summaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
blob: 50aa2aba69bd4daba02dd6e697a011f364b3f2da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
// SPDX-License-Identifier: GPL-2.0
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
 */
#include "sched.h"

#include <trace/events/sched.h>

/*
 * Targeted preemption latency for CPU-bound tasks:
 *
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
 *
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
 */
unsigned int sysctl_sched_latency			= 6000000ULL;
static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;

/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;

/*
 * Minimal preemption granularity for CPU-bound tasks:
 *
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
 */
unsigned int sysctl_sched_min_granularity			= 750000ULL;
static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;

/*
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
 */
static unsigned int sched_nr_latency = 8;

/*
 * After fork, child runs first. If set to 0 (default) then
 * parent will (try to) run first.
 */
unsigned int sysctl_sched_child_runs_first __read_mostly;

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
 */
unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;

const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;

#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered CPU has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}

/*
 * The margin used when comparing utilization with CPU capacity:
 * util * margin < capacity * 1024
 *
 * (default: ~20%)
 */
static unsigned int capacity_margin			= 1280;
#endif

#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
#endif

static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static unsigned int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#define WMULT_CONST	(~0U)
#define WMULT_SHIFT	32

static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}

/*
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 */
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
{
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;

	__update_inv_weight(lw);

	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
	}

	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;

	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}

	return mul_u64_u32_shr(delta_exec, fact, shift);
}


const struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

static inline struct task_struct *task_of(struct sched_entity *se)
{
	SCHED_WARN_ON(!entity_is_task(se));
	return container_of(se, struct task_struct, se);
}

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
		}

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

/* Iterate through all leaf cfs_rq's on a runqueue: */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return se->cfs_rq;

	return NULL;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}


#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

#define for_each_leaf_cfs_rq(rq, cfs_rq)	\
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - max_vruntime);
	if (delta > 0)
		max_vruntime = vruntime;

	return max_vruntime;
}

static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr = cfs_rq->curr;
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);

	u64 vruntime = cfs_rq->min_vruntime;

	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}

	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);

		if (!curr)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	/* ensure we never gain time by being placed backwards. */
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

/*
 * Enqueue an entity into the rb-tree:
 */
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	bool leftmost = true;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (entity_before(se, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = false;
		}
	}

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
}

static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
}

struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
}

static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);

	if (!last)
		return NULL;

	return rb_entry(last, struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

int sched_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	unsigned int factor = get_update_sysctl_factor();

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

	return 0;
}
#endif

/*
 * delta /= w
 */
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);

	return delta;
}

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
static u64 __sched_period(unsigned long nr_running)
{
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
}

/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*P[w/rw]
 */
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);

	for_each_sched_entity(se) {
		struct load_weight *load;
		struct load_weight lw;

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;

		if (unlikely(!se->on_rq)) {
			lw = cfs_rq->load;

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = __calc_delta(slice, se->load.weight, load);
	}
	return slice;
}

/*
 * We calculate the vruntime slice of a to-be-inserted task.
 *
 * vs = s/w
 */
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
}

#ifdef CONFIG_SMP
#include "pelt.h"
#include "sched-pelt.h"

static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
static unsigned long task_h_load(struct task_struct *p);
static unsigned long capacity_of(int cpu);

/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
{
	struct sched_avg *sa = &se->avg;

	memset(sa, 0, sizeof(*sa));

	/*
	 * Tasks are initialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are initialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

	se->runnable_weight = se->load.weight;

	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}

static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static void attach_entity_cfs_rq(struct sched_entity *se);

/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task and cpu_scale the CPU capacity.
 *
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq);
			attach_entity_load_avg(cfs_rq, se, 0);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
			return;
		}
	}

	attach_entity_cfs_rq(se);
}

#else /* !CONFIG_SMP */
void init_entity_runnable_average(struct sched_entity *se)
{
}
void post_init_entity_util_avg(struct sched_entity *se)
{
}
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
#endif /* CONFIG_SMP */

/*
 * Update the current task's runtime statistics.
 */
static void update_curr(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr = cfs_rq->curr;
	u64 now = rq_clock_task(rq_of(cfs_rq));
	u64 delta_exec;

	if (unlikely(!curr))
		return;

	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
		return;

	curr->exec_start = now;

	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq->exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
		cgroup_account_cputime(curtask, delta_exec);
		account_group_exec_runtime(curtask, delta_exec);
	}

	account_cfs_rq_runtime(cfs_rq, delta_exec);
}

static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;

	__schedstat_set(se->statistics.wait_start, wait_start);
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
	u64 delta;

	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			__schedstat_set(se->statistics.wait_start, delta);
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	__schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
}

static inline void
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);

	if (entity_is_task(se))
		tsk = task_of(se);

	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			__schedstat_set(se->statistics.sleep_max, delta);

		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			__schedstat_set(se->statistics.block_max, delta);

		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);

		if (tsk) {
			if (tsk->in_iowait) {
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
}

/*
 * Task is being enqueued - update stats:
 */
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	if (!schedstat_enabled())
		return;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_start(cfs_rq, se);

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{

	if (!schedstat_enabled())
		return;

	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_end(cfs_rq, se);

	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);

		if (tsk->state & TASK_INTERRUPTIBLE)
			__schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			__schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
	}
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * We are starting a new run period:
	 */
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
}

/**************************************************
 * Scheduling class queueing methods:
 */

#ifdef CONFIG_NUMA_BALANCING
/*
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
 */
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;

/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

	return max(smin, smax);
}

void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

/*
 * The averaged statistics, shared & private, memory & CPU,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
{
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
	if (!p->numa_faults)
		return 0;

	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
}

static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
}

static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
}

static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist >= maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
{
	unsigned long faults, total_faults;

	if (!p->numa_faults)
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	faults = task_faults(p, nid);
	faults += score_nearby_nodes(p, nid, dist, true);

	return 1000 * faults / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
{
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
		return 0;

	faults = group_faults(p, nid);
	faults += score_nearby_nodes(p, nid, dist, false);

	return 1000 * faults / total_faults;
}

bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);

	/*
	 * Allow first faults or private faults to migrate immediately early in
	 * the lifetime of a task. The magic number 4 is based on waiting for
	 * two full passes of the "multi-stage node selection" test that is
	 * executed below.
	 */
	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
		return true;

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
	 */
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
		return true;

	/*
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
	 */
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
}

static unsigned long weighted_cpuload(struct rq *rq);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);

/* Cached statistics for all CPUs within a node */
struct numa_stats {
	unsigned long load;

	/* Total compute capacity of CPUs on a node */
	unsigned long compute_capacity;
};

/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
	int cpu;

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->load += weighted_cpuload(rq);
		ns->compute_capacity += capacity_of(cpu);
	}

}

struct task_numa_env {
	struct task_struct *p;

	int src_cpu, src_nid;
	int dst_cpu, dst_nid;

	struct numa_stats src_stats, dst_stats;

	int imbalance_pct;
	int dist;

	struct task_struct *best_task;
	long best_imp;
	int best_cpu;
};

static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

static bool load_too_imbalanced(long src_load, long dst_load,
				struct task_numa_env *env)
{
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;

	imb = abs(dst_load * src_capacity - src_load * dst_capacity);

	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);

	/* Would this change make things worse? */
	return (imb > old_imb);
}

/*
 * Maximum NUMA importance can be 1998 (2*999);
 * SMALLIMP @ 30 would be close to 1998/64.
 * Used to deter task migration.
 */
#define SMALLIMP	30

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp, bool maymove)
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long src_load, dst_load;
	long load;
	long imp = env->p->numa_group ? groupimp : taskimp;
	long moveimp = imp;
	int dist = env->dist;

	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

	rcu_read_lock();
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
		cur = NULL;

	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

	if (!cur) {
		if (maymove && moveimp >= env->best_imp)
			goto assign;
		else
			goto unlock;
	}

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more remote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;

	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
		/*
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
		 */
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
	}

	if (maymove && moveimp > imp && moveimp > env->best_imp) {
		imp = moveimp;
		cur = NULL;
		goto assign;
	}

	/*
	 * If the NUMA importance is less than SMALLIMP,
	 * task migration might only result in ping pong
	 * of tasks and also hurt performance due to cache
	 * misses.
	 */
	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
		goto unlock;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	if (load_too_imbalanced(src_load, dst_load, env))
		goto unlock;

assign:
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-CPU cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
		local_irq_enable();
	}

	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
{
	long src_load, dst_load, load;
	bool maymove = false;
	int cpu;

	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
			continue;

		env->dst_cpu = cpu;
		task_numa_compare(env, taskimp, groupimp, maymove);
	}
}

static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,

		.src_cpu = task_cpu(p),
		.src_nid = task_node(p),

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1,
	};
	struct sched_domain *sd;
	struct rq *best_rq;
	unsigned long taskweight, groupweight;
	int nid, ret, dist;
	long taskimp, groupimp;

	/*
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
	 */
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
	rcu_read_unlock();

	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
		sched_setnuma(p, task_node(p));
		return -EINVAL;
	}

	env.dst_nid = p->numa_preferred_nid;
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
	update_numa_stats(&env.dst_stats, env.dst_nid);

	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);

	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;

			dist = node_distance(env.src_nid, env.dst_nid);
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}

			/* Only consider nodes where both task and groups benefit */
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
			if (taskimp < 0 && groupimp < 0)
				continue;

			env.dist = dist;
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
			task_numa_find_cpu(&env, taskimp, groupimp);
		}
	}

	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = cpu_to_node(env.best_cpu);

		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

	best_rq = cpu_rq(env.best_cpu);
	if (env.best_task == NULL) {
		ret = migrate_task_to(p, env.best_cpu);
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
	WRITE_ONCE(best_rq->numa_migrate_on, 0);

	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
	put_task_struct(env.best_task);
	return ret;
}

/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
	unsigned long interval = HZ;

	/* This task has no NUMA fault statistics yet */
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
		return;

	/* Periodically retry migrating the task to the preferred node */
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;

