summaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
blob: a6f071b2acacf586f2322bf9f7f9a514d171f5ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Scheduler internal types and methods:
 */
#ifndef _KERNEL_SCHED_SCHED_H
#define _KERNEL_SCHED_SCHED_H

#include <linux/sched/affinity.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/cpufreq.h>
#include <linux/sched/deadline.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/rseq_api.h>
#include <linux/sched/signal.h>
#include <linux/sched/smt.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/task_flags.h>
#include <linux/sched/task.h>
#include <linux/sched/topology.h>

#include <linux/atomic.h>
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/capability.h>
#include <linux/cgroup_api.h>
#include <linux/cgroup.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpumask_api.h>
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/fs_api.h>
#include <linux/hrtimer_api.h>
#include <linux/interrupt.h>
#include <linux/irq_work.h>
#include <linux/jiffies.h>
#include <linux/kref_api.h>
#include <linux/kthread.h>
#include <linux/ktime_api.h>
#include <linux/lockdep_api.h>
#include <linux/lockdep.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex_api.h>
#include <linux/plist.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcupdate.h>
#include <linux/seq_file.h>
#include <linux/seqlock.h>
#include <linux/softirq.h>
#include <linux/spinlock_api.h>
#include <linux/static_key.h>
#include <linux/stop_machine.h>
#include <linux/syscalls_api.h>
#include <linux/syscalls.h>
#include <linux/tick.h>
#include <linux/topology.h>
#include <linux/types.h>
#include <linux/u64_stats_sync_api.h>
#include <linux/uaccess.h>
#include <linux/wait_api.h>
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>

#include <trace/events/power.h>
#include <trace/events/sched.h>

#include "../workqueue_internal.h"

#ifdef CONFIG_CGROUP_SCHED
#include <linux/cgroup.h>
#include <linux/psi.h>
#endif

#ifdef CONFIG_SCHED_DEBUG
# include <linux/static_key.h>
#endif

#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
# include <asm/paravirt_api_clock.h>
#endif

#include "cpupri.h"
#include "cpudeadline.h"

#ifdef CONFIG_SCHED_DEBUG
# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
#else
# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
#endif

struct rq;
struct cpuidle_state;

/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
#define TASK_ON_RQ_MIGRATING	2

extern __read_mostly int scheduler_running;

extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

extern unsigned int sysctl_sched_child_runs_first;

extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);

extern void call_trace_sched_update_nr_running(struct rq *rq, int count);

extern unsigned int sysctl_sched_rt_period;
extern int sysctl_sched_rt_runtime;
extern int sched_rr_timeslice;

/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 * are pretty high and the returns do not justify the increased costs.
 *
 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 * increase coverage and consistency always enable it on 64-bit platforms.
 */
#ifdef CONFIG_64BIT
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w) \
({ \
	unsigned long __w = (w); \
	if (__w) \
		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
	__w; \
})
#else
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

/*
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 *
 */
#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)

/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE		10

/*
 * Single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF		((u64)~0ULL)

static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

static inline int rt_policy(int policy)
{
	return policy == SCHED_FIFO || policy == SCHED_RR;
}

static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}
static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}

static inline int task_has_idle_policy(struct task_struct *p)
{
	return idle_policy(p->policy);
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)

static inline void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff / 8;
}

/*
 * Shifting a value by an exponent greater *or equal* to the size of said value
 * is UB; cap at size-1.
 */
#define shr_bound(val, shift)							\
	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))

/*
 * !! For sched_setattr_nocheck() (kernel) only !!
 *
 * This is actually gross. :(
 *
 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 * tasks, but still be able to sleep. We need this on platforms that cannot
 * atomically change clock frequency. Remove once fast switching will be
 * available on such platforms.
 *
 * SUGOV stands for SchedUtil GOVernor.
 */
#define SCHED_FLAG_SUGOV	0x10000000

#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)

static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
	return false;
#endif
}

/*
 * Tells if entity @a should preempt entity @b.
 */
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
{
	return dl_entity_is_special(a) ||
	       dl_time_before(a->deadline, b->deadline);
}

/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
	unsigned int		rt_period_active;
};

void __dl_clear_params(struct task_struct *p);

struct dl_bandwidth {
	raw_spinlock_t		dl_runtime_lock;
	u64			dl_runtime;
	u64			dl_period;
};

static inline int dl_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

/*
 * To keep the bandwidth of -deadline tasks under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of each cpu;
 *  - cache the fraction of bandwidth that is currently allocated in
 *    each root domain;
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, bandwidth is given on a per root domain basis,
 * meaning that:
 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 *  - total_bw is the currently allocated bandwidth in each root domain;
 */
struct dl_bw {
	raw_spinlock_t		lock;
	u64			bw;
	u64			total_bw;
};

/*
 * Verify the fitness of task @p to run on @cpu taking into account the
 * CPU original capacity and the runtime/deadline ratio of the task.
 *
 * The function will return true if the CPU original capacity of the
 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 * task and false otherwise.
 */
static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
{
	unsigned long cap = arch_scale_cpu_capacity(cpu);

	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
}

extern void init_dl_bw(struct dl_bw *dl_b);
extern int  sched_dl_global_validate(void);
extern void sched_dl_do_global(void);
extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int  dl_cpu_busy(int cpu, struct task_struct *p);

#ifdef CONFIG_CGROUP_SCHED

struct cfs_rq;
struct rt_rq;

extern struct list_head task_groups;

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t		lock;
	ktime_t			period;
	u64			quota;
	u64			runtime;
	u64			burst;
	u64			runtime_snap;
	s64			hierarchical_quota;

	u8			idle;
	u8			period_active;
	u8			slack_started;
	struct hrtimer		period_timer;
	struct hrtimer		slack_timer;
	struct list_head	throttled_cfs_rq;

	/* Statistics: */
	int			nr_periods;
	int			nr_throttled;
	int			nr_burst;
	u64			throttled_time;
	u64			burst_time;
#endif
};

/* Task group related information */
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* schedulable entities of this group on each CPU */
	struct sched_entity	**se;
	/* runqueue "owned" by this group on each CPU */
	struct cfs_rq		**cfs_rq;
	unsigned long		shares;

	/* A positive value indicates that this is a SCHED_IDLE group. */
	int			idle;

