptr = dt;
+ const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
+ DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
+ DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
+ (U32)DStatePtr->state, DTableH->tableLog);
+ BIT_reloadDStream(bitD);
+ DStatePtr->table = dt + 1;
+}
+
+FORCE_INLINE_TEMPLATE void
+ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
+{
+ ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.nextState + lowBits;
+}
+
+FORCE_INLINE_TEMPLATE void
+ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo)
+{
+ U32 const nbBits = DInfo.nbBits;
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
+ DStatePtr->state = DInfo.nextState + lowBits;
+}
+
+/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
+ * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
+ * bits before reloading. This value is the maximum number of bytes we read
+ * after reloading when we are decoding long offsets.
+ */
+#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
+ (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
+ ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
+ : 0)
+
+typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
+typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e;
+
+FORCE_INLINE_TEMPLATE seq_t
+ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch)
+{
+ seq_t seq;
+ ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state];
+ ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state];
+ ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state];
+ U32 const llBase = llDInfo.baseValue;
+ U32 const mlBase = mlDInfo.baseValue;
+ U32 const ofBase = ofDInfo.baseValue;
+ BYTE const llBits = llDInfo.nbAdditionalBits;
+ BYTE const mlBits = mlDInfo.nbAdditionalBits;
+ BYTE const ofBits = ofDInfo.nbAdditionalBits;
+ BYTE const totalBits = llBits+mlBits+ofBits;
+
+ /* sequence */
+ { size_t offset;
+ if (ofBits > 1) {
+ ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
+ ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
+ assert(ofBits <= MaxOff);
+ if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
+ U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
+ offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
+ BIT_reloadDStream(&seqState->DStream);
+ if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
+ assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
+ } else {
+ offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
+ }
+ seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ } else {
+ U32 const ll0 = (llBase == 0);
+ if (LIKELY((ofBits == 0))) {
+ if (LIKELY(!ll0))
+ offset = seqState->prevOffset[0];
+ else {
+ offset = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset;
+ }
+ } else {
+ offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
+ { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+ seqState->prevOffset[1] = seqState->prevOffset[0];
+ seqState->prevOffset[0] = offset = temp;
+ } } }
+ seq.offset = offset;
+ }
+
+ seq.matchLength = mlBase;
+ if (mlBits > 0)
+ seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
+
+ if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
+ BIT_reloadDStream(&seqState->DStream);
+ if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
+ BIT_reloadDStream(&seqState->DStream);
+ /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
+ ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
+
+ seq.litLength = llBase;
+ if (llBits > 0)
+ seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
+
+ if (MEM_32bits())
+ BIT_reloadDStream(&seqState->DStream);
+
+ DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
+ (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
+
+ if (prefetch == ZSTD_p_prefetch) {
+ size_t const pos = seqState->pos + seq.litLength;
+ const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
+ seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
+ * No consequence though : no memory access will occur, offset is only used for prefetching */
+ seqState->pos = pos + seq.matchLength;
+ }
+
+ /* ANS state update
+ * gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo().
+ * clang-9.2.0 does 7% worse with ZSTD_updateFseState().
+ * Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the
+ * better option, so it is the default for other compilers. But, if you
+ * measure that it is worse, please put up a pull request.
+ */
+ {
+#if !defined(__clang__)
+ const int kUseUpdateFseState = 1;
+#else
+ const int kUseUpdateFseState = 0;
+#endif
+ if (kUseUpdateFseState) {
+ ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
+ ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
+ } else {
+ ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo); /* <= 9 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo); /* <= 8 bits */
+ }
+ }
+
+ return seq;
+}
+
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
+{
+ size_t const windowSize = dctx->fParams.windowSize;
+ /* No dictionary used. */
+ if (dctx->dictContentEndForFuzzing == NULL) return 0;
+ /* Dictionary is our prefix. */
+ if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
+ /* Dictionary is not our ext-dict. */
+ if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
+ /* Dictionary is not within our window size. */
+ if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
+ /* Dictionary is active. */
+ return 1;
+}
+
+MEM_STATIC void ZSTD_assertValidSequence(
+ ZSTD_DCtx const* dctx,
+ BYTE const* op, BYTE const* oend,
+ seq_t const seq,
+ BYTE const* prefixStart, BYTE const* virtualStart)
+{
+#if DEBUGLEVEL >= 1
+ size_t const windowSize = dctx->fParams.windowSize;
+ size_t const sequenceSize = seq.litLength + seq.matchLength;
+ BYTE const* const oLitEnd = op + seq.litLength;
+ DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
+ (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
+ assert(op <= oend);
+ assert((size_t)(oend - op) >= sequenceSize);
+ assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
+ if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
+ size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
+ /* Offset must be within the dictionary. */
+ assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
+ assert(seq.offset <= windowSize + dictSize);
+ } else {
+ /* Offset must be within our window. */
+ assert(seq.offset <= windowSize);
+ }
+#else
+ (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
+#endif
+}
+#endif
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+FORCE_INLINE_TEMPLATE size_t
+DONT_VECTORIZE
+ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
+ const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+ DEBUGLOG(5, "ZSTD_decompressSequences_body");
+ (void)frame;
+
+ /* Regen sequences */
+ if (nbSeq) {
+ seqState_t seqState;
+ size_t error = 0;
+ dctx->fseEntropy = 1;
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
+ corruption_detected, "");
+ ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+ ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+ ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+ assert(dst != NULL);
+
+ ZSTD_STATIC_ASSERT(
+ BIT_DStream_unfinished < BIT_DStream_completed &&
+ BIT_DStream_endOfBuffer < BIT_DStream_completed &&
+ BIT_DStream_completed < BIT_DStream_overflow);
+
+#if defined(__x86_64__)
+ /* Align the decompression loop to 32 + 16 bytes.
+ *
+ * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
+ * speed swings based on the alignment of the decompression loop. This
+ * performance swing is caused by parts of the decompression loop falling
+ * out of the DSB. The entire decompression loop should fit in the DSB,
+ * when it can't we get much worse performance. You can measure if you've
+ * hit the good case or the bad case with this perf command for some
+ * compressed file test.zst:
+ *
+ * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
+ * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
+ *
+ * If you see most cycles served out of the MITE you've hit the bad case.
+ * If you see most cycles served out of the DSB you've hit the good case.
+ * If it is pretty even then you may be in an okay case.
+ *
+ * I've been able to reproduce this issue on the following CPUs:
+ * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
+ * Use Instruments->Counters to get DSB/MITE cycles.
+ * I never got performance swings, but I was able to
+ * go from the good case of mostly DSB to half of the
+ * cycles served from MITE.
+ * - Coffeelake: Intel i9-9900k
+ *
+ * I haven't been able to reproduce the instability or DSB misses on any
+ * of the following CPUS:
+ * - Haswell
+ * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
+ * - Skylake
+ *
+ * If you are seeing performance stability this script can help test.
+ * It tests on 4 commits in zstd where I saw performance change.
+ *
+ * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
+ */
+ __asm__(".p2align 5");
+ __asm__("nop");
+ __asm__(".p2align 4");
+#endif
+ for ( ; ; ) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch);
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+#endif
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ BIT_reloadDStream(&(seqState.DStream));
+ op += oneSeqSize;
+ /* gcc and clang both don't like early returns in this loop.
+ * Instead break and check for an error at the end of the loop.
+ */
+ if (UNLIKELY(ZSTD_isError(oneSeqSize))) {
+ error = oneSeqSize;
+ break;
+ }
+ if (UNLIKELY(!--nbSeq)) break;
+ }
+
+ /* check if reached exact end */
+ DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
+ if (ZSTD_isError(error)) return error;
+ RETURN_ERROR_IF(nbSeq, corruption_detected, "");
+ RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
+ if (op != NULL) {
+ ZSTD_memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+static size_t
+ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+FORCE_INLINE_TEMPLATE size_t
+ZSTD_decompressSequencesLong_body(
+ ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ const BYTE* ip = (const BYTE*)seqStart;
+ const BYTE* const iend = ip + seqSize;
+ BYTE* const ostart = (BYTE*)dst;
+ BYTE* const oend = ostart + maxDstSize;
+ BYTE* op = ostart;
+ const BYTE* litPtr = dctx->litPtr;
+ const BYTE* const litEnd = litPtr + dctx->litSize;
+ const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
+ const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+ (void)frame;
+
+ /* Regen sequences */
+ if (nbSeq) {
+#define STORED_SEQS 4
+#define STORED_SEQS_MASK (STORED_SEQS-1)
+#define ADVANCED_SEQS 4
+ seq_t sequences[STORED_SEQS];
+ int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
+ seqState_t seqState;
+ int seqNb;
+ dctx->fseEntropy = 1;
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
+ seqState.prefixStart = prefixStart;
+ seqState.pos = (size_t)(op-prefixStart);
+ seqState.dictEnd = dictEnd;
+ assert(dst != NULL);
+ assert(iend >= ip);
+ RETURN_ERROR_IF(
+ ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
+ corruption_detected, "");
+ ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+ ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+ ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+
+ /* prepare in advance */
+ for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
+ sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
+ PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ }
+ RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
+
+ /* decode and decompress */
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
+#endif
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
+ sequences[seqNb & STORED_SEQS_MASK] = sequence;
+ op += oneSeqSize;
+ }
+ RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
+
+ /* finish queue */
+ seqNb -= seqAdvance;
+ for ( ; seqNb<nbSeq ; seqNb++) {
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+ assert(!ZSTD_isError(oneSeqSize));
+ if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
+#endif
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ op += oneSeqSize;
+ }
+
+ /* save reps for next block */
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
+ }
+
+ /* last literal segment */
+ { size_t const lastLLSize = litEnd - litPtr;
+ RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
+ if (op != NULL) {
+ ZSTD_memcpy(op, litPtr, lastLLSize);
+ op += lastLLSize;
+ }
+ }
+
+ return op-ostart;
+}
+
+static size_t
+ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+
+
+#if DYNAMIC_BMI2
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+static TARGET_ATTRIBUTE("bmi2") size_t
+DONT_VECTORIZE
+ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+static TARGET_ATTRIBUTE("bmi2") size_t
+ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+#endif /* DYNAMIC_BMI2 */
+
+typedef size_t (*ZSTD_decompressSequences_t)(
+ ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame);
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+static size_t
+ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ DEBUGLOG(5, "ZSTD_decompressSequences");
+#if DYNAMIC_BMI2
+ if (dctx->bmi2) {
+ return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ }
+#endif
+ return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
+
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+/* ZSTD_decompressSequencesLong() :
+ * decompression function triggered when a minimum share of offsets is considered "long",
+ * aka out of cache.
+ * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
+ * This function will try to mitigate main memory latency through the use of prefetching */
+static size_t
+ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
+ void* dst, size_t maxDstSize,
+ const void* seqStart, size_t seqSize, int nbSeq,
+ const ZSTD_longOffset_e isLongOffset,
+ const int frame)
+{
+ DEBUGLOG(5, "ZSTD_decompressSequencesLong");
+#if DYNAMIC_BMI2
+ if (dctx->bmi2) {
+ return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ }
+#endif
+ return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+}
+#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
+
+
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+/* ZSTD_getLongOffsetsShare() :
+ * condition : offTable must be valid
+ * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
+ * compared to maximum possible of (1<<OffFSELog) */
+static unsigned
+ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
+{
+ const void* ptr = offTable;
+ U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
+ const ZSTD_seqSymbol* table = offTable + 1;
+ U32 const max = 1 << tableLog;
+ U32 u, total = 0;
+ DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
+
+ assert(max <= (1 << OffFSELog)); /* max not too large */
+ for (u=0; u<max; u++) {
+ if (table[u].nbAdditionalBits > 22) total += 1;
+ }
+
+ assert(tableLog <= OffFSELog);
+ total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
+
+ return total;
+}
+#endif
+
+size_t
+ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, const int frame)
+{ /* blockType == blockCompressed */
+ const BYTE* ip = (const BYTE*)src;
+ /* isLongOffset must be true if there are long offsets.
+ * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
+ * We don't expect that to be the case in 64-bit mode.
+ * In block mode, window size is not known, so we have to be conservative.
+ * (note: but it could be evaluated from current-lowLimit)
+ */
+ ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
+ DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
+
+ RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
+
+ /* Decode literals section */
+ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
+ DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
+ if (ZSTD_isError(litCSize)) return litCSize;
+ ip += litCSize;
+ srcSize -= litCSize;
+ }
+
+ /* Build Decoding Tables */
+ {
+ /* These macros control at build-time which decompressor implementation
+ * we use. If neither is defined, we do some inspection and dispatch at
+ * runtime.
+ */
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ int usePrefetchDecoder = dctx->ddictIsCold;
+#endif
+ int nbSeq;
+ size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
+ if (ZSTD_isError(seqHSize)) return seqHSize;
+ ip += seqHSize;
+ srcSize -= seqHSize;
+
+ RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ if ( !usePrefetchDecoder
+ && (!frame || (dctx->fParams.windowSize > (1<<24)))
+ && (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */
+ U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
+ U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
+ usePrefetchDecoder = (shareLongOffsets >= minShare);
+ }
+#endif
+
+ dctx->ddictIsCold = 0;
+
+#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
+ !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
+ if (usePrefetchDecoder)
+#endif
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
+ return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+#endif
+
+#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
+ /* else */
+ return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+#endif
+ }
+}
+
+
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
+{
+ if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */
+ dctx->dictEnd = dctx->previousDstEnd;
+ dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
+ dctx->prefixStart = dst;
+ dctx->previousDstEnd = dst;
+ }
+}
+
+
+size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize)
+{
+ size_t dSize;
+ ZSTD_checkContinuity(dctx, dst, dstCapacity);
+ dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
+ dctx->previousDstEnd = (char*)dst + dSize;
+ return dSize;
+}
diff --git a/lib/zstd/decompress/zstd_decompress_block.h b/lib/zstd/decompress/zstd_decompress_block.h
new file mode 100644
index 000000000000..e7f5f6689459
--- /dev/null
+++ b/lib/zstd/decompress/zstd_decompress_block.h
@@ -0,0 +1,62 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+#ifndef ZSTD_DEC_BLOCK_H
+#define ZSTD_DEC_BLOCK_H
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include "../common/zstd_deps.h" /* size_t */
+#include <linux/zstd.h> /* DCtx, and some public functions */
+#include "../common/zstd_internal.h" /* blockProperties_t, and some public functions */
+#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */
+
+
+/* === Prototypes === */
+
+/* note: prototypes already published within `zstd.h` :
+ * ZSTD_decompressBlock()
+ */
+
+/* note: prototypes already published within `zstd_internal.h` :
+ * ZSTD_getcBlockSize()
+ * ZSTD_decodeSeqHeaders()
+ */
+
+
+/* ZSTD_decompressBlock_internal() :
+ * decompress block, starting at `src`,
+ * into destination buffer `dst`.
+ * @return : decompressed block size,
+ * or an error code (which can be tested using ZSTD_isError())
+ */
+size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+ void* dst, size_t dstCapacity,
+ const void* src, size_t srcSize, const int frame);
+
+/* ZSTD_buildFSETable() :
+ * generate FSE decoding table for one symbol (ll, ml or off)
+ * this function must be called with valid parameters only
+ * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.)
+ * in which case it cannot fail.
+ * The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is
+ * defined in zstd_decompress_internal.h.
+ * Internal use only.
+ */
+void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
+ const short* normalizedCounter, unsigned maxSymbolValue,
+ const U32* baseValue, const U32* nbAdditionalBits,
+ unsigned tableLog, void* wksp, size_t wkspSize,
+ int bmi2);
+
+
+#endif /* ZSTD_DEC_BLOCK_H */
diff --git a/lib/zstd/decompress/zstd_decompress_internal.h b/lib/zstd/decompress/zstd_decompress_internal.h
new file mode 100644
index 000000000000..4b9052f68755
--- /dev/null
+++ b/lib/zstd/decompress/zstd_decompress_internal.h
@@ -0,0 +1,202 @@
+/*
+ * Copyright (c) Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+
+/* zstd_decompress_internal:
+ * objects and definitions shared within lib/decompress modules */
+
+ #ifndef ZSTD_DECOMPRESS_INTERNAL_H
+ #define ZSTD_DECOMPRESS_INTERNAL_H
+
+
+/*-*******************************************************
+ * Dependencies
+ *********************************************************/
+#include "../common/mem.h" /* BYTE, U16, U32 */
+#include "../common/zstd_internal.h" /* ZSTD_seqSymbol */
+
+
+
+/*-*******************************************************
+ * Constants
+ *********************************************************/
+static UNUSED_ATTR const U32 LL_base[MaxLL+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 18, 20, 22, 24, 28, 32, 40,
+ 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+ 0x2000, 0x4000, 0x8000, 0x10000 };
+
+static UNUSED_ATTR const U32 OF_base[MaxOff+1] = {
+ 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
+ 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
+ 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
+ 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
+
+static UNUSED_ATTR const U32 OF_bits[MaxOff+1] = {
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31 };
+
+static UNUSED_ATTR const U32 ML_base[MaxML+1] = {
+ 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32, 33, 34,
+ 35, 37, 39, 41, 43, 47, 51, 59,
+ 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
+ 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
+
+
+/*-*******************************************************
+ * Decompression types
+ *********************************************************/
+ typedef struct {
+ U32 fastMode;
+ U32 tableLog;
+ } ZSTD_seqSymbol_header;
+
+ typedef struct {
+ U16 nextState;
+ BYTE nbAdditionalBits;
+ BYTE nbBits;
+ U32 baseValue;
+ } ZSTD_seqSymbol;
+
+ #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
+
+#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64))
+#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32))
+
+typedef struct {
+ ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
+ ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
+ ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
+ HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
+ U32 rep[ZSTD_REP_NUM];
+ U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32];
+} ZSTD_entropyDTables_t;
+
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
+ ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
+ ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
+
+typedef enum { zdss_init=0, zdss_loadHeader,
+ zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
+
+typedef enum {
+ ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
+ ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
+ ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
+} ZSTD_dictUses_e;
+
+/* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */
+typedef struct {
+ const ZSTD_DDict** ddictPtrTable;
+ size_t ddictPtrTableSize;
+ size_t ddictPtrCount;
+} ZSTD_DDictHashSet;
+
+struct ZSTD_DCtx_s
+{
+ const ZSTD_seqSymbol* LLTptr;
+ const ZSTD_seqSymbol* MLTptr;
+ const ZSTD_seqSymbol* OFTptr;
+ const HUF_DTable* HUFptr;
+ ZSTD_entropyDTables_t entropy;
+ U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
+ const void* previousDstEnd; /* detect continuity */
+ const void* prefixStart; /* start of current segment */
+ const void* virtualStart; /* virtual start of previous segment if it was just before current one */
+ const void* dictEnd; /* end of previous segment */
+ size_t expected;
+ ZSTD_frameHeader fParams;
+ U64 processedCSize;
+ U64 decodedSize;
+ blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
+ ZSTD_dStage stage;
+ U32 litEntropy;
+ U32 fseEntropy;
+ struct xxh64_state xxhState;
+ size_t headerSize;
+ ZSTD_format_e format;
+ ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */
+ U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */
+ const BYTE* litPtr;
+ ZSTD_customMem customMem;
+ size_t litSize;
+ size_t rleSize;
+ size_t staticSize;
+ int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
+
+ /* dictionary */
+ ZSTD_DDict* ddictLocal;
+ const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
+ U32 dictID;
+ int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
+ ZSTD_dictUses_e dictUses;
+ ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
+ ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
+
+ /* streaming */
+ ZSTD_dStreamStage streamStage;
+ char* inBuff;
+ size_t inBuffSize;
+ size_t inPos;
+ size_t maxWindowSize;
+ char* outBuff;
+ size_t outBuffSize;
+ size_t outStart;
+ size_t outEnd;
+ size_t lhSize;
+ void* legacyContext;
+ U32 previousLegacyVersion;
+ U32 legacyVersion;
+ U32 hostageByte;
+ int noForwardProgress;
+ ZSTD_bufferMode_e outBufferMode;
+ ZSTD_outBuffer expectedOutBuffer;
+
+ /* workspace */
+ BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
+ BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
+
+ size_t oversizedDuration;
+
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ void const* dictContentBeginForFuzzing;
+ void const* dictContentEndForFuzzing;
+#endif
+
+ /* Tracing */
+}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
+
+
+/*-*******************************************************
+ * Shared internal functions
+ *********************************************************/
+
+/*! ZSTD_loadDEntropy() :
+ * dict : must point at beginning of a valid zstd dictionary.
+ * @return : size of dictionary header (size of magic number + dict ID + entropy tables) */
+size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
+ const void* const dict, size_t const dictSize);
+
+/*! ZSTD_checkContinuity() :
+ * check if next `dst` follows previous position, where decompression ended.
+ * If yes, do nothing (continue on current segment).
+ * If not, classify previous segment as "external dictionary", and start a new segment.
+ * This function cannot fail. */
+void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize);
+
+
+#endif /* ZSTD_DECOMPRESS_INTERNAL_H */
diff --git a/lib/zstd/decompress_sources.h b/lib/zstd/decompress_sources.h
new file mode 100644
index 000000000000..0fbec508f285
--- /dev/null
+++ b/lib/zstd/decompress_sources.h
@@ -0,0 +1,28 @@
+/* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+/*
+ * This file includes every .c file needed for decompression.
+ * It is used by lib/decompress_unzstd.c to include the decompression
+ * source into the translation-unit, so it can be used for kernel
+ * decompression.
+ */
+
+#include "common/debug.c"
+#include "common/entropy_common.c"
+#include "common/error_private.c"
+#include "common/fse_decompress.c"
+#include "common/zstd_common.c"
+#include "decompress/huf_decompress.c"
+#include "decompress/zstd_ddict.c"
+#include "decompress/zstd_decompress.c"
+#include "decompress/zstd_decompress_block.c"
+#include "zstd_decompress_module.c"
diff --git a/lib/zstd/entropy_common.c b/lib/zstd/entropy_common.c
deleted file mode 100644
index 2b0a643c32c4..000000000000
--- a/lib/zstd/entropy_common.c
+++ /dev/null
@@ -1,243 +0,0 @@
-/*
- * Common functions of New Generation Entropy library
- * Copyright (C) 2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-
-/* *************************************
-* Dependencies
-***************************************/
-#include "error_private.h" /* ERR_*, ERROR */
-#include "fse.h"
-#include "huf.h"
-#include "mem.h"
-
-/*=== Version ===*/
-unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
-
-/*=== Error Management ===*/
-unsigned FSE_isError(size_t code) { return ERR_isError(code); }
-
-unsigned HUF_isError(size_t code) { return ERR_isError(code); }
-
-/*-**************************************************************
-* FSE NCount encoding-decoding
-****************************************************************/
-size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSVPtr, unsigned *tableLogPtr, const void *headerBuffer, size_t hbSize)
-{
- const BYTE *const istart = (const BYTE *)headerBuffer;
- const BYTE *const iend = istart + hbSize;
- const BYTE *ip = istart;
- int nbBits;
- int remaining;
- int threshold;
- U32 bitStream;
- int bitCount;
- unsigned charnum = 0;
- int previous0 = 0;
-
- if (hbSize < 4)
- return ERROR(srcSize_wrong);
- bitStream = ZSTD_readLE32(ip);
- nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
- if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX)
- return ERROR(tableLog_tooLarge);
- bitStream >>= 4;
- bitCount = 4;
- *tableLogPtr = nbBits;
- remaining = (1 << nbBits) + 1;
- threshold = 1 << nbBits;
- nbBits++;
-
- while ((remaining > 1) & (charnum <= *maxSVPtr)) {
- if (previous0) {
- unsigned n0 = charnum;
- while ((bitStream & 0xFFFF) == 0xFFFF) {
- n0 += 24;
- if (ip < iend - 5) {
- ip += 2;
- bitStream = ZSTD_readLE32(ip) >> bitCount;
- } else {
- bitStream >>= 16;
- bitCount += 16;
- }
- }
- while ((bitStream & 3) == 3) {
- n0 += 3;
- bitStream >>= 2;
- bitCount += 2;
- }
- n0 += bitStream & 3;
- bitCount += 2;
- if (n0 > *maxSVPtr)
- return ERROR(maxSymbolValue_tooSmall);
- while (charnum < n0)
- normalizedCounter[charnum++] = 0;
- if ((ip <= iend - 7) || (ip + (bitCount >> 3) <= iend - 4)) {
- ip += bitCount >> 3;
- bitCount &= 7;
- bitStream = ZSTD_readLE32(ip) >> bitCount;
- } else {
- bitStream >>= 2;
- }
- }
- {
- int const max = (2 * threshold - 1) - remaining;
- int count;
-
- if ((bitStream & (threshold - 1)) < (U32)max) {
- count = bitStream & (threshold - 1);
- bitCount += nbBits - 1;
- } else {
- count = bitStream & (2 * threshold - 1);
- if (count >= threshold)
- count -= max;
- bitCount += nbBits;
- }
-
- count--; /* extra accuracy */
- remaining -= count < 0 ? -count : count; /* -1 means +1 */
- normalizedCounter[charnum++] = (short)count;
- previous0 = !count;
- while (remaining < threshold) {
- nbBits--;
- threshold >>= 1;
- }
-
- if ((ip <= iend - 7) || (ip + (bitCount >> 3) <= iend - 4)) {
- ip += bitCount >> 3;
- bitCount &= 7;
- } else {
- bitCount -= (int)(8 * (iend - 4 - ip));
- ip = iend - 4;
- }
- bitStream = ZSTD_readLE32(ip) >> (bitCount & 31);
- }
- } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
- if (remaining != 1)
- return ERROR(corruption_detected);
- if (bitCount > 32)
- return ERROR(corruption_detected);
- *maxSVPtr = charnum - 1;
-
- ip += (bitCount + 7) >> 3;
- return ip - istart;
-}
-
-/*! HUF_readStats() :
- Read compact Huffman tree, saved by HUF_writeCTable().
