summaryrefslogtreecommitdiff
path: root/rust/kernel/list.rs
blob: a87deadcfcc22fa0dccf5088379d09c0f8e26090 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// SPDX-License-Identifier: GPL-2.0

// Copyright (C) 2024 Google LLC.

//! A linked list implementation.

use crate::init::PinInit;
use crate::types::Opaque;
use core::marker::PhantomData;
use core::ptr;

mod impl_list_item_mod;
pub use self::impl_list_item_mod::{impl_has_list_links, impl_list_item, HasListLinks};

mod arc;
pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};

/// A linked list.
///
/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
/// prev/next pointers are not used for several linked lists.
///
/// # Invariants
///
/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
///   field of the first element in the list.
/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
///   exclusive access to the `ListLinks` field.
pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
    first: *mut ListLinksFields,
    _ty: PhantomData<ListArc<T, ID>>,
}

// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Send for List<T, ID>
where
    ListArc<T, ID>: Send,
    T: ?Sized + ListItem<ID>,
{
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Sync for List<T, ID>
where
    ListArc<T, ID>: Sync,
    T: ?Sized + ListItem<ID>,
{
}

/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
///
/// # Safety
///
/// Implementers must ensure that they provide the guarantees documented on methods provided by
/// this trait.
///
/// [`ListArc<Self>`]: ListArc
pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
    /// Views the [`ListLinks`] for this value.
    ///
    /// # Guarantees
    ///
    /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
    /// since the most recent such call, then this returns the same pointer as the one returned by
    /// the most recent call to `prepare_to_insert`.
    ///
    /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
    ///
    /// # Safety
    ///
    /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
    unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;

    /// View the full value given its [`ListLinks`] field.
    ///
    /// Can only be used when the value is in a list.
    ///
    /// # Guarantees
    ///
    /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
    /// * The returned pointer is valid until the next call to `post_remove`.
    ///
    /// # Safety
    ///
    /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
    ///   from a call to `view_links` that happened after the most recent call to
    ///   `prepare_to_insert`.
    /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
    ///   been called.
    unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;

    /// This is called when an item is inserted into a [`List`].
    ///
    /// # Guarantees
    ///
    /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
    /// called.
    ///
    /// # Safety
    ///
    /// * The provided pointer must point at a valid value in an [`Arc`].
    /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
    /// * The caller must own the [`ListArc`] for this value.
    /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
    ///   called after this call to `prepare_to_insert`.
    ///
    /// [`Arc`]: crate::sync::Arc
    unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;

    /// This undoes a previous call to `prepare_to_insert`.
    ///
    /// # Guarantees
    ///
    /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
    ///
    /// # Safety
    ///
    /// The provided pointer must be the pointer returned by the most recent call to
    /// `prepare_to_insert`.
    unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
}

#[repr(C)]
#[derive(Copy, Clone)]
struct ListLinksFields {
    next: *mut ListLinksFields,
    prev: *mut ListLinksFields,
}

/// The prev/next pointers for an item in a linked list.
///
/// # Invariants
///
/// The fields are null if and only if this item is not in a list.
#[repr(transparent)]
pub struct ListLinks<const ID: u64 = 0> {
    // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
    // list.
    inner: Opaque<ListLinksFields>,
}

// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
// move this an instance of this type to a different thread if the pointees are `!Send`.
unsafe impl<const ID: u64> Send for ListLinks<ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
// okay to have immutable access to a ListLinks from several threads at once.
unsafe impl<const ID: u64> Sync for ListLinks<ID> {}

impl<const ID: u64> ListLinks<ID> {
    /// Creates a new initializer for this type.
    pub fn new() -> impl PinInit<Self> {
        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
        // not be constructed in an `Arc` that already has a `ListArc`.
        ListLinks {
            inner: Opaque::new(ListLinksFields {
                prev: ptr::null_mut(),
                next: ptr::null_mut(),
            }),
        }
    }

    /// # Safety
    ///
    /// `me` must be dereferenceable.
    #[inline]
    unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
        // SAFETY: The caller promises that the pointer is valid.
        unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
    }