#ifdef	CONFIG_SMP
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cacheline separated from the fields above which
	 * will also be accessed at each tick.
	 */
	atomic_long_t		load_avg ____cacheline_aligned;
#endif
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity	**rt_se;
	struct rt_rq		**rt_rq;

	struct rt_bandwidth	rt_bandwidth;
#endif

	struct rcu_head		rcu;
	struct list_head	list;

	struct task_group	*parent;
	struct list_head	siblings;
	struct list_head	children;

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup	*autogroup;
#endif

	struct cfs_bandwidth	cfs_bandwidth;

#ifdef CONFIG_UCLAMP_TASK_GROUP
	/* The two decimal precision [%] value requested from user-space */
	unsigned int		uclamp_pct[UCLAMP_CNT];
	/* Clamp values requested for a task group */
	struct uclamp_se	uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a task group */
	struct uclamp_se	uclamp[UCLAMP_CNT];
#endif

};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES		(1UL <<  1)
#define MAX_SHARES		(1UL << 18)
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void unregister_rt_sched_group(struct task_group *tg);
extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);

extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_release_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);

extern int sched_group_set_idle(struct task_group *tg, long idle);

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */

#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/*
 * u64_u32_load/u64_u32_store
 *
 * Use a copy of a u64 value to protect against data race. This is only
 * applicable for 32-bits architectures.
 */
#ifdef CONFIG_64BIT
# define u64_u32_load_copy(var, copy)       var
# define u64_u32_store_copy(var, copy, val) (var = val)
#else
# define u64_u32_load_copy(var, copy)					\
({									\
	u64 __val, __val_copy;						\
	do {								\
		__val_copy = copy;					\
		/*							\
		 * paired with u64_u32_store_copy(), ordering access	\
		 * to var and copy.					\
		 */							\
		smp_rmb();						\
		__val = var;						\
	} while (__val != __val_copy);					\
	__val;								\
})
# define u64_u32_store_copy(var, copy, val)				\
do {									\
	typeof(val) __val = (val);					\
	var = __val;							\
	/*								\
	 * paired with u64_u32_load_copy(), ordering access to var and	\
	 * copy.							\
	 */								\
	smp_wmb();							\
	copy = __val;							\
} while (0)
#endif
# define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight	load;
	unsigned int		nr_running;
	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
	unsigned int		idle_nr_running;   /* SCHED_IDLE */
	unsigned int		idle_h_nr_running; /* SCHED_IDLE */

	u64			exec_clock;
	u64			min_vruntime;
#ifdef CONFIG_SCHED_CORE
	unsigned int		forceidle_seq;
	u64			min_vruntime_fi;
#endif

#ifndef CONFIG_64BIT
	u64			min_vruntime_copy;
#endif

	struct rb_root_cached	tasks_timeline;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity	*curr;
	struct sched_entity	*next;
	struct sched_entity	*last;
	struct sched_entity	*skip;

#ifdef	CONFIG_SCHED_DEBUG
	unsigned int		nr_spread_over;
#endif

#ifdef CONFIG_SMP
	/*
	 * CFS load tracking
	 */
	struct sched_avg	avg;
#ifndef CONFIG_64BIT
	u64			last_update_time_copy;
#endif
	struct {
		raw_spinlock_t	lock ____cacheline_aligned;
		int		nr;
		unsigned long	load_avg;
		unsigned long	util_avg;
		unsigned long	runnable_avg;
	} removed;

#ifdef CONFIG_FAIR_GROUP_SCHED
	unsigned long		tg_load_avg_contrib;
	long			propagate;
	long			prop_runnable_sum;

	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long		h_load;
	u64			last_h_load_update;
	struct sched_entity	*h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
	 * This list is used during load balance.
	 */
	int			on_list;
	struct list_head	leaf_cfs_rq_list;
	struct task_group	*tg;	/* group that "owns" this runqueue */

	/* Locally cached copy of our task_group's idle value */
	int			idle;

#ifdef CONFIG_CFS_BANDWIDTH
	int			runtime_enabled;
	s64			runtime_remaining;

	u64			throttled_pelt_idle;
#ifndef CONFIG_64BIT
	u64                     throttled_pelt_idle_copy;
#endif
	u64			throttled_clock;
	u64			throttled_clock_pelt;
	u64			throttled_clock_pelt_time;
	int			throttled;
	int			throttle_count;
	struct list_head	throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

/* RT IPI pull logic requires IRQ_WORK */
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
# define HAVE_RT_PUSH_IPI
#endif

/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array	active;
	unsigned int		rt_nr_running;
	unsigned int		rr_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
		int		curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
		int		next; /* next highest */
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
	unsigned int		rt_nr_migratory;
	unsigned int		rt_nr_total;
	int			overloaded;
	struct plist_head	pushable_tasks;

#endif /* CONFIG_SMP */
	int			rt_queued;

	int			rt_throttled;
	u64			rt_time;
	u64			rt_runtime;
	/* Nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;

#ifdef CONFIG_RT_GROUP_SCHED
	unsigned int		rt_nr_boosted;

	struct rq		*rq;
	struct task_group	*tg;
#endif
};

static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{
	return rt_rq->rt_queued && rt_rq->rt_nr_running;
}

/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
	struct rb_root_cached	root;

	unsigned int		dl_nr_running;

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision whether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
		u64		curr;
		u64		next;
	} earliest_dl;

	unsigned int		dl_nr_migratory;
	int			overloaded;

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
	struct rb_root_cached	pushable_dl_tasks_root;
#else
	struct dl_bw		dl_bw;
#endif
	/*
	 * "Active utilization" for this runqueue: increased when a
	 * task wakes up (becomes TASK_RUNNING) and decreased when a
	 * task blocks
	 */
	u64			running_bw;

	/*
	 * Utilization of the tasks "assigned" to this runqueue (including
	 * the tasks that are in runqueue and the tasks that executed on this
	 * CPU and blocked). Increased when a task moves to this runqueue, and
	 * decreased when the task moves away (migrates, changes scheduling
	 * policy, or terminates).
	 * This is needed to compute the "inactive utilization" for the
	 * runqueue (inactive utilization = this_bw - running_bw).
	 */
	u64			this_bw;
	u64			extra_bw;