	/* Success if task is already running on preferred CPU */
	if (task_node(p) == p->numa_preferred_nid)
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
	task_numa_migrate(p);
}

/*
 * Find out how many nodes on the workload is actively running on. Do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
static void numa_group_count_active_nodes(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid, active_nodes = 0;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
	}

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
}

/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 7

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int lr_ratio, ps_ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
	 */
	if (local + shared == 0 || p->numa_faults_locality[2]) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
		 */
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.load_sum;
		*period = LOAD_AVG_MAX;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
		nodemask_t max_group = NODE_MASK_NONE;
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
		if (!max_faults)
			break;
		nodes = max_group;
	}
	return nid;
}

static void task_numa_placement(struct task_struct *p)
{
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
	unsigned long fault_types[2] = { 0, 0 };
	unsigned long total_faults;
	u64 runtime, period;
	spinlock_t *group_lock = NULL;

	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
	seq = READ_ONCE(p->mm->numa_scan_seq);
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
	p->numa_scan_period_max = task_scan_max(p);

	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock_irq(group_lock);
	}

	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
		unsigned long faults = 0, group_faults = 0;
		int priv;

		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
			long diff, f_diff, f_weight;

			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);

			/* Decay existing window, copy faults since last scan */
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;

			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
				   (total_faults + 1);
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;

			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
			p->total_numa_faults += diff;
			if (p->numa_group) {
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[mem_idx];
			}
		}

		if (!p->numa_group) {
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
			max_nid = nid;
		}
	}

	if (p->numa_group) {
		numa_group_count_active_nodes(p->numa_group);
		spin_unlock_irq(group_lock);
		max_nid = preferred_group_nid(p, max_nid);
	}

	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
	}

	update_task_scan_period(p, fault_types[0], fault_types[1]);
}

static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
				    4*nr_node_ids*sizeof(unsigned long);

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
		spin_lock_init(&grp->lock);
		grp->gid = p->pid;
		/* Second half of the array tracks nids where faults happen */
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;

		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
			grp->faults[i] = p->numa_faults[i];

		grp->total_faults = p->total_numa_faults;

		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = READ_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
		goto no_join;

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
		goto no_join;

	my_grp = p->numa_group;
	if (grp == my_grp)
		goto no_join;

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
		goto no_join;

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
		goto no_join;

	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;

	/* Update priv based on whether false sharing was detected */
	*priv = !join;

	if (join && !get_numa_group(grp))
		goto no_join;

	rcu_read_unlock();

	if (!join)
		return;

	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);

	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
	}
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock_irq(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
	return;

no_join:
	rcu_read_unlock();
	return;
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	void *numa_faults = p->numa_faults;
	unsigned long flags;
	int i;

	if (grp) {
		spin_lock_irqsave(&grp->lock, flags);
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
			grp->faults[i] -= p->numa_faults[i];
		grp->total_faults -= p->total_numa_faults;

		grp->nr_tasks--;
		spin_unlock_irqrestore(&grp->lock, flags);
		RCU_INIT_POINTER(p->numa_group, NULL);
		put_numa_group(grp);
	}

	p->numa_faults = NULL;
	kfree(numa_faults);
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
{
	struct task_struct *p = current;
	bool migrated = flags & TNF_MIGRATED;
	int cpu_node = task_node(current);
	int local = !!(flags & TNF_FAULT_LOCAL);
	struct numa_group *ng;
	int priv;

	if (!static_branch_likely(&sched_numa_balancing))
		return;

	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

	/* Allocate buffer to track faults on a per-node basis */
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;

		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
			return;

		p->total_numa_faults = 0;
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
	}

	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
		if (!priv && !(flags & TNF_NO_GROUP))
			task_numa_group(p, last_cpupid, flags, &priv);
	}

	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
		local = 1;

	/*
	 * Retry to migrate task to preferred node periodically, in case it
	 * previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
		numa_migrate_preferred(p);
	}

	if (migrated)
		p->numa_pages_migrated += pages;
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;

	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
	p->numa_faults_locality[local] += pages;
}

static void reset_ptenuma_scan(struct task_struct *p)
{
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
	p->mm->numa_scan_offset = 0;
}

/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
	u64 runtime = p->se.sum_exec_runtime;
	struct vm_area_struct *vma;
	unsigned long start, end;
	unsigned long nr_pte_updates = 0;
	long pages, virtpages;

	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

	if (!mm->numa_next_scan) {
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
	}

	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_start(p);
	}

	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
	if (!pages)
		return;


	if (!down_read_trylock(&mm->mmap_sem))
		return;
	vma = find_vma(mm, start);
	if (!vma) {
		reset_ptenuma_scan(p);
		start = 0;
		vma = mm->mmap;
	}
	for (; vma; vma = vma->vm_next) {
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
			continue;
		}

		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;

		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			nr_pte_updates = change_prot_numa(vma, start, end);

			/*
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
			virtpages -= (end - start) >> PAGE_SHIFT;

			start = end;
			if (pages <= 0 || virtpages <= 0)
				goto out;

			cond_resched();
		} while (end != vma->vm_end);
	}

out:
	/*
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
	 */
	if (vma)
		mm->numa_scan_offset = start;
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now > curr->node_stamp + period) {
		if (!curr->node_stamp)
			curr->numa_scan_period = task_scan_start(curr);
		curr->node_stamp += period;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}

static void update_scan_period(struct task_struct *p, int new_cpu)
{
	int src_nid = cpu_to_node(task_cpu(p));
	int dst_nid = cpu_to_node(new_cpu);

	if (!static_branch_likely(&sched_numa_balancing))
		return;

	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
		return;

	if (src_nid == dst_nid)
		return;

	/*
	 * Allow resets if faults have been trapped before one scan
	 * has completed. This is most likely due to a new task that
	 * is pulled cross-node due to wakeups or load balancing.
	 */
	if (p->numa_scan_seq) {
		/*
		 * Avoid scan adjustments if moving to the preferred
		 * node or if the task was not previously running on
		 * the preferred node.
		 */
		if (dst_nid == p->numa_preferred_nid ||
		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
			return;
	}

	p->numa_scan_period = task_scan_start(p);
}

#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}

static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}

#endif /* CONFIG_NUMA_BALANCING */

static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
#endif
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
		list_del_init(&se->group_node);
	}
#endif
	cfs_rq->nr_running--;
}

/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

/*
 * Remove and clamp on negative, from a local variable.
 *
 * A variant of sub_positive(), which does not use explicit load-store
 * and is thus optimized for local variable updates.
 */
#define lsub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight, unsigned long runnable)
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

	se->runnable_weight = runnable;
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

	reweight_entity(cfs_rq, se, weight, weight);
	load->inv_weight = sched_prio_to_wmult[prio];
}

#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
static long calc_group_shares(struct cfs_rq *cfs_rq)
{
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);

	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);

	tg_weight = atomic_long_read(&tg->load_avg);

	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;

	shares = (tg_shares * load);
	if (tg_weight)
		shares /= tg_weight;

	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
}

/*
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;

	return clamp_t(long, runnable, MIN_SHARES, shares);
}
#endif /* CONFIG_SMP */

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;

	if (!gcfs_rq)
		return;

	if (throttled_hierarchy(gcfs_rq))
		return;

#ifndef CONFIG_SMP
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);

	if (likely(se->load.weight == shares))
		return;
#else
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
#endif

	reweight_entity(cfs_rq_of(se), se, shares, runnable);
}

#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_group(struct sched_entity *se)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
{
	struct rq *rq = rq_of(cfs_rq);

	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq, flags);
	}
}

#ifdef CONFIG_SMP
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share().
 */
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;

	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
	}
}

/*
 * Called within set_task_rq() right before setting a task's CPU. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	u64 p_last_update_time;
	u64 n_last_update_time;

	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (!(se->avg.last_update_time && prev))
		return;

#ifndef CONFIG_64BIT
	{
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
	}
#else
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
#endif
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
}


/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
 *
 * And per (1) we have:
 *
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
 *
 * So we'll have to approximate.. :/
 *
 * Given the constraint:
 *
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
 *
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
 *
 * On removal, we'll assume each task is equally runnable; which yields:
 *
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
 *
 * XXX: only do this for the part of runnable > running ?
 *
 */

static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;

	if (!runnable_sum)
		return;

	gcfs_rq->prop_runnable_sum = 0;

	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
	 * As running sum is scale with CPU capacity wehreas the runnable sum
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);

	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;

	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);

	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;

	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;

	if (se->on_rq) {
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
	}
}

static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
{
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq, *gcfs_rq;

	if (entity_is_task(se))
		return 0;

	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
		return 0;

	gcfs_rq->propagate = 0;

	cfs_rq = cfs_rq_of(se);

	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);

	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);

	return 1;
}

/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

#else /* CONFIG_FAIR_GROUP_SCHED */

static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}

#endif /* CONFIG_FAIR_GROUP_SCHED */

/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
 */
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
	struct sched_avg *sa = &cfs_rq->avg;
	int decayed = 0;

	if (cfs_rq->removed.nr) {
		unsigned long r;
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * divider);

		r = removed_util;
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * divider);

		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);

		decayed = 1;
	}

	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);

#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif

	if (decayed)
		cfs_rq_util_change(cfs_rq, 0);

	return decayed;
}

/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 * @flags: migration hints
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

	enqueue_load_avg(cfs_rq, se);
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);

	cfs_rq_util_change(cfs_rq, flags);
}

/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	dequeue_load_avg(cfs_rq, se);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);

	cfs_rq_util_change(cfs_rq, 0);
}

/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

#ifndef CONFIG_64BIT
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	u64 last_update_time_copy;
	u64 last_update_time;

	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);

	return last_update_time;
}
#else
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
#endif

/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
}

/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	unsigned long flags;

	/*
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
	 */

	sync_entity_load_avg(se);

