1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
// SPDX-License-Identifier: GPL-2.0
//! Red-black trees.
//!
//! C header: [`include/linux/rbtree.h`](srctree/include/linux/rbtree.h)
//!
//! Reference: <https://docs.kernel.org/core-api/rbtree.html>
use crate::{alloc::Flags, bindings, container_of, error::Result, prelude::*};
use alloc::boxed::Box;
use core::{
cmp::{Ord, Ordering},
marker::PhantomData,
mem::MaybeUninit,
ptr::{addr_of_mut, NonNull},
};
/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Examples
///
/// In the example below we do several operations on a tree. We note that insertions may fail if
/// the system is out of memory.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode, RBTreeNodeReservation}};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Check the nodes we just inserted.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &100);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30).unwrap(), &300);
/// }
///
/// // Replace one of the elements.
/// tree.try_create_and_insert(10, 1000, flags::GFP_KERNEL)?;
///
/// // Check that the tree reflects the replacement.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &1000);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30).unwrap(), &300);
/// }
///
/// // Change the value of one of the elements.
/// *tree.get_mut(&30).unwrap() = 3000;
///
/// // Check that the tree reflects the update.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &1000);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30).unwrap(), &3000);
/// }
///
/// // Remove an element.
/// tree.remove(&10);
///
/// // Check that the tree reflects the removal.
/// {
/// assert_eq!(tree.get(&10), None);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30).unwrap(), &3000);
/// }
///
/// # Ok::<(), Error>(())
/// ```
///
/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
/// holding a spinlock.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode}, sync::SpinLock};
///
/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
/// // Pre-allocate node. This may fail (as it allocates memory).
/// let node = RBTreeNode::new(10, 100, flags::GFP_KERNEL)?;
///
/// // Insert node while holding the lock. It is guaranteed to succeed with no allocation
/// // attempts.
/// let mut guard = tree.lock();
/// guard.insert(node);
/// Ok(())
/// }
/// ```
///
/// In the example below, we reuse an existing node allocation from an element we removed.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNodeReservation}};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Check the nodes we just inserted.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &100);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30).unwrap(), &300);
/// }
///
/// // Remove a node, getting back ownership of it.
/// let existing = tree.remove(&30).unwrap();
///
/// // Check that the tree reflects the removal.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &100);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// assert_eq!(tree.get(&30), None);
/// }
///
/// // Create a preallocated reservation that we can re-use later.
/// let reservation = RBTreeNodeReservation::new(flags::GFP_KERNEL)?;
///
/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
/// // succeed (no memory allocations).
/// tree.insert(reservation.into_node(15, 150));
///
/// // Check that the tree reflect the new insertion.
/// {
/// assert_eq!(tree.get(&10).unwrap(), &100);
/// assert_eq!(tree.get(&15).unwrap(), &150);
/// assert_eq!(tree.get(&20).unwrap(), &200);
/// }
///
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
/// valid, and pointing to a field of our internal representation of a node.
pub struct RBTree<K, V> {
root: bindings::rb_root,
_p: PhantomData<Node<K, V>>,
}
// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
// fields, so we use the same Send condition as would be used for a struct with K and V fields.
unsafe impl<K: Send, V: Send> Send for RBTree<K, V> {}
// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
// fields, so we use the same Sync condition as would be used for a struct with K and V fields.
unsafe impl<K: Sync, V: Sync> Sync for RBTree<K, V> {}
impl<K, V> RBTree<K, V> {
/// Creates a new and empty tree.
pub fn new() -> Self {
Self {
// INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
root: bindings::rb_root::default(),
_p: PhantomData,
}
}
}
impl<K, V> RBTree<K, V>
where
K: Ord,
{
/// Tries to insert a new value into the tree.
///
/// It overwrites a node if one already exists with the same key and returns it (containing the
/// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
///
/// Returns an error if it cannot allocate memory for the new node.
pub fn try_create_and_insert(
&mut self,
key: K,
value: V,
flags: Flags,
) -> Result<Option<RBTreeNode<K, V>>> {
Ok(self.insert(RBTreeNode::new(key, value, flags)?))
}
/// Inserts a new node into the tree.
///
/// It overwrites a node if one already exists with the same key and returns it (containing the
/// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
///
/// This function always succeeds.
pub fn insert(&mut self, RBTreeNode { node }: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>> {
let node = Box::into_raw(node);
// SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
// the node is removed or replaced.
let node_links = unsafe { addr_of_mut!((*node).links) };
// The parameters of `bindings::rb_link_node` are as follows:
// - `node`: A pointer to an uninitialized node being inserted.
