summaryrefslogtreecommitdiff
path: root/drivers/video/intelfb/intelfbhw.c
blob: f5bed581dc45f3e3dd6406a8246a9647f5574ba6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
/*
 * intelfb
 *
 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
 *
 * Copyright � 2002, 2003 David Dawes <dawes@xfree86.org>
 *                   2004 Sylvain Meyer
 *
 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
 * the basic fbdev interfaces, is derived in part from the radeonfb and
 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
 * provides the code to program the hardware.  Most of it is derived from
 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
 * under a dual license (GPL and MIT/XFree86 license).
 *
 * Author: David Dawes
 *
 */

/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/console.h>
#include <linux/selection.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/kd.h>
#include <linux/vt_kern.h>
#include <linux/pagemap.h>
#include <linux/version.h>

#include <asm/io.h>

#include "intelfb.h"
#include "intelfbhw.h"

int
intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
		      int *mobile)
{
	u32 tmp;

	if (!pdev || !name || !chipset || !mobile)
		return 1;

	switch (pdev->device) {
	case PCI_DEVICE_ID_INTEL_830M:
		*name = "Intel(R) 830M";
		*chipset = INTEL_830M;
		*mobile = 1;
		return 0;
	case PCI_DEVICE_ID_INTEL_845G:
		*name = "Intel(R) 845G";
		*chipset = INTEL_845G;
		*mobile = 0;
		return 0;
	case PCI_DEVICE_ID_INTEL_85XGM:
		tmp = 0;
		*mobile = 1;
		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
			INTEL_85X_VARIANT_MASK) {
		case INTEL_VAR_855GME:
			*name = "Intel(R) 855GME";
			*chipset = INTEL_855GME;
			return 0;
		case INTEL_VAR_855GM:
			*name = "Intel(R) 855GM";
			*chipset = INTEL_855GM;
			return 0;
		case INTEL_VAR_852GME:
			*name = "Intel(R) 852GME";
			*chipset = INTEL_852GME;
			return 0;
		case INTEL_VAR_852GM:
			*name = "Intel(R) 852GM";
			*chipset = INTEL_852GM;
			return 0;
		default:
			*name = "Intel(R) 852GM/855GM";
			*chipset = INTEL_85XGM;
			return 0;
		}
		break;
	case PCI_DEVICE_ID_INTEL_865G:
		*name = "Intel(R) 865G";
		*chipset = INTEL_865G;
		*mobile = 0;
		return 0;
	case PCI_DEVICE_ID_INTEL_915G:
		*name = "Intel(R) 915G";
		*chipset = INTEL_915G;
		*mobile = 0;
		return 0;
	default:
		return 1;
	}
}

int
intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
		     int *stolen_size)
{
	struct pci_dev *bridge_dev;
	u16 tmp;

	if (!pdev || !aperture_size || !stolen_size)
		return 1;

	/* Find the bridge device.  It is always 0:0.0 */
	if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
		ERR_MSG("cannot find bridge device\n");
		return 1;
	}

	/* Get the fb aperture size and "stolen" memory amount. */
	tmp = 0;
	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
	switch (pdev->device) {
	case PCI_DEVICE_ID_INTEL_830M:
	case PCI_DEVICE_ID_INTEL_845G:
		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
			*aperture_size = MB(64);
		else
			*aperture_size = MB(128);
		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
		case INTEL_830_GMCH_GMS_STOLEN_512:
			*stolen_size = KB(512) - KB(132);
			return 0;
		case INTEL_830_GMCH_GMS_STOLEN_1024:
			*stolen_size = MB(1) - KB(132);
			return 0;
		case INTEL_830_GMCH_GMS_STOLEN_8192:
			*stolen_size = MB(8) - KB(132);
			return 0;
		case INTEL_830_GMCH_GMS_LOCAL:
			ERR_MSG("only local memory found\n");
			return 1;
		case INTEL_830_GMCH_GMS_DISABLED:
			ERR_MSG("video memory is disabled\n");
			return 1;
		default:
			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
				tmp & INTEL_830_GMCH_GMS_MASK);
			return 1;
		}
		break;
	default:
		*aperture_size = MB(128);
		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
		case INTEL_855_GMCH_GMS_STOLEN_1M:
			*stolen_size = MB(1) - KB(132);
			return 0;
		case INTEL_855_GMCH_GMS_STOLEN_4M:
			*stolen_size = MB(4) - KB(132);
			return 0;
		case INTEL_855_GMCH_GMS_STOLEN_8M:
			*stolen_size = MB(8) - KB(132);
			return 0;
		case INTEL_855_GMCH_GMS_STOLEN_16M:
			*stolen_size = MB(16) - KB(132);
			return 0;
		case INTEL_855_GMCH_GMS_STOLEN_32M:
			*stolen_size = MB(32) - KB(132);
			return 0;
		case INTEL_915G_GMCH_GMS_STOLEN_48M:
			*stolen_size = MB(48) - KB(132);
			return 0;
		case INTEL_915G_GMCH_GMS_STOLEN_64M:
			*stolen_size = MB(64) - KB(132);
			return 0;
		case INTEL_855_GMCH_GMS_DISABLED:
			ERR_MSG("video memory is disabled\n");
			return 0;
		default:
			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
				tmp & INTEL_855_GMCH_GMS_MASK);
			return 1;
		}
	}
}