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
}

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

static int idle_balance(struct rq *this_rq, struct rq_flags *rf);

static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
	enqueued += _task_util_est(p);
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

static inline int task_fits_capacity(struct task_struct *p, long capacity)
{
	return capacity * 1024 > task_util_est(p) * capacity_margin;
}

static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
{
	if (!static_branch_unlikely(&sched_asym_cpucapacity))
		return;

	if (!p) {
		rq->misfit_task_load = 0;
		return;
	}

	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
		rq->misfit_task_load = 0;
		return;
	}

	rq->misfit_task_load = task_h_load(p);
}

#else /* CONFIG_SMP */

#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
#define DO_ATTACH	0x0

static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
{
	cfs_rq_util_change(cfs_rq, 0);
}

static inline void remove_entity_load_avg(struct sched_entity *se) {}

static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
{
	return 0;
}

static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}
static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}

#endif /* CONFIG_SMP */

static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq->nr_spread_over);
#endif
}

static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 vruntime = cfs_rq->min_vruntime;

	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
	if (initial && sched_feat(START_DEBIT))
		vruntime += sched_vslice(cfs_rq, se);

	/* sleeps up to a single latency don't count. */
	if (!initial) {
		unsigned long thresh = sysctl_sched_latency;

		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;

		vruntime -= thresh;
	}

	/* ensure we never gain time by being placed backwards. */
	se->vruntime = max_vruntime(se->vruntime, vruntime);
}

static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enable or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}


/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

	/*
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
	 */
	if (renorm && curr)
		se->vruntime += cfs_rq->min_vruntime;

	update_curr(cfs_rq);

	/*
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
	 */
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
	update_cfs_group(se);
	enqueue_runnable_load_avg(cfs_rq, se);
	account_entity_enqueue(cfs_rq, se);

	if (flags & ENQUEUE_WAKEUP)
		place_entity(cfs_rq, se, 0);

	check_schedstat_required();
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
	if (!curr)
		__enqueue_entity(cfs_rq, se);
	se->on_rq = 1;

	if (cfs_rq->nr_running == 1) {
		list_add_leaf_cfs_rq(cfs_rq);
		check_enqueue_throttle(cfs_rq);
	}
}

static void __clear_buddies_last(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last != se)
			break;

		cfs_rq->last = NULL;
	}
}

static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next != se)
			break;

		cfs_rq->next = NULL;
	}
}

static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip != se)
			break;

		cfs_rq->skip = NULL;
	}
}

static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);

static void
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Subtract its load from the cfs_rq->runnable_avg.
	 *   - Subtract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
	update_load_avg(cfs_rq, se, UPDATE_TG);
	dequeue_runnable_load_avg(cfs_rq, se);

	update_stats_dequeue(cfs_rq, se, flags);

	clear_buddies(cfs_rq, se);

	if (se != cfs_rq->curr)
		__dequeue_entity(cfs_rq, se);
	se->on_rq = 0;
	account_entity_dequeue(cfs_rq, se);

	/*
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
	 */
	if (!(flags & DEQUEUE_SLEEP))
		se->vruntime -= cfs_rq->min_vruntime;

	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

	update_cfs_group(se);

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	unsigned long ideal_runtime, delta_exec;
	struct sched_entity *se;
	s64 delta;

	ideal_runtime = sched_slice(cfs_rq, curr);
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime) {
		resched_curr(rq_of(cfs_rq));
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;

	if (delta < 0)
		return;

	if (delta > ideal_runtime)
		resched_curr(rq_of(cfs_rq));
}

static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
		update_load_avg(cfs_rq, se, UPDATE_TG);
	}

	update_stats_curr_start(cfs_rq, se);
	cfs_rq->curr = se;

	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
	}

	se->prev_sum_exec_runtime = se->sum_exec_runtime;
}

static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */

	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}

	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

	clear_buddies(cfs_rq, se);

	return se;
}

static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
		update_curr(cfs_rq);

	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

	check_spread(cfs_rq, prev);

	if (prev->on_rq) {
		update_stats_wait_start(cfs_rq, prev);
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
		/* in !on_rq case, update occurred at dequeue */
		update_load_avg(cfs_rq, prev, 0);
	}
	cfs_rq->curr = NULL;
}

static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
{
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

	/*
	 * Ensure that runnable average is periodically updated.
	 */
	update_load_avg(cfs_rq, curr, UPDATE_TG);
	update_cfs_group(curr);

#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued) {
		resched_curr(rq_of(cfs_rq));
		return;
	}
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
}


/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH

#ifdef CONFIG_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;

static inline bool cfs_bandwidth_used(void)
{
	return static_key_false(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_inc(void)
{
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
}
#else /* CONFIG_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
#endif /* CONFIG_JUMP_LABEL */

/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
}

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;

	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
}

/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
	u64 amount = 0, min_amount, expires;
	int expires_seq;

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
	else {
		start_cfs_bandwidth(cfs_b);

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
	}
	expires_seq = cfs_b->expires_seq;
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
		cfs_rq->runtime_expires = expires;
	}

	return cfs_rq->runtime_remaining > 0;
}

/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
		return;

	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
	 */
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
	cfs_rq->runtime_remaining -= delta_exec;
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_curr(rq_of(cfs_rq));
}

static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return cfs_bandwidth_used() && cfs_rq->throttled;
}

/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
		/* adjust cfs_rq_clock_task() */
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
					     cfs_rq->throttled_clock_task;
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
	cfs_rq->throttle_count++;

	return 0;
}

static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
	bool empty;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* freeze hierarchy runnable averages while throttled */
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		sub_nr_running(rq, task_delta);

	cfs_rq->throttled = 1;
	cfs_rq->throttled_clock = rq_clock(rq);
	raw_spin_lock(&cfs_b->lock);
	empty = list_empty(&cfs_b->throttled_cfs_rq);

	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
	 * not running add to the tail so that later runqueues don't get starved.
	 */
	if (cfs_b->distribute_running)
		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	else
		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

	raw_spin_unlock(&cfs_b->lock);
}

void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq)];

	cfs_rq->throttled = 0;

	update_rq_clock(rq);

	raw_spin_lock(&cfs_b->lock);
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		add_nr_running(rq, task_delta);

	/* Determine whether we need to wake up potentially idle CPU: */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_curr(rq);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime;
	u64 starting_runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
		struct rq_flags rf;

		rq_lock(rq, &rf);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		rq_unlock(rq, &rf);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return starting_runtime - remaining;
}

/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
	u64 runtime, runtime_expires;
	int throttled;

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_deactivate;

	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	cfs_b->nr_periods += overrun;

	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;

	__refill_cfs_bandwidth_runtime(cfs_b);

	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		return 0;
	}

	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

	runtime_expires = cfs_b->runtime_expires;

	/*
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
	 */
	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
		runtime = cfs_b->runtime;
		cfs_b->distribute_running = 1;
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		cfs_b->distribute_running = 0;
		throttled = !list_empty(&cfs_b->throttled_cfs_rq);

		lsub_positive(&cfs_b->runtime, runtime);
	}

	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;

	return 0;

out_deactivate:
	return 1;
}

/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by hrtimer_start. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return;

	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->distribute_running) {
		raw_spin_unlock(&cfs_b->lock);
		return;
	}

	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
		return;
	}

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
		runtime = cfs_b->runtime;

	expires = cfs_b->runtime_expires;
	if (runtime)
		cfs_b->distribute_running = 1;

	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		lsub_positive(&cfs_b->runtime, runtime);
	cfs_b->distribute_running = 0;
	raw_spin_unlock(&cfs_b->lock);
}

/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return;

	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return false;

	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return false;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return true;

	throttle_cfs_rq(cfs_rq);
	return true;
}

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);

	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

	raw_spin_lock(&cfs_b->lock);
	for (;;) {
		overrun = hrtimer_forward_now(timer, cfs_b->period);
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
	if (idle)
		cfs_b->period_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
	cfs_b->distribute_running = 0;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 overrun;

	lockdep_assert_held(&cfs_b->lock);

	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

/*
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
	rcu_read_unlock();
}

/* cpu offline callback */
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = 1;
		/*
		 * Offline rq is schedulable till CPU is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
	rcu_read_unlock();
}

#else /* CONFIG_CFS_BANDWIDTH */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	return rq_clock_task(rq_of(cfs_rq));
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static inline void sync_throttle(struct task_group *tg, int cpu) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
#endif

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void update_runtime_enabled(struct rq *rq) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}

#endif /* CONFIG_CFS_BANDWIDTH */

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	SCHED_WARN_ON(task_rq(p) != rq);

	if (rq->cfs.h_nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_curr(rq);
			return;
		}
		hrtick_start(rq, delta);
	}
}

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}

static inline void hrtick_update(struct rq *rq)
{
}
#endif

#ifdef CONFIG_SMP
static inline unsigned long cpu_util(int cpu);
static unsigned long capacity_of(int cpu);

static inline bool cpu_overutilized(int cpu)
{
	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
}

static inline void update_overutilized_status(struct rq *rq)
{
	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
}
#else
static inline void update_overutilized_status(struct rq *rq) { }
#endif

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
static void
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
		enqueue_entity(cfs_rq, se, flags);

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		 */
		if (cfs_rq_throttled(cfs_rq))
			break;
		cfs_rq->h_nr_running++;

		flags = ENQUEUE_WAKEUP;
	}

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_nr_running++;

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(cfs_rq, se, UPDATE_TG);
		update_cfs_group(se);
	}

	if (!se) {
		add_nr_running(rq, 1);
		/*
		 * Since new tasks are assigned an initial util_avg equal to
		 * half of the spare capacity of their CPU, tiny tasks have the
		 * ability to cross the overutilized threshold, which will
		 * result in the load balancer ruining all the task placement
		 * done by EAS. As a way to mitigate that effect, do not account
		 * for the first enqueue operation of new tasks during the
		 * overutilized flag detection.
		 *
		 * A better way of solving this problem would be to wait for
		 * the PELT signals of tasks to converge before taking them
		 * into account, but that is not straightforward to implement,
		 * and the following generally works well enough in practice.
		 */
		if (flags & ENQUEUE_WAKEUP)
			update_overutilized_status(rq);