	/*
	 * Inverse of the fraction of CPU utilization that can be reclaimed
	 * by the GRUB algorithm.
	 */
	u64			bw_ratio;
};

#ifdef CONFIG_FAIR_GROUP_SCHED
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void se_update_runnable(struct sched_entity *se)
{
	if (!entity_is_task(se))
		se->runnable_weight = se->my_q->h_nr_running;
}

static inline long se_runnable(struct sched_entity *se)
{
	if (entity_is_task(se))
		return !!se->on_rq;
	else
		return se->runnable_weight;
}

#else
#define entity_is_task(se)	1

static inline void se_update_runnable(struct sched_entity *se) {}

static inline long se_runnable(struct sched_entity *se)
{
	return !!se->on_rq;
}
#endif

#ifdef CONFIG_SMP
/*
 * XXX we want to get rid of these helpers and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}


static inline bool sched_asym_prefer(int a, int b)
{
	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}

struct perf_domain {
	struct em_perf_domain *em_pd;
	struct perf_domain *next;
	struct rcu_head rcu;
};

/* Scheduling group status flags */
#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */

/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t		refcount;
	atomic_t		rto_count;
	struct rcu_head		rcu;
	cpumask_var_t		span;
	cpumask_var_t		online;

	/*
	 * Indicate pullable load on at least one CPU, e.g:
	 * - More than one runnable task
	 * - Running task is misfit
	 */
	int			overload;

	/* Indicate one or more cpus over-utilized (tipping point) */
	int			overutilized;

	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
	cpumask_var_t		dlo_mask;
	atomic_t		dlo_count;
	struct dl_bw		dl_bw;
	struct cpudl		cpudl;

	/*
	 * Indicate whether a root_domain's dl_bw has been checked or
	 * updated. It's monotonously increasing value.
	 *
	 * Also, some corner cases, like 'wrap around' is dangerous, but given
	 * that u64 is 'big enough'. So that shouldn't be a concern.
	 */
	u64 visit_gen;

#ifdef HAVE_RT_PUSH_IPI
	/*
	 * For IPI pull requests, loop across the rto_mask.
	 */
	struct irq_work		rto_push_work;
	raw_spinlock_t		rto_lock;
	/* These are only updated and read within rto_lock */
	int			rto_loop;
	int			rto_cpu;
	/* These atomics are updated outside of a lock */
	atomic_t		rto_loop_next;
	atomic_t		rto_loop_start;
#endif
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_var_t		rto_mask;
	struct cpupri		cpupri;

	unsigned long		max_cpu_capacity;

	/*
	 * NULL-terminated list of performance domains intersecting with the
	 * CPUs of the rd. Protected by RCU.
	 */
	struct perf_domain __rcu *pd;
};

extern void init_defrootdomain(void);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);

#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_UCLAMP_TASK
/*
 * struct uclamp_bucket - Utilization clamp bucket
 * @value: utilization clamp value for tasks on this clamp bucket
 * @tasks: number of RUNNABLE tasks on this clamp bucket
 *
 * Keep track of how many tasks are RUNNABLE for a given utilization
 * clamp value.
 */
struct uclamp_bucket {
	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
};

/*
 * struct uclamp_rq - rq's utilization clamp
 * @value: currently active clamp values for a rq
 * @bucket: utilization clamp buckets affecting a rq
 *
 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 * (or actually running) with that value.
 *
 * There are up to UCLAMP_CNT possible different clamp values, currently there
 * are only two: minimum utilization and maximum utilization.
 *
 * All utilization clamping values are MAX aggregated, since:
 * - for util_min: we want to run the CPU at least at the max of the minimum
 *   utilization required by its currently RUNNABLE tasks.
 * - for util_max: we want to allow the CPU to run up to the max of the
 *   maximum utilization allowed by its currently RUNNABLE tasks.
 *
 * Since on each system we expect only a limited number of different
 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 * the metrics required to compute all the per-rq utilization clamp values.
 */
struct uclamp_rq {
	unsigned int value;
	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
};

DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
#endif /* CONFIG_UCLAMP_TASK */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
	raw_spinlock_t		__lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned int		nr_running;
#ifdef CONFIG_NUMA_BALANCING
	unsigned int		nr_numa_running;
	unsigned int		nr_preferred_running;
	unsigned int		numa_migrate_on;
#endif
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMP
	unsigned long		last_blocked_load_update_tick;
	unsigned int		has_blocked_load;
	call_single_data_t	nohz_csd;
#endif /* CONFIG_SMP */
	unsigned int		nohz_tick_stopped;
	atomic_t		nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */

#ifdef CONFIG_SMP
	unsigned int		ttwu_pending;
#endif
	u64			nr_switches;

#ifdef CONFIG_UCLAMP_TASK
	/* Utilization clamp values based on CPU's RUNNABLE tasks */
	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
	unsigned int		uclamp_flags;
#define UCLAMP_FLAG_IDLE 0x01
#endif

	struct cfs_rq		cfs;
	struct rt_rq		rt;
	struct dl_rq		dl;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* list of leaf cfs_rq on this CPU: */
	struct list_head	leaf_cfs_rq_list;
	struct list_head	*tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned int		nr_uninterruptible;

	struct task_struct __rcu	*curr;
	struct task_struct	*idle;
	struct task_struct	*stop;
	unsigned long		next_balance;
	struct mm_struct	*prev_mm;

	unsigned int		clock_update_flags;
	u64			clock;
	/* Ensure that all clocks are in the same cache line */
	u64			clock_task ____cacheline_aligned;
	u64			clock_pelt;
	unsigned long		lost_idle_time;
	u64			clock_pelt_idle;
	u64			clock_idle;
#ifndef CONFIG_64BIT
	u64			clock_pelt_idle_copy;
	u64			clock_idle_copy;
#endif

	atomic_t		nr_iowait;

#ifdef CONFIG_SCHED_DEBUG
	u64 last_seen_need_resched_ns;
	int ticks_without_resched;
#endif

#ifdef CONFIG_MEMBARRIER
	int membarrier_state;
#endif

#ifdef CONFIG_SMP
	struct root_domain		*rd;
	struct sched_domain __rcu	*sd;

	unsigned long		cpu_capacity;
	unsigned long		cpu_capacity_orig;

	struct callback_head	*balance_callback;

	unsigned char		nohz_idle_balance;
	unsigned char		idle_balance;

	unsigned long		misfit_task_load;