int
intelfbhw_check_non_crt(struct intelfb_info *dinfo)
{
	int dvo = 0;

	if (INREG(LVDS) & PORT_ENABLE)
		dvo |= LVDS_PORT;
	if (INREG(DVOA) & PORT_ENABLE)
		dvo |= DVOA_PORT;
	if (INREG(DVOB) & PORT_ENABLE)
		dvo |= DVOB_PORT;
	if (INREG(DVOC) & PORT_ENABLE)
		dvo |= DVOC_PORT;

	return dvo;
}

const char *
intelfbhw_dvo_to_string(int dvo)
{
	if (dvo & DVOA_PORT)
		return "DVO port A";
	else if (dvo & DVOB_PORT)
		return "DVO port B";
	else if (dvo & DVOC_PORT)
		return "DVO port C";
	else if (dvo & LVDS_PORT)
		return "LVDS port";
	else
		return NULL;
}


int
intelfbhw_validate_mode(struct intelfb_info *dinfo,
			struct fb_var_screeninfo *var)
{
	int bytes_per_pixel;
	int tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_validate_mode\n");
#endif

	bytes_per_pixel = var->bits_per_pixel / 8;
	if (bytes_per_pixel == 3)
		bytes_per_pixel = 4;

	/* Check if enough video memory. */
	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
	if (tmp > dinfo->fb.size) {
		WRN_MSG("Not enough video ram for mode "
			"(%d KByte vs %d KByte).\n",
			BtoKB(tmp), BtoKB(dinfo->fb.size));
		return 1;
	}

	/* Check if x/y limits are OK. */
	if (var->xres - 1 > HACTIVE_MASK) {
		WRN_MSG("X resolution too large (%d vs %d).\n",
			var->xres, HACTIVE_MASK + 1);
		return 1;
	}
	if (var->yres - 1 > VACTIVE_MASK) {
		WRN_MSG("Y resolution too large (%d vs %d).\n",
			var->yres, VACTIVE_MASK + 1);
		return 1;
	}

	/* Check for interlaced/doublescan modes. */
	if (var->vmode & FB_VMODE_INTERLACED) {
		WRN_MSG("Mode is interlaced.\n");
		return 1;
	}
	if (var->vmode & FB_VMODE_DOUBLE) {
		WRN_MSG("Mode is double-scan.\n");
		return 1;
	}

	/* Check if clock is OK. */
	tmp = 1000000000 / var->pixclock;
	if (tmp < MIN_CLOCK) {
		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
			(tmp + 500) / 1000, MIN_CLOCK / 1000);
		return 1;
	}
	if (tmp > MAX_CLOCK) {
		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
			(tmp + 500) / 1000, MAX_CLOCK / 1000);
		return 1;
	}

	return 0;
}

int
intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
{
	struct intelfb_info *dinfo = GET_DINFO(info);
	u32 offset, xoffset, yoffset;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_pan_display\n");
#endif

	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
	yoffset = var->yoffset;

	if ((xoffset + var->xres > var->xres_virtual) ||
	    (yoffset + var->yres > var->yres_virtual))
		return -EINVAL;

	offset = (yoffset * dinfo->pitch) +
		 (xoffset * var->bits_per_pixel) / 8;

	offset += dinfo->fb.offset << 12;