	}

	hrtick_update(rq);
}

static void set_next_buddy(struct sched_entity *se);

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;
	int task_sleep = flags & DEQUEUE_SLEEP;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		dequeue_entity(cfs_rq, se, flags);

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
		cfs_rq->h_nr_running--;

		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight) {
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
			break;
		}
		flags |= DEQUEUE_SLEEP;
	}

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_nr_running--;

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(cfs_rq, se, UPDATE_TG);
		update_cfs_group(se);
	}

	if (!se)
		sub_nr_running(rq, 1);

	util_est_dequeue(&rq->cfs, p, task_sleep);
	hrtick_update(rq);
}

#ifdef CONFIG_SMP

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

#ifdef CONFIG_NO_HZ_COMMON
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
 * The exact cpuload calculated at every tick would be:
 *
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 *
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
 *
 * The calculation is approximated on a 128 point scale.
 */
#define DEGRADE_SHIFT		7

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
	int has_blocked;		/* Idle CPUS has blocked load */
	unsigned long next_balance;     /* in jiffy units */
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
} nohz ____cacheline_aligned;

#endif /* CONFIG_NO_HZ_COMMON */

/**
 * __cpu_load_update - update the rq->cpu_load[] statistics
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
 * term.
 */
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
{
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
#ifdef CONFIG_NO_HZ_COMMON
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
#endif
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(struct rq *rq)
{
	return cfs_rq_runnable_load_avg(&rq->cfs);
}

#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
		cpu_load_update(this_rq, load, pending_updates);
	}
}

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void cpu_load_update_idle(struct rq *this_rq)
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (weighted_cpuload(this_rq))
		return;

	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
}

/*
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
 */
void cpu_load_update_nohz_start(void)
{
	struct rq *this_rq = this_rq();

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
	unsigned long curr_jiffies = READ_ONCE(jiffies);
	struct rq *this_rq = this_rq();
	unsigned long load;
	struct rq_flags rf;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	load = weighted_cpuload(this_rq);
	rq_lock(this_rq, &rf);
	update_rq_clock(this_rq);
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
	rq_unlock(this_rq, &rf);
}
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
#ifdef CONFIG_NO_HZ_COMMON
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
#endif
	cpu_load_update(this_rq, load, 1);
}

/*
 * Called from scheduler_tick()
 */
void cpu_load_update_active(struct rq *this_rq)
{
	unsigned long load = weighted_cpuload(this_rq);

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
}

/*
 * Return a low guess at the load of a migration-source CPU weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(rq);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target CPU weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(rq);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long capacity_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity;
}

static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
	unsigned long load_avg = weighted_cpuload(rq);

	if (nr_running)
		return load_avg / nr_running;

	return 0;
}

static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 *
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
 */
static int wake_wide(struct task_struct *p)
{
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
	int factor = this_cpu_read(sd_llc_size);

	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
}

/*
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
 *
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
 */
static int
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
{
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
	 */
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;

	if (sync && cpu_rq(this_cpu)->nr_running == 1)
		return this_cpu;

	return nr_cpumask_bits;
}

static int
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

	this_eff_load = target_load(this_cpu, sd->wake_idx);

	if (sync) {
		unsigned long current_load = task_h_load(current);

		if (current_load > this_eff_load)
			return this_cpu;

		this_eff_load -= current_load;
	}

	task_load = task_h_load(p);

	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);

	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);

	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
}

static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int this_cpu, int prev_cpu, int sync)
{
	int target = nr_cpumask_bits;

	if (sched_feat(WA_IDLE))
		target = wake_affine_idle(this_cpu, prev_cpu, sync);

	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);

	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
	if (target == nr_cpumask_bits)
		return prev_cpu;

	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
}

static unsigned long cpu_util_without(int cpu, struct task_struct *p);

static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
{
	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
}

/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 *
 * Assumes p is allowed on at least one CPU in sd.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
		  int this_cpu, int sd_flag)
{
	struct sched_group *idlest = NULL, *group = sd->groups;
	struct sched_group *most_spare_sg = NULL;
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
	unsigned long most_spare = 0, this_spare = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;

	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

	do {
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
		int local_group;
		int i;

		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_span(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_span(group));

		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
		avg_load = 0;
		runnable_load = 0;
		max_spare_cap = 0;

		for_each_cpu(i, sched_group_span(group)) {
			/* Bias balancing toward CPUs of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);

			spare_cap = capacity_spare_without(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
		}

		/* Adjust by relative CPU capacity of the group */
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;

		if (local_group) {
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
			this_spare = max_spare_cap;
		} else {
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new CPU:
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load:
				 */
				min_avg_load = avg_load;
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
		}
	} while (group = group->next, group != sd->groups);

	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
	 */
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

	if (this_spare > task_util(p) / 2 &&
	    imbalance_scale*this_spare > 100*most_spare)
		return NULL;

	if (most_spare > task_util(p) / 2)
		return most_spare_sg;

skip_spare:
	if (!idlest)
		return NULL;

	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
		return NULL;

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

	return idlest;
}

/*
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
 */
static int
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
	int i;

	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_span(group));

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
		if (available_idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
		} else if (shallowest_idle_cpu == -1) {
			load = weighted_cpuload(cpu_rq(i));
			if (load < min_load) {
				min_load = load;
				least_loaded_cpu = i;
			}
		}
	}

	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}

static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
	int new_cpu = cpu;

	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

	/*
	 * We need task's util for capacity_spare_without, sync it up to
	 * prev_cpu's last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
		if (new_cpu == cpu) {
			/* Now try balancing at a lower domain level of 'cpu': */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of 'new_cpu': */
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
void __update_idle_core(struct rq *rq)
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!available_idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu;

	if (!static_branch_likely(&sched_smt_present))
		return -1;

	if (!test_idle_cores(target, false))
		return -1;

	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);

	for_each_cpu_wrap(core, cpus, target) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!available_idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

	if (!static_branch_likely(&sched_smt_present))
		return -1;

	for_each_cpu(cpu, cpu_smt_mask(target)) {
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
			continue;
		if (available_idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
 */
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle;
	u64 time, cost;
	s64 delta;
	int cpu, nr = INT_MAX;

	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
		return -1;

	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
		if (!--nr)
			return -1;
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
			continue;
		if (available_idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
 */
static int select_idle_sibling(struct task_struct *p, int prev, int target)
{
	struct sched_domain *sd;
	int i, recent_used_cpu;

	if (available_idle_cpu(target))
		return target;

	/*
	 * If the previous CPU is cache affine and idle, don't be stupid:
	 */
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
		return prev;

	/* Check a recently used CPU as a potential idle candidate: */
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
	    available_idle_cpu(recent_used_cpu) &&
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
		 * candidate for the next wake:
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

	sd = rcu_dereference(per_cpu(sd_llc, target));
	if (!sd)
		return target;

	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	return target;
}

/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
 *
 * Return: the (estimated) utilization for the specified CPU
 */
static inline unsigned long cpu_util(int cpu)
{
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	return min_t(unsigned long, util, capacity_orig_of(cpu));
}

/*
 * cpu_util_without: compute cpu utilization without any contributions from *p
 * @cpu: the CPU which utilization is requested
 * @p: the task which utilization should be discounted
 *
 * The utilization of a CPU is defined by the utilization of tasks currently
 * enqueued on that CPU as well as tasks which are currently sleeping after an
 * execution on that CPU.
 *
 * This method returns the utilization of the specified CPU by discounting the
 * utilization of the specified task, whenever the task is currently
 * contributing to the CPU utilization.
 */
static unsigned long cpu_util_without(int cpu, struct task_struct *p)
{
	struct cfs_rq *cfs_rq;
	unsigned int util;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
		return cpu_util(cpu);

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's util from CPU's util */
	lsub_positive(&util, task_util(p));

	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_without = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_without = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST)) {
		unsigned int estimated =
			READ_ONCE(cfs_rq->avg.util_est.enqueued);

		/*
		 * Despite the following checks we still have a small window
		 * for a possible race, when an execl's select_task_rq_fair()
		 * races with LB's detach_task():
		 *
		 *   detach_task()
		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
		 *     ---------------------------------- A
		 *     deactivate_task()                   \
		 *       dequeue_task()                     + RaceTime
		 *         util_est_dequeue()              /
		 *     ---------------------------------- B
		 *
		 * The additional check on "current == p" it's required to
		 * properly fix the execl regression and it helps in further
		 * reducing the chances for the above race.
		 */
		if (unlikely(task_on_rq_queued(p) || current == p))
			lsub_positive(&estimated, _task_util_est(p));

		util = max(util, estimated);
	}

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
}

/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	if (!static_branch_unlikely(&sched_asym_cpucapacity))
		return 0;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

	return !task_fits_capacity(p, min_cap);
}

/*
 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
 * to @dst_cpu.
 */
static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
{
	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);

	/*
	 * If @p migrates from @cpu to another, remove its contribution. Or,
	 * if @p migrates from another CPU to @cpu, add its contribution. In
	 * the other cases, @cpu is not impacted by the migration, so the
	 * util_avg should already be correct.
	 */
	if (task_cpu(p) == cpu && dst_cpu != cpu)
		sub_positive(&util, task_util(p));
	else if (task_cpu(p) != cpu && dst_cpu == cpu)
		util += task_util(p);

	if (sched_feat(UTIL_EST)) {
		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);