	/* For active balancing */
	int			active_balance;
	int			push_cpu;
	struct cpu_stop_work	active_balance_work;

	/* CPU of this runqueue: */
	int			cpu;
	int			online;

	struct list_head cfs_tasks;

	struct sched_avg	avg_rt;
	struct sched_avg	avg_dl;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
	struct sched_avg	avg_irq;
#endif
#ifdef CONFIG_SCHED_THERMAL_PRESSURE
	struct sched_avg	avg_thermal;
#endif
	u64			idle_stamp;
	u64			avg_idle;

	unsigned long		wake_stamp;
	u64			wake_avg_idle;

	/* This is used to determine avg_idle's max value */
	u64			max_idle_balance_cost;

#ifdef CONFIG_HOTPLUG_CPU
	struct rcuwait		hotplug_wait;
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64			prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
	u64			prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64			prev_steal_time_rq;
#endif

	/* calc_load related fields */
	unsigned long		calc_load_update;
	long			calc_load_active;

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
	call_single_data_t	hrtick_csd;
#endif
	struct hrtimer		hrtick_timer;
	ktime_t 		hrtick_time;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info	rq_sched_info;
	unsigned long long	rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
	unsigned int		yld_count;

	/* schedule() stats */
	unsigned int		sched_count;
	unsigned int		sched_goidle;

	/* try_to_wake_up() stats */
	unsigned int		ttwu_count;
	unsigned int		ttwu_local;
#endif

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
	struct cpuidle_state	*idle_state;
#endif

#ifdef CONFIG_SMP
	unsigned int		nr_pinned;
#endif
	unsigned int		push_busy;
	struct cpu_stop_work	push_work;

#ifdef CONFIG_SCHED_CORE
	/* per rq */
	struct rq		*core;
	struct task_struct	*core_pick;
	unsigned int		core_enabled;
	unsigned int		core_sched_seq;
	struct rb_root		core_tree;

	/* shared state -- careful with sched_core_cpu_deactivate() */
	unsigned int		core_task_seq;
	unsigned int		core_pick_seq;
	unsigned long		core_cookie;
	unsigned int		core_forceidle_count;
	unsigned int		core_forceidle_seq;
	unsigned int		core_forceidle_occupation;
	u64			core_forceidle_start;
#endif
};

#ifdef CONFIG_FAIR_GROUP_SCHED

/* CPU runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

#else

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}
#endif

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

#define MDF_PUSH	0x01

static inline bool is_migration_disabled(struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->migration_disabled;
#else
	return false;
#endif
}

struct sched_group;
#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);

DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);

static inline bool sched_core_enabled(struct rq *rq)
{
	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
}

static inline bool sched_core_disabled(void)
{
	return !static_branch_unlikely(&__sched_core_enabled);
}

/*
 * Be careful with this function; not for general use. The return value isn't
 * stable unless you actually hold a relevant rq->__lock.
 */
static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{
	if (sched_core_enabled(rq))
		return &rq->core->__lock;

	return &rq->__lock;
}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{
	if (rq->core_enabled)
		return &rq->core->__lock;

	return &rq->__lock;
}

bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);

/*
 * Helpers to check if the CPU's core cookie matches with the task's cookie
 * when core scheduling is enabled.
 * A special case is that the task's cookie always matches with CPU's core
 * cookie if the CPU is in an idle core.
 */
static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{
	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	return rq->core->core_cookie == p->core_cookie;
}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{
	bool idle_core = true;
	int cpu;

	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
		if (!available_idle_cpu(cpu)) {
			idle_core = false;
			break;
		}
	}

	/*
	 * A CPU in an idle core is always the best choice for tasks with
	 * cookies.
	 */
	return idle_core || rq->core->core_cookie == p->core_cookie;
}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{
	int cpu;

	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
	if (!sched_core_enabled(rq))
		return true;

	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
		if (sched_core_cookie_match(rq, p))
			return true;
	}
	return false;
}

static inline bool sched_core_enqueued(struct task_struct *p)
{
	return !RB_EMPTY_NODE(&p->core_node);
}

extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);

extern void sched_core_get(void);
extern void sched_core_put(void);

#else /* !CONFIG_SCHED_CORE */

static inline bool sched_core_enabled(struct rq *rq)
{
	return false;
}

static inline bool sched_core_disabled(void)
{
	return true;
}

static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{
	return true;
}
#endif /* CONFIG_SCHED_CORE */

static inline void lockdep_assert_rq_held(struct rq *rq)
{
	lockdep_assert_held(__rq_lockp(rq));
}

extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
extern bool raw_spin_rq_trylock(struct rq *rq);
extern void raw_spin_rq_unlock(struct rq *rq);

static inline void raw_spin_rq_lock(struct rq *rq)
{
	raw_spin_rq_lock_nested(rq, 0);
}

static inline void raw_spin_rq_lock_irq(struct rq *rq)
{
	local_irq_disable();
	raw_spin_rq_lock(rq);
}

static inline void raw_spin_rq_unlock_irq(struct rq *rq)
{
	raw_spin_rq_unlock(rq);
	local_irq_enable();
}

static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
{
	unsigned long flags;
	local_irq_save(flags);
	raw_spin_rq_lock(rq);
	return flags;
}

static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
{
	raw_spin_rq_unlock(rq);
	local_irq_restore(flags);
}

#define raw_spin_rq_lock_irqsave(rq, flags)	\
do {						\
	flags = _raw_spin_rq_lock_irqsave(rq);	\
} while (0)

#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{
	if (static_branch_unlikely(&sched_smt_present))
		__update_idle_core(rq);
}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		this_cpu_ptr(&runqueues)
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
#define raw_rq()		raw_cpu_ptr(&runqueues)

#ifdef CONFIG_FAIR_GROUP_SCHED
static inline struct task_struct *task_of(struct sched_entity *se)
{
	SCHED_WARN_ON(!entity_is_task(se));
	return container_of(se, struct task_struct, se);
}

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

#else

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}
#endif

extern void update_rq_clock(struct rq *rq);