	OUTREG(DSPABASE, offset);

	return 0;
}

/* Blank the screen. */
void
intelfbhw_do_blank(int blank, struct fb_info *info)
{
	struct intelfb_info *dinfo = GET_DINFO(info);
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
#endif

	/* Turn plane A on or off */
	tmp = INREG(DSPACNTR);
	if (blank)
		tmp &= ~DISPPLANE_PLANE_ENABLE;
	else
		tmp |= DISPPLANE_PLANE_ENABLE;
	OUTREG(DSPACNTR, tmp);
	/* Flush */
	tmp = INREG(DSPABASE);
	OUTREG(DSPABASE, tmp);

	/* Turn off/on the HW cursor */
#if VERBOSE > 0
	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
#endif
	if (dinfo->cursor_on) {
		if (blank) {
			intelfbhw_cursor_hide(dinfo);
		} else {
			intelfbhw_cursor_show(dinfo);
		}
		dinfo->cursor_on = 1;
	}
	dinfo->cursor_blanked = blank;

	/* Set DPMS level */
	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
	switch (blank) {
	case FB_BLANK_UNBLANK:
	case FB_BLANK_NORMAL:
		tmp |= ADPA_DPMS_D0;
		break;
	case FB_BLANK_VSYNC_SUSPEND:
		tmp |= ADPA_DPMS_D1;
		break;
	case FB_BLANK_HSYNC_SUSPEND:
		tmp |= ADPA_DPMS_D2;
		break;
	case FB_BLANK_POWERDOWN:
		tmp |= ADPA_DPMS_D3;
		break;
	}
	OUTREG(ADPA, tmp);

	return;
}


void
intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
		    unsigned red, unsigned green, unsigned blue,
		    unsigned transp)
{
#if VERBOSE > 0
	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
		regno, red, green, blue);
#endif

	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
			  PALETTE_A : PALETTE_B;

	OUTREG(palette_reg + (regno << 2),
	       (red << PALETTE_8_RED_SHIFT) |
	       (green << PALETTE_8_GREEN_SHIFT) |
	       (blue << PALETTE_8_BLUE_SHIFT));
}


int
intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
			int flag)
{
	int i;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_read_hw_state\n");
#endif

	if (!hw || !dinfo)
		return -1;

	/* Read in as much of the HW state as possible. */
	hw->vga0_divisor = INREG(VGA0_DIVISOR);
	hw->vga1_divisor = INREG(VGA1_DIVISOR);
	hw->vga_pd = INREG(VGAPD);
	hw->dpll_a = INREG(DPLL_A);
	hw->dpll_b = INREG(DPLL_B);
	hw->fpa0 = INREG(FPA0);
	hw->fpa1 = INREG(FPA1);
	hw->fpb0 = INREG(FPB0);
	hw->fpb1 = INREG(FPB1);

	if (flag == 1)
		return flag;

#if 0
	/* This seems to be a problem with the 852GM/855GM */
	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
	}
#endif

	if (flag == 2)
		return flag;

	hw->htotal_a = INREG(HTOTAL_A);
	hw->hblank_a = INREG(HBLANK_A);
	hw->hsync_a = INREG(HSYNC_A);
	hw->vtotal_a = INREG(VTOTAL_A);
	hw->vblank_a = INREG(VBLANK_A);
	hw->vsync_a = INREG(VSYNC_A);
	hw->src_size_a = INREG(SRC_SIZE_A);
	hw->bclrpat_a = INREG(BCLRPAT_A);
	hw->htotal_b = INREG(HTOTAL_B);
	hw->hblank_b = INREG(HBLANK_B);
	hw->hsync_b = INREG(HSYNC_B);
	hw->vtotal_b = INREG(VTOTAL_B);
	hw->vblank_b = INREG(VBLANK_B);
	hw->vsync_b = INREG(VSYNC_B);
	hw->src_size_b = INREG(SRC_SIZE_B);
	hw->bclrpat_b = INREG(BCLRPAT_B);

	if (flag == 3)
		return flag;

	hw->adpa = INREG(ADPA);
	hw->dvoa = INREG(DVOA);
	hw->dvob = INREG(DVOB);
	hw->dvoc = INREG(DVOC);
	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
	hw->lvds = INREG(LVDS);

	if (flag == 4)
		return flag;

	hw->pipe_a_conf = INREG(PIPEACONF);
	hw->pipe_b_conf = INREG(PIPEBCONF);
	hw->disp_arb = INREG(DISPARB);

	if (flag == 5)
		return flag;