		/*
		 * During wake-up, the task isn't enqueued yet and doesn't
		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
		 * so just add it (if needed) to "simulate" what will be
		 * cpu_util() after the task has been enqueued.
		 */
		if (dst_cpu == cpu)
			util_est += _task_util_est(p);

		util = max(util, util_est);
	}

	return min(util, capacity_orig_of(cpu));
}

/*
 * compute_energy(): Estimates the energy that would be consumed if @p was
 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
 * landscape of the * CPUs after the task migration, and uses the Energy Model
 * to compute what would be the energy if we decided to actually migrate that
 * task.
 */
static long
compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
{
	long util, max_util, sum_util, energy = 0;
	int cpu;

	for (; pd; pd = pd->next) {
		max_util = sum_util = 0;
		/*
		 * The capacity state of CPUs of the current rd can be driven by
		 * CPUs of another rd if they belong to the same performance
		 * domain. So, account for the utilization of these CPUs too
		 * by masking pd with cpu_online_mask instead of the rd span.
		 *
		 * If an entire performance domain is outside of the current rd,
		 * it will not appear in its pd list and will not be accounted
		 * by compute_energy().
		 */
		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
			util = cpu_util_next(cpu, p, dst_cpu);
			util = schedutil_energy_util(cpu, util);
			max_util = max(util, max_util);
			sum_util += util;
		}

		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
	}

	return energy;
}

/*
 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
 * spare capacity in each performance domain and uses it as a potential
 * candidate to execute the task. Then, it uses the Energy Model to figure
 * out which of the CPU candidates is the most energy-efficient.
 *
 * The rationale for this heuristic is as follows. In a performance domain,
 * all the most energy efficient CPU candidates (according to the Energy
 * Model) are those for which we'll request a low frequency. When there are
 * several CPUs for which the frequency request will be the same, we don't
 * have enough data to break the tie between them, because the Energy Model
 * only includes active power costs. With this model, if we assume that
 * frequency requests follow utilization (e.g. using schedutil), the CPU with
 * the maximum spare capacity in a performance domain is guaranteed to be among
 * the best candidates of the performance domain.
 *
 * In practice, it could be preferable from an energy standpoint to pack
 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
 * but that could also hurt our chances to go cluster idle, and we have no
 * ways to tell with the current Energy Model if this is actually a good
 * idea or not. So, find_energy_efficient_cpu() basically favors
 * cluster-packing, and spreading inside a cluster. That should at least be
 * a good thing for latency, and this is consistent with the idea that most
 * of the energy savings of EAS come from the asymmetry of the system, and
 * not so much from breaking the tie between identical CPUs. That's also the
 * reason why EAS is enabled in the topology code only for systems where
 * SD_ASYM_CPUCAPACITY is set.
 *
 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
 * they don't have any useful utilization data yet and it's not possible to
 * forecast their impact on energy consumption. Consequently, they will be
 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
 * to be energy-inefficient in some use-cases. The alternative would be to
 * bias new tasks towards specific types of CPUs first, or to try to infer
 * their util_avg from the parent task, but those heuristics could hurt
 * other use-cases too. So, until someone finds a better way to solve this,
 * let's keep things simple by re-using the existing slow path.
 */

static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
{
	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int cpu, best_energy_cpu = prev_cpu;
	struct perf_domain *head, *pd;
	unsigned long cpu_cap, util;
	struct sched_domain *sd;

	rcu_read_lock();
	pd = rcu_dereference(rd->pd);
	if (!pd || READ_ONCE(rd->overutilized))
		goto fail;
	head = pd;

	/*
	 * Energy-aware wake-up happens on the lowest sched_domain starting
	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
	 */
	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
		sd = sd->parent;
	if (!sd)
		goto fail;

	sync_entity_load_avg(&p->se);
	if (!task_util_est(p))
		goto unlock;

	for (; pd; pd = pd->next) {
		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
		int max_spare_cap_cpu = -1;

		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
				continue;

			/* Skip CPUs that will be overutilized. */
			util = cpu_util_next(cpu, p, cpu);
			cpu_cap = capacity_of(cpu);
			if (cpu_cap * 1024 < util * capacity_margin)
				continue;

			/* Always use prev_cpu as a candidate. */
			if (cpu == prev_cpu) {
				prev_energy = compute_energy(p, prev_cpu, head);
				best_energy = min(best_energy, prev_energy);
				continue;
			}

			/*
			 * Find the CPU with the maximum spare capacity in
			 * the performance domain
			 */
			spare_cap = cpu_cap - util;
			if (spare_cap > max_spare_cap) {
				max_spare_cap = spare_cap;
				max_spare_cap_cpu = cpu;
			}
		}

		/* Evaluate the energy impact of using this CPU. */
		if (max_spare_cap_cpu >= 0) {
			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
			if (cur_energy < best_energy) {
				best_energy = cur_energy;
				best_energy_cpu = max_spare_cap_cpu;
			}
		}
	}
unlock:
	rcu_read_unlock();

	/*
	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
	 * least 6% of the energy used by prev_cpu.
	 */
	if (prev_energy == ULONG_MAX)
		return best_energy_cpu;

	if ((prev_energy - best_energy) > (prev_energy >> 4))
		return best_energy_cpu;

	return prev_cpu;

fail:
	rcu_read_unlock();

	return -1;
}

/*
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
 *
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
 *
 * Returns the target CPU number.
 *
 * preempt must be disabled.
 */
static int
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
{
	struct sched_domain *tmp, *sd = NULL;
	int cpu = smp_processor_id();
	int new_cpu = prev_cpu;
	int want_affine = 0;
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);

	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);

		if (static_branch_unlikely(&sched_energy_present)) {
			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
			if (new_cpu >= 0)
				return new_cpu;
			new_cpu = prev_cpu;
		}

		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
			      cpumask_test_cpu(cpu, &p->cpus_allowed);
	}

	rcu_read_lock();
	for_each_domain(cpu, tmp) {
		if (!(tmp->flags & SD_LOAD_BALANCE))
			break;

		/*
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
		 */
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
			break;
		}

		if (tmp->flags & sd_flag)
			sd = tmp;
		else if (!want_affine)
			break;
	}

	if (unlikely(sd)) {
		/* Slow path */
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
	}
	rcu_read_unlock();

	return new_cpu;
}

static void detach_entity_cfs_rq(struct sched_entity *se);

/*
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
 */
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
{
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;

	/* We have migrated, no longer consider this task hot */
	p->se.exec_start = 0;

	update_scan_period(p, new_cpu);
}

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
#endif /* CONFIG_SMP */

static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
	 */
	return calc_delta_fair(gran, se);
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(se);
	if (vdiff > gran)
		return 1;

	return 0;
}

static void set_last_buddy(struct sched_entity *se)
{
	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
		return;

	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
		cfs_rq_of(se)->last = se;
	}
}

static void set_next_buddy(struct sched_entity *se)
{
	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
		return;

	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
		cfs_rq_of(se)->next = se;
	}
}

static void set_skip_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
	struct task_struct *curr = rq->curr;
	struct sched_entity *se = &curr->se, *pse = &p->se;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	int scale = cfs_rq->nr_running >= sched_nr_latency;
	int next_buddy_marked = 0;

	if (unlikely(se == pse))
		return;

	/*
	 * This is possible from callers such as attach_tasks(), in which we
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
		set_next_buddy(pse);
		next_buddy_marked = 1;
	}

	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
	 */
	if (test_tsk_need_resched(curr))
		return;

	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(task_has_idle_policy(curr)) &&
	    likely(!task_has_idle_policy(p)))
		goto preempt;

	/*
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
	 */
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
		return;

	find_matching_se(&se, &pse);
	update_curr(cfs_rq_of(se));
	BUG_ON(!pse);
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
		goto preempt;
	}

	return;

preempt:
	resched_curr(rq);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
}

static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
	struct task_struct *p;
	int new_tasks;

again:
	if (!cfs_rq->nr_running)
		goto idle;

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (prev->sched_class != &fair_sched_class)
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;

			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

				goto simple;
			}
		}

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	goto done;
simple:
#endif

	put_prev_task(rq, prev);

	do {
		se = pick_next_entity(cfs_rq, NULL);
		set_next_entity(cfs_rq, se);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

done: __maybe_unused;
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	update_misfit_status(p, rq);

	return p;

idle:
	update_misfit_status(NULL, rq);
	new_tasks = idle_balance(rq, rf);

	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
	if (new_tasks < 0)
		return RETRY_TASK;

	if (new_tasks > 0)
		goto again;

	return NULL;
}

/*
 * Account for a descheduled task:
 */
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		put_prev_entity(cfs_rq, se);
	}
}

/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		rq_clock_skip_update(rq);
	}

	set_skip_buddy(se);
}

static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

#ifdef CONFIG_SMP
/**************************************************
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-CPU scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
 * is derived from the nice value as per sched_prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * C_i is the compute capacity of CPU i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of CPUs that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of CPUs in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of CPUs doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other CPU in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */

static unsigned long __read_mostly max_load_balance_interval = HZ/10;

enum fbq_type { regular, remote, all };

enum group_type {
	group_other = 0,
	group_misfit_task,
	group_imbalanced,
	group_overloaded,
};

#define LBF_ALL_PINNED	0x01
#define LBF_NEED_BREAK	0x02
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
#define LBF_NOHZ_STATS	0x10
#define LBF_NOHZ_AGAIN	0x20

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
	int			src_cpu;

	int			dst_cpu;
	struct rq		*dst_rq;

	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
	enum cpu_idle_type	idle;
	long			imbalance;
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

	unsigned int		flags;

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;

	enum fbq_type		fbq_type;
	enum group_type		src_grp_type;
	struct list_head	tasks;
};

/*
 * Is this task likely cache-hot:
 */
static int task_hot(struct task_struct *p, struct lb_env *env)
{
	s64 delta;

	lockdep_assert_held(&env->src_rq->lock);

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(task_has_idle_policy(p)))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = rq_clock_task(env->src_rq) - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
 */
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;

	if (!static_branch_likely(&sched_numa_balancing))
		return -1;

	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
		return -1;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

	if (src_nid == dst_nid)
		return -1;

	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return 0;

	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle == CPU_IDLE)
		return -1;

	dist = node_distance(src_nid, dst_nid);
	if (numa_group) {
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
	} else {
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
	}

	return dst_weight < src_weight;
}

#else
static inline int migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return -1;
}
#endif