// - `parent`: A pointer to an existing node in the tree. One of its child pointers must be
// null, and `node` will become a child of `parent` by replacing that child pointer
// with a pointer to `node`.
// - `rb_link`: A pointer to either the left-child or right-child field of `parent`. This
// specifies which child of `parent` should hold `node` after this call. The
// value of `*rb_link` must be null before the call to `rb_link_node`. If the
// red/black tree is empty, then it’s also possible for `parent` to be null. In
// this case, `rb_link` is a pointer to the `root` field of the red/black tree.
//
// We will traverse the tree looking for a node that has a null pointer as its child,
// representing an empty subtree where we can insert our new node. We need to make sure
// that we preserve the ordering of the nodes in the tree. In each iteration of the loop
// we store `parent` and `child_field_of_parent`, and the new `node` will go somewhere
// in the subtree of `parent` that `child_field_of_parent` points at. Once
// we find an empty subtree, we can insert the new node using `rb_link_node`.
let mut parent = core::ptr::null_mut();
let mut child_field_of_parent: &mut *mut bindings::rb_node = &mut self.root.rb_node;
while !child_field_of_parent.is_null() {
parent = *child_field_of_parent;
// We need to determine whether `node` should be the left or right child of `parent`,
// so we will compare with the `key` field of `parent` a.k.a. `this` below.
//
// SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
// point to the links field of `Node<K, V>` objects.
let this = unsafe { container_of!(parent, Node<K, V>, links) };
// SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
// valid until the node is removed.
match unsafe { (*node).key.cmp(&(*this).key) } {
// We would like `node` to be the left child of `parent`. Move to this child to check
// whether we can use it, or continue searching, at the next iteration.
//
// SAFETY: `parent` is a non-null node so it is valid by the type invariants.
Ordering::Less => child_field_of_parent = unsafe { &mut (*parent).rb_left },
// We would like `node` to be the right child of `parent`. Move to this child to check
// whether we can use it, or continue searching, at the next iteration.
//
// SAFETY: `parent` is a non-null node so it is valid by the type invariants.
Ordering::Greater => child_field_of_parent = unsafe { &mut (*parent).rb_right },
Ordering::Equal => {
// There is an existing node in the tree with this key, and that node is
// `parent`. Thus, we are replacing parent with a new node.
//
// INVARIANT: We are replacing an existing node with a new one, which is valid.
// It remains valid because we "forgot" it with `Box::into_raw`.
// SAFETY: All pointers are non-null and valid.
unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };
// INVARIANT: The node is being returned and the caller may free it, however,
// it was removed from the tree. So the invariants still hold.
return Some(RBTreeNode {
// SAFETY: `this` was a node in the tree, so it is valid.
node: unsafe { Box::from_raw(this.cast_mut()) },
});
}
}
}
// INVARIANT: We are linking in a new node, which is valid. It remains valid because we
// "forgot" it with `Box::into_raw`.
// SAFETY: All pointers are non-null and valid (`*child_field_of_parent` is null, but `child_field_of_parent` is a
// mutable reference).
unsafe { bindings::rb_link_node(node_links, parent, child_field_of_parent) };
// SAFETY: All pointers are valid. `node` has just been inserted into the tree.
unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
None
}
/// Returns a node with the given key, if one exists.
fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>> {
let mut node = self.root.rb_node;
while !node.is_null() {
// SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
// point to the links field of `Node<K, V>` objects.
let this = unsafe { container_of!(node, Node<K, V>, links) };
// SAFETY: `this` is a non-null node so it is valid by the type invariants.
node = match key.cmp(unsafe { &(*this).key }) {
// SAFETY: `node` is a non-null node so it is valid by the type invariants.
Ordering::Less => unsafe { (*node).rb_left },
// SAFETY: `node` is a non-null node so it is valid by the type invariants.
Ordering::Greater => unsafe { (*node).rb_right },
Ordering::Equal => return NonNull::new(this.cast_mut()),
}
}
None
}
/// Returns a reference to the value corresponding to the key.
pub fn get(&self, key: &K) -> Option<&V> {
// SAFETY: The `find` return value is a node in the tree, so it is valid.
self.find(key).map(|node| unsafe { &node.as_ref().value })
}
/// Returns a mutable reference to the value corresponding to the key.
pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
// SAFETY: The `find` return value is a node in the tree, so it is valid.
self.find(key)
.map(|mut node| unsafe { &mut node.as_mut().value })
}
/// Removes the node with the given key from the tree.