- `huffWeight` is destination buffer.
- `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
- @return : size read from `src` , or an error Code .
- Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
-*/
-size_t HUF_readStats_wksp(BYTE *huffWeight, size_t hwSize, U32 *rankStats, U32 *nbSymbolsPtr, U32 *tableLogPtr, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
-{
- U32 weightTotal;
- const BYTE *ip = (const BYTE *)src;
- size_t iSize;
- size_t oSize;
-
- if (!srcSize)
- return ERROR(srcSize_wrong);
- iSize = ip[0];
- /* memset(huffWeight, 0, hwSize); */ /* is not necessary, even though some analyzer complain ... */
-
- if (iSize >= 128) { /* special header */
- oSize = iSize - 127;
- iSize = ((oSize + 1) / 2);
- if (iSize + 1 > srcSize)
- return ERROR(srcSize_wrong);
- if (oSize >= hwSize)
- return ERROR(corruption_detected);
- ip += 1;
- {
- U32 n;
- for (n = 0; n < oSize; n += 2) {
- huffWeight[n] = ip[n / 2] >> 4;
- huffWeight[n + 1] = ip[n / 2] & 15;
- }
- }
- } else { /* header compressed with FSE (normal case) */
- if (iSize + 1 > srcSize)
- return ERROR(srcSize_wrong);
- oSize = FSE_decompress_wksp(huffWeight, hwSize - 1, ip + 1, iSize, 6, workspace, workspaceSize); /* max (hwSize-1) values decoded, as last one is implied */
- if (FSE_isError(oSize))
- return oSize;
- }
-
- /* collect weight stats */
- memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
- weightTotal = 0;
- {
- U32 n;
- for (n = 0; n < oSize; n++) {
- if (huffWeight[n] >= HUF_TABLELOG_MAX)
- return ERROR(corruption_detected);
- rankStats[huffWeight[n]]++;
- weightTotal += (1 << huffWeight[n]) >> 1;
- }
- }
- if (weightTotal == 0)
- return ERROR(corruption_detected);
-
- /* get last non-null symbol weight (implied, total must be 2^n) */
- {
- U32 const tableLog = BIT_highbit32(weightTotal) + 1;
- if (tableLog > HUF_TABLELOG_MAX)
- return ERROR(corruption_detected);
- *tableLogPtr = tableLog;
- /* determine last weight */
- {
- U32 const total = 1 << tableLog;
- U32 const rest = total - weightTotal;
- U32 const verif = 1 << BIT_highbit32(rest);
- U32 const lastWeight = BIT_highbit32(rest) + 1;
- if (verif != rest)
- return ERROR(corruption_detected); /* last value must be a clean power of 2 */
- huffWeight[oSize] = (BYTE)lastWeight;
- rankStats[lastWeight]++;
- }
- }
-
- /* check tree construction validity */
- if ((rankStats[1] < 2) || (rankStats[1] & 1))
- return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
-
- /* results */
- *nbSymbolsPtr = (U32)(oSize + 1);
- return iSize + 1;
-}
diff --git a/lib/zstd/error_private.h b/lib/zstd/error_private.h
deleted file mode 100644
index 1a60b31f706c..000000000000
--- a/lib/zstd/error_private.h
+++ /dev/null
@@ -1,53 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-/* Note : this module is expected to remain private, do not expose it */
-
-#ifndef ERROR_H_MODULE
-#define ERROR_H_MODULE
-
-/* ****************************************
-* Dependencies
-******************************************/
-#include <linux/types.h> /* size_t */
-#include <linux/zstd.h> /* enum list */
-
-/* ****************************************
-* Compiler-specific
-******************************************/
-#define ERR_STATIC static __attribute__((unused))
-
-/*-****************************************
-* Customization (error_public.h)
-******************************************/
-typedef ZSTD_ErrorCode ERR_enum;
-#define PREFIX(name) ZSTD_error_##name
-
-/*-****************************************
-* Error codes handling
-******************************************/
-#define ERROR(name) ((size_t)-PREFIX(name))
-
-ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
-
-ERR_STATIC ERR_enum ERR_getErrorCode(size_t code)
-{
- if (!ERR_isError(code))
- return (ERR_enum)0;
- return (ERR_enum)(0 - code);
-}
-
-#endif /* ERROR_H_MODULE */
diff --git a/lib/zstd/fse.h b/lib/zstd/fse.h
deleted file mode 100644
index 7460ab04b191..000000000000
--- a/lib/zstd/fse.h
+++ /dev/null
@@ -1,575 +0,0 @@
-/*
- * FSE : Finite State Entropy codec
- * Public Prototypes declaration
- * Copyright (C) 2013-2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-#ifndef FSE_H
-#define FSE_H
-
-/*-*****************************************
-* Dependencies
-******************************************/
-#include <linux/types.h> /* size_t, ptrdiff_t */
-
-/*-*****************************************
-* FSE_PUBLIC_API : control library symbols visibility
-******************************************/
-#define FSE_PUBLIC_API
-
-/*------ Version ------*/
-#define FSE_VERSION_MAJOR 0
-#define FSE_VERSION_MINOR 9
-#define FSE_VERSION_RELEASE 0
-
-#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
-#define FSE_QUOTE(str) #str
-#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
-#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
-
-#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR * 100 * 100 + FSE_VERSION_MINOR * 100 + FSE_VERSION_RELEASE)
-FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
-
-/*-*****************************************
-* Tool functions
-******************************************/
-FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
-
-/* Error Management */
-FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
-
-/*-*****************************************
-* FSE detailed API
-******************************************/
-/*!
-FSE_compress() does the following:
-1. count symbol occurrence from source[] into table count[]
-2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
-3. save normalized counters to memory buffer using writeNCount()
-4. build encoding table 'CTable' from normalized counters
-5. encode the data stream using encoding table 'CTable'
-
-FSE_decompress() does the following:
-1. read normalized counters with readNCount()
-2. build decoding table 'DTable' from normalized counters
-3. decode the data stream using decoding table 'DTable'
-
-The following API allows targeting specific sub-functions for advanced tasks.
-For example, it's possible to compress several blocks using the same 'CTable',
-or to save and provide normalized distribution using external method.
-*/
-
-/* *** COMPRESSION *** */
-/*! FSE_optimalTableLog():
- dynamically downsize 'tableLog' when conditions are met.
- It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
- @return : recommended tableLog (necessarily <= 'maxTableLog') */
-FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
-
-/*! FSE_normalizeCount():
- normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
- 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
- @return : tableLog,
- or an errorCode, which can be tested using FSE_isError() */
-FSE_PUBLIC_API size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t srcSize, unsigned maxSymbolValue);
-
-/*! FSE_NCountWriteBound():
- Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
- Typically useful for allocation purpose. */
-FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
-
-/*! FSE_writeNCount():
- Compactly save 'normalizedCounter' into 'buffer'.
- @return : size of the compressed table,
- or an errorCode, which can be tested using FSE_isError(). */
-FSE_PUBLIC_API size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
-
-/*! Constructor and Destructor of FSE_CTable.
- Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
-typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
-
-/*! FSE_compress_usingCTable():
- Compress `src` using `ct` into `dst` which must be already allocated.
- @return : size of compressed data (<= `dstCapacity`),
- or 0 if compressed data could not fit into `dst`,
- or an errorCode, which can be tested using FSE_isError() */
-FSE_PUBLIC_API size_t FSE_compress_usingCTable(void *dst, size_t dstCapacity, const void *src, size_t srcSize, const FSE_CTable *ct);
-
-/*!
-Tutorial :
-----------
-The first step is to count all symbols. FSE_count() does this job very fast.
-Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
-'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
-maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
-FSE_count() will return the number of occurrence of the most frequent symbol.
-This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
-If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
-
-The next step is to normalize the frequencies.
-FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
-It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
-You can use 'tableLog'==0 to mean "use default tableLog value".
-If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
-which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
-
-The result of FSE_normalizeCount() will be saved into a table,
-called 'normalizedCounter', which is a table of signed short.
-'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
-The return value is tableLog if everything proceeded as expected.
-It is 0 if there is a single symbol within distribution.
-If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
-
-'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
-'buffer' must be already allocated.
-For guaranteed success, buffer size must be at least FSE_headerBound().
-The result of the function is the number of bytes written into 'buffer'.
-If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
-
-'normalizedCounter' can then be used to create the compression table 'CTable'.
-The space required by 'CTable' must be already allocated, using FSE_createCTable().
-You can then use FSE_buildCTable() to fill 'CTable'.
-If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
-
-'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
-Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
-The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
-If it returns '0', compressed data could not fit into 'dst'.
-If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
-*/
-
-/* *** DECOMPRESSION *** */
-
-/*! FSE_readNCount():
- Read compactly saved 'normalizedCounter' from 'rBuffer'.
- @return : size read from 'rBuffer',
- or an errorCode, which can be tested using FSE_isError().
- maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
-FSE_PUBLIC_API size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSymbolValuePtr, unsigned *tableLogPtr, const void *rBuffer, size_t rBuffSize);
-
-/*! Constructor and Destructor of FSE_DTable.
- Note that its size depends on 'tableLog' */
-typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
-
-/*! FSE_buildDTable():
- Builds 'dt', which must be already allocated, using FSE_createDTable().
- return : 0, or an errorCode, which can be tested using FSE_isError() */
-FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable *dt, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize);
-
-/*! FSE_decompress_usingDTable():
- Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
- into `dst` which must be already allocated.
- @return : size of regenerated data (necessarily <= `dstCapacity`),
- or an errorCode, which can be tested using FSE_isError() */
-FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt);
-
-/*!
-Tutorial :
-----------
-(Note : these functions only decompress FSE-compressed blocks.
- If block is uncompressed, use memcpy() instead
- If block is a single repeated byte, use memset() instead )
-
-The first step is to obtain the normalized frequencies of symbols.
-This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
-'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
-In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
-or size the table to handle worst case situations (typically 256).
-FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
-The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
-Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
-If there is an error, the function will return an error code, which can be tested using FSE_isError().
-
-The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
-This is performed by the function FSE_buildDTable().
-The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
-If there is an error, the function will return an error code, which can be tested using FSE_isError().
-
-`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
-`cSrcSize` must be strictly correct, otherwise decompression will fail.
-FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
-If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
-*/
-
-/* *** Dependency *** */
-#include "bitstream.h"
-
-/* *****************************************
-* Static allocation
-*******************************************/
-/* FSE buffer bounds */
-#define FSE_NCOUNTBOUND 512
-#define FSE_BLOCKBOUND(size) (size + (size >> 7))
-#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
-
-/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
-#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1 << (maxTableLog - 1)) + ((maxSymbolValue + 1) * 2))
-#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1 << maxTableLog))
-
-/* *****************************************
-* FSE advanced API
-*******************************************/
-/* FSE_count_wksp() :
- * Same as FSE_count(), but using an externally provided scratch buffer.
- * `workSpace` size must be table of >= `1024` unsigned
- */
-size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace);
-
-/* FSE_countFast_wksp() :
- * Same as FSE_countFast(), but using an externally provided scratch buffer.
- * `workSpace` must be a table of minimum `1024` unsigned
- */
-size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize, unsigned *workSpace);
-
-/*! FSE_count_simple
- * Same as FSE_countFast(), but does not use any additional memory (not even on stack).
- * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
-*/
-size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize);
-
-unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
-/**< same as FSE_optimalTableLog(), which used `minus==2` */
-
-size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits);
-/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
-
-size_t FSE_buildCTable_rle(FSE_CTable *ct, unsigned char symbolValue);
-/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
-
-/* FSE_buildCTable_wksp() :
- * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
- * `wkspSize` must be >= `(1<<tableLog)`.
- */
-size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workSpace, size_t wkspSize);
-
-size_t FSE_buildDTable_raw(FSE_DTable *dt, unsigned nbBits);
-/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
-
-size_t FSE_buildDTable_rle(FSE_DTable *dt, unsigned char symbolValue);
-/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
-
-size_t FSE_decompress_wksp(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, unsigned maxLog, void *workspace, size_t workspaceSize);
-/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
-
-/* *****************************************
-* FSE symbol compression API
-*******************************************/
-/*!
- This API consists of small unitary functions, which highly benefit from being inlined.
- Hence their body are included in next section.
-*/
-typedef struct {
- ptrdiff_t value;
- const void *stateTable;
- const void *symbolTT;
- unsigned stateLog;
-} FSE_CState_t;
-
-static void FSE_initCState(FSE_CState_t *CStatePtr, const FSE_CTable *ct);
-
-static void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *CStatePtr, unsigned symbol);
-
-static void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *CStatePtr);
-
-/**<
-These functions are inner components of FSE_compress_usingCTable().
-They allow the creation of custom streams, mixing multiple tables and bit sources.
-
-A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
-So the first symbol you will encode is the last you will decode, like a LIFO stack.
-
-You will need a few variables to track your CStream. They are :
-
-FSE_CTable ct; // Provided by FSE_buildCTable()
-BIT_CStream_t bitStream; // bitStream tracking structure
-FSE_CState_t state; // State tracking structure (can have several)
-
-
-The first thing to do is to init bitStream and state.
- size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
- FSE_initCState(&state, ct);
-
-Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
-You can then encode your input data, byte after byte.
-FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
-Remember decoding will be done in reverse direction.
- FSE_encodeByte(&bitStream, &state, symbol);
-
-At any time, you can also add any bit sequence.
-Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
- BIT_addBits(&bitStream, bitField, nbBits);
-
-The above methods don't commit data to memory, they just store it into local register, for speed.
-Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
-Writing data to memory is a manual operation, performed by the flushBits function.
- BIT_flushBits(&bitStream);
-
-Your last FSE encoding operation shall be to flush your last state value(s).
- FSE_flushState(&bitStream, &state);
-
-Finally, you must close the bitStream.
-The function returns the size of CStream in bytes.
-If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
-If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
- size_t size = BIT_closeCStream(&bitStream);
-*/
-
-/* *****************************************
-* FSE symbol decompression API
-*******************************************/
-typedef struct {
- size_t state;
- const void *table; /* precise table may vary, depending on U16 */
-} FSE_DState_t;
-
-static void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt);
-
-static unsigned char FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
-
-static unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr);
-
-/**<
-Let's now decompose FSE_decompress_usingDTable() into its unitary components.
-You will decode FSE-encoded symbols from the bitStream,
-and also any other bitFields you put in, **in reverse order**.
-
-You will need a few variables to track your bitStream. They are :
-
-BIT_DStream_t DStream; // Stream context
-FSE_DState_t DState; // State context. Multiple ones are possible
-FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
-
-The first thing to do is to init the bitStream.
- errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
-
-You should then retrieve your initial state(s)
-(in reverse flushing order if you have several ones) :
- errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
-
-You can then decode your data, symbol after symbol.
-For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
-Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
- unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
-
-You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
-Note : maximum allowed nbBits is 25, for 32-bits compatibility
- size_t bitField = BIT_readBits(&DStream, nbBits);
-
-All above operations only read from local register (which size depends on size_t).
-Refueling the register from memory is manually performed by the reload method.
- endSignal = FSE_reloadDStream(&DStream);
-
-BIT_reloadDStream() result tells if there is still some more data to read from DStream.
-BIT_DStream_unfinished : there is still some data left into the DStream.
-BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
-BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
-BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
-
-When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
-to properly detect the exact end of stream.
-After each decoded symbol, check if DStream is fully consumed using this simple test :
- BIT_reloadDStream(&DStream) >= BIT_DStream_completed
-
-When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
-Checking if DStream has reached its end is performed by :
- BIT_endOfDStream(&DStream);
-Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
- FSE_endOfDState(&DState);
-*/
-
-/* *****************************************
-* FSE unsafe API
-*******************************************/
-static unsigned char FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
-/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
-
-/* *****************************************
-* Implementation of inlined functions
-*******************************************/
-typedef struct {
- int deltaFindState;
- U32 deltaNbBits;
-} FSE_symbolCompressionTransform; /* total 8 bytes */
-
-ZSTD_STATIC void FSE_initCState(FSE_CState_t *statePtr, const FSE_CTable *ct)
-{
- const void *ptr = ct;
- const U16 *u16ptr = (const U16 *)ptr;
- const U32 tableLog = ZSTD_read16(ptr);
- statePtr->value = (ptrdiff_t)1 << tableLog;
- statePtr->stateTable = u16ptr + 2;
- statePtr->symbolTT = ((const U32 *)ct + 1 + (tableLog ? (1 << (tableLog - 1)) : 1));
- statePtr->stateLog = tableLog;
-}
-
-/*! FSE_initCState2() :
-* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
-* uses the smallest state value possible, saving the cost of this symbol */
-ZSTD_STATIC void FSE_initCState2(FSE_CState_t *statePtr, const FSE_CTable *ct, U32 symbol)
-{
- FSE_initCState(statePtr, ct);
- {
- const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
- const U16 *stateTable = (const U16 *)(statePtr->stateTable);
- U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1 << 15)) >> 16);
- statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
- statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
- }
-}
-
-ZSTD_STATIC void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *statePtr, U32 symbol)
-{
- const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
- const U16 *const stateTable = (const U16 *)(statePtr->stateTable);
- U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
- BIT_addBits(bitC, statePtr->value, nbBitsOut);
- statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
-}
-
-ZSTD_STATIC void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *statePtr)
-{
- BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
- BIT_flushBits(bitC);
-}
-
-/* ====== Decompression ====== */
-
-typedef struct {
- U16 tableLog;
- U16 fastMode;
-} FSE_DTableHeader; /* sizeof U32 */
-
-typedef struct {
- unsigned short newState;
- unsigned char symbol;
- unsigned char nbBits;
-} FSE_decode_t; /* size == U32 */
-
-ZSTD_STATIC void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt)
-{
- const void *ptr = dt;
- const FSE_DTableHeader *const DTableH = (const FSE_DTableHeader *)ptr;
- DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
- BIT_reloadDStream(bitD);
- DStatePtr->table = dt + 1;
-}
-
-ZSTD_STATIC BYTE FSE_peekSymbol(const FSE_DState_t *DStatePtr)
-{
- FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
- return DInfo.symbol;
-}
-
-ZSTD_STATIC void FSE_updateState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
-{
- FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- size_t const lowBits = BIT_readBits(bitD, nbBits);
- DStatePtr->state = DInfo.newState + lowBits;
-}
-
-ZSTD_STATIC BYTE FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
-{
- FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- BYTE const symbol = DInfo.symbol;
- size_t const lowBits = BIT_readBits(bitD, nbBits);
-
- DStatePtr->state = DInfo.newState + lowBits;
- return symbol;
-}
-
-/*! FSE_decodeSymbolFast() :
- unsafe, only works if no symbol has a probability > 50% */
-ZSTD_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
-{
- FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- BYTE const symbol = DInfo.symbol;
- size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
-
- DStatePtr->state = DInfo.newState + lowBits;
- return symbol;
-}
-
-ZSTD_STATIC unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr) { return DStatePtr->state == 0; }
-
-/* **************************************************************
-* Tuning parameters
-****************************************************************/
-/*!MEMORY_USAGE :
-* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
-* Increasing memory usage improves compression ratio
-* Reduced memory usage can improve speed, due to cache effect
-* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
-#ifndef FSE_MAX_MEMORY_USAGE
-#define FSE_MAX_MEMORY_USAGE 14
-#endif
-#ifndef FSE_DEFAULT_MEMORY_USAGE
-#define FSE_DEFAULT_MEMORY_USAGE 13
-#endif
-
-/*!FSE_MAX_SYMBOL_VALUE :
-* Maximum symbol value authorized.