/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
#define RQCF_REQ_SKIP		0x01
#define RQCF_ACT_SKIP		0x02
#define RQCF_UPDATED		0x04

static inline void assert_clock_updated(struct rq *rq)
{
	/*
	 * The only reason for not seeing a clock update since the
	 * last rq_pin_lock() is if we're currently skipping updates.
	 */
	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}

static inline u64 rq_clock(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	assert_clock_updated(rq);

	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	assert_clock_updated(rq);

	return rq->clock_task;
}

/**
 * By default the decay is the default pelt decay period.
 * The decay shift can change the decay period in
 * multiples of 32.
 *  Decay shift		Decay period(ms)
 *	0			32
 *	1			64
 *	2			128
 *	3			256
 *	4			512
 */
extern int sched_thermal_decay_shift;

static inline u64 rq_clock_thermal(struct rq *rq)
{
	return rq_clock_task(rq) >> sched_thermal_decay_shift;
}

static inline void rq_clock_skip_update(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	rq->clock_update_flags |= RQCF_REQ_SKIP;
}

/*
 * See rt task throttling, which is the only time a skip
 * request is canceled.
 */
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
	lockdep_assert_rq_held(rq);
	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
}

struct rq_flags {
	unsigned long flags;
	struct pin_cookie cookie;
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
	 * current pin context is stashed here in case it needs to be
	 * restored in rq_repin_lock().
	 */
	unsigned int clock_update_flags;
#endif
};

extern struct callback_head balance_push_callback;

/*
 * Lockdep annotation that avoids accidental unlocks; it's like a
 * sticky/continuous lockdep_assert_held().
 *
 * This avoids code that has access to 'struct rq *rq' (basically everything in
 * the scheduler) from accidentally unlocking the rq if they do not also have a
 * copy of the (on-stack) 'struct rq_flags rf'.
 *
 * Also see Documentation/locking/lockdep-design.rst.
 */
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	rf->clock_update_flags = 0;
#ifdef CONFIG_SMP
	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
#endif
#endif
}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
#ifdef CONFIG_SCHED_DEBUG
	if (rq->clock_update_flags > RQCF_ACT_SKIP)
		rf->clock_update_flags = RQCF_UPDATED;
#endif

	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);

#ifdef CONFIG_SCHED_DEBUG
	/*
	 * Restore the value we stashed in @rf for this pin context.
	 */
	rq->clock_update_flags |= rf->clock_update_flags;
#endif
}

struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires(rq->lock);

struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires(p->pi_lock)
	__acquires(rq->lock);

static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
}

static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
	__releases(rq->lock)
	__releases(p->pi_lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}

static inline void
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock_irqsave(rq, rf->flags);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock_irq(rq);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_rq_lock(rq);
	rq_pin_lock(rq, rf);
}

static inline void
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
}

static inline void
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock_irq(rq);
}

static inline void
rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_rq_unlock(rq);
}

static inline struct rq *
this_rq_lock_irq(struct rq_flags *rf)
	__acquires(rq->lock)
{
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, rf);
	return rq;
}

#ifdef CONFIG_NUMA
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
extern void sched_init_numa(int offline_node);
extern void sched_update_numa(int cpu, bool online);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
#else
static inline void sched_init_numa(int offline_node) { }
static inline void sched_update_numa(int cpu, bool online) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
{
	return nr_cpu_ids;
}
#endif

#ifdef CONFIG_NUMA_BALANCING
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
			int cpu, int scpu);
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
#else
static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_SMP

static inline void
queue_balance_callback(struct rq *rq,
		       struct callback_head *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_rq_held(rq);

	/*
	 * Don't (re)queue an already queued item; nor queue anything when
	 * balance_push() is active, see the comment with
	 * balance_push_callback.
	 */
	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
		return;

	head->func = (void (*)(struct callback_head *))func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See destroy_sched_domains: call_rcu for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)

/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The CPU whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given CPU.
 *
 * Returns the highest sched_domain of a CPU which contains the given flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
extern struct static_key_false sched_asym_cpucapacity;

struct sched_group_capacity {
	atomic_t		ref;
	/*
	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
	 * for a single CPU.
	 */
	unsigned long		capacity;
	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
	unsigned long		next_update;
	int			imbalance;		/* XXX unrelated to capacity but shared group state */

#ifdef CONFIG_SCHED_DEBUG
	int			id;
#endif

	unsigned long		cpumask[];		/* Balance mask */
};

struct sched_group {
	struct sched_group	*next;			/* Must be a circular list */
	atomic_t		ref;

	unsigned int		group_weight;
	struct sched_group_capacity *sgc;
	int			asym_prefer_cpu;	/* CPU of highest priority in group */
	int			flags;

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long		cpumask[];
};

static inline struct cpumask *sched_group_span(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

/*
 * See build_balance_mask().
 */
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
{
	return to_cpumask(sg->sgc->cpumask);
}

extern int group_balance_cpu(struct sched_group *sg);

#ifdef CONFIG_SCHED_DEBUG
void update_sched_domain_debugfs(void);
void dirty_sched_domain_sysctl(int cpu);
#else
static inline void update_sched_domain_debugfs(void)
{
}
static inline void dirty_sched_domain_sysctl(int cpu)
{
}
#endif

extern int sched_update_scaling(void);
#endif /* CONFIG_SMP */

#include "stats.h"

#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)

extern void __sched_core_account_forceidle(struct rq *rq);

static inline void sched_core_account_forceidle(struct rq *rq)
{
	if (schedstat_enabled())
		__sched_core_account_forceidle(rq);
}

extern void __sched_core_tick(struct rq *rq);

static inline void sched_core_tick(struct rq *rq)
{
	if (sched_core_enabled(rq) && schedstat_enabled())
		__sched_core_tick(rq);
}

#else

static inline void sched_core_account_forceidle(struct rq *rq) {}

static inline void sched_core_tick(struct rq *rq) {}

#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
 */
static inline struct task_group *task_group(struct task_struct *p)
{
	return p->sched_task_group;
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfully executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
	p->wake_cpu = cpu;
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug const
#endif

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
#include "features.h"
	__SCHED_FEAT_NR,
};

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG

/*
 * To support run-time toggling of sched features, all the translation units
 * (but core.c) reference the sysctl_sched_features defined in core.c.
 */
extern const_debug unsigned int sysctl_sched_features;