///
/// It returns the node that was removed if one exists, or [`None`] otherwise.
fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>> {
let mut node = self.find(key)?;
// SAFETY: The `find` return value is a node in the tree, so it is valid.
unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };
// INVARIANT: The node is being returned and the caller may free it, however, it was
// removed from the tree. So the invariants still hold.
Some(RBTreeNode {
// SAFETY: The `find` return value was a node in the tree, so it is valid.
node: unsafe { Box::from_raw(node.as_ptr()) },
})
}
/// Removes the node with the given key from the tree.
///
/// It returns the value that was removed if one exists, or [`None`] otherwise.
pub fn remove(&mut self, key: &K) -> Option<V> {
self.remove_node(key).map(|node| node.node.value)
}
}
impl<K, V> Default for RBTree<K, V> {
fn default() -> Self {
Self::new()
}
}
impl<K, V> Drop for RBTree<K, V> {
fn drop(&mut self) {
// SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
let mut next = unsafe { bindings::rb_first_postorder(&self.root) };
// INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
while !next.is_null() {
// SAFETY: All links fields we create are in a `Node<K, V>`.
let this = unsafe { container_of!(next, Node<K, V>, links) };
// Find out what the next node is before disposing of the current one.
// SAFETY: `next` and all nodes in postorder are still valid.
next = unsafe { bindings::rb_next_postorder(next) };
// INVARIANT: This is the destructor, so we break the type invariant during clean-up,
// but it is not observable. The loop invariant is still maintained.
// SAFETY: `this` is valid per the loop invariant.
unsafe { drop(Box::from_raw(this.cast_mut())) };
}
}
}
/// A memory reservation for a red-black tree node.
///
///
/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
/// can be obtained by directly allocating it ([`RBTreeNodeReservation::new`]).
pub struct RBTreeNodeReservation<K, V> {
node: Box<MaybeUninit<Node<K, V>>>,
}
impl<K, V> RBTreeNodeReservation<K, V> {
/// Allocates memory for a node to be eventually initialised and inserted into the tree via a
/// call to [`RBTree::insert`].
pub fn new(flags: Flags) -> Result<RBTreeNodeReservation<K, V>> {
Ok(RBTreeNodeReservation {
node: <Box<_> as BoxExt<_>>::new_uninit(flags)?,
})
}
}
// SAFETY: This doesn't actually contain K or V, and is just a memory allocation. Those can always
// be moved across threads.
unsafe impl<K, V> Send for RBTreeNodeReservation<K, V> {}
// SAFETY: This doesn't actually contain K or V, and is just a memory allocation.
unsafe impl<K, V> Sync for RBTreeNodeReservation<K, V> {}
impl<K, V> RBTreeNodeReservation<K, V> {
/// Initialises a node reservation.
///
/// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
pub fn into_node(self, key: K, value: V) -> RBTreeNode<K, V> {
let node = Box::write(
self.node,
Node {
key,
value,
links: bindings::rb_node::default(),
},
);
RBTreeNode { node }
}
}
/// A red-black tree node.
///
/// The node is fully initialised (with key and value) and can be inserted into a tree without any
/// extra allocations or failure paths.
pub struct RBTreeNode<K, V> {
node: Box<Node<K, V>>,
}
impl<K, V> RBTreeNode<K, V> {
/// Allocates and initialises a node that can be inserted into the tree via
/// [`RBTree::insert`].
pub fn new(key: K, value: V, flags: Flags) -> Result<RBTreeNode<K, V>> {
Ok(RBTreeNodeReservation::new(flags)?.into_node(key, value))
}
}
// SAFETY: If K and V can be sent across threads, then it's also okay to send [`RBTreeNode`] across
// threads.
unsafe impl<K: Send, V: Send> Send for RBTreeNode<K, V> {}
// SAFETY: If K and V can be accessed without synchronization, then it's also okay to access
// [`RBTreeNode`] without synchronization.
unsafe impl<K: Sync, V: Sync> Sync for RBTreeNode<K, V> {}
struct Node<K, V> {
links: bindings::rb_node,
key: K,
value: V,
}
|