-* Required for proper stack allocation */
-#ifndef FSE_MAX_SYMBOL_VALUE
-#define FSE_MAX_SYMBOL_VALUE 255
-#endif
-
-/* **************************************************************
-* template functions type & suffix
-****************************************************************/
-#define FSE_FUNCTION_TYPE BYTE
-#define FSE_FUNCTION_EXTENSION
-#define FSE_DECODE_TYPE FSE_decode_t
-
-/* ***************************************************************
-* Constants
-*****************************************************************/
-#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE - 2)
-#define FSE_MAX_TABLESIZE (1U << FSE_MAX_TABLELOG)
-#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE - 1)
-#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE - 2)
-#define FSE_MIN_TABLELOG 5
-
-#define FSE_TABLELOG_ABSOLUTE_MAX 15
-#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
-#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
-#endif
-
-#define FSE_TABLESTEP(tableSize) ((tableSize >> 1) + (tableSize >> 3) + 3)
-
-#endif /* FSE_H */
diff --git a/lib/zstd/fse_compress.c b/lib/zstd/fse_compress.c
deleted file mode 100644
index ef3d1741d532..000000000000
--- a/lib/zstd/fse_compress.c
+++ /dev/null
@@ -1,795 +0,0 @@
-/*
- * FSE : Finite State Entropy encoder
- * Copyright (C) 2013-2015, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-
-/* **************************************************************
-* Compiler specifics
-****************************************************************/
-#define FORCE_INLINE static __always_inline
-
-/* **************************************************************
-* Includes
-****************************************************************/
-#include "bitstream.h"
-#include "fse.h"
-#include <linux/compiler.h>
-#include <linux/kernel.h>
-#include <linux/math64.h>
-#include <linux/string.h> /* memcpy, memset */
-
-/* **************************************************************
-* Error Management
-****************************************************************/
-#define FSE_STATIC_ASSERT(c) \
- { \
- enum { FSE_static_assert = 1 / (int)(!!(c)) }; \
- } /* use only *after* variable declarations */
-
-/* **************************************************************
-* Templates
-****************************************************************/
-/*
- designed to be included
- for type-specific functions (template emulation in C)
- Objective is to write these functions only once, for improved maintenance
-*/
-
-/* safety checks */
-#ifndef FSE_FUNCTION_EXTENSION
-#error "FSE_FUNCTION_EXTENSION must be defined"
-#endif
-#ifndef FSE_FUNCTION_TYPE
-#error "FSE_FUNCTION_TYPE must be defined"
-#endif
-
-/* Function names */
-#define FSE_CAT(X, Y) X##Y
-#define FSE_FUNCTION_NAME(X, Y) FSE_CAT(X, Y)
-#define FSE_TYPE_NAME(X, Y) FSE_CAT(X, Y)
-
-/* Function templates */
-
-/* FSE_buildCTable_wksp() :
- * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
- * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
- * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
- */
-size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize)
-{
- U32 const tableSize = 1 << tableLog;
- U32 const tableMask = tableSize - 1;
- void *const ptr = ct;
- U16 *const tableU16 = ((U16 *)ptr) + 2;
- void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableLog ? tableSize >> 1 : 1);
- FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT);
- U32 const step = FSE_TABLESTEP(tableSize);
- U32 highThreshold = tableSize - 1;
-
- U32 *cumul;
- FSE_FUNCTION_TYPE *tableSymbol;
- size_t spaceUsed32 = 0;
-
- cumul = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += FSE_MAX_SYMBOL_VALUE + 2;
- tableSymbol = (FSE_FUNCTION_TYPE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(sizeof(FSE_FUNCTION_TYPE) * ((size_t)1 << tableLog), sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- /* CTable header */
- tableU16[-2] = (U16)tableLog;
- tableU16[-1] = (U16)maxSymbolValue;
-
- /* For explanations on how to distribute symbol values over the table :
- * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
-
- /* symbol start positions */
- {
- U32 u;
- cumul[0] = 0;
- for (u = 1; u <= maxSymbolValue + 1; u++) {
- if (normalizedCounter[u - 1] == -1) { /* Low proba symbol */
- cumul[u] = cumul[u - 1] + 1;
- tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u - 1);
- } else {
- cumul[u] = cumul[u - 1] + normalizedCounter[u - 1];
- }
- }
- cumul[maxSymbolValue + 1] = tableSize + 1;
- }
-
- /* Spread symbols */
- {
- U32 position = 0;
- U32 symbol;
- for (symbol = 0; symbol <= maxSymbolValue; symbol++) {
- int nbOccurences;
- for (nbOccurences = 0; nbOccurences < normalizedCounter[symbol]; nbOccurences++) {
- tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
- position = (position + step) & tableMask;
- while (position > highThreshold)
- position = (position + step) & tableMask; /* Low proba area */
- }
- }
-
- if (position != 0)
- return ERROR(GENERIC); /* Must have gone through all positions */
- }
-
- /* Build table */
- {
- U32 u;
- for (u = 0; u < tableSize; u++) {
- FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
- tableU16[cumul[s]++] = (U16)(tableSize + u); /* TableU16 : sorted by symbol order; gives next state value */
- }
- }
-
- /* Build Symbol Transformation Table */
- {
- unsigned total = 0;
- unsigned s;
- for (s = 0; s <= maxSymbolValue; s++) {
- switch (normalizedCounter[s]) {
- case 0: break;
-
- case -1:
- case 1:
- symbolTT[s].deltaNbBits = (tableLog << 16) - (1 << tableLog);
- symbolTT[s].deltaFindState = total - 1;
- total++;
- break;
- default: {
- U32 const maxBitsOut = tableLog - BIT_highbit32(normalizedCounter[s] - 1);
- U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
- symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
- symbolTT[s].deltaFindState = total - normalizedCounter[s];
- total += normalizedCounter[s];
- }
- }
- }
- }
-
- return 0;
-}
-
-/*-**************************************************************
-* FSE NCount encoding-decoding
-****************************************************************/
-size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
-{
- size_t const maxHeaderSize = (((maxSymbolValue + 1) * tableLog) >> 3) + 3;
- return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
-}
-
-static size_t FSE_writeNCount_generic(void *header, size_t headerBufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
- unsigned writeIsSafe)
-{
- BYTE *const ostart = (BYTE *)header;
- BYTE *out = ostart;
- BYTE *const oend = ostart + headerBufferSize;
- int nbBits;
- const int tableSize = 1 << tableLog;
- int remaining;
- int threshold;
- U32 bitStream;
- int bitCount;
- unsigned charnum = 0;
- int previous0 = 0;
-
- bitStream = 0;
- bitCount = 0;
- /* Table Size */
- bitStream += (tableLog - FSE_MIN_TABLELOG) << bitCount;
- bitCount += 4;
-
- /* Init */
- remaining = tableSize + 1; /* +1 for extra accuracy */
- threshold = tableSize;
- nbBits = tableLog + 1;
-
- while (remaining > 1) { /* stops at 1 */
- if (previous0) {
- unsigned start = charnum;
- while (!normalizedCounter[charnum])
- charnum++;
- while (charnum >= start + 24) {
- start += 24;
- bitStream += 0xFFFFU << bitCount;
- if ((!writeIsSafe) && (out > oend - 2))
- return ERROR(dstSize_tooSmall); /* Buffer overflow */
- out[0] = (BYTE)bitStream;
- out[1] = (BYTE)(bitStream >> 8);
- out += 2;
- bitStream >>= 16;
- }
- while (charnum >= start + 3) {
- start += 3;
- bitStream += 3 << bitCount;
- bitCount += 2;
- }
- bitStream += (charnum - start) << bitCount;
- bitCount += 2;
- if (bitCount > 16) {
- if ((!writeIsSafe) && (out > oend - 2))
- return ERROR(dstSize_tooSmall); /* Buffer overflow */
- out[0] = (BYTE)bitStream;
- out[1] = (BYTE)(bitStream >> 8);
- out += 2;
- bitStream >>= 16;
- bitCount -= 16;
- }
- }
- {
- int count = normalizedCounter[charnum++];
- int const max = (2 * threshold - 1) - remaining;
- remaining -= count < 0 ? -count : count;
- count++; /* +1 for extra accuracy */
- if (count >= threshold)
- count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
- bitStream += count << bitCount;
- bitCount += nbBits;
- bitCount -= (count < max);
- previous0 = (count == 1);
- if (remaining < 1)
- return ERROR(GENERIC);
- while (remaining < threshold)
- nbBits--, threshold >>= 1;
- }
- if (bitCount > 16) {
- if ((!writeIsSafe) && (out > oend - 2))
- return ERROR(dstSize_tooSmall); /* Buffer overflow */
- out[0] = (BYTE)bitStream;
- out[1] = (BYTE)(bitStream >> 8);
- out += 2;
- bitStream >>= 16;
- bitCount -= 16;
- }
- }
-
- /* flush remaining bitStream */
- if ((!writeIsSafe) && (out > oend - 2))
- return ERROR(dstSize_tooSmall); /* Buffer overflow */
- out[0] = (BYTE)bitStream;
- out[1] = (BYTE)(bitStream >> 8);
- out += (bitCount + 7) / 8;
-
- if (charnum > maxSymbolValue + 1)
- return ERROR(GENERIC);
-
- return (out - ostart);
-}
-
-size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
-{
- if (tableLog > FSE_MAX_TABLELOG)
- return ERROR(tableLog_tooLarge); /* Unsupported */
- if (tableLog < FSE_MIN_TABLELOG)
- return ERROR(GENERIC); /* Unsupported */
-
- if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
- return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
-
- return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
-}
-
-/*-**************************************************************
-* Counting histogram
-****************************************************************/
-/*! FSE_count_simple
- This function counts byte values within `src`, and store the histogram into table `count`.
- It doesn't use any additional memory.
- But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
- For this reason, prefer using a table `count` with 256 elements.
- @return : count of most numerous element
-*/
-size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize)
-{
- const BYTE *ip = (const BYTE *)src;
- const BYTE *const end = ip + srcSize;
- unsigned maxSymbolValue = *maxSymbolValuePtr;
- unsigned max = 0;
-
- memset(count, 0, (maxSymbolValue + 1) * sizeof(*count));
- if (srcSize == 0) {
- *maxSymbolValuePtr = 0;
- return 0;
- }
-
- while (ip < end)
- count[*ip++]++;
-
- while (!count[maxSymbolValue])
- maxSymbolValue--;
- *maxSymbolValuePtr = maxSymbolValue;
-
- {
- U32 s;
- for (s = 0; s <= maxSymbolValue; s++)
- if (count[s] > max)
- max = count[s];
- }
-
- return (size_t)max;
-}
-
-/* FSE_count_parallel_wksp() :
- * Same as FSE_count_parallel(), but using an externally provided scratch buffer.
- * `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
-static size_t FSE_count_parallel_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned checkMax,
- unsigned *const workSpace)
-{
- const BYTE *ip = (const BYTE *)source;
- const BYTE *const iend = ip + sourceSize;
- unsigned maxSymbolValue = *maxSymbolValuePtr;
- unsigned max = 0;
- U32 *const Counting1 = workSpace;
- U32 *const Counting2 = Counting1 + 256;
- U32 *const Counting3 = Counting2 + 256;
- U32 *const Counting4 = Counting3 + 256;
-
- memset(Counting1, 0, 4 * 256 * sizeof(unsigned));
-
- /* safety checks */
- if (!sourceSize) {
- memset(count, 0, maxSymbolValue + 1);
- *maxSymbolValuePtr = 0;
- return 0;
- }
- if (!maxSymbolValue)
- maxSymbolValue = 255; /* 0 == default */
-
- /* by stripes of 16 bytes */
- {
- U32 cached = ZSTD_read32(ip);
- ip += 4;
- while (ip < iend - 15) {
- U32 c = cached;
- cached = ZSTD_read32(ip);
- ip += 4;
- Counting1[(BYTE)c]++;
- Counting2[(BYTE)(c >> 8)]++;
- Counting3[(BYTE)(c >> 16)]++;
- Counting4[c >> 24]++;
- c = cached;
- cached = ZSTD_read32(ip);
- ip += 4;
- Counting1[(BYTE)c]++;
- Counting2[(BYTE)(c >> 8)]++;
- Counting3[(BYTE)(c >> 16)]++;
- Counting4[c >> 24]++;
- c = cached;
- cached = ZSTD_read32(ip);
- ip += 4;
- Counting1[(BYTE)c]++;
- Counting2[(BYTE)(c >> 8)]++;
- Counting3[(BYTE)(c >> 16)]++;
- Counting4[c >> 24]++;
- c = cached;
- cached = ZSTD_read32(ip);
- ip += 4;
- Counting1[(BYTE)c]++;
- Counting2[(BYTE)(c >> 8)]++;
- Counting3[(BYTE)(c >> 16)]++;
- Counting4[c >> 24]++;
- }
- ip -= 4;
- }
-
- /* finish last symbols */
- while (ip < iend)
- Counting1[*ip++]++;
-
- if (checkMax) { /* verify stats will fit into destination table */
- U32 s;
- for (s = 255; s > maxSymbolValue; s--) {
- Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
- if (Counting1[s])
- return ERROR(maxSymbolValue_tooSmall);
- }
- }
-
- {
- U32 s;
- for (s = 0; s <= maxSymbolValue; s++) {
- count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
- if (count[s] > max)
- max = count[s];
- }
- }
-
- while (!count[maxSymbolValue])
- maxSymbolValue--;
- *maxSymbolValuePtr = maxSymbolValue;
- return (size_t)max;
-}
-
-/* FSE_countFast_wksp() :
- * Same as FSE_countFast(), but using an externally provided scratch buffer.
- * `workSpace` size must be table of >= `1024` unsigned */
-size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace)
-{
- if (sourceSize < 1500)
- return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
- return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
-}
-
-/* FSE_count_wksp() :
- * Same as FSE_count(), but using an externally provided scratch buffer.
- * `workSpace` size must be table of >= `1024` unsigned */
-size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace)
-{
- if (*maxSymbolValuePtr < 255)
- return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
- *maxSymbolValuePtr = 255;
- return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
-}
-
-/*-**************************************************************
-* FSE Compression Code
-****************************************************************/
-/*! FSE_sizeof_CTable() :
- FSE_CTable is a variable size structure which contains :
- `U16 tableLog;`
- `U16 maxSymbolValue;`
- `U16 nextStateNumber[1 << tableLog];` // This size is variable
- `FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
-Allocation is manual (C standard does not support variable-size structures).
-*/
-size_t FSE_sizeof_CTable(unsigned maxSymbolValue, unsigned tableLog)
-{
- if (tableLog > FSE_MAX_TABLELOG)
- return ERROR(tableLog_tooLarge);
- return FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue) * sizeof(U32);
-}
-
-/* provides the minimum logSize to safely represent a distribution */
-static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
-{
- U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
- U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
- U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
- return minBits;
-}
-
-unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
-{
- U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
- U32 tableLog = maxTableLog;
- U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
- if (tableLog == 0)
- tableLog = FSE_DEFAULT_TABLELOG;
- if (maxBitsSrc < tableLog)
- tableLog = maxBitsSrc; /* Accuracy can be reduced */
- if (minBits > tableLog)
- tableLog = minBits; /* Need a minimum to safely represent all symbol values */
- if (tableLog < FSE_MIN_TABLELOG)
- tableLog = FSE_MIN_TABLELOG;
- if (tableLog > FSE_MAX_TABLELOG)
- tableLog = FSE_MAX_TABLELOG;
- return tableLog;
-}
-
-unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
-{
- return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
-}
-
-/* Secondary normalization method.
- To be used when primary method fails. */
-
-static size_t FSE_normalizeM2(short *norm, U32 tableLog, const unsigned *count, size_t total, U32 maxSymbolValue)
-{
- short const NOT_YET_ASSIGNED = -2;
- U32 s;
- U32 distributed = 0;
- U32 ToDistribute;
-
- /* Init */
- U32 const lowThreshold = (U32)(total >> tableLog);
- U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
-
- for (s = 0; s <= maxSymbolValue; s++) {
- if (count[s] == 0) {
- norm[s] = 0;
- continue;
- }
- if (count[s] <= lowThreshold) {
- norm[s] = -1;
- distributed++;
- total -= count[s];
- continue;
- }
- if (count[s] <= lowOne) {
- norm[s] = 1;
- distributed++;
- total -= count[s];
- continue;
- }
-
- norm[s] = NOT_YET_ASSIGNED;
- }
- ToDistribute = (1 << tableLog) - distributed;
-
- if ((total / ToDistribute) > lowOne) {
- /* risk of rounding to zero */
- lowOne = (U32)((total * 3) / (ToDistribute * 2));
- for (s = 0; s <= maxSymbolValue; s++) {
- if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
- norm[s] = 1;
- distributed++;
- total -= count[s];
- continue;
- }
- }
- ToDistribute = (1 << tableLog) - distributed;
- }
-
- if (distributed == maxSymbolValue + 1) {
- /* all values are pretty poor;
- probably incompressible data (should have already been detected);
- find max, then give all remaining points to max */
- U32 maxV = 0, maxC = 0;
- for (s = 0; s <= maxSymbolValue; s++)
- if (count[s] > maxC)
- maxV = s, maxC = count[s];
- norm[maxV] += (short)ToDistribute;
- return 0;
- }
-
- if (total == 0) {
- /* all of the symbols were low enough for the lowOne or lowThreshold */
- for (s = 0; ToDistribute > 0; s = (s + 1) % (maxSymbolValue + 1))
- if (norm[s] > 0)
- ToDistribute--, norm[s]++;
- return 0;
- }
-
- {
- U64 const vStepLog = 62 - tableLog;
- U64 const mid = (1ULL << (vStepLog - 1)) - 1;
- U64 const rStep = div_u64((((U64)1 << vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
- U64 tmpTotal = mid;
- for (s = 0; s <= maxSymbolValue; s++) {
- if (norm[s] == NOT_YET_ASSIGNED) {
- U64 const end = tmpTotal + (count[s] * rStep);
- U32 const sStart = (U32)(tmpTotal >> vStepLog);
- U32 const sEnd = (U32)(end >> vStepLog);
- U32 const weight = sEnd - sStart;
- if (weight < 1)
- return ERROR(GENERIC);
- norm[s] = (short)weight;
- tmpTotal = end;
- }
- }
- }
-
- return 0;
-}
-
-size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t total, unsigned maxSymbolValue)
-{
- /* Sanity checks */
- if (tableLog == 0)
- tableLog = FSE_DEFAULT_TABLELOG;
- if (tableLog < FSE_MIN_TABLELOG)
- return ERROR(GENERIC); /* Unsupported size */
- if (tableLog > FSE_MAX_TABLELOG)
- return ERROR(tableLog_tooLarge); /* Unsupported size */
- if (tableLog < FSE_minTableLog(total, maxSymbolValue))
- return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
-
- {
- U32 const rtbTable[] = {0, 473195, 504333, 520860, 550000, 700000, 750000, 830000};
- U64 const scale = 62 - tableLog;
- U64 const step = div_u64((U64)1 << 62, (U32)total); /* <== here, one division ! */
- U64 const vStep = 1ULL << (scale - 20);
- int stillToDistribute = 1 << tableLog;
- unsigned s;
- unsigned largest = 0;
- short largestP = 0;
- U32 lowThreshold = (U32)(total >> tableLog);
-
- for (s = 0; s <= maxSymbolValue; s++) {
- if (count[s] == total)
- return 0; /* rle special case */
- if (count[s] == 0) {
- normalizedCounter[s] = 0;
- continue;
- }
- if (count[s] <= lowThreshold) {
- normalizedCounter[s] = -1;
- stillToDistribute--;
- } else {
- short proba = (short)((count[s] * step) >> scale);
- if (proba < 8) {
- U64 restToBeat = vStep * rtbTable[proba];
- proba += (count[s] * step) - ((U64)proba << scale) > restToBeat;
- }
- if (proba > largestP)
- largestP = proba, largest = s;
- normalizedCounter[s] = proba;
- stillToDistribute -= proba;
- }
- }
- if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
- /* corner case, need another normalization method */
- size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
- if (FSE_isError(errorCode))
- return errorCode;
- } else
- normalizedCounter[largest] += (short)stillToDistribute;
- }
-
- return tableLog;
-}
-
-/* fake FSE_CTable, for raw (uncompressed) input */
-size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits)
-{
- const unsigned tableSize = 1 << nbBits;
- const unsigned tableMask = tableSize - 1;
- const unsigned maxSymbolValue = tableMask;
- void *const ptr = ct;
- U16 *const tableU16 = ((U16 *)ptr) + 2;
- void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableSize >> 1); /* assumption : tableLog >= 1 */
- FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT);
- unsigned s;
-
- /* Sanity checks */
- if (nbBits < 1)
- return ERROR(GENERIC); /* min size */
-
- /* header */
- tableU16[-2] = (U16)nbBits;
- tableU16[-1] = (U16)maxSymbolValue;
-
- /* Build table */
- for (s = 0; s < tableSize; s++)
- tableU16[s] = (U16)(tableSize + s);
-
- /* Build Symbol Transformation Table */
- {
- const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
- for (s = 0; s <= maxSymbolValue; s++) {
- symbolTT[s].deltaNbBits = deltaNbBits;
- symbolTT[s].deltaFindState = s - 1;
- }
- }
-
- return 0;
-}
-
-/* fake FSE_CTable, for rle input (always same symbol) */
-size_t FSE_buildCTable_rle(FSE_CTable *ct, BYTE symbolValue)
-{
- void *ptr = ct;
- U16 *tableU16 = ((U16 *)ptr) + 2;
- void *FSCTptr = (U32 *)ptr + 2;
- FSE_symbolCompressionTransform *symbolTT = (FSE_symbolCompressionTransform *)FSCTptr;
-
- /* header */
- tableU16[-2] = (U16)0;
- tableU16[-1] = (U16)symbolValue;
-
- /* Build table */
- tableU16[0] = 0;
- tableU16[1] = 0; /* just in case */
-
- /* Build Symbol Transformation Table */
- symbolTT[symbolValue].deltaNbBits = 0;
- symbolTT[symbolValue].deltaFindState = 0;
-
- return 0;
-}
-
-static size_t FSE_compress_usingCTable_generic(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct, const unsigned fast)
-{
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *const iend = istart + srcSize;
- const BYTE *ip = iend;
-
- BIT_CStream_t bitC;
- FSE_CState_t CState1, CState2;
-
- /* init */
- if (srcSize <= 2)
- return 0;
- {
- size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
- if (FSE_isError(initError))
- return 0; /* not enough space available to write a bitstream */
- }
-
-#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
-
- if (srcSize & 1) {
- FSE_initCState2(&CState1, ct, *--ip);
- FSE_initCState2(&CState2, ct, *--ip);
- FSE_encodeSymbol(&bitC, &CState1, *--ip);
- FSE_FLUSHBITS(&bitC);
- } else {
- FSE_initCState2(&CState2, ct, *--ip);
- FSE_initCState2(&CState1, ct, *--ip);
- }
-
- /* join to mod 4 */
- srcSize -= 2;
- if ((sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) && (srcSize & 2)) { /* test bit 2 */
- FSE_encodeSymbol(&bitC, &CState2, *--ip);
- FSE_encodeSymbol(&bitC, &CState1, *--ip);