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
	int tsk_cache_hot;

	lockdep_assert_held(&env->src_rq->lock);

	/*
	 * We do not migrate tasks that are:
	 * 1) throttled_lb_pair, or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
	 */
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
		int cpu;

		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);

		env->flags |= LBF_SOME_PINNED;

		/*
		 * Remember if this task can be migrated to any other CPU in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
		 */
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
			return 0;

		/* Prevent to re-select dst_cpu via env's CPUs: */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
				env->flags |= LBF_DST_PINNED;
				env->new_dst_cpu = cpu;
				break;
			}
		}

		return 0;
	}

	/* Record that we found atleast one task that could run on dst_cpu */
	env->flags &= ~LBF_ALL_PINNED;

	if (task_running(env->src_rq, p)) {
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
	 */
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);

	if (tsk_cache_hot <= 0 ||
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
		if (tsk_cache_hot == 1) {
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
		}
		return 1;
	}

	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
	return 0;
}

/*
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
	set_task_cpu(p, env->dst_cpu);
}

/*
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
 * part of active balancing operations within "domain".
 *
 * Returns a task if successful and NULL otherwise.
 */
static struct task_struct *detach_one_task(struct lb_env *env)
{
	struct task_struct *p;

	lockdep_assert_held(&env->src_rq->lock);

	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;

		detach_task(p, env);

		/*
		 * Right now, this is only the second place where
		 * lb_gained[env->idle] is updated (other is detach_tasks)
		 * so we can safely collect stats here rather than
		 * inside detach_tasks().
		 */
		schedstat_inc(env->sd->lb_gained[env->idle]);
		return p;
	}
	return NULL;
}

static const unsigned int sched_nr_migrate_break = 32;

/*
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
 *
 * Returns number of detached tasks if successful and 0 otherwise.
 */
static int detach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
	unsigned long load;
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);

	if (env->imbalance <= 0)
		return 0;

	while (!list_empty(tasks)) {
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

		p = list_last_entry(tasks, struct task_struct, se.group_node);

		env->loop++;
		/* We've more or less seen every task there is, call it quits */
		if (env->loop > env->loop_max)
			break;

		/* take a breather every nr_migrate tasks */
		if (env->loop > env->loop_break) {
			env->loop_break += sched_nr_migrate_break;
			env->flags |= LBF_NEED_BREAK;
			break;
		}

		if (!can_migrate_task(p, env))
			goto next;

		load = task_h_load(p);

		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
			goto next;

		if ((load / 2) > env->imbalance)
			goto next;

		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
		env->imbalance -= load;

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is detached to minimize
		 * the critical section.
		 */
		if (env->idle == CPU_NEWLY_IDLE)
			break;
#endif

		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (env->imbalance <= 0)
			break;

		continue;
next:
		list_move(&p->se.group_node, tasks);
	}

	/*
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
	 */
	schedstat_add(env->sd->lb_gained[env->idle], detached);

	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, ENQUEUE_NOCLOCK);
	p->on_rq = TASK_ON_RQ_QUEUED;
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	struct rq_flags rf;

	rq_lock(rq, &rf);
	update_rq_clock(rq);
	attach_task(rq, p);
	rq_unlock(rq, &rf);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
	struct rq_flags rf;

	rq_lock(env->dst_rq, &rf);
	update_rq_clock(env->dst_rq);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);

		attach_task(env->dst_rq, p);
	}

	rq_unlock(env->dst_rq, &rf);
}

static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

static inline bool others_have_blocked(struct rq *rq)
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

	return false;
}

#ifdef CONFIG_FAIR_GROUP_SCHED

static void update_blocked_averages(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq;
	const struct sched_class *curr_class;
	struct rq_flags rf;
	bool done = true;

	rq_lock_irqsave(rq, &rf);
	update_rq_clock(rq);

	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct sched_entity *se;

		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);

		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(cfs_rq_of(se), se, 0);

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
			done = false;
	}

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
	update_irq_load_avg(rq, 0);
	/* Don't need periodic decay once load/util_avg are null */
	if (others_have_blocked(rq))
		done = false;

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
	if (done)
		rq->has_blocked_load = 0;
#endif
	rq_unlock_irqrestore(rq, &rf);
}

/*
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
	unsigned long now = jiffies;
	unsigned long load;

	if (cfs_rq->last_h_load_update == now)
		return;

	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}

	if (!se) {
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
}

static unsigned long task_h_load(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_cfs_rq_h_load(cfs_rq);
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
			cfs_rq_load_avg(cfs_rq) + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	const struct sched_class *curr_class;
	struct rq_flags rf;

	rq_lock_irqsave(rq, &rf);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
	update_irq_load_avg(rq, 0);
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
		rq->has_blocked_load = 0;
#endif
	rq_unlock_irqrestore(rq, &rf);
}

static unsigned long task_h_load(struct task_struct *p)
{
	return p->se.avg.load_avg;
}
#endif

/********** Helpers for find_busiest_group ************************/

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long load_per_task;
	unsigned long group_capacity;
	unsigned long group_util; /* Total utilization of the group */
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
	enum group_type group_type;
	int group_no_capacity;
	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
};

/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_running;
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
};

static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_running = 0UL,
		.total_load = 0UL,
		.total_capacity = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
			.sum_nr_running = 0,
			.group_type = group_other,
		},
	};
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
 *
 * Return: The load index.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
	unsigned long used, free;
	unsigned long irq;

	irq = cpu_util_irq(rq);

	if (unlikely(irq >= max))
		return 1;

	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);

	if (unlikely(used >= max))
		return 1;

	free = max - used;

	return scale_irq_capacity(free, irq, max);
}

static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
	unsigned long capacity = scale_rt_capacity(sd, cpu);
	struct sched_group *sdg = sd->groups;

	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);

	if (!capacity)
		capacity = 1;

	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
	sdg->sgc->min_capacity = capacity;
	sdg->sgc->max_capacity = capacity;
}

void update_group_capacity(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long capacity, min_capacity, max_capacity;
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgc->next_update = jiffies + interval;

	if (!child) {
		update_cpu_capacity(sd, cpu);
		return;
	}

	capacity = 0;
	min_capacity = ULONG_MAX;
	max_capacity = 0;

	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_span(sdg)) {
			struct sched_group_capacity *sgc;
			struct rq *rq = cpu_rq(cpu);

			/*
			 * build_sched_domains() -> init_sched_groups_capacity()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
			 *
			 * This avoids capacity from being 0 and
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
				capacity += capacity_of(cpu);
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
			}

			min_capacity = min(capacity, min_capacity);
			max_capacity = max(capacity, max_capacity);
		}
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */

		group = child->groups;
		do {
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
			max_capacity = max(sgc->max_capacity, max_capacity);
			group = group->next;
		} while (group != child->groups);
	}

	sdg->sgc->capacity = capacity;
	sdg->sgc->min_capacity = min_capacity;
	sdg->sgc->max_capacity = max_capacity;
}

/*
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
 */
static inline int
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
{
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
}

/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to ->cpus_allowed constraints.
 *
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
 * Something like:
 *
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the CPUs in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
 *
 * When this is so detected; this group becomes a candidate for busiest; see
 * update_sd_pick_busiest(). And calculate_imbalance() and
 * find_busiest_group() avoid some of the usual balance conditions to allow it
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

static inline int sg_imbalanced(struct sched_group *group)
{
	return group->sgc->imbalance;
}

/*
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
 */
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;

	if ((sgs->group_capacity * 100) >
			(sgs->group_util * env->sd->imbalance_pct))
		return true;

	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;

	if ((sgs->group_capacity * 100) <
			(sgs->group_util * env->sd->imbalance_pct))
		return true;

	return false;
}

/*
 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

/*
 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity_orig than sched_group ref.
 */
static inline bool
group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->max_capacity * capacity_margin <
						ref->sgc->max_capacity * 1024;
}

static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
{
	if (sgs->group_no_capacity)
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	if (sgs->group_misfit_task_load)
		return group_misfit_task;

	return group_other;
}

static bool update_nohz_stats(struct rq *rq, bool force)
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

	if (!rq->has_blocked_load)
		return false;

	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
		return false;

	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
		return true;

	update_blocked_averages(cpu);

	return rq->has_blocked_load;
#else
	return false;
#endif
}

/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @env: The load balancing environment.
 * @group: sched_group whose statistics are to be updated.
 * @sgs: variable to hold the statistics for this group.
 * @sg_status: Holds flag indicating the status of the sched_group
 */
static inline void update_sg_lb_stats(struct lb_env *env,
				      struct sched_group *group,
				      struct sg_lb_stats *sgs,
				      int *sg_status)
{
	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
	int load_idx = get_sd_load_idx(env->sd, env->idle);
	unsigned long load;
	int i, nr_running;

	memset(sgs, 0, sizeof(*sgs));

	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
		struct rq *rq = cpu_rq(i);

		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
			env->flags |= LBF_NOHZ_AGAIN;

		/* Bias balancing toward CPUs of our domain: */
		if (local_group)
			load = target_load(i, load_idx);
		else
			load = source_load(i, load_idx);

		sgs->group_load += load;
		sgs->group_util += cpu_util(i);
		sgs->sum_nr_running += rq->cfs.h_nr_running;

		nr_running = rq->nr_running;
		if (nr_running > 1)
			*sg_status |= SG_OVERLOAD;

		if (cpu_overutilized(i))
			*sg_status |= SG_OVERUTILIZED;

#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
		sgs->sum_weighted_load += weighted_cpuload(rq);
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
			sgs->idle_cpus++;

		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
		    sgs->group_misfit_task_load < rq->misfit_task_load) {
			sgs->group_misfit_task_load = rq->misfit_task_load;
			*sg_status |= SG_OVERLOAD;
		}
	}

	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;

	if (sgs->sum_nr_running)
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;

	sgs->group_weight = group->group_weight;

	sgs->group_no_capacity = group_is_overloaded(env, sgs);
	sgs->group_type = group_classify(group, sgs);
}