#ifdef CONFIG_JUMP_LABEL
#define SCHED_FEAT(name, enabled)					\
static __always_inline bool static_branch_##name(struct static_key *key) \
{									\
	return static_key_##enabled(key);				\
}

#include "features.h"
#undef SCHED_FEAT

extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))

#else /* !CONFIG_JUMP_LABEL */

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))

#endif /* CONFIG_JUMP_LABEL */

#else /* !SCHED_DEBUG */

/*
 * Each translation unit has its own copy of sysctl_sched_features to allow
 * constants propagation at compile time and compiler optimization based on
 * features default.
 */
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
	0;
#undef SCHED_FEAT

#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))

#endif /* SCHED_DEBUG */

extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;

static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}

static inline int task_on_rq_migrating(struct task_struct *p)
{
	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}

/* Wake flags. The first three directly map to some SD flag value */
#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */

#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
#define WF_MIGRATED 0x20 /* Internal use, task got migrated */

#ifdef CONFIG_SMP
static_assert(WF_EXEC == SD_BALANCE_EXEC);
static_assert(WF_FORK == SD_BALANCE_FORK);
static_assert(WF_TTWU == SD_BALANCE_WAKE);
#endif

/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO		3
#define WMULT_IDLEPRIO		1431655765

extern const int		sched_prio_to_weight[40];
extern const u32		sched_prio_to_wmult[40];

/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
 *
 */

#define DEQUEUE_SLEEP		0x01
#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */

#define ENQUEUE_WAKEUP		0x01
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04
#define ENQUEUE_NOCLOCK		0x08

#define ENQUEUE_HEAD		0x10
#define ENQUEUE_REPLENISH	0x20
#ifdef CONFIG_SMP
#define ENQUEUE_MIGRATED	0x40
#else
#define ENQUEUE_MIGRATED	0x00
#endif

#define RETRY_TASK		((void *)-1UL)

struct sched_class {

#ifdef CONFIG_UCLAMP_TASK
	int uclamp_enabled;
#endif

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*yield_task)   (struct rq *rq);
	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);

	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);

	struct task_struct *(*pick_next_task)(struct rq *rq);

	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);

#ifdef CONFIG_SMP
	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);

	struct task_struct * (*pick_task)(struct rq *rq);

	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);

	void (*task_woken)(struct rq *this_rq, struct task_struct *task);

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask,
				 u32 flags);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);

	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
#endif

	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork)(struct task_struct *p);
	void (*task_dead)(struct task_struct *p);

	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serialized by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			      int oldprio);

	unsigned int (*get_rr_interval)(struct rq *rq,
					struct task_struct *task);

	void (*update_curr)(struct rq *rq);

#define TASK_SET_GROUP		0
#define TASK_MOVE_GROUP		1

#ifdef CONFIG_FAIR_GROUP_SCHED
	void (*task_change_group)(struct task_struct *p, int type);
#endif
};

static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	WARN_ON_ONCE(rq->curr != prev);
	prev->sched_class->put_prev_task(rq, prev);
}

static inline void set_next_task(struct rq *rq, struct task_struct *next)
{
	next->sched_class->set_next_task(rq, next, false);
}


/*
 * Helper to define a sched_class instance; each one is placed in a separate
 * section which is ordered by the linker script:
 *
 *   include/asm-generic/vmlinux.lds.h
 *
 * *CAREFUL* they are laid out in *REVERSE* order!!!
 *
 * Also enforce alignment on the instance, not the type, to guarantee layout.
 */
#define DEFINE_SCHED_CLASS(name) \
const struct sched_class name##_sched_class \
	__aligned(__alignof__(struct sched_class)) \
	__section("__" #name "_sched_class")

/* Defined in include/asm-generic/vmlinux.lds.h */
extern struct sched_class __sched_class_highest[];
extern struct sched_class __sched_class_lowest[];

#define for_class_range(class, _from, _to) \
	for (class = (_from); class < (_to); class++)

#define for_each_class(class) \
	for_class_range(class, __sched_class_highest, __sched_class_lowest)

#define sched_class_above(_a, _b)	((_a) < (_b))

extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;

static inline bool sched_stop_runnable(struct rq *rq)
{
	return rq->stop && task_on_rq_queued(rq->stop);
}

static inline bool sched_dl_runnable(struct rq *rq)
{
	return rq->dl.dl_nr_running > 0;
}

static inline bool sched_rt_runnable(struct rq *rq)
{
	return rq->rt.rt_queued > 0;
}

static inline bool sched_fair_runnable(struct rq *rq)
{
	return rq->cfs.nr_running > 0;
}

extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
extern struct task_struct *pick_next_task_idle(struct rq *rq);

#define SCA_CHECK		0x01
#define SCA_MIGRATE_DISABLE	0x02
#define SCA_MIGRATE_ENABLE	0x04
#define SCA_USER		0x08

#ifdef CONFIG_SMP

extern void update_group_capacity(struct sched_domain *sd, int cpu);

extern void trigger_load_balance(struct rq *rq);

extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);

static inline struct task_struct *get_push_task(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	lockdep_assert_rq_held(rq);

	if (rq->push_busy)
		return NULL;

	if (p->nr_cpus_allowed == 1)
		return NULL;

	if (p->migration_disabled)
		return NULL;

	rq->push_busy = true;
	return get_task_struct(p);
}

extern int push_cpu_stop(void *arg);

#endif

#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	SCHED_WARN_ON(!rcu_read_lock_held());

	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

extern void schedule_idle(void);

extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);

extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

extern void reweight_task(struct task_struct *p, int prio);

extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);

#define BW_SHIFT		20
#define BW_UNIT			(1 << BW_SHIFT)
#define RATIO_SHIFT		8
#define MAX_BW_BITS		(64 - BW_SHIFT)
#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
unsigned long to_ratio(u64 period, u64 runtime);

extern void init_entity_runnable_average(struct sched_entity *se);
extern void post_init_entity_util_avg(struct task_struct *p);

#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
extern int __init sched_tick_offload_init(void);

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
static inline int sched_tick_offload_init(void) { return 0; }
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif

static inline void add_nr_running(struct rq *rq, unsigned count)
{
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
	if (trace_sched_update_nr_running_tp_enabled()) {
		call_trace_sched_update_nr_running(rq, count);
	}