- FSE_FLUSHBITS(&bitC);
- }
-
- /* 2 or 4 encoding per loop */
- while (ip > istart) {
-
- FSE_encodeSymbol(&bitC, &CState2, *--ip);
-
- if (sizeof(bitC.bitContainer) * 8 < FSE_MAX_TABLELOG * 2 + 7) /* this test must be static */
- FSE_FLUSHBITS(&bitC);
-
- FSE_encodeSymbol(&bitC, &CState1, *--ip);
-
- if (sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) { /* this test must be static */
- FSE_encodeSymbol(&bitC, &CState2, *--ip);
- FSE_encodeSymbol(&bitC, &CState1, *--ip);
- }
-
- FSE_FLUSHBITS(&bitC);
- }
-
- FSE_flushCState(&bitC, &CState2);
- FSE_flushCState(&bitC, &CState1);
- return BIT_closeCStream(&bitC);
-}
-
-size_t FSE_compress_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct)
-{
- unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
-
- if (fast)
- return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
- else
- return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
-}
-
-size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
diff --git a/lib/zstd/fse_decompress.c b/lib/zstd/fse_decompress.c
deleted file mode 100644
index 0b353530fb3f..000000000000
--- a/lib/zstd/fse_decompress.c
+++ /dev/null
@@ -1,325 +0,0 @@
-/*
- * FSE : Finite State Entropy decoder
- * Copyright (C) 2013-2015, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-
-/* **************************************************************
-* Compiler specifics
-****************************************************************/
-#define FORCE_INLINE static __always_inline
-
-/* **************************************************************
-* Includes
-****************************************************************/
-#include "bitstream.h"
-#include "fse.h"
-#include "zstd_internal.h"
-#include <linux/compiler.h>
-#include <linux/kernel.h>
-#include <linux/string.h> /* memcpy, memset */
-
-/* **************************************************************
-* Error Management
-****************************************************************/
-#define FSE_isError ERR_isError
-#define FSE_STATIC_ASSERT(c) \
- { \
- enum { FSE_static_assert = 1 / (int)(!!(c)) }; \
- } /* use only *after* variable declarations */
-
-/* **************************************************************
-* Templates
-****************************************************************/
-/*
- designed to be included
- for type-specific functions (template emulation in C)
- Objective is to write these functions only once, for improved maintenance
-*/
-
-/* safety checks */
-#ifndef FSE_FUNCTION_EXTENSION
-#error "FSE_FUNCTION_EXTENSION must be defined"
-#endif
-#ifndef FSE_FUNCTION_TYPE
-#error "FSE_FUNCTION_TYPE must be defined"
-#endif
-
-/* Function names */
-#define FSE_CAT(X, Y) X##Y
-#define FSE_FUNCTION_NAME(X, Y) FSE_CAT(X, Y)
-#define FSE_TYPE_NAME(X, Y) FSE_CAT(X, Y)
-
-/* Function templates */
-
-size_t FSE_buildDTable_wksp(FSE_DTable *dt, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize)
-{
- void *const tdPtr = dt + 1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
- FSE_DECODE_TYPE *const tableDecode = (FSE_DECODE_TYPE *)(tdPtr);
- U16 *symbolNext = (U16 *)workspace;
-
- U32 const maxSV1 = maxSymbolValue + 1;
- U32 const tableSize = 1 << tableLog;
- U32 highThreshold = tableSize - 1;
-
- /* Sanity Checks */
- if (workspaceSize < sizeof(U16) * (FSE_MAX_SYMBOL_VALUE + 1))
- return ERROR(tableLog_tooLarge);
- if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE)
- return ERROR(maxSymbolValue_tooLarge);
- if (tableLog > FSE_MAX_TABLELOG)
- return ERROR(tableLog_tooLarge);
-
- /* Init, lay down lowprob symbols */
- {
- FSE_DTableHeader DTableH;
- DTableH.tableLog = (U16)tableLog;
- DTableH.fastMode = 1;
- {
- S16 const largeLimit = (S16)(1 << (tableLog - 1));
- U32 s;
- for (s = 0; s < maxSV1; s++) {
- if (normalizedCounter[s] == -1) {
- tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
- symbolNext[s] = 1;
- } else {
- if (normalizedCounter[s] >= largeLimit)
- DTableH.fastMode = 0;
- symbolNext[s] = normalizedCounter[s];
- }
- }
- }
- memcpy(dt, &DTableH, sizeof(DTableH));
- }
-
- /* Spread symbols */
- {
- U32 const tableMask = tableSize - 1;
- U32 const step = FSE_TABLESTEP(tableSize);
- U32 s, position = 0;
- for (s = 0; s < maxSV1; s++) {
- int i;
- for (i = 0; i < normalizedCounter[s]; i++) {
- tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
- position = (position + step) & tableMask;
- while (position > highThreshold)
- position = (position + step) & tableMask; /* lowprob area */
- }
- }
- if (position != 0)
- return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
- }
-
- /* Build Decoding table */
- {
- U32 u;
- for (u = 0; u < tableSize; u++) {
- FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
- U16 nextState = symbolNext[symbol]++;
- tableDecode[u].nbBits = (BYTE)(tableLog - BIT_highbit32((U32)nextState));
- tableDecode[u].newState = (U16)((nextState << tableDecode[u].nbBits) - tableSize);
- }
- }
-
- return 0;
-}
-
-/*-*******************************************************
-* Decompression (Byte symbols)
-*********************************************************/
-size_t FSE_buildDTable_rle(FSE_DTable *dt, BYTE symbolValue)
-{
- void *ptr = dt;
- FSE_DTableHeader *const DTableH = (FSE_DTableHeader *)ptr;
- void *dPtr = dt + 1;
- FSE_decode_t *const cell = (FSE_decode_t *)dPtr;
-
- DTableH->tableLog = 0;
- DTableH->fastMode = 0;
-
- cell->newState = 0;
- cell->symbol = symbolValue;
- cell->nbBits = 0;
-
- return 0;
-}
-
-size_t FSE_buildDTable_raw(FSE_DTable *dt, unsigned nbBits)
-{
- void *ptr = dt;
- FSE_DTableHeader *const DTableH = (FSE_DTableHeader *)ptr;
- void *dPtr = dt + 1;
- FSE_decode_t *const dinfo = (FSE_decode_t *)dPtr;
- const unsigned tableSize = 1 << nbBits;
- const unsigned tableMask = tableSize - 1;
- const unsigned maxSV1 = tableMask + 1;
- unsigned s;
-
- /* Sanity checks */
- if (nbBits < 1)
- return ERROR(GENERIC); /* min size */
-
- /* Build Decoding Table */
- DTableH->tableLog = (U16)nbBits;
- DTableH->fastMode = 1;
- for (s = 0; s < maxSV1; s++) {
- dinfo[s].newState = 0;
- dinfo[s].symbol = (BYTE)s;
- dinfo[s].nbBits = (BYTE)nbBits;
- }
-
- return 0;
-}
-
-FORCE_INLINE size_t FSE_decompress_usingDTable_generic(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt,
- const unsigned fast)
-{
- BYTE *const ostart = (BYTE *)dst;
- BYTE *op = ostart;
- BYTE *const omax = op + maxDstSize;
- BYTE *const olimit = omax - 3;
-
- BIT_DStream_t bitD;
- FSE_DState_t state1;
- FSE_DState_t state2;
-
- /* Init */
- CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
-
- FSE_initDState(&state1, &bitD, dt);
- FSE_initDState(&state2, &bitD, dt);
-
-#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
-
- /* 4 symbols per loop */
- for (; (BIT_reloadDStream(&bitD) == BIT_DStream_unfinished) & (op < olimit); op += 4) {
- op[0] = FSE_GETSYMBOL(&state1);
-
- if (FSE_MAX_TABLELOG * 2 + 7 > sizeof(bitD.bitContainer) * 8) /* This test must be static */
- BIT_reloadDStream(&bitD);
-
- op[1] = FSE_GETSYMBOL(&state2);
-
- if (FSE_MAX_TABLELOG * 4 + 7 > sizeof(bitD.bitContainer) * 8) /* This test must be static */
- {
- if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) {
- op += 2;
- break;
- }
- }
-
- op[2] = FSE_GETSYMBOL(&state1);
-
- if (FSE_MAX_TABLELOG * 2 + 7 > sizeof(bitD.bitContainer) * 8) /* This test must be static */
- BIT_reloadDStream(&bitD);
-
- op[3] = FSE_GETSYMBOL(&state2);
- }
-
- /* tail */
- /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
- while (1) {
- if (op > (omax - 2))
- return ERROR(dstSize_tooSmall);
- *op++ = FSE_GETSYMBOL(&state1);
- if (BIT_reloadDStream(&bitD) == BIT_DStream_overflow) {
- *op++ = FSE_GETSYMBOL(&state2);
- break;
- }
-
- if (op > (omax - 2))
- return ERROR(dstSize_tooSmall);
- *op++ = FSE_GETSYMBOL(&state2);
- if (BIT_reloadDStream(&bitD) == BIT_DStream_overflow) {
- *op++ = FSE_GETSYMBOL(&state1);
- break;
- }
- }
-
- return op - ostart;
-}
-
-size_t FSE_decompress_usingDTable(void *dst, size_t originalSize, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt)
-{
- const void *ptr = dt;
- const FSE_DTableHeader *DTableH = (const FSE_DTableHeader *)ptr;
- const U32 fastMode = DTableH->fastMode;
-
- /* select fast mode (static) */
- if (fastMode)
- return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
- return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
-}
-
-size_t FSE_decompress_wksp(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, unsigned maxLog, void *workspace, size_t workspaceSize)
-{
- const BYTE *const istart = (const BYTE *)cSrc;
- const BYTE *ip = istart;
- unsigned tableLog;
- unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
- size_t NCountLength;
-
- FSE_DTable *dt;
- short *counting;
- size_t spaceUsed32 = 0;
-
- FSE_STATIC_ASSERT(sizeof(FSE_DTable) == sizeof(U32));
-
- dt = (FSE_DTable *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += FSE_DTABLE_SIZE_U32(maxLog);
- counting = (short *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(sizeof(short) * (FSE_MAX_SYMBOL_VALUE + 1), sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- /* normal FSE decoding mode */
- NCountLength = FSE_readNCount(counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
- if (FSE_isError(NCountLength))
- return NCountLength;
- // if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining
- // case : NCountLength==cSrcSize */
- if (tableLog > maxLog)
- return ERROR(tableLog_tooLarge);
- ip += NCountLength;
- cSrcSize -= NCountLength;
-
- CHECK_F(FSE_buildDTable_wksp(dt, counting, maxSymbolValue, tableLog, workspace, workspaceSize));
-
- return FSE_decompress_usingDTable(dst, dstCapacity, ip, cSrcSize, dt); /* always return, even if it is an error code */
-}
diff --git a/lib/zstd/huf.h b/lib/zstd/huf.h
deleted file mode 100644
index 923218d12e28..000000000000
--- a/lib/zstd/huf.h
+++ /dev/null
@@ -1,212 +0,0 @@
-/*
- * Huffman coder, part of New Generation Entropy library
- * header file
- * Copyright (C) 2013-2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-#ifndef HUF_H_298734234
-#define HUF_H_298734234
-
-/* *** Dependencies *** */
-#include <linux/types.h> /* size_t */
-
-/* *** Tool functions *** */
-#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
-size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
-
-/* Error Management */
-unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
-
-/* *** Advanced function *** */
-
-/** HUF_compress4X_wksp() :
-* Same as HUF_compress2(), but uses externally allocated `workSpace`, which must be a table of >= 1024 unsigned */
-size_t HUF_compress4X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void *workSpace,
- size_t wkspSize); /**< `workSpace` must be a table of at least HUF_COMPRESS_WORKSPACE_SIZE_U32 unsigned */
-
-/* *** Dependencies *** */
-#include "mem.h" /* U32 */
-
-/* *** Constants *** */
-#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
-#define HUF_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
-#define HUF_SYMBOLVALUE_MAX 255
-
-#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
-#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
-#error "HUF_TABLELOG_MAX is too large !"
-#endif
-
-/* ****************************************
-* Static allocation
-******************************************/
-/* HUF buffer bounds */
-#define HUF_CTABLEBOUND 129
-#define HUF_BLOCKBOUND(size) (size + (size >> 8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
-#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
-
-/* static allocation of HUF's Compression Table */
-#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
- U32 name##hb[maxSymbolValue + 1]; \
- void *name##hv = &(name##hb); \
- HUF_CElt *name = (HUF_CElt *)(name##hv) /* no final ; */
-
-/* static allocation of HUF's DTable */
-typedef U32 HUF_DTable;
-#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1 << (maxTableLog)))
-#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = {((U32)((maxTableLog)-1) * 0x01000001)}
-#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = {((U32)(maxTableLog)*0x01000001)}
-
-/* The workspace must have alignment at least 4 and be at least this large */
-#define HUF_COMPRESS_WORKSPACE_SIZE (6 << 10)
-#define HUF_COMPRESS_WORKSPACE_SIZE_U32 (HUF_COMPRESS_WORKSPACE_SIZE / sizeof(U32))
-
-/* The workspace must have alignment at least 4 and be at least this large */
-#define HUF_DECOMPRESS_WORKSPACE_SIZE (3 << 10)
-#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
-
-/* ****************************************
-* Advanced decompression functions
-******************************************/
-size_t HUF_decompress4X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize); /**< decodes RLE and uncompressed */
-size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace,
- size_t workspaceSize); /**< considers RLE and uncompressed as errors */
-size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace,
- size_t workspaceSize); /**< single-symbol decoder */
-size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace,
- size_t workspaceSize); /**< double-symbols decoder */
-
-/* ****************************************
-* HUF detailed API
-******************************************/
-/*!
-HUF_compress() does the following:
-1. count symbol occurrence from source[] into table count[] using FSE_count()
-2. (optional) refine tableLog using HUF_optimalTableLog()
-3. build Huffman table from count using HUF_buildCTable()
-4. save Huffman table to memory buffer using HUF_writeCTable_wksp()
-5. encode the data stream using HUF_compress4X_usingCTable()
-
-The following API allows targeting specific sub-functions for advanced tasks.
-For example, it's possible to compress several blocks using the same 'CTable',
-or to save and regenerate 'CTable' using external methods.
-*/
-/* FSE_count() : find it within "fse.h" */
-unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
-typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
-size_t HUF_writeCTable_wksp(void *dst, size_t maxDstSize, const HUF_CElt *CTable, unsigned maxSymbolValue, unsigned huffLog, void *workspace, size_t workspaceSize);
-size_t HUF_compress4X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable);
-
-typedef enum {
- HUF_repeat_none, /**< Cannot use the previous table */
- HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1,
- 4}X_repeat */
- HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
-} HUF_repeat;
-/** HUF_compress4X_repeat() :
-* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
-* If it uses hufTable it does not modify hufTable or repeat.
-* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
-* If preferRepeat then the old table will always be used if valid. */
-size_t HUF_compress4X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void *workSpace,
- size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat,
- int preferRepeat); /**< `workSpace` must be a table of at least HUF_COMPRESS_WORKSPACE_SIZE_U32 unsigned */
-
-/** HUF_buildCTable_wksp() :
- * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
- * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
- */
-size_t HUF_buildCTable_wksp(HUF_CElt *tree, const U32 *count, U32 maxSymbolValue, U32 maxNbBits, void *workSpace, size_t wkspSize);
-
-/*! HUF_readStats() :
- Read compact Huffman tree, saved by HUF_writeCTable().
- `huffWeight` is destination buffer.
- @return : size read from `src` , or an error Code .
- Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
-size_t HUF_readStats_wksp(BYTE *huffWeight, size_t hwSize, U32 *rankStats, U32 *nbSymbolsPtr, U32 *tableLogPtr, const void *src, size_t srcSize,
- void *workspace, size_t workspaceSize);
-
-/** HUF_readCTable() :
-* Loading a CTable saved with HUF_writeCTable() */
-size_t HUF_readCTable_wksp(HUF_CElt *CTable, unsigned maxSymbolValue, const void *src, size_t srcSize, void *workspace, size_t workspaceSize);
-
-/*
-HUF_decompress() does the following:
-1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
-2. build Huffman table from save, using HUF_readDTableXn()
-3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
-*/
-
-/** HUF_selectDecoder() :
-* Tells which decoder is likely to decode faster,
-* based on a set of pre-determined metrics.
-* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
-* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
-U32 HUF_selectDecoder(size_t dstSize, size_t cSrcSize);
-
-size_t HUF_readDTableX2_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize);
-size_t HUF_readDTableX4_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize);
-
-size_t HUF_decompress4X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable);
-size_t HUF_decompress4X2_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable);
-size_t HUF_decompress4X4_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable);
-
-/* single stream variants */
-
-size_t HUF_compress1X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void *workSpace,
- size_t wkspSize); /**< `workSpace` must be a table of at least HUF_COMPRESS_WORKSPACE_SIZE_U32 unsigned */
-size_t HUF_compress1X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable);
-/** HUF_compress1X_repeat() :
-* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
-* If it uses hufTable it does not modify hufTable or repeat.
-* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
-* If preferRepeat then the old table will always be used if valid. */
-size_t HUF_compress1X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void *workSpace,
- size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat,
- int preferRepeat); /**< `workSpace` must be a table of at least HUF_COMPRESS_WORKSPACE_SIZE_U32 unsigned */
-
-size_t HUF_decompress1X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize);
-size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace,
- size_t workspaceSize); /**< single-symbol decoder */
-size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace,
- size_t workspaceSize); /**< double-symbols decoder */
-
-size_t HUF_decompress1X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize,
- const HUF_DTable *DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
-size_t HUF_decompress1X2_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable);
-size_t HUF_decompress1X4_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable);
-
-#endif /* HUF_H_298734234 */
diff --git a/lib/zstd/huf_compress.c b/lib/zstd/huf_compress.c
deleted file mode 100644
index fd32838c185f..000000000000
--- a/lib/zstd/huf_compress.c
+++ /dev/null
@@ -1,773 +0,0 @@
-/*
- * Huffman encoder, part of New Generation Entropy library
- * Copyright (C) 2013-2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-
-/* **************************************************************
-* Includes
-****************************************************************/
-#include "bitstream.h"
-#include "fse.h" /* header compression */
-#include "huf.h"
-#include <linux/kernel.h>
-#include <linux/string.h> /* memcpy, memset */
-
-/* **************************************************************
-* Error Management
-****************************************************************/
-#define HUF_STATIC_ASSERT(c) \
- { \
- enum { HUF_static_assert = 1 / (int)(!!(c)) }; \
- } /* use only *after* variable declarations */
-#define CHECK_V_F(e, f) \
- size_t const e = f; \
- if (ERR_isError(e)) \
- return f
-#define CHECK_F(f) \
- { \
- CHECK_V_F(_var_err__, f); \
- }
-
-/* **************************************************************
-* Utils
-****************************************************************/
-unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
-{
- return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
-}
-
-/* *******************************************************
-* HUF : Huffman block compression
-*********************************************************/
-/* HUF_compressWeights() :
- * Same as FSE_compress(), but dedicated to huff0's weights compression.
- * The use case needs much less stack memory.
- * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
- */
-#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
-size_t HUF_compressWeights_wksp(void *dst, size_t dstSize, const void *weightTable, size_t wtSize, void *workspace, size_t workspaceSize)
-{
- BYTE *const ostart = (BYTE *)dst;
- BYTE *op = ostart;
- BYTE *const oend = ostart + dstSize;
-
- U32 maxSymbolValue = HUF_TABLELOG_MAX;
- U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
-
- FSE_CTable *CTable;
- U32 *count;
- S16 *norm;
- size_t spaceUsed32 = 0;
-
- HUF_STATIC_ASSERT(sizeof(FSE_CTable) == sizeof(U32));
-
- CTable = (FSE_CTable *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX);
- count = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_MAX + 1;
- norm = (S16 *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(sizeof(S16) * (HUF_TABLELOG_MAX + 1), sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- /* init conditions */
- if (wtSize <= 1)
- return 0; /* Not compressible */
-
- /* Scan input and build symbol stats */
- {
- CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize));
- if (maxCount == wtSize)
- return 1; /* only a single symbol in src : rle */
- if (maxCount == 1)
- return 0; /* each symbol present maximum once => not compressible */
- }
-
- tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
- CHECK_F(FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue));
-
- /* Write table description header */
- {
- CHECK_V_F(hSize, FSE_writeNCount(op, oend - op, norm, maxSymbolValue, tableLog));
- op += hSize;
- }
-
- /* Compress */
- CHECK_F(FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, workspace, workspaceSize));
- {
- CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable));
- if (cSize == 0)
- return 0; /* not enough space for compressed data */
- op += cSize;
- }
-
- return op - ostart;
-}
-
-struct HUF_CElt_s {
- U16 val;
- BYTE nbBits;
-}; /* typedef'd to HUF_CElt within "huf.h" */
-
-/*! HUF_writeCTable_wksp() :
- `CTable` : Huffman tree to save, using huf representation.