	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);

	if (flag == 6)
		return flag;

	for (i = 0; i < 4; i++) {
		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
	}

	if (flag == 7)
		return flag;

	hw->cursor_size = INREG(CURSOR_SIZE);

	if (flag == 8)
		return flag;

	hw->disp_a_ctrl = INREG(DSPACNTR);
	hw->disp_b_ctrl = INREG(DSPBCNTR);
	hw->disp_a_base = INREG(DSPABASE);
	hw->disp_b_base = INREG(DSPBBASE);
	hw->disp_a_stride = INREG(DSPASTRIDE);
	hw->disp_b_stride = INREG(DSPBSTRIDE);

	if (flag == 9)
		return flag;

	hw->vgacntrl = INREG(VGACNTRL);

	if (flag == 10)
		return flag;

	hw->add_id = INREG(ADD_ID);

	if (flag == 11)
		return flag;

	for (i = 0; i < 7; i++) {
		hw->swf0x[i] = INREG(SWF00 + (i << 2));
		hw->swf1x[i] = INREG(SWF10 + (i << 2));
		if (i < 3)
			hw->swf3x[i] = INREG(SWF30 + (i << 2));
	}

	for (i = 0; i < 8; i++)
		hw->fence[i] = INREG(FENCE + (i << 2));

	hw->instpm = INREG(INSTPM);
	hw->mem_mode = INREG(MEM_MODE);
	hw->fw_blc_0 = INREG(FW_BLC_0);
	hw->fw_blc_1 = INREG(FW_BLC_1);

	return 0;
}


void
intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
{
#if REGDUMP
	int i, m1, m2, n, p1, p2;

	DBG_MSG("intelfbhw_print_hw_state\n");

	if (!hw || !dinfo)
		return;
	/* Read in as much of the HW state as possible. */
	printk("hw state dump start\n");
	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
	printk("	VGAPD: 			0x%08x\n", hw->vga_pd);
	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
		p1 = 0;
	else
		p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
	p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
		m1, m2, n, p1, p2);
	printk("	VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));

	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
		p1 = 0;
	else
		p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
	p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
		m1, m2, n, p1, p2);
	printk("	VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));

	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
	printk("	FPA0:			0x%08x\n", hw->fpa0);
	printk("	FPA1:			0x%08x\n", hw->fpa1);
	printk("	FPB0:			0x%08x\n", hw->fpb0);
	printk("	FPB1:			0x%08x\n", hw->fpb1);

	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
		p1 = 0;
	else
		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
		m1, m2, n, p1, p2);
	printk("	PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));

	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
		p1 = 0;
	else
		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
		m1, m2, n, p1, p2);
	printk("	PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));

#if 0
	printk("	PALETTE_A:\n");
	for (i = 0; i < PALETTE_8_ENTRIES)
		printk("	%3d:	0x%08x\n", i, hw->palette_a[i];
	printk("	PALETTE_B:\n");
	for (i = 0; i < PALETTE_8_ENTRIES)
		printk("	%3d:	0x%08x\n", i, hw->palette_b[i];
#endif

	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);

	printk("	ADPA:			0x%08x\n", hw->adpa);
	printk("	DVOA:			0x%08x\n", hw->dvoa);
	printk("	DVOB:			0x%08x\n", hw->dvob);
	printk("	DVOC:			0x%08x\n", hw->dvoc);
	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
	printk("	LVDS:			0x%08x\n", hw->lvds);

	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
	printk("	DISPARB:		0x%08x\n", hw->disp_arb);

	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);

	printk("	CURSOR_A_PALETTE:	");
	for (i = 0; i < 4; i++) {
		printk("0x%08x", hw->cursor_a_palette[i]);
		if (i < 3)
			printk(", ");
	}
	printk("\n");
	printk("	CURSOR_B_PALETTE:	");
	for (i = 0; i < 4; i++) {
		printk("0x%08x", hw->cursor_b_palette[i]);
		if (i < 3)
			printk(", ");
	}
	printk("\n");

	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);

	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);