#ifdef CONFIG_SMP
	if (prev_nr < 2 && rq->nr_running >= 2) {
		if (!READ_ONCE(rq->rd->overload))
			WRITE_ONCE(rq->rd->overload, 1);
	}
#endif

	sched_update_tick_dependency(rq);
}

static inline void sub_nr_running(struct rq *rq, unsigned count)
{
	rq->nr_running -= count;
	if (trace_sched_update_nr_running_tp_enabled()) {
		call_trace_sched_update_nr_running(rq, -count);
	}

	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
}

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

#ifdef CONFIG_SCHED_DEBUG
extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_idle_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern int sysctl_resched_latency_warn_ms;
extern int sysctl_resched_latency_warn_once;

extern unsigned int sysctl_sched_tunable_scaling;

extern unsigned int sysctl_numa_balancing_scan_delay;
extern unsigned int sysctl_numa_balancing_scan_period_min;
extern unsigned int sysctl_numa_balancing_scan_period_max;
extern unsigned int sysctl_numa_balancing_scan_size;
#endif

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static inline int hrtick_enabled_fair(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtick_enabled(rq);
}

static inline int hrtick_enabled_dl(struct rq *rq)
{
	if (!sched_feat(HRTICK_DL))
		return 0;
	return hrtick_enabled(rq);
}

void hrtick_start(struct rq *rq, u64 delay);

#else

static inline int hrtick_enabled_fair(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled_dl(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

#endif /* CONFIG_SCHED_HRTICK */

#ifndef arch_scale_freq_tick
static __always_inline
void arch_scale_freq_tick(void)
{
}
#endif

#ifndef arch_scale_freq_capacity
/**
 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
 * @cpu: the CPU in question.
 *
 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
 *
 *     f_curr
 *     ------ * SCHED_CAPACITY_SCALE
 *     f_max
 */
static __always_inline
unsigned long arch_scale_freq_capacity(int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif

#ifdef CONFIG_SCHED_DEBUG
/*
 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
 * acquire rq lock instead of rq_lock(). So at the end of these two functions
 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
 */
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
{
	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
#ifdef CONFIG_SMP
	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
#endif
}
#else
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
#endif

#ifdef CONFIG_SMP

static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
{
#ifdef CONFIG_SCHED_CORE
	/*
	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
	 * order by core-id first and cpu-id second.
	 *
	 * Notably:
	 *
	 *	double_rq_lock(0,3); will take core-0, core-1 lock
	 *	double_rq_lock(1,2); will take core-1, core-0 lock
	 *
	 * when only cpu-id is considered.
	 */
	if (rq1->core->cpu < rq2->core->cpu)
		return true;
	if (rq1->core->cpu > rq2->core->cpu)
		return false;

	/*
	 * __sched_core_flip() relies on SMT having cpu-id lock order.
	 */
#endif
	return rq1->cpu < rq2->cpu;
}

extern void double_rq_lock(struct rq *rq1, struct rq *rq2);

#ifdef CONFIG_PREEMPTION

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_rq_unlock(this_rq);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower CPU-ids and will
 * grant the double lock to lower CPUs over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
	    likely(raw_spin_rq_trylock(busiest))) {
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	if (rq_order_less(this_rq, busiest)) {
		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	raw_spin_rq_unlock(this_rq);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#endif /* CONFIG_PREEMPTION */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	lockdep_assert_irqs_disabled();

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
		raw_spin_rq_unlock(busiest);
	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
}

static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	if (__rq_lockp(rq1) != __rq_lockp(rq2))
		raw_spin_rq_unlock(rq2);
	else
		__release(rq2->lock);
	raw_spin_rq_unlock(rq1);
}

extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;

#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_rq_lock(rq1);
	__acquire(rq2->lock);	/* Fake it out ;) */
	double_rq_clock_clear_update(rq1, rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_rq_unlock(rq1);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);

#ifdef	CONFIG_SCHED_DEBUG
extern bool sched_debug_verbose;

extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu);
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

extern void resched_latency_warn(int cpu, u64 latency);
#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
	unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#else
static inline void resched_latency_warn(int cpu, u64 latency) {}
#endif /* CONFIG_SCHED_DEBUG */

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);

extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);

#ifdef CONFIG_NO_HZ_COMMON
#define NOHZ_BALANCE_KICK_BIT	0
#define NOHZ_STATS_KICK_BIT	1
#define NOHZ_NEWILB_KICK_BIT	2
#define NOHZ_NEXT_KICK_BIT	3

/* Run rebalance_domains() */
#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
/* Update blocked load */
#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
/* Update blocked load when entering idle */
#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
/* Update nohz.next_balance */
#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)

#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)

extern void nohz_balance_exit_idle(struct rq *rq);
#else
static inline void nohz_balance_exit_idle(struct rq *rq) { }
#endif

#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
extern void nohz_run_idle_balance(int cpu);
#else
static inline void nohz_run_idle_balance(int cpu) { }
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
	u64			total;
	u64			tick_delta;
	u64			irq_start_time;
	struct u64_stats_sync	sync;
};

DECLARE_PER_CPU(struct irqtime, cpu_irqtime);

/*
 * Returns the irqtime minus the softirq time computed by ksoftirqd.
 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
 * and never move forward.
 */
static inline u64 irq_time_read(int cpu)
{
	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
	unsigned int seq;
	u64 total;

	do {
		seq = __u64_stats_fetch_begin(&irqtime->sync);
		total = irqtime->total;
	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));

	return total;
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
 * @rq: Runqueue to carry out the update for.
 * @flags: Update reason flags.
 *
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
 * That is not guaranteed to happen if the updates are only triggered from CFS
 * and DL, though, because they may not be coming in if only RT tasks are
 * active all the time (or there are RT tasks only).
 *
 * As a workaround for that issue, this function is called periodically by the
 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
 * but that really is a band-aid.  Going forward it should be replaced with
 * solutions targeted more specifically at RT tasks.
 */
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
{
	struct update_util_data *data;

	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
						  cpu_of(rq)));
	if (data)
		data->func(data, rq_clock(rq), flags);
}
#else
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
#endif /* CONFIG_CPU_FREQ */