- @return : size of saved CTable */
-size_t HUF_writeCTable_wksp(void *dst, size_t maxDstSize, const HUF_CElt *CTable, U32 maxSymbolValue, U32 huffLog, void *workspace, size_t workspaceSize)
-{
- BYTE *op = (BYTE *)dst;
- U32 n;
-
- BYTE *bitsToWeight;
- BYTE *huffWeight;
- size_t spaceUsed32 = 0;
-
- bitsToWeight = (BYTE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(HUF_TABLELOG_MAX + 1, sizeof(U32)) >> 2;
- huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX, sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- /* check conditions */
- if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
- return ERROR(maxSymbolValue_tooLarge);
-
- /* convert to weight */
- bitsToWeight[0] = 0;
- for (n = 1; n < huffLog + 1; n++)
- bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
- for (n = 0; n < maxSymbolValue; n++)
- huffWeight[n] = bitsToWeight[CTable[n].nbBits];
-
- /* attempt weights compression by FSE */
- {
- CHECK_V_F(hSize, HUF_compressWeights_wksp(op + 1, maxDstSize - 1, huffWeight, maxSymbolValue, workspace, workspaceSize));
- if ((hSize > 1) & (hSize < maxSymbolValue / 2)) { /* FSE compressed */
- op[0] = (BYTE)hSize;
- return hSize + 1;
- }
- }
-
- /* write raw values as 4-bits (max : 15) */
- if (maxSymbolValue > (256 - 128))
- return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
- if (((maxSymbolValue + 1) / 2) + 1 > maxDstSize)
- return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
- op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue - 1));
- huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
- for (n = 0; n < maxSymbolValue; n += 2)
- op[(n / 2) + 1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n + 1]);
- return ((maxSymbolValue + 1) / 2) + 1;
-}
-
-size_t HUF_readCTable_wksp(HUF_CElt *CTable, U32 maxSymbolValue, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
-{
- U32 *rankVal;
- BYTE *huffWeight;
- U32 tableLog = 0;
- U32 nbSymbols = 0;
- size_t readSize;
- size_t spaceUsed32 = 0;
-
- rankVal = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
- huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- /* get symbol weights */
- readSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize);
- if (ERR_isError(readSize))
- return readSize;
-
- /* check result */
- if (tableLog > HUF_TABLELOG_MAX)
- return ERROR(tableLog_tooLarge);
- if (nbSymbols > maxSymbolValue + 1)
- return ERROR(maxSymbolValue_tooSmall);
-
- /* Prepare base value per rank */
- {
- U32 n, nextRankStart = 0;
- for (n = 1; n <= tableLog; n++) {
- U32 curr = nextRankStart;
- nextRankStart += (rankVal[n] << (n - 1));
- rankVal[n] = curr;
- }
- }
-
- /* fill nbBits */
- {
- U32 n;
- for (n = 0; n < nbSymbols; n++) {
- const U32 w = huffWeight[n];
- CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
- }
- }
-
- /* fill val */
- {
- U16 nbPerRank[HUF_TABLELOG_MAX + 2] = {0}; /* support w=0=>n=tableLog+1 */
- U16 valPerRank[HUF_TABLELOG_MAX + 2] = {0};
- {
- U32 n;
- for (n = 0; n < nbSymbols; n++)
- nbPerRank[CTable[n].nbBits]++;
- }
- /* determine stating value per rank */
- valPerRank[tableLog + 1] = 0; /* for w==0 */
- {
- U16 min = 0;
- U32 n;
- for (n = tableLog; n > 0; n--) { /* start at n=tablelog <-> w=1 */
- valPerRank[n] = min; /* get starting value within each rank */
- min += nbPerRank[n];
- min >>= 1;
- }
- }
- /* assign value within rank, symbol order */
- {
- U32 n;
- for (n = 0; n <= maxSymbolValue; n++)
- CTable[n].val = valPerRank[CTable[n].nbBits]++;
- }
- }
-
- return readSize;
-}
-
-typedef struct nodeElt_s {
- U32 count;
- U16 parent;
- BYTE byte;
- BYTE nbBits;
-} nodeElt;
-
-static U32 HUF_setMaxHeight(nodeElt *huffNode, U32 lastNonNull, U32 maxNbBits)
-{
- const U32 largestBits = huffNode[lastNonNull].nbBits;
- if (largestBits <= maxNbBits)
- return largestBits; /* early exit : no elt > maxNbBits */
-
- /* there are several too large elements (at least >= 2) */
- {
- int totalCost = 0;
- const U32 baseCost = 1 << (largestBits - maxNbBits);
- U32 n = lastNonNull;
-
- while (huffNode[n].nbBits > maxNbBits) {
- totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
- huffNode[n].nbBits = (BYTE)maxNbBits;
- n--;
- } /* n stops at huffNode[n].nbBits <= maxNbBits */
- while (huffNode[n].nbBits == maxNbBits)
- n--; /* n end at index of smallest symbol using < maxNbBits */
-
- /* renorm totalCost */
- totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
-
- /* repay normalized cost */
- {
- U32 const noSymbol = 0xF0F0F0F0;
- U32 rankLast[HUF_TABLELOG_MAX + 2];
- int pos;
-
- /* Get pos of last (smallest) symbol per rank */
- memset(rankLast, 0xF0, sizeof(rankLast));
- {
- U32 currNbBits = maxNbBits;
- for (pos = n; pos >= 0; pos--) {
- if (huffNode[pos].nbBits >= currNbBits)
- continue;
- currNbBits = huffNode[pos].nbBits; /* < maxNbBits */
- rankLast[maxNbBits - currNbBits] = pos;
- }
- }
-
- while (totalCost > 0) {
- U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
- for (; nBitsToDecrease > 1; nBitsToDecrease--) {
- U32 highPos = rankLast[nBitsToDecrease];
- U32 lowPos = rankLast[nBitsToDecrease - 1];
- if (highPos == noSymbol)
- continue;
- if (lowPos == noSymbol)
- break;
- {
- U32 const highTotal = huffNode[highPos].count;
- U32 const lowTotal = 2 * huffNode[lowPos].count;
- if (highTotal <= lowTotal)
- break;
- }
- }
- /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
- /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
- while ((nBitsToDecrease <= HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
- nBitsToDecrease++;
- totalCost -= 1 << (nBitsToDecrease - 1);
- if (rankLast[nBitsToDecrease - 1] == noSymbol)
- rankLast[nBitsToDecrease - 1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
- huffNode[rankLast[nBitsToDecrease]].nbBits++;
- if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
- rankLast[nBitsToDecrease] = noSymbol;
- else {
- rankLast[nBitsToDecrease]--;
- if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits - nBitsToDecrease)
- rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
- }
- } /* while (totalCost > 0) */
-
- while (totalCost < 0) { /* Sometimes, cost correction overshoot */
- if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0
- (using maxNbBits) */
- while (huffNode[n].nbBits == maxNbBits)
- n--;
- huffNode[n + 1].nbBits--;
- rankLast[1] = n + 1;
- totalCost++;
- continue;
- }
- huffNode[rankLast[1] + 1].nbBits--;
- rankLast[1]++;
- totalCost++;
- }
- }
- } /* there are several too large elements (at least >= 2) */
-
- return maxNbBits;
-}
-
-typedef struct {
- U32 base;
- U32 curr;
-} rankPos;
-
-static void HUF_sort(nodeElt *huffNode, const U32 *count, U32 maxSymbolValue)
-{
- rankPos rank[32];
- U32 n;
-
- memset(rank, 0, sizeof(rank));
- for (n = 0; n <= maxSymbolValue; n++) {
- U32 r = BIT_highbit32(count[n] + 1);
- rank[r].base++;
- }
- for (n = 30; n > 0; n--)
- rank[n - 1].base += rank[n].base;
- for (n = 0; n < 32; n++)
- rank[n].curr = rank[n].base;
- for (n = 0; n <= maxSymbolValue; n++) {
- U32 const c = count[n];
- U32 const r = BIT_highbit32(c + 1) + 1;
- U32 pos = rank[r].curr++;
- while ((pos > rank[r].base) && (c > huffNode[pos - 1].count))
- huffNode[pos] = huffNode[pos - 1], pos--;
- huffNode[pos].count = c;
- huffNode[pos].byte = (BYTE)n;
- }
-}
-
-/** HUF_buildCTable_wksp() :
- * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
- * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
- */
-#define STARTNODE (HUF_SYMBOLVALUE_MAX + 1)
-typedef nodeElt huffNodeTable[2 * HUF_SYMBOLVALUE_MAX + 1 + 1];
-size_t HUF_buildCTable_wksp(HUF_CElt *tree, const U32 *count, U32 maxSymbolValue, U32 maxNbBits, void *workSpace, size_t wkspSize)
-{
- nodeElt *const huffNode0 = (nodeElt *)workSpace;
- nodeElt *const huffNode = huffNode0 + 1;
- U32 n, nonNullRank;
- int lowS, lowN;
- U16 nodeNb = STARTNODE;
- U32 nodeRoot;
-
- /* safety checks */
- if (wkspSize < sizeof(huffNodeTable))
- return ERROR(GENERIC); /* workSpace is not large enough */
- if (maxNbBits == 0)
- maxNbBits = HUF_TABLELOG_DEFAULT;
- if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
- return ERROR(GENERIC);
- memset(huffNode0, 0, sizeof(huffNodeTable));
-
- /* sort, decreasing order */
- HUF_sort(huffNode, count, maxSymbolValue);
-
- /* init for parents */
- nonNullRank = maxSymbolValue;
- while (huffNode[nonNullRank].count == 0)
- nonNullRank--;
- lowS = nonNullRank;
- nodeRoot = nodeNb + lowS - 1;
- lowN = nodeNb;
- huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS - 1].count;
- huffNode[lowS].parent = huffNode[lowS - 1].parent = nodeNb;
- nodeNb++;
- lowS -= 2;
- for (n = nodeNb; n <= nodeRoot; n++)
- huffNode[n].count = (U32)(1U << 30);
- huffNode0[0].count = (U32)(1U << 31); /* fake entry, strong barrier */
-
- /* create parents */
- while (nodeNb <= nodeRoot) {
- U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
- U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
- huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
- huffNode[n1].parent = huffNode[n2].parent = nodeNb;
- nodeNb++;
- }
-
- /* distribute weights (unlimited tree height) */
- huffNode[nodeRoot].nbBits = 0;
- for (n = nodeRoot - 1; n >= STARTNODE; n--)
- huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1;
- for (n = 0; n <= nonNullRank; n++)
- huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1;
-
- /* enforce maxTableLog */
- maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
-
- /* fill result into tree (val, nbBits) */
- {
- U16 nbPerRank[HUF_TABLELOG_MAX + 1] = {0};
- U16 valPerRank[HUF_TABLELOG_MAX + 1] = {0};
- if (maxNbBits > HUF_TABLELOG_MAX)
- return ERROR(GENERIC); /* check fit into table */
- for (n = 0; n <= nonNullRank; n++)
- nbPerRank[huffNode[n].nbBits]++;
- /* determine stating value per rank */
- {
- U16 min = 0;
- for (n = maxNbBits; n > 0; n--) {
- valPerRank[n] = min; /* get starting value within each rank */
- min += nbPerRank[n];
- min >>= 1;
- }
- }
- for (n = 0; n <= maxSymbolValue; n++)
- tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
- for (n = 0; n <= maxSymbolValue; n++)
- tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
- }
-
- return maxNbBits;
-}
-
-static size_t HUF_estimateCompressedSize(HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue)
-{
- size_t nbBits = 0;
- int s;
- for (s = 0; s <= (int)maxSymbolValue; ++s) {
- nbBits += CTable[s].nbBits * count[s];
- }
- return nbBits >> 3;
-}
-
-static int HUF_validateCTable(const HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue)
-{
- int bad = 0;
- int s;
- for (s = 0; s <= (int)maxSymbolValue; ++s) {
- bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
- }
- return !bad;
-}
-
-static void HUF_encodeSymbol(BIT_CStream_t *bitCPtr, U32 symbol, const HUF_CElt *CTable)
-{
- BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
-}
-
-size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
-
-#define HUF_FLUSHBITS(s) BIT_flushBits(s)
-
-#define HUF_FLUSHBITS_1(stream) \
- if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 2 + 7) \
- HUF_FLUSHBITS(stream)
-
-#define HUF_FLUSHBITS_2(stream) \
- if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 4 + 7) \
- HUF_FLUSHBITS(stream)
-
-size_t HUF_compress1X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable)
-{
- const BYTE *ip = (const BYTE *)src;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- BYTE *op = ostart;
- size_t n;
- BIT_CStream_t bitC;
-
- /* init */
- if (dstSize < 8)
- return 0; /* not enough space to compress */
- {
- size_t const initErr = BIT_initCStream(&bitC, op, oend - op);
- if (HUF_isError(initErr))
- return 0;
- }
-
- n = srcSize & ~3; /* join to mod 4 */
- switch (srcSize & 3) {
- case 3: HUF_encodeSymbol(&bitC, ip[n + 2], CTable); HUF_FLUSHBITS_2(&bitC);
- fallthrough;
- case 2: HUF_encodeSymbol(&bitC, ip[n + 1], CTable); HUF_FLUSHBITS_1(&bitC);
- fallthrough;
- case 1: HUF_encodeSymbol(&bitC, ip[n + 0], CTable); HUF_FLUSHBITS(&bitC);
- fallthrough;
- case 0:
- default:;
- }
-
- for (; n > 0; n -= 4) { /* note : n&3==0 at this stage */
- HUF_encodeSymbol(&bitC, ip[n - 1], CTable);
- HUF_FLUSHBITS_1(&bitC);
- HUF_encodeSymbol(&bitC, ip[n - 2], CTable);
- HUF_FLUSHBITS_2(&bitC);
- HUF_encodeSymbol(&bitC, ip[n - 3], CTable);
- HUF_FLUSHBITS_1(&bitC);
- HUF_encodeSymbol(&bitC, ip[n - 4], CTable);
- HUF_FLUSHBITS(&bitC);
- }
-
- return BIT_closeCStream(&bitC);
-}
-
-size_t HUF_compress4X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable)
-{
- size_t const segmentSize = (srcSize + 3) / 4; /* first 3 segments */
- const BYTE *ip = (const BYTE *)src;
- const BYTE *const iend = ip + srcSize;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- BYTE *op = ostart;
-
- if (dstSize < 6 + 1 + 1 + 1 + 8)
- return 0; /* minimum space to compress successfully */
- if (srcSize < 12)
- return 0; /* no saving possible : too small input */
- op += 6; /* jumpTable */
-
- {
- CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable));
- if (cSize == 0)
- return 0;
- ZSTD_writeLE16(ostart, (U16)cSize);
- op += cSize;
- }
-
- ip += segmentSize;
- {
- CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable));
- if (cSize == 0)
- return 0;
- ZSTD_writeLE16(ostart + 2, (U16)cSize);
- op += cSize;
- }
-
- ip += segmentSize;
- {
- CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable));
- if (cSize == 0)
- return 0;
- ZSTD_writeLE16(ostart + 4, (U16)cSize);
- op += cSize;
- }
-
- ip += segmentSize;
- {
- CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, iend - ip, CTable));
- if (cSize == 0)
- return 0;
- op += cSize;
- }
-
- return op - ostart;
-}
-
-static size_t HUF_compressCTable_internal(BYTE *const ostart, BYTE *op, BYTE *const oend, const void *src, size_t srcSize, unsigned singleStream,
- const HUF_CElt *CTable)
-{
- size_t const cSize =
- singleStream ? HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) : HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
- if (HUF_isError(cSize)) {
- return cSize;
- }
- if (cSize == 0) {
- return 0;
- } /* uncompressible */
- op += cSize;
- /* check compressibility */
- if ((size_t)(op - ostart) >= srcSize - 1) {
- return 0;
- }
- return op - ostart;
-}
-
-/* `workSpace` must a table of at least 1024 unsigned */
-static size_t HUF_compress_internal(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog,
- unsigned singleStream, void *workSpace, size_t wkspSize, HUF_CElt *oldHufTable, HUF_repeat *repeat, int preferRepeat)
-{
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- BYTE *op = ostart;
-
- U32 *count;
- size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
- HUF_CElt *CTable;
- size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);
-
- /* checks & inits */
- if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize)
- return ERROR(GENERIC);
- if (!srcSize)
- return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
- if (!dstSize)
- return 0; /* cannot fit within dst budget */
- if (srcSize > HUF_BLOCKSIZE_MAX)
- return ERROR(srcSize_wrong); /* curr block size limit */
- if (huffLog > HUF_TABLELOG_MAX)
- return ERROR(tableLog_tooLarge);
- if (!maxSymbolValue)
- maxSymbolValue = HUF_SYMBOLVALUE_MAX;
- if (!huffLog)
- huffLog = HUF_TABLELOG_DEFAULT;
-
- count = (U32 *)workSpace;
- workSpace = (BYTE *)workSpace + countSize;
- wkspSize -= countSize;
- CTable = (HUF_CElt *)workSpace;
- workSpace = (BYTE *)workSpace + CTableSize;
- wkspSize -= CTableSize;
-
- /* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
- if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
- return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
- }
-
- /* Scan input and build symbol stats */
- {
- CHECK_V_F(largest, FSE_count_wksp(count, &maxSymbolValue, (const BYTE *)src, srcSize, (U32 *)workSpace));
- if (largest == srcSize) {
- *ostart = ((const BYTE *)src)[0];
- return 1;
- } /* single symbol, rle */
- if (largest <= (srcSize >> 7) + 1)
- return 0; /* Fast heuristic : not compressible enough */
- }
-
- /* Check validity of previous table */
- if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
- *repeat = HUF_repeat_none;
- }
- /* Heuristic : use existing table for small inputs */
- if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
- return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
- }
-
- /* Build Huffman Tree */
- huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
- {
- CHECK_V_F(maxBits, HUF_buildCTable_wksp(CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize));
- huffLog = (U32)maxBits;
- /* Zero the unused symbols so we can check it for validity */
- memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
- }
-
- /* Write table description header */
- {
- CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, CTable, maxSymbolValue, huffLog, workSpace, wkspSize));
- /* Check if using the previous table will be beneficial */
- if (repeat && *repeat != HUF_repeat_none) {
- size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
- size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
- if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
- return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
- }
- }
- /* Use the new table */
- if (hSize + 12ul >= srcSize) {
- return 0;
- }
- op += hSize;
- if (repeat) {
- *repeat = HUF_repeat_none;
- }
- if (oldHufTable) {
- memcpy(oldHufTable, CTable, CTableSize);
- } /* Save the new table */
- }
- return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
-}
-
-size_t HUF_compress1X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace,
- size_t wkspSize)
-{
- return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
-}
-
-size_t HUF_compress1X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace,
- size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat)
-{
- return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat,
- preferRepeat);
-}
-
-size_t HUF_compress4X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace,
- size_t wkspSize)
-{
- return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
-}
-
-size_t HUF_compress4X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace,
- size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat)
-{
- return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat,
- preferRepeat);
-}
diff --git a/lib/zstd/huf_decompress.c b/lib/zstd/huf_decompress.c
deleted file mode 100644
index 6526482047dc..000000000000
--- a/lib/zstd/huf_decompress.c
+++ /dev/null
@@ -1,960 +0,0 @@
-/*
- * Huffman decoder, part of New Generation Entropy library
- * Copyright (C) 2013-2016, Yann Collet.
- *
- * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- */
-
-/* **************************************************************
-* Compiler specifics
-****************************************************************/
-#define FORCE_INLINE static __always_inline
-
-/* **************************************************************
-* Dependencies
-****************************************************************/
-#include "bitstream.h" /* BIT_* */
-#include "fse.h" /* header compression */
-#include "huf.h"
-#include <linux/compiler.h>
-#include <linux/kernel.h>
-#include <linux/string.h> /* memcpy, memset */
-
-/* **************************************************************
-* Error Management
-****************************************************************/
-#define HUF_STATIC_ASSERT(c) \
- { \
- enum { HUF_static_assert = 1 / (int)(!!(c)) }; \
- } /* use only *after* variable declarations */
-
-/*-***************************/
-/* generic DTableDesc */
-/*-***************************/
-
-typedef struct {
- BYTE maxTableLog;
- BYTE tableType;
- BYTE tableLog;
- BYTE reserved;
-} DTableDesc;
-
-static DTableDesc HUF_getDTableDesc(const HUF_DTable *table)
-{
- DTableDesc dtd;
- memcpy(&dtd, table, sizeof(dtd));
- return dtd;
-}
-
-/*-***************************/
-/* single-symbol decoding */
-/*-***************************/
-
-typedef struct {
- BYTE byte;
- BYTE nbBits;
-} HUF_DEltX2; /* single-symbol decoding */
-
-size_t HUF_readDTableX2_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
-{
- U32 tableLog = 0;
- U32 nbSymbols = 0;
- size_t iSize;
- void *const dtPtr = DTable + 1;
- HUF_DEltX2 *const dt = (HUF_DEltX2 *)dtPtr;
-
- U32 *rankVal;
- BYTE *huffWeight;
- size_t spaceUsed32 = 0;
-
- rankVal = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
- huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
- /* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
-
- iSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize);
- if (HUF_isError(iSize))
- return iSize;
-
- /* Table header */
- {
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- if (tableLog > (U32)(dtd.maxTableLog + 1))
- return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
- dtd.tableType = 0;
- dtd.tableLog = (BYTE)tableLog;
- memcpy(DTable, &dtd, sizeof(dtd));
- }
-
- /* Calculate starting value for each rank */
- {
- U32 n, nextRankStart = 0;
- for (n = 1; n < tableLog + 1; n++) {
- U32 const curr = nextRankStart;
- nextRankStart += (rankVal[n] << (n - 1));
- rankVal[n] = curr;
- }
- }
-
- /* fill DTable */
- {
- U32 n;
- for (n = 0; n < nbSymbols; n++) {
- U32 const w = huffWeight[n];
- U32 const length = (1 << w) >> 1;
- U32 u;
- HUF_DEltX2 D;
- D.byte = (BYTE)n;
- D.nbBits = (BYTE)(tableLog + 1 - w);
- for (u = rankVal[w]; u < rankVal[w] + length; u++)
- dt[u] = D;
- rankVal[w] += length;
- }
- }
-
- return iSize;
-}
-
-static BYTE HUF_decodeSymbolX2(BIT_DStream_t *Dstream, const HUF_DEltX2 *dt, const U32 dtLog)
-{
- size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
- BYTE const c = dt[val].byte;
- BIT_skipBits(Dstream, dt[val].nbBits);
- return c;
-}
-
-#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
-
-#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
- if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \
- HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
-
-#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
- if (ZSTD_64bits()) \
- HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
-
-FORCE_INLINE size_t HUF_decodeStreamX2(BYTE *p, BIT_DStream_t *const bitDPtr, BYTE *const pEnd, const HUF_DEltX2 *const dt, const U32 dtLog)
-{
- BYTE *const pStart = p;
-
- /* up to 4 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd - 4)) {
- HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
- }
-
- /* closer to the end */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
-
- /* no more data to retrieve from bitstream, hence no need to reload */
- while (p < pEnd)
- HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
-
- return pEnd - pStart;
-}
-
-static size_t HUF_decompress1X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- BYTE *op = (BYTE *)dst;
- BYTE *const oend = op + dstSize;
- const void *dtPtr = DTable + 1;
- const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr;
- BIT_DStream_t bitD;
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- U32 const dtLog = dtd.tableLog;
-
- {
- size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
- if (HUF_isError(errorCode))
- return errorCode;
- }
-
- HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
-
- /* check */
- if (!BIT_endOfDStream(&bitD))
- return ERROR(corruption_detected);
-
- return dstSize;
-}
-
-size_t HUF_decompress1X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- if (dtd.tableType != 0)
- return ERROR(GENERIC);
- return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
-}
-
-size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- const BYTE *ip = (const BYTE *)cSrc;
-
- size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize);
- if (HUF_isError(hSize))
- return hSize;
- if (hSize >= cSrcSize)
- return ERROR(srcSize_wrong);
- ip += hSize;
- cSrcSize -= hSize;
-
- return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx);
-}
-
-static size_t HUF_decompress4X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- /* Check */
- if (cSrcSize < 10)
- return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
-
- {
- const BYTE *const istart = (const BYTE *)cSrc;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- const void *const dtPtr = DTable + 1;
- const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr;
-
- /* Init */
- BIT_DStream_t bitD1;
- BIT_DStream_t bitD2;
- BIT_DStream_t bitD3;
- BIT_DStream_t bitD4;
- size_t const length1 = ZSTD_readLE16(istart);
- size_t const length2 = ZSTD_readLE16(istart + 2);
- size_t const length3 = ZSTD_readLE16(istart + 4);
- size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
- const BYTE *const istart1 = istart + 6; /* jumpTable */
- const BYTE *const istart2 = istart1 + length1;
- const BYTE *const istart3 = istart2 + length2;
- const BYTE *const istart4 = istart3 + length3;
- const size_t segmentSize = (dstSize + 3) / 4;
- BYTE *const opStart2 = ostart + segmentSize;
- BYTE *const opStart3 = opStart2 + segmentSize;
- BYTE *const opStart4 = opStart3 + segmentSize;
- BYTE *op1 = ostart;
- BYTE *op2 = opStart2;
- BYTE *op3 = opStart3;
- BYTE *op4 = opStart4;
- U32 endSignal;
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- U32 const dtLog = dtd.tableLog;
-
- if (length4 > cSrcSize)
- return ERROR(corruption_detected); /* overflow */
- {
- size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
- if (HUF_isError(errorCode))
- return errorCode;
- }
-
- /* 16-32 symbols per loop (4-8 symbols per stream) */
- endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
- for (; (endSignal == BIT_DStream_unfinished) && (op4 < (oend - 7));) {
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
- HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
- HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
- HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
- endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
- }
-
- /* check corruption */
- if (op1 > opStart2)
- return ERROR(corruption_detected);
- if (op2 > opStart3)
- return ERROR(corruption_detected);
- if (op3 > opStart4)
- return ERROR(corruption_detected);
- /* note : op4 supposed already verified within main loop */
-
- /* finish bitStreams one by one */
- HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
- HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
- HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
- HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
-
- /* check */
- endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
- if (!endSignal)
- return ERROR(corruption_detected);
-
- /* decoded size */
- return dstSize;
- }
-}
-
-size_t HUF_decompress4X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- if (dtd.tableType != 0)
- return ERROR(GENERIC);
- return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
-}
-
-size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- const BYTE *ip = (const BYTE *)cSrc;
-
- size_t const hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize);
- if (HUF_isError(hSize))
- return hSize;
- if (hSize >= cSrcSize)
- return ERROR(srcSize_wrong);
- ip += hSize;
- cSrcSize -= hSize;
-
- return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
-}
-
-/* *************************/
-/* double-symbols decoding */
-/* *************************/
-typedef struct {
- U16 sequence;
- BYTE nbBits;
- BYTE length;
-} HUF_DEltX4; /* double-symbols decoding */
-
-typedef struct {
- BYTE symbol;
- BYTE weight;
-} sortedSymbol_t;
-
-/* HUF_fillDTableX4Level2() :
- * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
-static void HUF_fillDTableX4Level2(HUF_DEltX4 *DTable, U32 sizeLog, const U32 consumed, const U32 *rankValOrigin, const int minWeight,
- const sortedSymbol_t *sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq)
-{
- HUF_DEltX4 DElt;
- U32 rankVal[HUF_TABLELOG_MAX + 1];
-
- /* get pre-calculated rankVal */
- memcpy(rankVal, rankValOrigin, sizeof(rankVal));
-
- /* fill skipped values */
- if (minWeight > 1) {
- U32 i, skipSize = rankVal[minWeight];
- ZSTD_writeLE16(&(DElt.sequence), baseSeq);
- DElt.nbBits = (BYTE)(consumed);
- DElt.length = 1;
- for (i = 0; i < skipSize; i++)
- DTable[i] = DElt;
- }
-
- /* fill DTable */
- {
- U32 s;
- for (s = 0; s < sortedListSize; s++) { /* note : sortedSymbols already skipped */
- const U32 symbol = sortedSymbols[s].symbol;
- const U32 weight = sortedSymbols[s].weight;
- const U32 nbBits = nbBitsBaseline - weight;