/**
 * update_sd_pick_busiest - return 1 on busiest group
 * @env: The load balancing environment.
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
 * @sgs: sched_group statistics
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
 */
static bool update_sd_pick_busiest(struct lb_env *env,
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
				   struct sg_lb_stats *sgs)
{
	struct sg_lb_stats *busiest = &sds->busiest_stat;

	/*
	 * Don't try to pull misfit tasks we can't help.
	 * We can use max_capacity here as reduction in capacity on some
	 * CPUs in the group should either be possible to resolve
	 * internally or be covered by avg_load imbalance (eventually).
	 */
	if (sgs->group_type == group_misfit_task &&
	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
	     !group_has_capacity(env, &sds->local_stat)))
		return false;

	if (sgs->group_type > busiest->group_type)
		return true;

	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_min_cpu_capacity(sds->local, sg))
		return false;

	/*
	 * If we have more than one misfit sg go with the biggest misfit.
	 */
	if (sgs->group_type == group_misfit_task &&
	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
		return false;

asym_packing:
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
		return true;

	/* No ASYM_PACKING if target CPU is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
	/*
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
	 */
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
		if (!sds->busiest)
			return true;

		/* Prefer to move from lowest priority CPU's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
			return true;
	}

	return false;
}

#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

/**
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 * @env: The load balancing environment.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
{
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
	struct sg_lb_stats *local = &sds->local_stat;
	struct sg_lb_stats tmp_sgs;
	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
	int sg_status = 0;

#ifdef CONFIG_NO_HZ_COMMON
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
		env->flags |= LBF_NOHZ_STATS;
#endif

	do {
		struct sg_lb_stats *sgs = &tmp_sgs;
		int local_group;

		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
		if (local_group) {
			sds->local = sg;
			sgs = local;

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
		}

		update_sg_lb_stats(env, sg, sgs, &sg_status);

		if (local_group)
			goto next_group;

		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the sg capacity so that we'll try
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
		 */
		if (prefer_sibling && sds->local &&
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
			sgs->group_no_capacity = 1;
			sgs->group_type = group_classify(sg, sgs);
		}

		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
			sds->busiest = sg;
			sds->busiest_stat = *sgs;
		}

next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_running += sgs->sum_nr_running;
		sds->total_load += sgs->group_load;
		sds->total_capacity += sgs->group_capacity;

		sg = sg->next;
	} while (sg != env->sd->groups);

#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);

	if (!env->sd->parent) {
		struct root_domain *rd = env->dst_rq->rd;

		/* update overload indicator if we are at root domain */
		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);

		/* Update over-utilization (tipping point, U >= 0) indicator */
		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
	} else if (sg_status & SG_OVERUTILIZED) {
		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
	}
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched domain.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
 * Return: 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
 *
 * @env: The load balancing environment.
 * @sds: Statistics of the sched_domain which is to be packed
 */
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
{
	int busiest_cpu;

	if (!(env->sd->flags & SD_ASYM_PACKING))
		return 0;

	if (env->idle == CPU_NOT_IDLE)
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
		return 0;

	env->imbalance = DIV_ROUND_CLOSEST(
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
		SCHED_CAPACITY_SCALE);

	return 1;
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @env: The load balancing environment.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
	unsigned long tmp, capa_now = 0, capa_move = 0;
	unsigned int imbn = 2;
	unsigned long scaled_busy_load_per_task;
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;

	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;

	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
		busiest->group_capacity;

	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
		env->imbalance = busiest->load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU capacity used by
	 * moving them.
	 */

	capa_now += busiest->group_capacity *
			min(busiest->load_per_task, busiest->avg_load);
	capa_now += local->group_capacity *
			min(local->load_per_task, local->avg_load);
	capa_now /= SCHED_CAPACITY_SCALE;

	/* Amount of load we'd subtract */
	if (busiest->avg_load > scaled_busy_load_per_task) {
		capa_move += busiest->group_capacity *
			    min(busiest->load_per_task,
				busiest->avg_load - scaled_busy_load_per_task);
	}

	/* Amount of load we'd add */
	if (busiest->avg_load * busiest->group_capacity <
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
	} else {
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
		      local->group_capacity;
	}
	capa_move += local->group_capacity *
		    min(local->load_per_task, local->avg_load + tmp);
	capa_move /= SCHED_CAPACITY_SCALE;

	/* Move if we gain throughput */
	if (capa_move > capa_now)
		env->imbalance = busiest->load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @env: load balance environment
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
	unsigned long max_pull, load_above_capacity = ~0UL;
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;

	if (busiest->group_type == group_imbalanced) {
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
		 */
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
	}

	/*
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
	 */
	if (busiest->group_type != group_misfit_task &&
	    (busiest->avg_load <= sds->avg_load ||
	     local->avg_load >= sds->avg_load)) {
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
	}

	/*
	 * If there aren't any idle CPUs, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
		if (load_above_capacity > busiest->group_capacity) {
			load_above_capacity -= busiest->group_capacity;
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
			load_above_capacity /= busiest->group_capacity;
		} else
			load_above_capacity = ~0UL;
	}

	/*
	 * We're trying to get all the CPUs to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded CPU below the average load. At the same time,
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
	 */
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);

	/* How much load to actually move to equalise the imbalance */
	env->imbalance = min(
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
	) / SCHED_CAPACITY_SCALE;

	/* Boost imbalance to allow misfit task to be balanced. */
	if (busiest->group_type == group_misfit_task) {
		env->imbalance = max_t(long, env->imbalance,
				       busiest->group_misfit_task_load);
	}

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no guarantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (env->imbalance < busiest->load_per_task)
		return fix_small_imbalance(env, sds);
}

/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @env: The load balancing environment.
 *
 * Return:	- The busiest group if imbalance exists.
 */
static struct sched_group *find_busiest_group(struct lb_env *env)
{
	struct sg_lb_stats *local, *busiest;
	struct sd_lb_stats sds;

	init_sd_lb_stats(&sds);

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(env, &sds);

	if (static_branch_unlikely(&sched_energy_present)) {
		struct root_domain *rd = env->dst_rq->rd;

		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
			goto out_balanced;
	}

	local = &sds.local_stat;
	busiest = &sds.busiest_stat;

	/* ASYM feature bypasses nice load balance check */
	if (check_asym_packing(env, &sds))
		return sds.busiest;

	/* There is no busy sibling group to pull tasks from */
	if (!sds.busiest || busiest->sum_nr_running == 0)
		goto out_balanced;

	/* XXX broken for overlapping NUMA groups */
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;

	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assume all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (busiest->group_type == group_imbalanced)
		goto force_balance;

	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
		goto force_balance;

	/* Misfit tasks should be dealt with regardless of the avg load */
	if (busiest->group_type == group_misfit_task)
		goto force_balance;

	/*
	 * If the local group is busier than the selected busiest group
	 * don't try and pull any tasks.
	 */
	if (local->avg_load >= busiest->avg_load)
		goto out_balanced;

	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
	if (local->avg_load >= sds.avg_load)
		goto out_balanced;

	if (env->idle == CPU_IDLE) {
		/*
		 * This CPU is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle CPUs, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
		 */
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
			goto out_balanced;
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
			goto out_balanced;
	}

force_balance:
	/* Looks like there is an imbalance. Compute it */
	env->src_grp_type = busiest->group_type;
	calculate_imbalance(env, &sds);
	return env->imbalance ? sds.busiest : NULL;

out_balanced:
	env->imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
 */
static struct rq *find_busiest_queue(struct lb_env *env,
				     struct sched_group *group)
{
	struct rq *busiest = NULL, *rq;
	unsigned long busiest_load = 0, busiest_capacity = 1;
	int i;

	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
		unsigned long capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);

		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		/*
		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
		 * seek the "biggest" misfit task.
		 */
		if (env->src_grp_type == group_misfit_task) {
			if (rq->misfit_task_load > busiest_load) {
				busiest_load = rq->misfit_task_load;
				busiest = rq;
			}

			continue;
		}

		capacity = capacity_of(i);

		/*
		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
		 * eventually lead to active_balancing high->low capacity.
		 * Higher per-CPU capacity is considered better than balancing
		 * average load.
		 */
		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
		    capacity_of(env->dst_cpu) < capacity &&
		    rq->nr_running == 1)
			continue;

		wl = weighted_cpuload(rq);

		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the CPU capacity.
		 */

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
			continue;

		/*
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
		 * potentially running at a lower capacity.
		 *
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
		 */
		if (wl * busiest_capacity > busiest_load * capacity) {
			busiest_load = wl;
			busiest_capacity = capacity;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

static int need_active_balance(struct lb_env *env)
{
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
		 */
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
			return 1;
	}

	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

	if (env->src_grp_type == group_misfit_task)
		return 1;

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

static int active_load_balance_cpu_stop(void *data);

static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

	/*
	 * In the newly idle case, we will allow all the CPUs
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle CPU */
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
		if (!idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle CPU or the first CPU(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
	return balance_cpu == env->dst_cpu;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *continue_balancing)
{
	int ld_moved, cur_ld_moved, active_balance = 0;
	struct sched_domain *sd_parent = sd->parent;
	struct sched_group *group;
	struct rq *busiest;
	struct rq_flags rf;
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);

	struct lb_env env = {
		.sd		= sd,
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
		.dst_grpmask    = sched_group_span(sd->groups),
		.idle		= idle,
		.loop_break	= sched_nr_migrate_break,
		.cpus		= cpus,
		.fbq_type	= all,
		.tasks		= LIST_HEAD_INIT(env.tasks),
	};

	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);

	schedstat_inc(sd->lb_count[idle]);

redo:
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
		goto out_balanced;
	}

	group = find_busiest_group(&env);
	if (!group) {
		schedstat_inc(sd->lb_nobusyg[idle]);
		goto out_balanced;
	}

	busiest = find_busiest_queue(&env, group);
	if (!busiest) {
		schedstat_inc(sd->lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == env.dst_rq);

	schedstat_add(sd->lb_imbalance[idle], env.imbalance);

