1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_GC_H
#define _BCACHEFS_BTREE_GC_H
#include "btree_types.h"
void bch2_coalesce(struct bch_fs *);
struct journal_keys;
int bch2_gc(struct bch_fs *, struct journal_keys *, bool, bool);
void bch2_gc_thread_stop(struct bch_fs *);
int bch2_gc_thread_start(struct bch_fs *);
void bch2_mark_dev_superblock(struct bch_fs *, struct bch_dev *, unsigned);
/*
* For concurrent mark and sweep (with other index updates), we define a total
* ordering of _all_ references GC walks:
*
* Note that some references will have the same GC position as others - e.g.
* everything within the same btree node; in those cases we're relying on
* whatever locking exists for where those references live, i.e. the write lock
* on a btree node.
*
* That locking is also required to ensure GC doesn't pass the updater in
* between the updater adding/removing the reference and updating the GC marks;
* without that, we would at best double count sometimes.
*
* That part is important - whenever calling bch2_mark_pointers(), a lock _must_
* be held that prevents GC from passing the position the updater is at.
*
* (What about the start of gc, when we're clearing all the marks? GC clears the
* mark with the gc pos seqlock held, and bch_mark_bucket checks against the gc
* position inside its cmpxchg loop, so crap magically works).
*/
/* Position of (the start of) a gc phase: */
static inline struct gc_pos gc_phase(enum gc_phase phase)
{
return (struct gc_pos) {
.phase = phase,
.pos = POS_MIN,
.level = 0,
};
}
static inline int gc_pos_cmp(struct gc_pos l, struct gc_pos r)
{
if (l.phase != r.phase)
return l.phase < r.phase ? -1 : 1;
if (bkey_cmp(l.pos, r.pos))
return bkey_cmp(l.pos, r.pos);
if (l.level != r.level)
return l.level < r.level ? -1 : 1;
return 0;
}
static inline enum gc_phase btree_id_to_gc_phase(enum btree_id id)
{
switch (id) {
#define x(n, v, s) case BTREE_ID_##n: return GC_PHASE_BTREE_##n;
BCH_BTREE_IDS()
#undef x
default:
BUG();
}
}
static inline struct gc_pos gc_pos_btree(enum btree_id id,
struct bpos pos, unsigned level)
{
return (struct gc_pos) {
.phase = btree_id_to_gc_phase(id),
.pos = pos,
.level = level,
};
}
/*
* GC position of the pointers within a btree node: note, _not_ for &b->key
* itself, that lives in the parent node:
*/
static inline struct gc_pos gc_pos_btree_node(struct btree *b)
{
return gc_pos_btree(b->c.btree_id, b->key.k.p, b->c.level);
}
/*
* GC position of the pointer to a btree root: we don't use
* gc_pos_pointer_to_btree_node() here to avoid a potential race with
* btree_split() increasing the tree depth - the new root will have level > the
* old root and thus have a greater gc position than the old root, but that
* would be incorrect since once gc has marked the root it's not coming back.
*/
static inline struct gc_pos gc_pos_btree_root(enum btree_id id)
{
return gc_pos_btree(id, POS_MAX, BTREE_MAX_DEPTH);
}
static inline struct gc_pos gc_pos_alloc(struct bch_fs *c, struct open_bucket *ob)
{
return (struct gc_pos) {
.phase = GC_PHASE_ALLOC,
.pos = POS(ob ? ob - c->open_buckets : 0, 0),
};
}
static inline bool gc_visited(struct bch_fs *c, struct gc_pos pos)
{
unsigned seq;
bool ret;
do {
seq = read_seqcount_begin(&c->gc_pos_lock);
ret = gc_pos_cmp(pos, c->gc_pos) <= 0;
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
return ret;
}
#endif /* _BCACHEFS_BTREE_GC_H */
|