- const U32 length = 1 << (sizeLog - nbBits);
- const U32 start = rankVal[weight];
- U32 i = start;
- const U32 end = start + length;
-
- ZSTD_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
- DElt.nbBits = (BYTE)(nbBits + consumed);
- DElt.length = 2;
- do {
- DTable[i++] = DElt;
- } while (i < end); /* since length >= 1 */
-
- rankVal[weight] += length;
- }
- }
-}
-
-typedef U32 rankVal_t[HUF_TABLELOG_MAX][HUF_TABLELOG_MAX + 1];
-typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
-
-static void HUF_fillDTableX4(HUF_DEltX4 *DTable, const U32 targetLog, const sortedSymbol_t *sortedList, const U32 sortedListSize, const U32 *rankStart,
- rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline)
-{
- U32 rankVal[HUF_TABLELOG_MAX + 1];
- const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
- const U32 minBits = nbBitsBaseline - maxWeight;
- U32 s;
-
- memcpy(rankVal, rankValOrigin, sizeof(rankVal));
-
- /* fill DTable */
- for (s = 0; s < sortedListSize; s++) {
- const U16 symbol = sortedList[s].symbol;
- const U32 weight = sortedList[s].weight;
- const U32 nbBits = nbBitsBaseline - weight;
- const U32 start = rankVal[weight];
- const U32 length = 1 << (targetLog - nbBits);
-
- if (targetLog - nbBits >= minBits) { /* enough room for a second symbol */
- U32 sortedRank;
- int minWeight = nbBits + scaleLog;
- if (minWeight < 1)
- minWeight = 1;
- sortedRank = rankStart[minWeight];
- HUF_fillDTableX4Level2(DTable + start, targetLog - nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList + sortedRank,
- sortedListSize - sortedRank, nbBitsBaseline, symbol);
- } else {
- HUF_DEltX4 DElt;
- ZSTD_writeLE16(&(DElt.sequence), symbol);
- DElt.nbBits = (BYTE)(nbBits);
- DElt.length = 1;
- {
- U32 const end = start + length;
- U32 u;
- for (u = start; u < end; u++)
- DTable[u] = DElt;
- }
- }
- rankVal[weight] += length;
- }
-}
-
-size_t HUF_readDTableX4_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
-{
- U32 tableLog, maxW, sizeOfSort, nbSymbols;
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- U32 const maxTableLog = dtd.maxTableLog;
- size_t iSize;
- void *dtPtr = DTable + 1; /* force compiler to avoid strict-aliasing */
- HUF_DEltX4 *const dt = (HUF_DEltX4 *)dtPtr;
- U32 *rankStart;
-
- rankValCol_t *rankVal;
- U32 *rankStats;
- U32 *rankStart0;
- sortedSymbol_t *sortedSymbol;
- BYTE *weightList;
- size_t spaceUsed32 = 0;
-
- HUF_STATIC_ASSERT((sizeof(rankValCol_t) & 3) == 0);
-
- rankVal = (rankValCol_t *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
- rankStats = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_MAX + 1;
- rankStart0 = (U32 *)workspace + spaceUsed32;
- spaceUsed32 += HUF_TABLELOG_MAX + 2;
- sortedSymbol = (sortedSymbol_t *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
- weightList = (BYTE *)((U32 *)workspace + spaceUsed32);
- spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
-
- if ((spaceUsed32 << 2) > workspaceSize)
- return ERROR(tableLog_tooLarge);
- workspace = (U32 *)workspace + spaceUsed32;
- workspaceSize -= (spaceUsed32 << 2);
-
- rankStart = rankStart0 + 1;
- memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
-
- HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
- if (maxTableLog > HUF_TABLELOG_MAX)
- return ERROR(tableLog_tooLarge);
- /* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
-
- iSize = HUF_readStats_wksp(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize);
- if (HUF_isError(iSize))
- return iSize;
-
- /* check result */
- if (tableLog > maxTableLog)
- return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
-
- /* find maxWeight */
- for (maxW = tableLog; rankStats[maxW] == 0; maxW--) {
- } /* necessarily finds a solution before 0 */
-
- /* Get start index of each weight */
- {
- U32 w, nextRankStart = 0;
- for (w = 1; w < maxW + 1; w++) {
- U32 curr = nextRankStart;
- nextRankStart += rankStats[w];
- rankStart[w] = curr;
- }
- rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
- sizeOfSort = nextRankStart;
- }
-
- /* sort symbols by weight */
- {
- U32 s;
- for (s = 0; s < nbSymbols; s++) {
- U32 const w = weightList[s];
- U32 const r = rankStart[w]++;
- sortedSymbol[r].symbol = (BYTE)s;
- sortedSymbol[r].weight = (BYTE)w;
- }
- rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
- }
-
- /* Build rankVal */
- {
- U32 *const rankVal0 = rankVal[0];
- {
- int const rescale = (maxTableLog - tableLog) - 1; /* tableLog <= maxTableLog */
- U32 nextRankVal = 0;
- U32 w;
- for (w = 1; w < maxW + 1; w++) {
- U32 curr = nextRankVal;
- nextRankVal += rankStats[w] << (w + rescale);
- rankVal0[w] = curr;
- }
- }
- {
- U32 const minBits = tableLog + 1 - maxW;
- U32 consumed;
- for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
- U32 *const rankValPtr = rankVal[consumed];
- U32 w;
- for (w = 1; w < maxW + 1; w++) {
- rankValPtr[w] = rankVal0[w] >> consumed;
- }
- }
- }
- }
-
- HUF_fillDTableX4(dt, maxTableLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog + 1);
-
- dtd.tableLog = (BYTE)maxTableLog;
- dtd.tableType = 1;
- memcpy(DTable, &dtd, sizeof(dtd));
- return iSize;
-}
-
-static U32 HUF_decodeSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog)
-{
- size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
- memcpy(op, dt + val, 2);
- BIT_skipBits(DStream, dt[val].nbBits);
- return dt[val].length;
-}
-
-static U32 HUF_decodeLastSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog)
-{
- size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
- memcpy(op, dt + val, 1);
- if (dt[val].length == 1)
- BIT_skipBits(DStream, dt[val].nbBits);
- else {
- if (DStream->bitsConsumed < (sizeof(DStream->bitContainer) * 8)) {
- BIT_skipBits(DStream, dt[val].nbBits);
- if (DStream->bitsConsumed > (sizeof(DStream->bitContainer) * 8))
- /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
- DStream->bitsConsumed = (sizeof(DStream->bitContainer) * 8);
- }
- }
- return 1;
-}
-
-#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
-
-#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
- if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \
- ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
-
-#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
- if (ZSTD_64bits()) \
- ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
-
-FORCE_INLINE size_t HUF_decodeStreamX4(BYTE *p, BIT_DStream_t *bitDPtr, BYTE *const pEnd, const HUF_DEltX4 *const dt, const U32 dtLog)
-{
- BYTE *const pStart = p;
-
- /* up to 8 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd - (sizeof(bitDPtr->bitContainer) - 1))) {
- HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
- HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
- HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
- }
-
- /* closer to end : up to 2 symbols at a time */
- while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd - 2))
- HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
-
- while (p <= pEnd - 2)
- HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
-
- if (p < pEnd)
- p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
-
- return p - pStart;
-}
-
-static size_t HUF_decompress1X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- BIT_DStream_t bitD;
-
- /* Init */
- {
- size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
- if (HUF_isError(errorCode))
- return errorCode;
- }
-
- /* decode */
- {
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- const void *const dtPtr = DTable + 1; /* force compiler to not use strict-aliasing */
- const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr;
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
- }
-
- /* check */
- if (!BIT_endOfDStream(&bitD))
- return ERROR(corruption_detected);
-
- /* decoded size */
- return dstSize;
-}
-
-size_t HUF_decompress1X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- if (dtd.tableType != 1)
- return ERROR(GENERIC);
- return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
-}
-
-size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- const BYTE *ip = (const BYTE *)cSrc;
-
- size_t const hSize = HUF_readDTableX4_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize);
- if (HUF_isError(hSize))
- return hSize;
- if (hSize >= cSrcSize)
- return ERROR(srcSize_wrong);
- ip += hSize;
- cSrcSize -= hSize;
-
- return HUF_decompress1X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx);
-}
-
-static size_t HUF_decompress4X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- if (cSrcSize < 10)
- return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
-
- {
- const BYTE *const istart = (const BYTE *)cSrc;
- BYTE *const ostart = (BYTE *)dst;
- BYTE *const oend = ostart + dstSize;
- const void *const dtPtr = DTable + 1;
- const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr;
-
- /* Init */
- BIT_DStream_t bitD1;
- BIT_DStream_t bitD2;
- BIT_DStream_t bitD3;
- BIT_DStream_t bitD4;
- size_t const length1 = ZSTD_readLE16(istart);
- size_t const length2 = ZSTD_readLE16(istart + 2);
- size_t const length3 = ZSTD_readLE16(istart + 4);
- size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
- const BYTE *const istart1 = istart + 6; /* jumpTable */
- const BYTE *const istart2 = istart1 + length1;
- const BYTE *const istart3 = istart2 + length2;
- const BYTE *const istart4 = istart3 + length3;
- size_t const segmentSize = (dstSize + 3) / 4;
- BYTE *const opStart2 = ostart + segmentSize;
- BYTE *const opStart3 = opStart2 + segmentSize;
- BYTE *const opStart4 = opStart3 + segmentSize;
- BYTE *op1 = ostart;
- BYTE *op2 = opStart2;
- BYTE *op3 = opStart3;
- BYTE *op4 = opStart4;
- U32 endSignal;
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- U32 const dtLog = dtd.tableLog;
-
- if (length4 > cSrcSize)
- return ERROR(corruption_detected); /* overflow */
- {
- size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
- if (HUF_isError(errorCode))
- return errorCode;
- }
- {
- size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
- if (HUF_isError(errorCode))
- return errorCode;
- }
-
- /* 16-32 symbols per loop (4-8 symbols per stream) */
- endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
- for (; (endSignal == BIT_DStream_unfinished) & (op4 < (oend - (sizeof(bitD4.bitContainer) - 1)));) {
- HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
- HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
- HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
- HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
- HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
- HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
- HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
- HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
- HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
- HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
- HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
- HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
-
- endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
- }
-
- /* check corruption */
- if (op1 > opStart2)
- return ERROR(corruption_detected);
- if (op2 > opStart3)
- return ERROR(corruption_detected);
- if (op3 > opStart4)
- return ERROR(corruption_detected);
- /* note : op4 already verified within main loop */
-
- /* finish bitStreams one by one */
- HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
- HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
- HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
- HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
-
- /* check */
- {
- U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
- if (!endCheck)
- return ERROR(corruption_detected);
- }
-
- /* decoded size */
- return dstSize;
- }
-}
-
-size_t HUF_decompress4X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc dtd = HUF_getDTableDesc(DTable);
- if (dtd.tableType != 1)
- return ERROR(GENERIC);
- return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
-}
-
-size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- const BYTE *ip = (const BYTE *)cSrc;
-
- size_t hSize = HUF_readDTableX4_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize);
- if (HUF_isError(hSize))
- return hSize;
- if (hSize >= cSrcSize)
- return ERROR(srcSize_wrong);
- ip += hSize;
- cSrcSize -= hSize;
-
- return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
-}
-
-/* ********************************/
-/* Generic decompression selector */
-/* ********************************/
-
-size_t HUF_decompress1X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable)
- : HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
-}
-
-size_t HUF_decompress4X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
-{
- DTableDesc const dtd = HUF_getDTableDesc(DTable);
- return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable)
- : HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
-}
-
-typedef struct {
- U32 tableTime;
- U32 decode256Time;
-} algo_time_t;
-static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = {
- /* single, double, quad */
- {{0, 0}, {1, 1}, {2, 2}}, /* Q==0 : impossible */
- {{0, 0}, {1, 1}, {2, 2}}, /* Q==1 : impossible */
- {{38, 130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
- {{448, 128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
- {{556, 128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
- {{714, 128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
- {{883, 128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
- {{897, 128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
- {{926, 128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
- {{947, 128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
- {{1107, 128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
- {{1177, 128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
- {{1242, 128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
- {{1349, 128}, {2644, 106}, {5260, 106}}, /* Q ==13 : 81-87% */
- {{1455, 128}, {2422, 124}, {4174, 124}}, /* Q ==14 : 87-93% */
- {{722, 128}, {1891, 145}, {1936, 146}}, /* Q ==15 : 93-99% */
-};
-
-/** HUF_selectDecoder() :
-* Tells which decoder is likely to decode faster,
-* based on a set of pre-determined metrics.
-* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
-* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
-U32 HUF_selectDecoder(size_t dstSize, size_t cSrcSize)
-{
- /* decoder timing evaluation */
- U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
- U32 const D256 = (U32)(dstSize >> 8);
- U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
- U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
- DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
-
- return DTime1 < DTime0;
-}
-
-typedef size_t (*decompressionAlgo)(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize);
-
-size_t HUF_decompress4X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- /* validation checks */
- if (dstSize == 0)
- return ERROR(dstSize_tooSmall);
- if (cSrcSize > dstSize)
- return ERROR(corruption_detected); /* invalid */
- if (cSrcSize == dstSize) {
- memcpy(dst, cSrc, dstSize);
- return dstSize;
- } /* not compressed */
- if (cSrcSize == 1) {
- memset(dst, *(const BYTE *)cSrc, dstSize);
- return dstSize;
- } /* RLE */
-
- {
- U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
- return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
- : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
- }
-}
-
-size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- /* validation checks */
- if (dstSize == 0)
- return ERROR(dstSize_tooSmall);
- if ((cSrcSize >= dstSize) || (cSrcSize <= 1))
- return ERROR(corruption_detected); /* invalid */
-
- {
- U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
- return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
- : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
- }
-}
-
-size_t HUF_decompress1X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
-{
- /* validation checks */
- if (dstSize == 0)
- return ERROR(dstSize_tooSmall);
- if (cSrcSize > dstSize)
- return ERROR(corruption_detected); /* invalid */
- if (cSrcSize == dstSize) {
- memcpy(dst, cSrc, dstSize);
- return dstSize;
- } /* not compressed */
- if (cSrcSize == 1) {
- memset(dst, *(const BYTE *)cSrc, dstSize);
- return dstSize;
- } /* RLE */
-
- {
- U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
- return algoNb ? HUF_decompress1X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
- : HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
- }
-}
diff --git a/lib/zstd/mem.h b/lib/zstd/mem.h
deleted file mode 100644
index 93d7a2c377fe..000000000000
--- a/lib/zstd/mem.h
+++ /dev/null
@@ -1,151 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-#ifndef MEM_H_MODULE
-#define MEM_H_MODULE
-
-/*-****************************************
-* Dependencies
-******************************************/
-#include <asm/unaligned.h>
-#include <linux/string.h> /* memcpy */
-#include <linux/types.h> /* size_t, ptrdiff_t */
-
-/*-****************************************
-* Compiler specifics
-******************************************/
-#define ZSTD_STATIC static inline
-
-/*-**************************************************************
-* Basic Types
-*****************************************************************/
-typedef uint8_t BYTE;
-typedef uint16_t U16;
-typedef int16_t S16;
-typedef uint32_t U32;
-typedef int32_t S32;
-typedef uint64_t U64;
-typedef int64_t S64;
-typedef ptrdiff_t iPtrDiff;
-typedef uintptr_t uPtrDiff;
-
-/*-**************************************************************
-* Memory I/O
-*****************************************************************/
-ZSTD_STATIC unsigned ZSTD_32bits(void) { return sizeof(size_t) == 4; }
-ZSTD_STATIC unsigned ZSTD_64bits(void) { return sizeof(size_t) == 8; }
-
-#if defined(__LITTLE_ENDIAN)
-#define ZSTD_LITTLE_ENDIAN 1
-#else
-#define ZSTD_LITTLE_ENDIAN 0
-#endif
-
-ZSTD_STATIC unsigned ZSTD_isLittleEndian(void) { return ZSTD_LITTLE_ENDIAN; }
-
-ZSTD_STATIC U16 ZSTD_read16(const void *memPtr) { return get_unaligned((const U16 *)memPtr); }
-
-ZSTD_STATIC U32 ZSTD_read32(const void *memPtr) { return get_unaligned((const U32 *)memPtr); }
-
-ZSTD_STATIC U64 ZSTD_read64(const void *memPtr) { return get_unaligned((const U64 *)memPtr); }
-
-ZSTD_STATIC size_t ZSTD_readST(const void *memPtr) { return get_unaligned((const size_t *)memPtr); }
-
-ZSTD_STATIC void ZSTD_write16(void *memPtr, U16 value) { put_unaligned(value, (U16 *)memPtr); }
-
-ZSTD_STATIC void ZSTD_write32(void *memPtr, U32 value) { put_unaligned(value, (U32 *)memPtr); }
-
-ZSTD_STATIC void ZSTD_write64(void *memPtr, U64 value) { put_unaligned(value, (U64 *)memPtr); }
-
-/*=== Little endian r/w ===*/
-
-ZSTD_STATIC U16 ZSTD_readLE16(const void *memPtr) { return get_unaligned_le16(memPtr); }
-
-ZSTD_STATIC void ZSTD_writeLE16(void *memPtr, U16 val) { put_unaligned_le16(val, memPtr); }
-
-ZSTD_STATIC U32 ZSTD_readLE24(const void *memPtr) { return ZSTD_readLE16(memPtr) + (((const BYTE *)memPtr)[2] << 16); }
-
-ZSTD_STATIC void ZSTD_writeLE24(void *memPtr, U32 val)
-{
- ZSTD_writeLE16(memPtr, (U16)val);
- ((BYTE *)memPtr)[2] = (BYTE)(val >> 16);
-}
-
-ZSTD_STATIC U32 ZSTD_readLE32(const void *memPtr) { return get_unaligned_le32(memPtr); }
-
-ZSTD_STATIC void ZSTD_writeLE32(void *memPtr, U32 val32) { put_unaligned_le32(val32, memPtr); }
-
-ZSTD_STATIC U64 ZSTD_readLE64(const void *memPtr) { return get_unaligned_le64(memPtr); }
-
-ZSTD_STATIC void ZSTD_writeLE64(void *memPtr, U64 val64) { put_unaligned_le64(val64, memPtr); }
-
-ZSTD_STATIC size_t ZSTD_readLEST(const void *memPtr)
-{
- if (ZSTD_32bits())
- return (size_t)ZSTD_readLE32(memPtr);
- else
- return (size_t)ZSTD_readLE64(memPtr);
-}
-
-ZSTD_STATIC void ZSTD_writeLEST(void *memPtr, size_t val)
-{
- if (ZSTD_32bits())
- ZSTD_writeLE32(memPtr, (U32)val);
- else
- ZSTD_writeLE64(memPtr, (U64)val);
-}
-
-/*=== Big endian r/w ===*/
-
-ZSTD_STATIC U32 ZSTD_readBE32(const void *memPtr) { return get_unaligned_be32(memPtr); }
-
-ZSTD_STATIC void ZSTD_writeBE32(void *memPtr, U32 val32) { put_unaligned_be32(val32, memPtr); }
-
-ZSTD_STATIC U64 ZSTD_readBE64(const void *memPtr) { return get_unaligned_be64(memPtr); }
-
-ZSTD_STATIC void ZSTD_writeBE64(void *memPtr, U64 val64) { put_unaligned_be64(val64, memPtr); }
-
-ZSTD_STATIC size_t ZSTD_readBEST(const void *memPtr)
-{
- if (ZSTD_32bits())
- return (size_t)ZSTD_readBE32(memPtr);
- else
- return (size_t)ZSTD_readBE64(memPtr);
-}
-
-ZSTD_STATIC void ZSTD_writeBEST(void *memPtr, size_t val)
-{
- if (ZSTD_32bits())
- ZSTD_writeBE32(memPtr, (U32)val);
- else
- ZSTD_writeBE64(memPtr, (U64)val);
-}
-
-/* function safe only for comparisons */
-ZSTD_STATIC U32 ZSTD_readMINMATCH(const void *memPtr, U32 length)
-{
- switch (length) {
- default:
- case 4: return ZSTD_read32(memPtr);
- case 3:
- if (ZSTD_isLittleEndian())
- return ZSTD_read32(memPtr) << 8;
- else
- return ZSTD_read32(memPtr) >> 8;
- }
-}
-
-#endif /* MEM_H_MODULE */
diff --git a/lib/zstd/zstd_common.c b/lib/zstd/zstd_common.c
deleted file mode 100644
index a282624ee155..000000000000
--- a/lib/zstd/zstd_common.c
+++ /dev/null
@@ -1,75 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-/*-*************************************
-* Dependencies
-***************************************/
-#include "error_private.h"
-#include "zstd_internal.h" /* declaration of ZSTD_isError, ZSTD_getErrorName, ZSTD_getErrorCode, ZSTD_getErrorString, ZSTD_versionNumber */
-#include <linux/kernel.h>
-
-/*=**************************************************************
-* Custom allocator
-****************************************************************/
-
-#define stack_push(stack, size) \
- ({ \
- void *const ptr = ZSTD_PTR_ALIGN((stack)->ptr); \
- (stack)->ptr = (char *)ptr + (size); \
- (stack)->ptr <= (stack)->end ? ptr : NULL; \
- })
-
-ZSTD_customMem ZSTD_initStack(void *workspace, size_t workspaceSize)
-{
- ZSTD_customMem stackMem = {ZSTD_stackAlloc, ZSTD_stackFree, workspace};
- ZSTD_stack *stack = (ZSTD_stack *)workspace;
- /* Verify preconditions */
- if (!workspace || workspaceSize < sizeof(ZSTD_stack) || workspace != ZSTD_PTR_ALIGN(workspace)) {
- ZSTD_customMem error = {NULL, NULL, NULL};
- return error;
- }
- /* Initialize the stack */
- stack->ptr = workspace;
- stack->end = (char *)workspace + workspaceSize;
- stack_push(stack, sizeof(ZSTD_stack));
- return stackMem;
-}
-
-void *ZSTD_stackAllocAll(void *opaque, size_t *size)
-{
- ZSTD_stack *stack = (ZSTD_stack *)opaque;
- *size = (BYTE const *)stack->end - (BYTE *)ZSTD_PTR_ALIGN(stack->ptr);
- return stack_push(stack, *size);
-}
-
-void *ZSTD_stackAlloc(void *opaque, size_t size)
-{
- ZSTD_stack *stack = (ZSTD_stack *)opaque;
- return stack_push(stack, size);
-}
-void ZSTD_stackFree(void *opaque, void *address)
-{
- (void)opaque;
- (void)address;
-}
-
-void *ZSTD_malloc(size_t size, ZSTD_customMem customMem) { return customMem.customAlloc(customMem.opaque, size); }
-
-void ZSTD_free(void *ptr, ZSTD_customMem customMem)
-{
- if (ptr != NULL)
- customMem.customFree(customMem.opaque, ptr);
-}
diff --git a/lib/zstd/zstd_compress_module.c b/lib/zstd/zstd_compress_module.c
new file mode 100644
index 000000000000..65548a4bb934
--- /dev/null
+++ b/lib/zstd/zstd_compress_module.c
@@ -0,0 +1,160 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/string.h>
+#include <linux/zstd.h>
+
+#include "common/zstd_deps.h"
+#include "common/zstd_internal.h"
+
+#define ZSTD_FORWARD_IF_ERR(ret) \
+ do { \
+ size_t const __ret = (ret); \
+ if (ZSTD_isError(__ret)) \
+ return __ret; \
+ } while (0)
+
+static size_t zstd_cctx_init(zstd_cctx *cctx, const zstd_parameters *parameters,
+ unsigned long long pledged_src_size)
+{
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_reset(
+ cctx, ZSTD_reset_session_and_parameters));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setPledgedSrcSize(
+ cctx, pledged_src_size));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_windowLog, parameters->cParams.windowLog));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_hashLog, parameters->cParams.hashLog));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_chainLog, parameters->cParams.chainLog));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_searchLog, parameters->cParams.searchLog));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_minMatch, parameters->cParams.minMatch));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_targetLength, parameters->cParams.targetLength));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_strategy, parameters->cParams.strategy));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_contentSizeFlag, parameters->fParams.contentSizeFlag));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_checksumFlag, parameters->fParams.checksumFlag));
+ ZSTD_FORWARD_IF_ERR(ZSTD_CCtx_setParameter(
+ cctx, ZSTD_c_dictIDFlag, !parameters->fParams.noDictIDFlag));
+ return 0;
+}
+
+int zstd_min_clevel(void)
+{
+ return ZSTD_minCLevel();
+}
+EXPORT_SYMBOL(zstd_min_clevel);
+
+int zstd_max_clevel(void)
+{
+ return ZSTD_maxCLevel();
+}
+EXPORT_SYMBOL(zstd_max_clevel);
+
+size_t zstd_compress_bound(size_t src_size)
+{
+ return ZSTD_compressBound(src_size);
+}
+EXPORT_SYMBOL(zstd_compress_bound);
+
+zstd_parameters zstd_get_params(int level,
+ unsigned long long estimated_src_size)
+{
+ return ZSTD_getParams(level, estimated_src_size, 0);
+}
+EXPORT_SYMBOL(zstd_get_params);
+
+size_t zstd_cctx_workspace_bound(const zstd_compression_parameters *cparams)
+{
+ return ZSTD_estimateCCtxSize_usingCParams(*cparams);
+}
+EXPORT_SYMBOL(zstd_cctx_workspace_bound);
+
+zstd_cctx *zstd_init_cctx(void *workspace, size_t workspace_size)
+{
+ if (workspace == NULL)
+ return NULL;
+ return ZSTD_initStaticCCtx(workspace, workspace_size);
+}
+EXPORT_SYMBOL(zstd_init_cctx);
+
+size_t zstd_compress_cctx(zstd_cctx *cctx, void *dst, size_t dst_capacity,
+ const void *src, size_t src_size, const zstd_parameters *parameters)
+{
+ ZSTD_FORWARD_IF_ERR(zstd_cctx_init(cctx, parameters, src_size));
+ return ZSTD_compress2(cctx, dst, dst_capacity, src, src_size);
+}
+EXPORT_SYMBOL(zstd_compress_cctx);
+
+size_t zstd_cstream_workspace_bound(const zstd_compression_parameters *cparams)
+{
+ return ZSTD_estimateCStreamSize_usingCParams(*cparams);
+}
+EXPORT_SYMBOL(zstd_cstream_workspace_bound);
+
+zstd_cstream *zstd_init_cstream(const zstd_parameters *parameters,
+ unsigned long long pledged_src_size, void *workspace, size_t workspace_size)
+{
+ zstd_cstream *cstream;
+
+ if (workspace == NULL)
+ return NULL;
+
+ cstream = ZSTD_initStaticCStream(workspace, workspace_size);
+ if (cstream == NULL)
+ return NULL;
+
+ /* 0 means unknown in linux zstd API but means 0 in new zstd API */
+ if (pledged_src_size == 0)
+ pledged_src_size = ZSTD_CONTENTSIZE_UNKNOWN;
+
+ if (ZSTD_isError(zstd_cctx_init(cstream, parameters, pledged_src_size)))
+ return NULL;
+
+ return cstream;
+}
+EXPORT_SYMBOL(zstd_init_cstream);
+
+size_t zstd_reset_cstream(zstd_cstream *cstream,
+ unsigned long long pledged_src_size)
+{
+ return ZSTD_resetCStream(cstream, pledged_src_size);
+}
+EXPORT_SYMBOL(zstd_reset_cstream);
+
+size_t zstd_compress_stream(zstd_cstream *cstream, zstd_out_buffer *output,
+ zstd_in_buffer *input)
+{
+ return ZSTD_compressStream(cstream, output, input);
+}
+EXPORT_SYMBOL(zstd_compress_stream);
+
+size_t zstd_flush_stream(zstd_cstream *cstream, zstd_out_buffer *output)
+{
+ return ZSTD_flushStream(cstream, output);
+}
+EXPORT_SYMBOL(zstd_flush_stream);
+
+size_t zstd_end_stream(zstd_cstream *cstream, zstd_out_buffer *output)
+{
+ return ZSTD_endStream(cstream, output);
+}
+EXPORT_SYMBOL(zstd_end_stream);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("Zstd Compressor");
diff --git a/lib/zstd/zstd_decompress_module.c b/lib/zstd/zstd_decompress_module.c
new file mode 100644
index 000000000000..f4ed952ed485
--- /dev/null
+++ b/lib/zstd/zstd_decompress_module.c
@@ -0,0 +1,105 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (c) Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under both the BSD-style license (found in the
+ * LICENSE file in the root directory of this source tree) and the GPLv2 (found
+ * in the COPYING file in the root directory of this source tree).
