summaryrefslogtreecommitdiff
path: root/rust/kernel/driver.rs
blob: 4fec6ee1a90d05b341b850c57fe38897064d3854 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
// SPDX-License-Identifier: GPL-2.0

//! Generic driver support

use core::cell::UnsafeCell;
use core::marker::PhantomData;
use kernel::{alloc::flags::*, prelude::*};

/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
/// Amba, etc.) to privide the corresponding subsystem specific implementation to register /
/// unregister a driver of the particular type (`RegType`).
///
/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
pub trait RegistrationOps {
    /// The type that holds information about the registration. This is typically a struct defined
    /// by the C portion of the kernel, e.g. `bindings::pci_driver.
    type RegType: Default;

    /// Registers a driver.
    ///
    /// # Safety
    ///
    /// `reg` must point to valid, initialised, and writable memory. It may be modified by this
    /// function to hold registration state.
    ///
    /// On success, `reg` must remain pinned and valid until the matching call to
    /// [`RegistrationOps::unregister`].
    unsafe fn register(
        reg: *mut Self::RegType,
        name: &'static CStr,
        module: &'static ThisModule,
    ) -> Result;

    /// Unregisters a driver previously registered with [`RegistrationOps::register`].
    ///
    /// # Safety
    ///
    /// `reg` must point to valid writable memory, initialised by a previous successful call to
    /// [`RegistrationOps::register`].
    unsafe fn unregister(reg: *mut Self::RegType);
}

/// Registration structure for a driver.
///
/// The existance of an instance of this structure implies that the corresponding driver is
/// currently registered.
pub struct Registration<T: RegistrationOps> {
    driver: Pin<KBox<UnsafeCell<T::RegType>>>,
    _p: PhantomData<T>,
}

impl<T> Registration<T>
where
    T: RegistrationOps,
{
    /// Register a new driver from `T::RegType`.
    pub fn new(name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
        let driver = KBox::pin(UnsafeCell::new(T::RegType::default()), GFP_KERNEL)?;

        // SAFETY: `driver` has just been initialized; it's only freed after `Self::drop`, which
        // calls `T::unregister` first.
        unsafe { T::register(driver.get(), name, module) }?;

        Ok(Self {
            driver,
            _p: PhantomData::<T>,
        })
    }
}

impl<T> Drop for Registration<T>
where
    T: RegistrationOps,
{
    fn drop(&mut self) {
        // SAFETY: Only ever called if the `Registration` was created successfully.
        unsafe { T::unregister(self.driver.get()) };
    }
}

// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
// share references to it with multiple threads as nothing can be done.
unsafe impl<T> Sync for Registration<T> where T: RegistrationOps {}

// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
// any thread, so `Registration` is `Send`.
unsafe impl<T> Send for Registration<T> where T: RegistrationOps {}