    /// # Safety
    ///
    /// `me` must be dereferenceable.
    #[inline]
    unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
        me.cast()
    }
}

impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
    /// Creates a new empty list.
    pub const fn new() -> Self {
        Self {
            first: ptr::null_mut(),
            _ty: PhantomData,
        }
    }

    /// Returns whether this list is empty.
    pub fn is_empty(&self) -> bool {
        self.first.is_null()
    }

    /// Add the provided item to the back of the list.
    pub fn push_back(&mut self, item: ListArc<T, ID>) {
        let raw_item = ListArc::into_raw(item);
        // SAFETY:
        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
        // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
        //   the most recent call to `prepare_to_insert`, if any.
        // * We own the `ListArc`.
        // * Removing items from this list is always done using `remove_internal_inner`, which
        //   calls `post_remove` before giving up ownership.
        let list_links = unsafe { T::prepare_to_insert(raw_item) };
        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
        let item = unsafe { ListLinks::fields(list_links) };

        if self.first.is_null() {
            self.first = item;
            // SAFETY: The caller just gave us ownership of these fields.
            // INVARIANT: A linked list with one item should be cyclic.
            unsafe {
                (*item).next = item;
                (*item).prev = item;
            }
        } else {
            let next = self.first;
            // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
            // it's not null, so it must be valid.
            let prev = unsafe { (*next).prev };
            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
            // ownership of the fields on `item`.
            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
            unsafe {
                (*item).next = next;
                (*item).prev = prev;
                (*prev).next = item;
                (*next).prev = item;
            }
        }
    }

    /// Add the provided item to the front of the list.
    pub fn push_front(&mut self, item: ListArc<T, ID>) {
        let raw_item = ListArc::into_raw(item);
        // SAFETY:
        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
        // * If this requirement is violated, then the previous caller of `prepare_to_insert`
        //   violated the safety requirement that they can't give up ownership of the `ListArc`
        //   until they call `post_remove`.
        // * We own the `ListArc`.
        // * Removing items] from this list is always done using `remove_internal_inner`, which
        //   calls `post_remove` before giving up ownership.
        let list_links = unsafe { T::prepare_to_insert(raw_item) };
        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
        let item = unsafe { ListLinks::fields(list_links) };

        if self.first.is_null() {
            // SAFETY: The caller just gave us ownership of these fields.
            // INVARIANT: A linked list with one item should be cyclic.
            unsafe {
                (*item).next = item;
                (*item).prev = item;
            }
        } else {
            let next = self.first;
            // SAFETY: We just checked that `next` is non-null.
            let prev = unsafe { (*next).prev };
            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
            // ownership of the fields on `item`.
            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
            unsafe {
                (*item).next = next;
                (*item).prev = prev;
                (*prev).next = item;
                (*next).prev = item;
            }
        }
        self.first = item;
    }

    /// Removes the last item from this list.
    pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
        if self.first.is_null() {
            return None;
        }

        // SAFETY: We just checked that the list is not empty.
        let last = unsafe { (*self.first).prev };
        // SAFETY: The last item of this list is in this list.
        Some(unsafe { self.remove_internal(last) })
    }

    /// Removes the first item from this list.
    pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
        if self.first.is_null() {
            return None;
        }

        // SAFETY: The first item of this list is in this list.
        Some(unsafe { self.remove_internal(self.first) })
    }

    /// Removes the provided item from this list and returns it.
    ///
    /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
    /// this means that the item is not in any list.)
    ///
    /// # Safety
    ///
    /// `item` must not be in a different linked list (with the same id).
    pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
        let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
        // SAFETY: The user provided a reference, and reference are never dangling.
        //
        // As for why this is not a data race, there are two cases:
        //
        //  * If `item` is not in any list, then these fields are read-only and null.
        //  * If `item` is in this list, then we have exclusive access to these fields since we
        //    have a mutable reference to the list.
        //
        // In either case, there's no race.
        let ListLinksFields { next, prev } = unsafe { *item };

        debug_assert_eq!(next.is_null(), prev.is_null());
        if !next.is_null() {
            // This is really a no-op, but this ensures that `item` is a raw pointer that was
            // obtained without going through a pointer->reference->pointer conversion roundtrip.
            // This ensures that the list is valid under the more restrictive strict provenance
            // ruleset.
            //
            // SAFETY: We just checked that `next` is not null, and it's not dangling by the
            // list invariants.
            unsafe {
                debug_assert_eq!(item, (*next).prev);
                item = (*next).prev;
            }

            // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
            // is in this list. The pointers are in the right order.
            Some(unsafe { self.remove_internal_inner(item, next, prev) })
        } else {
            None
        }
    }

    /// Removes the provided item from the list.
    ///
    /// # Safety
    ///
    /// `item` must point at an item in this list.
    unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
        // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
        // since we have a mutable reference to the list containing `item`.
        let ListLinksFields { next, prev } = unsafe { *item };
        // SAFETY: The pointers are ok and in the right order.
        unsafe { self.remove_internal_inner(item, next, prev) }
    }

    /// Removes the provided item from the list.
    ///
    /// # Safety
    ///
    /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
    /// next` and `(*item).prev == prev`.
    unsafe fn remove_internal_inner(
        &mut self,
        item: *mut ListLinksFields,
        next: *mut ListLinksFields,
        prev: *mut ListLinksFields,
    ) -> ListArc<T, ID> {
        // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
        // pointers are always valid for items in a list.
        //
        // INVARIANT: There are three cases:
        //  * If the list has at least three items, then after removing the item, `prev` and `next`
        //    will be next to each other.
        //  * If the list has two items, then the remaining item will point at itself.
        //  * If the list has one item, then `next == prev == item`, so these writes have no
        //    effect. The list remains unchanged and `item` is still in the list for now.
        unsafe {
            (*next).prev = prev;
            (*prev).next = next;
        }
        // SAFETY: We have exclusive access to items in the list.
        // INVARIANT: `item` is being removed, so the pointers should be null.
        unsafe {
            (*item).prev = ptr::null_mut();
            (*item).next = ptr::null_mut();
        }
        // INVARIANT: There are three cases:
        //  * If `item` was not the first item, then `self.first` should remain unchanged.
        //  * If `item` was the first item and there is another item, then we just updated
        //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
        //    did not modify `prev->next`.
        //  * If `item` was the only item in the list, then `prev == item`, and we just set
        //    `item->next` to null, so this correctly sets `first` to null now that the list is
        //    empty.
        if self.first == item {
            // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
            // list, so it must be valid. There is no race since `prev` is still in the list and we
            // still have exclusive access to the list.
            self.first = unsafe { (*prev).next };
        }

        // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
        // of `List`.
        let list_links = unsafe { ListLinks::from_fields(item) };
        // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
        let raw_item = unsafe { T::post_remove(list_links) };
        // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
        unsafe { ListArc::from_raw(raw_item) }
    }

    /// Moves all items from `other` into `self`.
    ///
    /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
    /// the last item of `self`.
    pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
        // First, we insert the elements into `self`. At the end, we make `other` empty.
        if self.is_empty() {
            // INVARIANT: All of the elements in `other` become elements of `self`.
            self.first = other.first;
        } else if !other.is_empty() {
            let other_first = other.first;
            // SAFETY: The other list is not empty, so this pointer is valid.
            let other_last = unsafe { (*other_first).prev };
            let self_first = self.first;
            // SAFETY: The self list is not empty, so this pointer is valid.
            let self_last = unsafe { (*self_first).prev };

            // SAFETY: We have exclusive access to both lists, so we can update the pointers.
            // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
            // update `self.first` because the first element of `self` does not change.
            unsafe {
                (*self_first).prev = other_last;
                (*other_last).next = self_first;
                (*self_last).next = other_first;
                (*other_first).prev = self_last;
            }
        }

        // INVARIANT: The other list is now empty, so update its pointer.
        other.first = ptr::null_mut();
    }
}

impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
    fn default() -> Self {
        List::new()
    }
}

impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
    fn drop(&mut self) {
        while let Some(item) = self.pop_front() {
            drop(item);
        }
    }
}