+ * You may select, at your option, one of the above-listed licenses.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/string.h>
+#include <linux/zstd.h>
+
+#include "common/zstd_deps.h"
+
+/* Common symbols. zstd_compress must depend on zstd_decompress. */
+
+unsigned int zstd_is_error(size_t code)
+{
+ return ZSTD_isError(code);
+}
+EXPORT_SYMBOL(zstd_is_error);
+
+zstd_error_code zstd_get_error_code(size_t code)
+{
+ return ZSTD_getErrorCode(code);
+}
+EXPORT_SYMBOL(zstd_get_error_code);
+
+const char *zstd_get_error_name(size_t code)
+{
+ return ZSTD_getErrorName(code);
+}
+EXPORT_SYMBOL(zstd_get_error_name);
+
+/* Decompression symbols. */
+
+size_t zstd_dctx_workspace_bound(void)
+{
+ return ZSTD_estimateDCtxSize();
+}
+EXPORT_SYMBOL(zstd_dctx_workspace_bound);
+
+zstd_dctx *zstd_init_dctx(void *workspace, size_t workspace_size)
+{
+ if (workspace == NULL)
+ return NULL;
+ return ZSTD_initStaticDCtx(workspace, workspace_size);
+}
+EXPORT_SYMBOL(zstd_init_dctx);
+
+size_t zstd_decompress_dctx(zstd_dctx *dctx, void *dst, size_t dst_capacity,
+ const void *src, size_t src_size)
+{
+ return ZSTD_decompressDCtx(dctx, dst, dst_capacity, src, src_size);
+}
+EXPORT_SYMBOL(zstd_decompress_dctx);
+
+size_t zstd_dstream_workspace_bound(size_t max_window_size)
+{
+ return ZSTD_estimateDStreamSize(max_window_size);
+}
+EXPORT_SYMBOL(zstd_dstream_workspace_bound);
+
+zstd_dstream *zstd_init_dstream(size_t max_window_size, void *workspace,
+ size_t workspace_size)
+{
+ if (workspace == NULL)
+ return NULL;
+ (void)max_window_size;
+ return ZSTD_initStaticDStream(workspace, workspace_size);
+}
+EXPORT_SYMBOL(zstd_init_dstream);
+
+size_t zstd_reset_dstream(zstd_dstream *dstream)
+{
+ return ZSTD_resetDStream(dstream);
+}
+EXPORT_SYMBOL(zstd_reset_dstream);
+
+size_t zstd_decompress_stream(zstd_dstream *dstream, zstd_out_buffer *output,
+ zstd_in_buffer *input)
+{
+ return ZSTD_decompressStream(dstream, output, input);
+}
+EXPORT_SYMBOL(zstd_decompress_stream);
+
+size_t zstd_find_frame_compressed_size(const void *src, size_t src_size)
+{
+ return ZSTD_findFrameCompressedSize(src, src_size);
+}
+EXPORT_SYMBOL(zstd_find_frame_compressed_size);
+
+size_t zstd_get_frame_header(zstd_frame_header *header, const void *src,
+ size_t src_size)
+{
+ return ZSTD_getFrameHeader(header, src, src_size);
+}
+EXPORT_SYMBOL(zstd_get_frame_header);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("Zstd Decompressor");
diff --git a/lib/zstd/zstd_internal.h b/lib/zstd/zstd_internal.h
deleted file mode 100644
index dac753397f86..000000000000
--- a/lib/zstd/zstd_internal.h
+++ /dev/null
@@ -1,273 +0,0 @@
-/**
- * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-#ifndef ZSTD_CCOMMON_H_MODULE
-#define ZSTD_CCOMMON_H_MODULE
-
-/*-*******************************************************
-* Compiler specifics
-*********************************************************/
-#define FORCE_INLINE static __always_inline
-#define FORCE_NOINLINE static noinline
-
-/*-*************************************
-* Dependencies
-***************************************/
-#include "error_private.h"
-#include "mem.h"
-#include <linux/compiler.h>
-#include <linux/kernel.h>
-#include <linux/xxhash.h>
-#include <linux/zstd.h>
-
-/*-*************************************
-* shared macros
-***************************************/
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define CHECK_F(f) \
- { \
- size_t const errcod = f; \
- if (ERR_isError(errcod)) \
- return errcod; \
- } /* check and Forward error code */
-#define CHECK_E(f, e) \
- { \
- size_t const errcod = f; \
- if (ERR_isError(errcod)) \
- return ERROR(e); \
- } /* check and send Error code */
-#define ZSTD_STATIC_ASSERT(c) \
- { \
- enum { ZSTD_static_assert = 1 / (int)(!!(c)) }; \
- }
-
-/*-*************************************
-* Common constants
-***************************************/
-#define ZSTD_OPT_NUM (1 << 12)
-#define ZSTD_DICT_MAGIC 0xEC30A437 /* v0.7+ */
-
-#define ZSTD_REP_NUM 3 /* number of repcodes */
-#define ZSTD_REP_CHECK (ZSTD_REP_NUM) /* number of repcodes to check by the optimal parser */
-#define ZSTD_REP_MOVE (ZSTD_REP_NUM - 1)
-#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
-static const U32 repStartValue[ZSTD_REP_NUM] = {1, 4, 8};
-
-#define KB *(1 << 10)
-#define MB *(1 << 20)
-#define GB *(1U << 30)
-
-#define BIT7 128
-#define BIT6 64
-#define BIT5 32
-#define BIT4 16
-#define BIT1 2
-#define BIT0 1
-
-#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
-static const size_t ZSTD_fcs_fieldSize[4] = {0, 2, 4, 8};
-static const size_t ZSTD_did_fieldSize[4] = {0, 1, 2, 4};
-
-#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
-static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
-typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
-
-#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
-#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
-
-#define HufLog 12
-typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
-
-#define LONGNBSEQ 0x7F00
-
-#define MINMATCH 3
-#define EQUAL_READ32 4
-
-#define Litbits 8
-#define MaxLit ((1 << Litbits) - 1)
-#define MaxML 52
-#define MaxLL 35
-#define MaxOff 28
-#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
-#define MLFSELog 9
-#define LLFSELog 9
-#define OffFSELog 8
-
-static const U32 LL_bits[MaxLL + 1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
-static const S16 LL_defaultNorm[MaxLL + 1] = {4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, -1, -1, -1, -1};
-#define LL_DEFAULTNORMLOG 6 /* for static allocation */
-static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
-
-static const U32 ML_bits[MaxML + 1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
-static const S16 ML_defaultNorm[MaxML + 1] = {1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1};
-#define ML_DEFAULTNORMLOG 6 /* for static allocation */
-static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
-
-static const S16 OF_defaultNorm[MaxOff + 1] = {1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1};
-#define OF_DEFAULTNORMLOG 5 /* for static allocation */
-static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
-
-/*-*******************************************
-* Shared functions to include for inlining
-*********************************************/
-ZSTD_STATIC void ZSTD_copy8(void *dst, const void *src) {
- /*
- * zstd relies heavily on gcc being able to analyze and inline this
- * memcpy() call, since it is called in a tight loop. Preboot mode
- * is compiled in freestanding mode, which stops gcc from analyzing
- * memcpy(). Use __builtin_memcpy() to tell gcc to analyze this as a
- * regular memcpy().
- */
- __builtin_memcpy(dst, src, 8);
-}
-/*! ZSTD_wildcopy() :
-* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
-#define WILDCOPY_OVERLENGTH 8
-ZSTD_STATIC void ZSTD_wildcopy(void *dst, const void *src, ptrdiff_t length)
-{
- const BYTE* ip = (const BYTE*)src;
- BYTE* op = (BYTE*)dst;
- BYTE* const oend = op + length;
-#if defined(GCC_VERSION) && GCC_VERSION >= 70000 && GCC_VERSION < 70200
- /*
- * Work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81388.
- * Avoid the bad case where the loop only runs once by handling the
- * special case separately. This doesn't trigger the bug because it
- * doesn't involve pointer/integer overflow.
- */
- if (length <= 8)
- return ZSTD_copy8(dst, src);
-#endif
- do {
- ZSTD_copy8(op, ip);
- op += 8;
- ip += 8;
- } while (op < oend);
-}
-
-/*-*******************************************
-* Private interfaces
-*********************************************/
-typedef struct ZSTD_stats_s ZSTD_stats_t;
-
-typedef struct {
- U32 off;
- U32 len;
-} ZSTD_match_t;
-
-typedef struct {
- U32 price;
- U32 off;
- U32 mlen;
- U32 litlen;
- U32 rep[ZSTD_REP_NUM];
-} ZSTD_optimal_t;
-
-typedef struct seqDef_s {
- U32 offset;
- U16 litLength;
- U16 matchLength;
-} seqDef;
-
-typedef struct {
- seqDef *sequencesStart;
- seqDef *sequences;
- BYTE *litStart;
- BYTE *lit;
- BYTE *llCode;
- BYTE *mlCode;
- BYTE *ofCode;
- U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
- U32 longLengthPos;
- /* opt */
- ZSTD_optimal_t *priceTable;
- ZSTD_match_t *matchTable;
- U32 *matchLengthFreq;
- U32 *litLengthFreq;
- U32 *litFreq;
- U32 *offCodeFreq;
- U32 matchLengthSum;
- U32 matchSum;
- U32 litLengthSum;
- U32 litSum;
- U32 offCodeSum;
- U32 log2matchLengthSum;
- U32 log2matchSum;
- U32 log2litLengthSum;
- U32 log2litSum;
- U32 log2offCodeSum;
- U32 factor;
- U32 staticPrices;
- U32 cachedPrice;
- U32 cachedLitLength;
- const BYTE *cachedLiterals;
-} seqStore_t;
-
-const seqStore_t *ZSTD_getSeqStore(const ZSTD_CCtx *ctx);
-void ZSTD_seqToCodes(const seqStore_t *seqStorePtr);
-int ZSTD_isSkipFrame(ZSTD_DCtx *dctx);
-
-/*= Custom memory allocation functions */
-typedef void *(*ZSTD_allocFunction)(void *opaque, size_t size);
-typedef void (*ZSTD_freeFunction)(void *opaque, void *address);
-typedef struct {
- ZSTD_allocFunction customAlloc;
- ZSTD_freeFunction customFree;
- void *opaque;
-} ZSTD_customMem;
-
-void *ZSTD_malloc(size_t size, ZSTD_customMem customMem);
-void ZSTD_free(void *ptr, ZSTD_customMem customMem);
-
-/*====== stack allocation ======*/
-
-typedef struct {
- void *ptr;
- const void *end;
-} ZSTD_stack;
-
-#define ZSTD_ALIGN(x) ALIGN(x, sizeof(size_t))
-#define ZSTD_PTR_ALIGN(p) PTR_ALIGN(p, sizeof(size_t))
-
-ZSTD_customMem ZSTD_initStack(void *workspace, size_t workspaceSize);
-
-void *ZSTD_stackAllocAll(void *opaque, size_t *size);
-void *ZSTD_stackAlloc(void *opaque, size_t size);
-void ZSTD_stackFree(void *opaque, void *address);
-
-/*====== common function ======*/
-
-ZSTD_STATIC U32 ZSTD_highbit32(U32 val) { return 31 - __builtin_clz(val); }
-
-/* hidden functions */
-
-/* ZSTD_invalidateRepCodes() :
- * ensures next compression will not use repcodes from previous block.
- * Note : only works with regular variant;
- * do not use with extDict variant ! */
-void ZSTD_invalidateRepCodes(ZSTD_CCtx *cctx);
-
-size_t ZSTD_freeCCtx(ZSTD_CCtx *cctx);
-size_t ZSTD_freeDCtx(ZSTD_DCtx *dctx);
-size_t ZSTD_freeCDict(ZSTD_CDict *cdict);
-size_t ZSTD_freeDDict(ZSTD_DDict *cdict);
-size_t ZSTD_freeCStream(ZSTD_CStream *zcs);
-size_t ZSTD_freeDStream(ZSTD_DStream *zds);
-
-#endif /* ZSTD_CCOMMON_H_MODULE */
diff --git a/lib/zstd/zstd_opt.h b/lib/zstd/zstd_opt.h
deleted file mode 100644
index 55e1b4cba808..000000000000
--- a/lib/zstd/zstd_opt.h
+++ /dev/null
@@ -1,1014 +0,0 @@
-/**
- * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
- * All rights reserved.
- *
- * This source code is licensed under the BSD-style license found in the
- * LICENSE file in the root directory of https://github.com/facebook/zstd.
- * An additional grant of patent rights can be found in the PATENTS file in the
- * same directory.
- *
- * This program is free software; you can redistribute it and/or modify it under
- * the terms of the GNU General Public License version 2 as published by the
- * Free Software Foundation. This program is dual-licensed; you may select
- * either version 2 of the GNU General Public License ("GPL") or BSD license
- * ("BSD").
- */
-
-/* Note : this file is intended to be included within zstd_compress.c */
-
-#ifndef ZSTD_OPT_H_91842398743
-#define ZSTD_OPT_H_91842398743
-
-#define ZSTD_LITFREQ_ADD 2
-#define ZSTD_FREQ_DIV 4
-#define ZSTD_MAX_PRICE (1 << 30)
-
-/*-*************************************
-* Price functions for optimal parser
-***************************************/
-FORCE_INLINE void ZSTD_setLog2Prices(seqStore_t *ssPtr)
-{
- ssPtr->log2matchLengthSum = ZSTD_highbit32(ssPtr->matchLengthSum + 1);
- ssPtr->log2litLengthSum = ZSTD_highbit32(ssPtr->litLengthSum + 1);
- ssPtr->log2litSum = ZSTD_highbit32(ssPtr->litSum + 1);
- ssPtr->log2offCodeSum = ZSTD_highbit32(ssPtr->offCodeSum + 1);
- ssPtr->factor = 1 + ((ssPtr->litSum >> 5) / ssPtr->litLengthSum) + ((ssPtr->litSum << 1) / (ssPtr->litSum + ssPtr->matchSum));
-}
-
-ZSTD_STATIC void ZSTD_rescaleFreqs(seqStore_t *ssPtr, const BYTE *src, size_t srcSize)
-{
- unsigned u;
-
- ssPtr->cachedLiterals = NULL;
- ssPtr->cachedPrice = ssPtr->cachedLitLength = 0;
- ssPtr->staticPrices = 0;
-
- if (ssPtr->litLengthSum == 0) {
- if (srcSize <= 1024)
- ssPtr->staticPrices = 1;
-
- for (u = 0; u <= MaxLit; u++)
- ssPtr->litFreq[u] = 0;
- for (u = 0; u < srcSize; u++)
- ssPtr->litFreq[src[u]]++;
-
- ssPtr->litSum = 0;
- ssPtr->litLengthSum = MaxLL + 1;
- ssPtr->matchLengthSum = MaxML + 1;
- ssPtr->offCodeSum = (MaxOff + 1);
- ssPtr->matchSum = (ZSTD_LITFREQ_ADD << Litbits);
-
- for (u = 0; u <= MaxLit; u++) {
- ssPtr->litFreq[u] = 1 + (ssPtr->litFreq[u] >> ZSTD_FREQ_DIV);
- ssPtr->litSum += ssPtr->litFreq[u];
- }
- for (u = 0; u <= MaxLL; u++)
- ssPtr->litLengthFreq[u] = 1;
- for (u = 0; u <= MaxML; u++)
- ssPtr->matchLengthFreq[u] = 1;
- for (u = 0; u <= MaxOff; u++)
- ssPtr->offCodeFreq[u] = 1;
- } else {
- ssPtr->matchLengthSum = 0;
- ssPtr->litLengthSum = 0;
- ssPtr->offCodeSum = 0;
- ssPtr->matchSum = 0;
- ssPtr->litSum = 0;
-
- for (u = 0; u <= MaxLit; u++) {
- ssPtr->litFreq[u] = 1 + (ssPtr->litFreq[u] >> (ZSTD_FREQ_DIV + 1));
- ssPtr->litSum += ssPtr->litFreq[u];
- }
- for (u = 0; u <= MaxLL; u++) {
- ssPtr->litLengthFreq[u] = 1 + (ssPtr->litLengthFreq[u] >> (ZSTD_FREQ_DIV + 1));
- ssPtr->litLengthSum += ssPtr->litLengthFreq[u];
- }
- for (u = 0; u <= MaxML; u++) {
- ssPtr->matchLengthFreq[u] = 1 + (ssPtr->matchLengthFreq[u] >> ZSTD_FREQ_DIV);
- ssPtr->matchLengthSum += ssPtr->matchLengthFreq[u];
- ssPtr->matchSum += ssPtr->matchLengthFreq[u] * (u + 3);
- }
- ssPtr->matchSum *= ZSTD_LITFREQ_ADD;
- for (u = 0; u <= MaxOff; u++) {
- ssPtr->offCodeFreq[u] = 1 + (ssPtr->offCodeFreq[u] >> ZSTD_FREQ_DIV);
- ssPtr->offCodeSum += ssPtr->offCodeFreq[u];
- }
- }
-
- ZSTD_setLog2Prices(ssPtr);
-}
-
-FORCE_INLINE U32 ZSTD_getLiteralPrice(seqStore_t *ssPtr, U32 litLength, const BYTE *literals)
-{
- U32 price, u;
-
- if (ssPtr->staticPrices)
- return ZSTD_highbit32((U32)litLength + 1) + (litLength * 6);
-
- if (litLength == 0)
- return ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[0] + 1);
-
- /* literals */
- if (ssPtr->cachedLiterals == literals) {
- U32 const additional = litLength - ssPtr->cachedLitLength;
- const BYTE *literals2 = ssPtr->cachedLiterals + ssPtr->cachedLitLength;
- price = ssPtr->cachedPrice + additional * ssPtr->log2litSum;
- for (u = 0; u < additional; u++)
- price -= ZSTD_highbit32(ssPtr->litFreq[literals2[u]] + 1);
- ssPtr->cachedPrice = price;
- ssPtr->cachedLitLength = litLength;
- } else {
- price = litLength * ssPtr->log2litSum;
- for (u = 0; u < litLength; u++)
- price -= ZSTD_highbit32(ssPtr->litFreq[literals[u]] + 1);
-
- if (litLength >= 12) {
- ssPtr->cachedLiterals = literals;
- ssPtr->cachedPrice = price;
- ssPtr->cachedLitLength = litLength;
- }
- }
-
- /* literal Length */
- {
- const BYTE LL_deltaCode = 19;
- const BYTE llCode = (litLength > 63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
- price += LL_bits[llCode] + ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[llCode] + 1);
- }
-
- return price;
-}
-
-FORCE_INLINE U32 ZSTD_getPrice(seqStore_t *seqStorePtr, U32 litLength, const BYTE *literals, U32 offset, U32 matchLength, const int ultra)
-{
- /* offset */
- U32 price;
- BYTE const offCode = (BYTE)ZSTD_highbit32(offset + 1);
-
- if (seqStorePtr->staticPrices)
- return ZSTD_getLiteralPrice(seqStorePtr, litLength, literals) + ZSTD_highbit32((U32)matchLength + 1) + 16 + offCode;
-
- price = offCode + seqStorePtr->log2offCodeSum - ZSTD_highbit32(seqStorePtr->offCodeFreq[offCode] + 1);
- if (!ultra && offCode >= 20)
- price += (offCode - 19) * 2;
-
- /* match Length */
- {
- const BYTE ML_deltaCode = 36;
- const BYTE mlCode = (matchLength > 127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
- price += ML_bits[mlCode] + seqStorePtr->log2matchLengthSum - ZSTD_highbit32(seqStorePtr->matchLengthFreq[mlCode] + 1);
- }
-
- return price + ZSTD_getLiteralPrice(seqStorePtr, litLength, literals) + seqStorePtr->factor;
-}
-
-ZSTD_STATIC void ZSTD_updatePrice(seqStore_t *seqStorePtr, U32 litLength, const BYTE *literals, U32 offset, U32 matchLength)
-{
- U32 u;
-
- /* literals */
- seqStorePtr->litSum += litLength * ZSTD_LITFREQ_ADD;
- for (u = 0; u < litLength; u++)
- seqStorePtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
-
- /* literal Length */
- {
- const BYTE LL_deltaCode = 19;
- const BYTE llCode = (litLength > 63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
- seqStorePtr->litLengthFreq[llCode]++;
- seqStorePtr->litLengthSum++;
- }
-
- /* match offset */
- {
- BYTE const offCode = (BYTE)ZSTD_highbit32(offset + 1);
- seqStorePtr->offCodeSum++;
- seqStorePtr->offCodeFreq[offCode]++;
- }
-
- /* match Length */
- {
- const BYTE ML_deltaCode = 36;
- const BYTE mlCode = (matchLength > 127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
- seqStorePtr->matchLengthFreq[mlCode]++;
- seqStorePtr->matchLengthSum++;
- }
-
- ZSTD_setLog2Prices(seqStorePtr);
-}
-
-#define SET_PRICE(pos, mlen_, offset_, litlen_, price_) \
- { \
- while (last_pos < pos) { \
- opt[last_pos + 1].price = ZSTD_MAX_PRICE; \
- last_pos++; \
- } \
- opt[pos].mlen = mlen_; \
- opt[pos].off = offset_; \
- opt[pos].litlen = litlen_; \
- opt[pos].price = price_; \
- }
-
-/* Update hashTable3 up to ip (excluded)
- Assumption : always within prefix (i.e. not within extDict) */
-FORCE_INLINE
-U32 ZSTD_insertAndFindFirstIndexHash3(ZSTD_CCtx *zc, const BYTE *ip)
-{
- U32 *const hashTable3 = zc->hashTable3;
- U32 const hashLog3 = zc->hashLog3;
- const BYTE *const base = zc->base;
- U32 idx = zc->nextToUpdate3;
- const U32 target = zc->nextToUpdate3 = (U32)(ip - base);
- const size_t hash3 = ZSTD_hash3Ptr(ip, hashLog3);
-
- while (idx < target) {
- hashTable3[ZSTD_hash3Ptr(base + idx, hashLog3)] = idx;
- idx++;
- }
-
- return hashTable3[hash3];
-}
-
-/*-*************************************
-* Binary Tree search
-***************************************/
-static U32 ZSTD_insertBtAndGetAllMatches(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, U32 nbCompares, const U32 mls, U32 extDict,
- ZSTD_match_t *matches, const U32 minMatchLen)
-{
- const BYTE *const base = zc->base;
- const U32 curr = (U32)(ip - base);
- const U32 hashLog = zc->params.cParams.hashLog;
- const size_t h = ZSTD_hashPtr(ip, hashLog, mls);
- U32 *const hashTable = zc->hashTable;
- U32 matchIndex = hashTable[h];
- U32 *const bt = zc->chainTable;
- const U32 btLog = zc->params.cParams.chainLog - 1;
- const U32 btMask = (1U << btLog) - 1;
- size_t commonLengthSmaller = 0, commonLengthLarger = 0;
- const BYTE *const dictBase = zc->dictBase;
- const U32 dictLimit = zc->dictLimit;
- const BYTE *const dictEnd = dictBase + dictLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const U32 btLow = btMask >= curr ? 0 : curr - btMask;
- const U32 windowLow = zc->lowLimit;
- U32 *smallerPtr = bt + 2 * (curr & btMask);
- U32 *largerPtr = bt + 2 * (curr & btMask) + 1;
- U32 matchEndIdx = curr + 8;
- U32 dummy32; /* to be nullified at the end */
- U32 mnum = 0;
-
- const U32 minMatch = (mls == 3) ? 3 : 4;
- size_t bestLength = minMatchLen - 1;
-
- if (minMatch == 3) { /* HC3 match finder */
- U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(zc, ip);
- if (matchIndex3 > windowLow && (curr - matchIndex3 < (1 << 18))) {
- const BYTE *match;
- size_t currMl = 0;
- if ((!extDict) || matchIndex3 >= dictLimit) {
- match = base + matchIndex3;
- if (match[bestLength] == ip[bestLength])
- currMl = ZSTD_count(ip, match, iLimit);
- } else {
- match = dictBase + matchIndex3;
- if (ZSTD_readMINMATCH(match, MINMATCH) ==
- ZSTD_readMINMATCH(ip, MINMATCH)) /* assumption : matchIndex3 <= dictLimit-4 (by table construction) */
- currMl = ZSTD_count_2segments(ip + MINMATCH, match + MINMATCH, iLimit, dictEnd, prefixStart) + MINMATCH;
- }
-
- /* save best solution */
- if (currMl > bestLength) {
- bestLength = currMl;
- matches[mnum].off = ZSTD_REP_MOVE_OPT + curr - matchIndex3;
- matches[mnum].len = (U32)currMl;
- mnum++;
- if (currMl > ZSTD_OPT_NUM)
- goto update;
- if (ip + currMl == iLimit)
- goto update; /* best possible, and avoid read overflow*/
- }
- }
- }
-
- hashTable[h] = curr; /* Update Hash Table */
-
- while (nbCompares-- && (matchIndex > windowLow)) {
- U32 *nextPtr = bt + 2 * (matchIndex & btMask);
- size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
- const BYTE *match;
-
- if ((!extDict) || (matchIndex + matchLength >= dictLimit)) {
- match = base + matchIndex;
- if (match[matchLength] == ip[matchLength]) {
- matchLength += ZSTD_count(ip + matchLength + 1, match + matchLength + 1, iLimit) + 1;
- }
- } else {
- match = dictBase + matchIndex;
- matchLength += ZSTD_count_2segments(ip + matchLength, match + matchLength, iLimit, dictEnd, prefixStart);
- if (matchIndex + matchLength >= dictLimit)