	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
		env.flags |= LBF_ALL_PINNED;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);

more_balance:
		rq_lock_irqsave(busiest, &rf);
		update_rq_clock(busiest);

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = detach_tasks(&env);

		/*
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
		 */

		rq_unlock(busiest, &rf);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

		local_irq_restore(rf.flags);

		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of CPUs in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {

			/* Prevent to re-select dst_cpu via env's CPUs */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_DST_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;

			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}

		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
				*group_imbalance = 1;
		}

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
				goto redo;
			}
			goto out_all_pinned;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd->lb_failed[idle]);
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;

		if (need_active_balance(&env)) {
			unsigned long flags;

			raw_spin_lock_irqsave(&busiest->lock, flags);

			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
			 */
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				env.flags |= LBF_ALL_PINNED;
				goto out_one_pinned;
			}

			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);

			if (active_balance) {
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
			}

			/* We've kicked active balancing, force task migration. */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * detach_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
	schedstat_inc(sd->lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	ld_moved = 0;

	/*
	 * idle_balance() disregards balance intervals, so we could repeatedly
	 * reach this code, which would lead to balance_interval skyrocketting
	 * in a short amount of time. Skip the balance_interval increase logic
	 * to avoid that.
	 */
	if (env.idle == CPU_NEWLY_IDLE)
		goto out;

	/* tune up the balancing interval */
	if ((env.flags & LBF_ALL_PINNED &&
	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
	    sd->balance_interval < sd->max_interval)
		sd->balance_interval *= 2;
out:
	return ld_moved;
}

static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
{
	unsigned long interval, next;

	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

/*
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
 */
static int active_load_balance_cpu_stop(void *data)
{
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
	int target_cpu = busiest_rq->push_cpu;
	struct rq *target_rq = cpu_rq(target_cpu);
	struct sched_domain *sd;
	struct task_struct *p = NULL;
	struct rq_flags rf;

	rq_lock_irq(busiest_rq, &rf);
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;

	/* Make sure the requested CPU hasn't gone down in the meantime: */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
		goto out_unlock;

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-CPU setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
	rcu_read_lock();
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		struct lb_env env = {
			.sd		= sd,
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
			.idle		= CPU_IDLE,
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
		};

		schedstat_inc(sd->alb_count);
		update_rq_clock(busiest_rq);

		p = detach_one_task(&env);
		if (p) {
			schedstat_inc(sd->alb_pushed);
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
			schedstat_inc(sd->alb_failed);
		}
	}
	rcu_read_unlock();
out_unlock:
	busiest_rq->active_balance = 0;
	rq_unlock(busiest_rq, &rf);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

	return 0;
}

static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

#ifdef CONFIG_NO_HZ_COMMON
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */

static inline int find_new_ilb(void)
{
	int ilb = cpumask_first(nohz.idle_cpus_mask);

	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
}

/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void kick_ilb(unsigned int flags)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = find_new_ilb();

	if (ilb_cpu >= nr_cpu_ids)
		return;

	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
	if (flags & NOHZ_KICK_MASK)
		return;

	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target CPU which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
	unsigned int flags = 0;

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
	nohz_balance_exit_idle(rq);

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
		flags = NOHZ_STATS_KICK;

	if (time_before(now, nohz.next_balance))
		goto out;

	if (rq->nr_running >= 2 || rq->misfit_task_load) {
		flags = NOHZ_KICK_MASK;
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
			flags = NOHZ_KICK_MASK;
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			flags = NOHZ_KICK_MASK;
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
				flags = NOHZ_KICK_MASK;
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
	if (flags)
		kick_ilb(flags);
}

static void set_cpu_sd_state_busy(int cpu)
{
	struct sched_domain *sd;

	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
}

void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
{
	struct sched_domain *sd;

	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	atomic_dec(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
}

/*
 * This routine will record that the CPU is going idle with tick stopped.
 * This info will be used in performing idle load balancing in the future.
 */
void nohz_balance_enter_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

	/* If this CPU is going down, then nothing needs to be done: */
	if (!cpu_active(cpu))
		return;

	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
		return;

	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
	if (rq->nohz_tick_stopped)
		goto out;

	/* If we're a completely isolated CPU, we don't play: */
	if (on_null_domain(rq))
		return;

	rq->nohz_tick_stopped = 1;

	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);

	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

	set_cpu_sd_state_idle(cpu);

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
}

/*
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
 */
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
{
	/* Earliest time when we have to do rebalance again */
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
	bool has_blocked_load = false;
	int update_next_balance = 0;
	int this_cpu = this_rq->cpu;
	int balance_cpu;
	int ret = false;
	struct rq *rq;

	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);

	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
			continue;

		/*
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}

		rq = cpu_rq(balance_cpu);

		has_blocked_load |= update_nohz_stats(rq, true);

		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			struct rq_flags rf;

			rq_lock_irqsave(rq, &rf);
			update_rq_clock(rq);
			cpu_load_update_idle(rq);
			rq_unlock_irqrestore(rq, &rf);

			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
		}

		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
	}

	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

	/* The full idle balance loop has been done */
	ret = true;

abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;

	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/* could be _relaxed() */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

	return true;
}

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	return false;
}

static inline void nohz_newidle_balance(struct rq *this_rq) { }
#endif /* CONFIG_NO_HZ_COMMON */

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !READ_ONCE(this_rq->rd->overload)) {

		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

		nohz_newidle_balance(this_rq);

		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

out:
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
{
	struct rq *this_rq = this_rq();
	enum cpu_idle_type idle = this_rq->idle_balance ?
						CPU_IDLE : CPU_NOT_IDLE;

	/*
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle CPUs a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
	 */
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
	rebalance_domains(this_rq, idle);
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
void trigger_load_balance(struct rq *rq)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);

	nohz_balancer_kick(rq);
}

static void rq_online_fair(struct rq *rq)
{
	update_sysctl();

	update_runtime_enabled(rq);
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
}

#endif /* CONFIG_SMP */

/*
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se, queued);
	}

	if (static_branch_unlikely(&sched_numa_balancing))
		task_tick_numa(rq, curr);

	update_misfit_status(curr, rq);
	update_overutilized_status(task_rq(curr));
}

/*
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
 */
static void task_fork_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
	struct rq *rq = this_rq();
	struct rq_flags rf;

	rq_lock(rq, &rf);
	update_rq_clock(rq);

	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
	if (curr) {
		update_curr(cfs_rq);
		se->vruntime = curr->vruntime;
	}
	place_entity(cfs_rq, se, 1);

	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
		/*
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
		swap(curr->vruntime, se->vruntime);
		resched_curr(rq);
	}

	se->vruntime -= cfs_rq->min_vruntime;
	rq_unlock(rq, &rf);
}

/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{
	if (!task_on_rq_queued(p))
		return;

	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (rq->curr == p) {
		if (p->prio > oldprio)
			resched_curr(rq);
	} else
		check_preempt_curr(rq, p, 0);
}

static inline bool vruntime_normalized(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	/*
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
	 */
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
		return true;

	return false;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(cfs_rq, se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

static void detach_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/* Catch up with the cfs_rq and remove our load when we leave */
	update_load_avg(cfs_rq, se, 0);
	detach_entity_load_avg(cfs_rq, se);
	update_tg_load_avg(cfs_rq, false);
	propagate_entity_cfs_rq(se);
}

static void attach_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif

	/* Synchronize entity with its cfs_rq */
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
	attach_entity_load_avg(cfs_rq, se, 0);
	update_tg_load_avg(cfs_rq, false);
	propagate_entity_cfs_rq(se);
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}

static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);

	if (task_on_rq_queued(p)) {
		/*
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
		 */
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
	}
}

/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
}

void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
	raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

static void task_move_group_fair(struct task_struct *p)
{
	detach_task_cfs_rq(p);
	set_task_rq(p, task_cpu(p));

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
	attach_task_cfs_rq(p);
}

static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
	struct cfs_rq *cfs_rq;
	int i;

	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
		init_entity_runnable_average(se);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		attach_entity_cfs_rq(se);
		sync_throttle(tg, i);
		raw_spin_unlock_irq(&rq->lock);
	}
}

void unregister_fair_sched_group(struct task_group *tg)
{
	unsigned long flags;
	struct rq *rq;
	int cpu;

	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);

		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent) {
		se->cfs_rq = &rq->cfs;
		se->depth = 0;
	} else {
		se->cfs_rq = parent->my_q;
		se->depth = parent->depth + 1;
	}

	se->my_q = cfs_rq;
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;

		/* Propagate contribution to hierarchy */
		rq_lock_irqsave(rq, &rf);
		update_rq_clock(rq);
		for_each_sched_entity(se) {
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
			update_cfs_group(se);
		}
		rq_unlock_irqrestore(rq, &rf);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void online_fair_sched_group(struct task_group *tg) { }

void unregister_fair_sched_group(struct task_group *tg) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */


static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));

	return rr_interval;
}

/*
 * All the scheduling class methods:
 */
const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
	.yield_to_task		= yield_to_task_fair,

	.check_preempt_curr	= check_preempt_wakeup,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
	.migrate_task_rq	= migrate_task_rq_fair,

	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,

	.task_dead		= task_dead_fair,
	.set_cpus_allowed	= set_cpus_allowed_common,
#endif

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_fork		= task_fork_fair,

	.prio_changed		= prio_changed_fair,
	.switched_from		= switched_from_fair,
	.switched_to		= switched_to_fair,

	.get_rr_interval	= get_rr_interval_fair,

	.update_curr		= update_curr_fair,

#ifdef CONFIG_FAIR_GROUP_SCHED
	.task_change_group	= task_change_group_fair,
#endif
};

#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
	struct cfs_rq *cfs_rq;

	rcu_read_lock();
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
		print_cfs_rq(m, cpu, cfs_rq);
	rcu_read_unlock();
}

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ_COMMON
	nohz.next_balance = jiffies;
	nohz.next_blocked = jiffies;
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}