#ifdef arch_scale_freq_capacity
# ifndef arch_scale_freq_invariant
#  define arch_scale_freq_invariant()	true
# endif
#else
# define arch_scale_freq_invariant()	false
#endif

#ifdef CONFIG_SMP
static inline unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

/**
 * enum cpu_util_type - CPU utilization type
 * @FREQUENCY_UTIL:	Utilization used to select frequency
 * @ENERGY_UTIL:	Utilization used during energy calculation
 *
 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
 * need to be aggregated differently depending on the usage made of them. This
 * enum is used within effective_cpu_util() to differentiate the types of
 * utilization expected by the callers, and adjust the aggregation accordingly.
 */
enum cpu_util_type {
	FREQUENCY_UTIL,
	ENERGY_UTIL,
};

unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
				 enum cpu_util_type type,
				 struct task_struct *p);

static inline unsigned long cpu_bw_dl(struct rq *rq)
{
	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
}

static inline unsigned long cpu_util_dl(struct rq *rq)
{
	return READ_ONCE(rq->avg_dl.util_avg);
}

/**
 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
 * @cpu: the CPU to get the utilization for.
 *
 * The unit of the return value must be the same as the one of CPU capacity
 * so that CPU utilization can be compared with CPU capacity.
 *
 * CPU utilization is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on that CPU.
 * It represents the amount of CPU capacity currently used by CFS tasks in
 * the range [0..max CPU capacity] with max CPU capacity being the CPU
 * capacity at f_max.
 *
 * The estimated CPU utilization is defined as the maximum between CPU
 * utilization and sum of the estimated utilization of the currently
 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
 * previously-executed tasks, which helps better deduce how busy a CPU will
 * be when a long-sleeping task wakes up. The contribution to CPU utilization
 * of such a task would be significantly decayed at this point of time.
 *
 * CPU utilization can be higher than the current CPU capacity
 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
 * of rounding errors as well as task migrations or wakeups of new tasks.
 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
 * capacity. CPU utilization is allowed to overshoot current CPU capacity
 * though since this is useful for predicting the CPU capacity required
 * after task migrations (scheduler-driven DVFS).
 *
 * Return: (Estimated) utilization for the specified CPU.
 */
static inline unsigned long cpu_util_cfs(int cpu)
{
	struct cfs_rq *cfs_rq;
	unsigned long util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST)) {
		util = max_t(unsigned long, util,
			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
	}

	return min(util, capacity_orig_of(cpu));
}

static inline unsigned long cpu_util_rt(struct rq *rq)
{
	return READ_ONCE(rq->avg_rt.util_avg);
}
#endif

#ifdef CONFIG_UCLAMP_TASK
unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);

/**
 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
 * @rq:		The rq to clamp against. Must not be NULL.
 * @util:	The util value to clamp.
 * @p:		The task to clamp against. Can be NULL if you want to clamp
 *		against @rq only.
 *
 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
 *
 * If sched_uclamp_used static key is disabled, then just return the util
 * without any clamping since uclamp aggregation at the rq level in the fast
 * path is disabled, rendering this operation a NOP.
 *
 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
 * will return the correct effective uclamp value of the task even if the
 * static key is disabled.
 */
static __always_inline
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
				  struct task_struct *p)
{
	unsigned long min_util = 0;
	unsigned long max_util = 0;

	if (!static_branch_likely(&sched_uclamp_used))
		return util;

	if (p) {
		min_util = uclamp_eff_value(p, UCLAMP_MIN);
		max_util = uclamp_eff_value(p, UCLAMP_MAX);

		/*
		 * Ignore last runnable task's max clamp, as this task will
		 * reset it. Similarly, no need to read the rq's min clamp.
		 */
		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
			goto out;
	}

	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
out:
	/*
	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
	 * RUNNABLE tasks with _different_ clamps, we can end up with an
	 * inversion. Fix it now when the clamps are applied.
	 */
	if (unlikely(min_util >= max_util))
		return min_util;

	return clamp(util, min_util, max_util);
}

/* Is the rq being capped/throttled by uclamp_max? */
static inline bool uclamp_rq_is_capped(struct rq *rq)
{
	unsigned long rq_util;
	unsigned long max_util;

	if (!static_branch_likely(&sched_uclamp_used))
		return false;

	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);

	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
}

/*
 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
 * by default in the fast path and only gets turned on once userspace performs
 * an operation that requires it.
 *
 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
 * hence is active.
 */
static inline bool uclamp_is_used(void)
{
	return static_branch_likely(&sched_uclamp_used);
}
#else /* CONFIG_UCLAMP_TASK */
static inline
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
				  struct task_struct *p)
{
	return util;
}

static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }

static inline bool uclamp_is_used(void)
{
	return false;
}
#endif /* CONFIG_UCLAMP_TASK */

#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return rq->avg_irq.util_avg;
}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	util *= (max - irq);
	util /= max;

	return util;

}
#else
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return 0;
}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	return util;
}
#endif

#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)

#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))

DECLARE_STATIC_KEY_FALSE(sched_energy_present);

static inline bool sched_energy_enabled(void)
{
	return static_branch_unlikely(&sched_energy_present);
}

#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */

#define perf_domain_span(pd) NULL
static inline bool sched_energy_enabled(void) { return false; }

#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */

#ifdef CONFIG_MEMBARRIER
/*
 * The scheduler provides memory barriers required by membarrier between:
 * - prior user-space memory accesses and store to rq->membarrier_state,
 * - store to rq->membarrier_state and following user-space memory accesses.
 * In the same way it provides those guarantees around store to rq->curr.
 */
static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{
	int membarrier_state;

	if (prev_mm == next_mm)
		return;

	membarrier_state = atomic_read(&next_mm->membarrier_state);
	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
		return;

	WRITE_ONCE(rq->membarrier_state, membarrier_state);
}
#else
static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{
}
#endif

#ifdef CONFIG_SMP
static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}
#endif

extern void swake_up_all_locked(struct swait_queue_head *q);
extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);

#ifdef CONFIG_PREEMPT_DYNAMIC
extern int preempt_dynamic_mode;
extern int sched_dynamic_mode(const char *str);
extern void sched_dynamic_update(int mode);
#endif

#endif /* _KERNEL_SCHED_SCHED_H */