- match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
- }
-
- if (matchLength > bestLength) {
- if (matchLength > matchEndIdx - matchIndex)
- matchEndIdx = matchIndex + (U32)matchLength;
- bestLength = matchLength;
- matches[mnum].off = ZSTD_REP_MOVE_OPT + curr - matchIndex;
- matches[mnum].len = (U32)matchLength;
- mnum++;
- if (matchLength > ZSTD_OPT_NUM)
- break;
- if (ip + matchLength == iLimit) /* equal : no way to know if inf or sup */
- break; /* drop, to guarantee consistency (miss a little bit of compression) */
- }
-
- if (match[matchLength] < ip[matchLength]) {
- /* match is smaller than curr */
- *smallerPtr = matchIndex; /* update smaller idx */
- commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
- if (matchIndex <= btLow) {
- smallerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- smallerPtr = nextPtr + 1; /* new "smaller" => larger of match */
- matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
- } else {
- /* match is larger than curr */
- *largerPtr = matchIndex;
- commonLengthLarger = matchLength;
- if (matchIndex <= btLow) {
- largerPtr = &dummy32;
- break;
- } /* beyond tree size, stop the search */
- largerPtr = nextPtr;
- matchIndex = nextPtr[0];
- }
- }
-
- *smallerPtr = *largerPtr = 0;
-
-update:
- zc->nextToUpdate = (matchEndIdx > curr + 8) ? matchEndIdx - 8 : curr + 1;
- return mnum;
-}
-
-/** Tree updater, providing best match */
-static U32 ZSTD_BtGetAllMatches(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, const U32 maxNbAttempts, const U32 mls, ZSTD_match_t *matches,
- const U32 minMatchLen)
-{
- if (ip < zc->base + zc->nextToUpdate)
- return 0; /* skipped area */
- ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
- return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 0, matches, minMatchLen);
-}
-
-static U32 ZSTD_BtGetAllMatches_selectMLS(ZSTD_CCtx *zc, /* Index table will be updated */
- const BYTE *ip, const BYTE *const iHighLimit, const U32 maxNbAttempts, const U32 matchLengthSearch,
- ZSTD_match_t *matches, const U32 minMatchLen)
-{
- switch (matchLengthSearch) {
- case 3: return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
- default:
- case 4: return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
- case 5: return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
- case 7:
- case 6: return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
- }
-}
-
-/** Tree updater, providing best match */
-static U32 ZSTD_BtGetAllMatches_extDict(ZSTD_CCtx *zc, const BYTE *const ip, const BYTE *const iLimit, const U32 maxNbAttempts, const U32 mls,
- ZSTD_match_t *matches, const U32 minMatchLen)
-{
- if (ip < zc->base + zc->nextToUpdate)
- return 0; /* skipped area */
- ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
- return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 1, matches, minMatchLen);
-}
-
-static U32 ZSTD_BtGetAllMatches_selectMLS_extDict(ZSTD_CCtx *zc, /* Index table will be updated */
- const BYTE *ip, const BYTE *const iHighLimit, const U32 maxNbAttempts, const U32 matchLengthSearch,
- ZSTD_match_t *matches, const U32 minMatchLen)
-{
- switch (matchLengthSearch) {
- case 3: return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
- default:
- case 4: return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
- case 5: return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
- case 7:
- case 6: return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
- }
-}
-
-/*-*******************************
-* Optimal parser
-*********************************/
-FORCE_INLINE
-void ZSTD_compressBlock_opt_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const int ultra)
-{
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- const BYTE *const base = ctx->base;
- const BYTE *const prefixStart = base + ctx->dictLimit;
-
- const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
- const U32 sufficient_len = ctx->params.cParams.targetLength;
- const U32 mls = ctx->params.cParams.searchLength;
- const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
-
- ZSTD_optimal_t *opt = seqStorePtr->priceTable;
- ZSTD_match_t *matches = seqStorePtr->matchTable;
- const BYTE *inr;
- U32 offset, rep[ZSTD_REP_NUM];
-
- /* init */
- ctx->nextToUpdate3 = ctx->nextToUpdate;
- ZSTD_rescaleFreqs(seqStorePtr, (const BYTE *)src, srcSize);
- ip += (ip == prefixStart);
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- rep[i] = ctx->rep[i];
- }
-
- /* Match Loop */
- while (ip < ilimit) {
- U32 cur, match_num, last_pos, litlen, price;
- U32 u, mlen, best_mlen, best_off, litLength;
- memset(opt, 0, sizeof(ZSTD_optimal_t));
- last_pos = 0;
- litlen = (U32)(ip - anchor);
-
- /* check repCode */
- {
- U32 i, last_i = ZSTD_REP_CHECK + (ip == anchor);
- for (i = (ip == anchor); i < last_i; i++) {
- const S32 repCur = (i == ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
- if ((repCur > 0) && (repCur < (S32)(ip - prefixStart)) &&
- (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repCur, minMatch))) {
- mlen = (U32)ZSTD_count(ip + minMatch, ip + minMatch - repCur, iend) + minMatch;
- if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
- best_mlen = mlen;
- best_off = i;
- cur = 0;
- last_pos = 1;
- goto _storeSequence;
- }
- best_off = i - (ip == anchor);
- do {
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
- if (mlen > last_pos || price < opt[mlen].price)
- SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
- mlen--;
- } while (mlen >= minMatch);
- }
- }
- }
-
- match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, ip, iend, maxSearches, mls, matches, minMatch);
-
- if (!last_pos && !match_num) {
- ip++;
- continue;
- }
-
- if (match_num && (matches[match_num - 1].len > sufficient_len || matches[match_num - 1].len >= ZSTD_OPT_NUM)) {
- best_mlen = matches[match_num - 1].len;
- best_off = matches[match_num - 1].off;
- cur = 0;
- last_pos = 1;
- goto _storeSequence;
- }
-
- /* set prices using matches at position = 0 */
- best_mlen = (last_pos) ? last_pos : minMatch;
- for (u = 0; u < match_num; u++) {
- mlen = (u > 0) ? matches[u - 1].len + 1 : best_mlen;
- best_mlen = matches[u].len;
- while (mlen <= best_mlen) {
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off - 1, mlen - MINMATCH, ultra);
- if (mlen > last_pos || price < opt[mlen].price)
- SET_PRICE(mlen, mlen, matches[u].off, litlen, price); /* note : macro modifies last_pos */
- mlen++;
- }
- }
-
- if (last_pos < minMatch) {
- ip++;
- continue;
- }
-
- /* initialize opt[0] */
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- opt[0].rep[i] = rep[i];
- }
- opt[0].mlen = 1;
- opt[0].litlen = litlen;
-
- /* check further positions */
- for (cur = 1; cur <= last_pos; cur++) {
- inr = ip + cur;
-
- if (opt[cur - 1].mlen == 1) {
- litlen = opt[cur - 1].litlen + 1;
- if (cur > litlen) {
- price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr - litlen);
- } else
- price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
- } else {
- litlen = 1;
- price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr - 1);
- }
-
- if (cur > last_pos || price <= opt[cur].price)
- SET_PRICE(cur, 1, 0, litlen, price);
-
- if (cur == last_pos)
- break;
-
- if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
- continue;
-
- mlen = opt[cur].mlen;
- if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
- opt[cur].rep[2] = opt[cur - mlen].rep[1];
- opt[cur].rep[1] = opt[cur - mlen].rep[0];
- opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
- } else {
- opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur - mlen].rep[1] : opt[cur - mlen].rep[2];
- opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur - mlen].rep[0] : opt[cur - mlen].rep[1];
- opt[cur].rep[0] =
- ((opt[cur].off == ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur - mlen].rep[0] - 1) : (opt[cur - mlen].rep[opt[cur].off]);
- }
-
- best_mlen = minMatch;
- {
- U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
- for (i = (opt[cur].mlen != 1); i < last_i; i++) { /* check rep */
- const S32 repCur = (i == ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
- if ((repCur > 0) && (repCur < (S32)(inr - prefixStart)) &&
- (ZSTD_readMINMATCH(inr, minMatch) == ZSTD_readMINMATCH(inr - repCur, minMatch))) {
- mlen = (U32)ZSTD_count(inr + minMatch, inr + minMatch - repCur, iend) + minMatch;
-
- if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
- best_mlen = mlen;
- best_off = i;
- last_pos = cur + 1;
- goto _storeSequence;
- }
-
- best_off = i - (opt[cur].mlen != 1);
- if (mlen > best_mlen)
- best_mlen = mlen;
-
- do {
- if (opt[cur].mlen == 1) {
- litlen = opt[cur].litlen;
- if (cur > litlen) {
- price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr - litlen,
- best_off, mlen - MINMATCH, ultra);
- } else
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
- } else {
- litlen = 0;
- price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
- }
-
- if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
- SET_PRICE(cur + mlen, mlen, i, litlen, price);
- mlen--;
- } while (mlen >= minMatch);
- }
- }
- }
-
- match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, inr, iend, maxSearches, mls, matches, best_mlen);
-
- if (match_num > 0 && (matches[match_num - 1].len > sufficient_len || cur + matches[match_num - 1].len >= ZSTD_OPT_NUM)) {
- best_mlen = matches[match_num - 1].len;
- best_off = matches[match_num - 1].off;
- last_pos = cur + 1;
- goto _storeSequence;
- }
-
- /* set prices using matches at position = cur */
- for (u = 0; u < match_num; u++) {
- mlen = (u > 0) ? matches[u - 1].len + 1 : best_mlen;
- best_mlen = matches[u].len;
-
- while (mlen <= best_mlen) {
- if (opt[cur].mlen == 1) {
- litlen = opt[cur].litlen;
- if (cur > litlen)
- price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip + cur - litlen,
- matches[u].off - 1, mlen - MINMATCH, ultra);
- else
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off - 1, mlen - MINMATCH, ultra);
- } else {
- litlen = 0;
- price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off - 1, mlen - MINMATCH, ultra);
- }
-
- if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
- SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
-
- mlen++;
- }
- }
- }
-
- best_mlen = opt[last_pos].mlen;
- best_off = opt[last_pos].off;
- cur = last_pos - best_mlen;
-
- /* store sequence */
-_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
- opt[0].mlen = 1;
-
- while (1) {
- mlen = opt[cur].mlen;
- offset = opt[cur].off;
- opt[cur].mlen = best_mlen;
- opt[cur].off = best_off;
- best_mlen = mlen;
- best_off = offset;
- if (mlen > cur)
- break;
- cur -= mlen;
- }
-
- for (u = 0; u <= last_pos;) {
- u += opt[u].mlen;
- }
-
- for (cur = 0; cur < last_pos;) {
- mlen = opt[cur].mlen;
- if (mlen == 1) {
- ip++;
- cur++;
- continue;
- }
- offset = opt[cur].off;
- cur += mlen;
- litLength = (U32)(ip - anchor);
-
- if (offset > ZSTD_REP_MOVE_OPT) {
- rep[2] = rep[1];
- rep[1] = rep[0];
- rep[0] = offset - ZSTD_REP_MOVE_OPT;
- offset--;
- } else {
- if (offset != 0) {
- best_off = (offset == ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
- if (offset != 1)
- rep[2] = rep[1];
- rep[1] = rep[0];
- rep[0] = best_off;
- }
- if (litLength == 0)
- offset--;
- }
-
- ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen - MINMATCH);
- ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen - MINMATCH);
- anchor = ip = ip + mlen;
- }
- } /* for (cur=0; cur < last_pos; ) */
-
- /* Save reps for next block */
- {
- int i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- ctx->repToConfirm[i] = rep[i];
- }
-
- /* Last Literals */
- {
- size_t const lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-FORCE_INLINE
-void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx *ctx, const void *src, size_t srcSize, const int ultra)
-{
- seqStore_t *seqStorePtr = &(ctx->seqStore);
- const BYTE *const istart = (const BYTE *)src;
- const BYTE *ip = istart;
- const BYTE *anchor = istart;
- const BYTE *const iend = istart + srcSize;
- const BYTE *const ilimit = iend - 8;
- const BYTE *const base = ctx->base;
- const U32 lowestIndex = ctx->lowLimit;
- const U32 dictLimit = ctx->dictLimit;
- const BYTE *const prefixStart = base + dictLimit;
- const BYTE *const dictBase = ctx->dictBase;
- const BYTE *const dictEnd = dictBase + dictLimit;
-
- const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
- const U32 sufficient_len = ctx->params.cParams.targetLength;
- const U32 mls = ctx->params.cParams.searchLength;
- const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
-
- ZSTD_optimal_t *opt = seqStorePtr->priceTable;
- ZSTD_match_t *matches = seqStorePtr->matchTable;
- const BYTE *inr;
-
- /* init */
- U32 offset, rep[ZSTD_REP_NUM];
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- rep[i] = ctx->rep[i];
- }
-
- ctx->nextToUpdate3 = ctx->nextToUpdate;
- ZSTD_rescaleFreqs(seqStorePtr, (const BYTE *)src, srcSize);
- ip += (ip == prefixStart);
-
- /* Match Loop */
- while (ip < ilimit) {
- U32 cur, match_num, last_pos, litlen, price;
- U32 u, mlen, best_mlen, best_off, litLength;
- U32 curr = (U32)(ip - base);
- memset(opt, 0, sizeof(ZSTD_optimal_t));
- last_pos = 0;
- opt[0].litlen = (U32)(ip - anchor);
-
- /* check repCode */
- {
- U32 i, last_i = ZSTD_REP_CHECK + (ip == anchor);
- for (i = (ip == anchor); i < last_i; i++) {
- const S32 repCur = (i == ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
- const U32 repIndex = (U32)(curr - repCur);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if ((repCur > 0 && repCur <= (S32)curr) &&
- (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch))) {
- /* repcode detected we should take it */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- mlen = (U32)ZSTD_count_2segments(ip + minMatch, repMatch + minMatch, iend, repEnd, prefixStart) + minMatch;
-
- if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
- best_mlen = mlen;
- best_off = i;
- cur = 0;
- last_pos = 1;
- goto _storeSequence;
- }
-
- best_off = i - (ip == anchor);
- litlen = opt[0].litlen;
- do {
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
- if (mlen > last_pos || price < opt[mlen].price)
- SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
- mlen--;
- } while (mlen >= minMatch);
- }
- }
- }
-
- match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, ip, iend, maxSearches, mls, matches, minMatch); /* first search (depth 0) */
-
- if (!last_pos && !match_num) {
- ip++;
- continue;
- }
-
- {
- U32 i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- opt[0].rep[i] = rep[i];
- }
- opt[0].mlen = 1;
-
- if (match_num && (matches[match_num - 1].len > sufficient_len || matches[match_num - 1].len >= ZSTD_OPT_NUM)) {
- best_mlen = matches[match_num - 1].len;
- best_off = matches[match_num - 1].off;
- cur = 0;
- last_pos = 1;
- goto _storeSequence;
- }
-
- best_mlen = (last_pos) ? last_pos : minMatch;
-
- /* set prices using matches at position = 0 */
- for (u = 0; u < match_num; u++) {
- mlen = (u > 0) ? matches[u - 1].len + 1 : best_mlen;
- best_mlen = matches[u].len;
- litlen = opt[0].litlen;
- while (mlen <= best_mlen) {
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off - 1, mlen - MINMATCH, ultra);
- if (mlen > last_pos || price < opt[mlen].price)
- SET_PRICE(mlen, mlen, matches[u].off, litlen, price);
- mlen++;
- }
- }
-
- if (last_pos < minMatch) {
- ip++;
- continue;
- }
-
- /* check further positions */
- for (cur = 1; cur <= last_pos; cur++) {
- inr = ip + cur;
-
- if (opt[cur - 1].mlen == 1) {
- litlen = opt[cur - 1].litlen + 1;
- if (cur > litlen) {
- price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr - litlen);
- } else
- price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
- } else {
- litlen = 1;
- price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr - 1);
- }
-
- if (cur > last_pos || price <= opt[cur].price)
- SET_PRICE(cur, 1, 0, litlen, price);
-
- if (cur == last_pos)
- break;
-
- if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
- continue;
-
- mlen = opt[cur].mlen;
- if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
- opt[cur].rep[2] = opt[cur - mlen].rep[1];
- opt[cur].rep[1] = opt[cur - mlen].rep[0];
- opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
- } else {
- opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur - mlen].rep[1] : opt[cur - mlen].rep[2];
- opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur - mlen].rep[0] : opt[cur - mlen].rep[1];
- opt[cur].rep[0] =
- ((opt[cur].off == ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur - mlen].rep[0] - 1) : (opt[cur - mlen].rep[opt[cur].off]);
- }
-
- best_mlen = minMatch;
- {
- U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
- for (i = (mlen != 1); i < last_i; i++) {
- const S32 repCur = (i == ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
- const U32 repIndex = (U32)(curr + cur - repCur);
- const BYTE *const repBase = repIndex < dictLimit ? dictBase : base;
- const BYTE *const repMatch = repBase + repIndex;
- if ((repCur > 0 && repCur <= (S32)(curr + cur)) &&
- (((U32)((dictLimit - 1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
- && (ZSTD_readMINMATCH(inr, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch))) {
- /* repcode detected */
- const BYTE *const repEnd = repIndex < dictLimit ? dictEnd : iend;
- mlen = (U32)ZSTD_count_2segments(inr + minMatch, repMatch + minMatch, iend, repEnd, prefixStart) + minMatch;
-
- if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
- best_mlen = mlen;
- best_off = i;
- last_pos = cur + 1;
- goto _storeSequence;
- }
-
- best_off = i - (opt[cur].mlen != 1);
- if (mlen > best_mlen)
- best_mlen = mlen;
-
- do {
- if (opt[cur].mlen == 1) {
- litlen = opt[cur].litlen;
- if (cur > litlen) {
- price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr - litlen,
- best_off, mlen - MINMATCH, ultra);
- } else
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
- } else {
- litlen = 0;
- price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
- }
-
- if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
- SET_PRICE(cur + mlen, mlen, i, litlen, price);
- mlen--;
- } while (mlen >= minMatch);
- }
- }
- }
-
- match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, inr, iend, maxSearches, mls, matches, minMatch);
-
- if (match_num > 0 && (matches[match_num - 1].len > sufficient_len || cur + matches[match_num - 1].len >= ZSTD_OPT_NUM)) {
- best_mlen = matches[match_num - 1].len;
- best_off = matches[match_num - 1].off;
- last_pos = cur + 1;
- goto _storeSequence;
- }
-
- /* set prices using matches at position = cur */
- for (u = 0; u < match_num; u++) {
- mlen = (u > 0) ? matches[u - 1].len + 1 : best_mlen;
- best_mlen = matches[u].len;
-
- while (mlen <= best_mlen) {
- if (opt[cur].mlen == 1) {
- litlen = opt[cur].litlen;
- if (cur > litlen)
- price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip + cur - litlen,
- matches[u].off - 1, mlen - MINMATCH, ultra);
- else
- price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off - 1, mlen - MINMATCH, ultra);
- } else {
- litlen = 0;
- price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off - 1, mlen - MINMATCH, ultra);
- }
-
- if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
- SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
-
- mlen++;
- }
- }
- } /* for (cur = 1; cur <= last_pos; cur++) */
-
- best_mlen = opt[last_pos].mlen;
- best_off = opt[last_pos].off;
- cur = last_pos - best_mlen;
-
- /* store sequence */
-_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
- opt[0].mlen = 1;
-
- while (1) {
- mlen = opt[cur].mlen;
- offset = opt[cur].off;
- opt[cur].mlen = best_mlen;
- opt[cur].off = best_off;
- best_mlen = mlen;
- best_off = offset;
- if (mlen > cur)
- break;
- cur -= mlen;
- }
-
- for (u = 0; u <= last_pos;) {
- u += opt[u].mlen;
- }
-
- for (cur = 0; cur < last_pos;) {
- mlen = opt[cur].mlen;
- if (mlen == 1) {
- ip++;
- cur++;
- continue;
- }
- offset = opt[cur].off;
- cur += mlen;
- litLength = (U32)(ip - anchor);
-
- if (offset > ZSTD_REP_MOVE_OPT) {
- rep[2] = rep[1];
- rep[1] = rep[0];
- rep[0] = offset - ZSTD_REP_MOVE_OPT;
- offset--;
- } else {
- if (offset != 0) {
- best_off = (offset == ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
- if (offset != 1)
- rep[2] = rep[1];
- rep[1] = rep[0];
- rep[0] = best_off;
- }
-
- if (litLength == 0)
- offset--;
- }
-
- ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen - MINMATCH);
- ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen - MINMATCH);
- anchor = ip = ip + mlen;
- }
- } /* for (cur=0; cur < last_pos; ) */
-
- /* Save reps for next block */
- {
- int i;
- for (i = 0; i < ZSTD_REP_NUM; i++)
- ctx->repToConfirm[i] = rep[i];
- }
-
- /* Last Literals */
- {
- size_t lastLLSize = iend - anchor;
- memcpy(seqStorePtr->lit, anchor, lastLLSize);
- seqStorePtr->lit += lastLLSize;
- }
-}
-
-#endif /* ZSTD_OPT_H_91842398743 */