	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
	printk("	ADD_ID:			0x%08x\n", hw->add_id);

	for (i = 0; i < 7; i++) {
		printk("	SWF0%d			0x%08x\n", i,
			hw->swf0x[i]);
	}
	for (i = 0; i < 7; i++) {
		printk("	SWF1%d			0x%08x\n", i,
			hw->swf1x[i]);
	}
	for (i = 0; i < 3; i++) {
		printk("	SWF3%d			0x%08x\n", i,
			hw->swf3x[i]);
	}
	for (i = 0; i < 8; i++)
		printk("	FENCE%d			0x%08x\n", i,
			hw->fence[i]);

	printk("	INSTPM			0x%08x\n", hw->instpm);
	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);

	printk("hw state dump end\n");
#endif
}

/* Split the M parameter into M1 and M2. */
static int
splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
{
	int m1, m2;

	m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
	if (m1 < MIN_M1)
		m1 = MIN_M1;
	if (m1 > MAX_M1)
		m1 = MAX_M1;
	m2 = m - 5 * (m1 + 2) - 2;
	if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
		return 1;
	} else {
		*retm1 = (unsigned int)m1;
		*retm2 = (unsigned int)m2;
		return 0;
	}
}

/* Split the P parameter into P1 and P2. */
static int
splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
{
	int p1, p2;

	if (p % 4 == 0)
		p2 = 1;
	else
		p2 = 0;
	p1 = (p / (1 << (p2 + 1))) - 2;
	if (p % 4 == 0 && p1 < MIN_P1) {
		p2 = 0;
		p1 = (p / (1 << (p2 + 1))) - 2;
	}
	if (p1  < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
		return 1;
	} else {
		*retp1 = (unsigned int)p1;
		*retp2 = (unsigned int)p2;
		return 0;
	}
}

static int
calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
		u32 *retp2, u32 *retclock)
{
	u32 m1, m2, n, p1, p2, n1;
	u32 f_vco, p, p_best = 0, m, f_out;
	u32 err_max, err_target, err_best = 10000000;
	u32 n_best = 0, m_best = 0, f_best, f_err;
	u32 p_min, p_max, p_inc, div_min, div_max;

	/* Accept 0.5% difference, but aim for 0.1% */
	err_max = 5 * clock / 1000;
	err_target = clock / 1000;

	DBG_MSG("Clock is %d\n", clock);

	div_max = MAX_VCO_FREQ / clock;
	div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;

	if (clock <= P_TRANSITION_CLOCK)
		p_inc = 4;
	else
		p_inc = 2;
	p_min = ROUND_UP_TO(div_min, p_inc);
	p_max = ROUND_DOWN_TO(div_max, p_inc);
	if (p_min < MIN_P)
		p_min = 4;
	if (p_max > MAX_P)
		p_max = 128;

	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);

	p = p_min;
	do {
		if (splitp(p, &p1, &p2)) {
			WRN_MSG("cannot split p = %d\n", p);
			p += p_inc;
			continue;
		}
		n = MIN_N;
		f_vco = clock * p;

		do {
			m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
			if (m < MIN_M)
				m = MIN_M;
			if (m > MAX_M)
				m = MAX_M;
			f_out = CALC_VCLOCK3(m, n, p);
			if (splitm(m, &m1, &m2)) {
				WRN_MSG("cannot split m = %d\n", m);
				n++;
				continue;
			}
			if (clock > f_out)
				f_err = clock - f_out;
			else
				f_err = f_out - clock;

			if (f_err < err_best) {
				m_best = m;
				n_best = n;
				p_best = p;
				f_best = f_out;
				err_best = f_err;
			}
			n++;
		} while ((n <= MAX_N) && (f_out >= clock));
		p += p_inc;
	} while ((p <= p_max));

	if (!m_best) {
		WRN_MSG("cannot find parameters for clock %d\n", clock);
		return 1;
	}
	m = m_best;
	n = n_best;
	p = p_best;
	splitm(m, &m1, &m2);
	splitp(p, &p1, &p2);
	n1 = n - 2;

	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
		"f: %d (%d), VCO: %d\n",
		m, m1, m2, n, n1, p, p1, p2,
		CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
		CALC_VCLOCK3(m, n, p) * p);
	*retm1 = m1;
	*retm2 = m2;
	*retn = n1;
	*retp1 = p1;
	*retp2 = p2;
	*retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);

	return 0;
}

static __inline__ int
check_overflow(u32 value, u32 limit, const char *description)
{
	if (value > limit) {
		WRN_MSG("%s value %d exceeds limit %d\n",
			description, value, limit);
		return 1;
	}
	return 0;
}

/* It is assumed that hw is filled in with the initial state information. */
int
intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
		     struct fb_var_screeninfo *var)
{
	int pipe = PIPE_A;
	u32 *dpll, *fp0, *fp1;
	u32 m1, m2, n, p1, p2, clock_target, clock;
	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
	u32 vsync_pol, hsync_pol;
	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;

	DBG_MSG("intelfbhw_mode_to_hw\n");

	/* Disable VGA */
	hw->vgacntrl |= VGA_DISABLE;

	/* Check whether pipe A or pipe B is enabled. */
	if (hw->pipe_a_conf & PIPECONF_ENABLE)
		pipe = PIPE_A;
	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
		pipe = PIPE_B;

	/* Set which pipe's registers will be set. */
	if (pipe == PIPE_B) {
		dpll = &hw->dpll_b;
		fp0 = &hw->fpb0;
		fp1 = &hw->fpb1;
		hs = &hw->hsync_b;
		hb = &hw->hblank_b;
		ht = &hw->htotal_b;
		vs = &hw->vsync_b;
		vb = &hw->vblank_b;
		vt = &hw->vtotal_b;
		ss = &hw->src_size_b;
		pipe_conf = &hw->pipe_b_conf;
	} else {
		dpll = &hw->dpll_a;
		fp0 = &hw->fpa0;
		fp1 = &hw->fpa1;
		hs = &hw->hsync_a;
		hb = &hw->hblank_a;
		ht = &hw->htotal_a;
		vs = &hw->vsync_a;
		vb = &hw->vblank_a;
		vt = &hw->vtotal_a;
		ss = &hw->src_size_a;
		pipe_conf = &hw->pipe_a_conf;
	}

	/* Use ADPA register for sync control. */
	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;

	/* sync polarity */
	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);

	/* Connect correct pipe to the analog port DAC */
	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);

	/* Set DPMS state to D0 (on) */
	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
	hw->adpa |= ADPA_DPMS_D0;

	hw->adpa |= ADPA_DAC_ENABLE;

	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);

	/* Desired clock in kHz */
	clock_target = 1000000000 / var->pixclock;

	if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
		WRN_MSG("calc_pll_params failed\n");
		return 1;
	}

	/* Check for overflow. */
	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
		return 1;
	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
		return 1;
	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
		return 1;
	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
		return 1;
	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
		return 1;

	*dpll &= ~DPLL_P1_FORCE_DIV2;
	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
	*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
	       (m1 << FP_M1_DIVISOR_SHIFT) |
	       (m2 << FP_M2_DIVISOR_SHIFT);
	*fp1 = *fp0;

	hw->dvob &= ~PORT_ENABLE;
	hw->dvoc &= ~PORT_ENABLE;

	/* Use display plane A. */
	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
	switch (intelfb_var_to_depth(var)) {
	case 8:
		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
		break;
	case 15:
		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
		break;
	case 16:
		hw->disp_a_ctrl |= DISPPLANE_16BPP;
		break;
	case 24:
		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
		break;
	}
	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);

	/* Set CRTC registers. */
	hactive = var->xres;
	hsync_start = hactive + var->right_margin;
	hsync_end = hsync_start + var->hsync_len;
	htotal = hsync_end + var->left_margin;
	hblank_start = hactive;
	hblank_end = htotal;

	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
		hactive, hsync_start, hsync_end, htotal, hblank_start,
		hblank_end);

	vactive = var->yres;
	vsync_start = vactive + var->lower_margin;
	vsync_end = vsync_start + var->vsync_len;
	vtotal = vsync_end + var->upper_margin;
	vblank_start = vactive;
	vblank_end = vtotal;
	vblank_end = vsync_end + 1;

	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
		vactive, vsync_start, vsync_end, vtotal, vblank_start,
		vblank_end);

	/* Adjust for register values, and check for overflow. */
	hactive--;
	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
		return 1;
	hsync_start--;
	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
		return 1;
	hsync_end--;
	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
		return 1;
	htotal--;
	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
		return 1;
	hblank_start--;
	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
		return 1;
	hblank_end--;
	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
		return 1;

	vactive--;
	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
		return 1;
	vsync_start--;
	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
		return 1;
	vsync_end--;
	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
		return 1;
	vtotal--;
	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
		return 1;
	vblank_start--;
	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
		return 1;
	vblank_end--;
	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
		return 1;

	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
	*hb = (hblank_start << HBLANKSTART_SHIFT) |
	      (hblank_end << HSYNCEND_SHIFT);
	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);

	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
	*vb = (vblank_start << VBLANKSTART_SHIFT) |
	      (vblank_end << VSYNCEND_SHIFT);
	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
	      (vactive << SRC_SIZE_VERT_SHIFT);

	hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
	DBG_MSG("pitch is %d\n", hw->disp_a_stride);

	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
			  var->xoffset * var->bits_per_pixel / 8;

	hw->disp_a_base += dinfo->fb.offset << 12;

	/* Check stride alignment. */
	if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
		WRN_MSG("display stride %d has bad alignment %d\n",
			hw->disp_a_stride, STRIDE_ALIGNMENT);
		return 1;
	}

	/* Set the palette to 8-bit mode. */
	*pipe_conf &= ~PIPECONF_GAMMA;
	return 0;
}

/* Program a (non-VGA) video mode. */
int
intelfbhw_program_mode(struct intelfb_info *dinfo,
		     const struct intelfb_hwstate *hw, int blank)
{
	int pipe = PIPE_A;
	u32 tmp;
	const u32 *dpll, *fp0, *fp1, *pipe_conf;
	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
	u32 hsync_reg, htotal_reg, hblank_reg;
	u32 vsync_reg, vtotal_reg, vblank_reg;
	u32 src_size_reg;

	/* Assume single pipe, display plane A, analog CRT. */

#if VERBOSE > 0
	DBG_MSG("intelfbhw_program_mode\n");
#endif

	/* Disable VGA */
	tmp = INREG(VGACNTRL);
	tmp |= VGA_DISABLE;
	OUTREG(VGACNTRL, tmp);

	/* Check whether pipe A or pipe B is enabled. */
	if (hw->pipe_a_conf & PIPECONF_ENABLE)
		pipe = PIPE_A;
	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
		pipe = PIPE_B;

	dinfo->pipe = pipe;

	if (pipe == PIPE_B) {
		dpll = &hw->dpll_b;
		fp0 = &hw->fpb0;
		fp1 = &hw->fpb1;
		pipe_conf = &hw->pipe_b_conf;
		hs = &hw->hsync_b;
		hb = &hw->hblank_b;
		ht = &hw->htotal_b;
		vs = &hw->vsync_b;
		vb = &hw->vblank_b;
		vt = &hw->vtotal_b;
		ss = &hw->src_size_b;
		dpll_reg = DPLL_B;
		fp0_reg = FPB0;
		fp1_reg = FPB1;
		pipe_conf_reg = PIPEBCONF;
		hsync_reg = HSYNC_B;
		htotal_reg = HTOTAL_B;
		hblank_reg = HBLANK_B;
		vsync_reg = VSYNC_B;
		vtotal_reg = VTOTAL_B;
		vblank_reg = VBLANK_B;
		src_size_reg = SRC_SIZE_B;
	} else {
		dpll = &hw->dpll_a;
		fp0 = &hw->fpa0;
		fp1 = &hw->fpa1;
		pipe_conf = &hw->pipe_a_conf;
		hs = &hw->hsync_a;
		hb = &hw->hblank_a;
		ht = &hw->htotal_a;
		vs = &hw->vsync_a;
		vb = &hw->vblank_a;
		vt = &hw->vtotal_a;
		ss = &hw->src_size_a;
		dpll_reg = DPLL_A;
		fp0_reg = FPA0;
		fp1_reg = FPA1;
		pipe_conf_reg = PIPEACONF;
		hsync_reg = HSYNC_A;
		htotal_reg = HTOTAL_A;
		hblank_reg = HBLANK_A;
		vsync_reg = VSYNC_A;
		vtotal_reg = VTOTAL_A;
		vblank_reg = VBLANK_A;
		src_size_reg = SRC_SIZE_A;
	}

	/* Disable planes A and B. */
	tmp = INREG(DSPACNTR);
	tmp &= ~DISPPLANE_PLANE_ENABLE;
	OUTREG(DSPACNTR, tmp);
	tmp = INREG(DSPBCNTR);
	tmp &= ~DISPPLANE_PLANE_ENABLE;
	OUTREG(DSPBCNTR, tmp);

	/* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
	mdelay(20);

	/* Disable Sync */
	tmp = INREG(ADPA);
	tmp &= ~ADPA_DPMS_CONTROL_MASK;
	tmp |= ADPA_DPMS_D3;
	OUTREG(ADPA, tmp);

	/* turn off pipe */
	tmp = INREG(pipe_conf_reg);
	tmp &= ~PIPECONF_ENABLE;
	OUTREG(pipe_conf_reg, tmp);

	/* turn off PLL */
	tmp = INREG(dpll_reg);
	dpll_reg &= ~DPLL_VCO_ENABLE;
	OUTREG(dpll_reg, tmp);

	/* Set PLL parameters */
	OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
	OUTREG(fp0_reg, *fp0);
	OUTREG(fp1_reg, *fp1);

	/* Set pipe parameters */
	OUTREG(hsync_reg, *hs);
	OUTREG(hblank_reg, *hb);
	OUTREG(htotal_reg, *ht);
	OUTREG(vsync_reg, *vs);
	OUTREG(vblank_reg, *vb);
	OUTREG(vtotal_reg, *vt);
	OUTREG(src_size_reg, *ss);

	/* Set DVOs B/C */
	OUTREG(DVOB, hw->dvob);
	OUTREG(DVOC, hw->dvoc);

	/* Set ADPA */
	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);

	/* Enable PLL */
	tmp = INREG(dpll_reg);
	tmp |= DPLL_VCO_ENABLE;
	OUTREG(dpll_reg, tmp);

	/* Enable pipe */
	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);

	/* Enable sync */
	tmp = INREG(ADPA);
	tmp &= ~ADPA_DPMS_CONTROL_MASK;
	tmp |= ADPA_DPMS_D0;
	OUTREG(ADPA, tmp);

	/* setup display plane */
	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
		/*
		 *      i830M errata: the display plane must be enabled
		 *      to allow writes to the other bits in the plane
		 *      control register.
		 */
		tmp = INREG(DSPACNTR);
		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
			tmp |= DISPPLANE_PLANE_ENABLE;
			OUTREG(DSPACNTR, tmp);
			OUTREG(DSPACNTR,
			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
			mdelay(1);
              }
	}

	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
	OUTREG(DSPASTRIDE, hw->disp_a_stride);
	OUTREG(DSPABASE, hw->disp_a_base);

	/* Enable plane */
	if (!blank) {
		tmp = INREG(DSPACNTR);
		tmp |= DISPPLANE_PLANE_ENABLE;
		OUTREG(DSPACNTR, tmp);
		OUTREG(DSPABASE, hw->disp_a_base);
	}

	return 0;
}

/* forward declarations */
static void refresh_ring(struct intelfb_info *dinfo);
static void reset_state(struct intelfb_info *dinfo);
static void do_flush(struct intelfb_info *dinfo);

static int
wait_ring(struct intelfb_info *dinfo, int n)
{
	int i = 0;
	unsigned long end;
	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;

#if VERBOSE > 0
	DBG_MSG("wait_ring: %d\n", n);
#endif

	end = jiffies + (HZ * 3);
	while (dinfo->ring_space < n) {
		dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
						   RING_HEAD_MASK);
		if (dinfo->ring_tail + RING_MIN_FREE <
		    (u32 __iomem) dinfo->ring_head)
			dinfo->ring_space = (u32 __iomem) dinfo->ring_head
				- (dinfo->ring_tail + RING_MIN_FREE);
		else
			dinfo->ring_space = (dinfo->ring.size +
					     (u32 __iomem) dinfo->ring_head)
				- (dinfo->ring_tail + RING_MIN_FREE);
		if ((u32 __iomem) dinfo->ring_head != last_head) {
			end = jiffies + (HZ * 3);
			last_head = (u32 __iomem) dinfo->ring_head;
		}
		i++;
		if (time_before(end, jiffies)) {
			if (!i) {
				/* Try again */
				reset_state(dinfo);
				refresh_ring(dinfo);
				do_flush(dinfo);
				end = jiffies + (HZ * 3);
				i = 1;
			} else {
				WRN_MSG("ring buffer : space: %d wanted %d\n",
					dinfo->ring_space, n);
				WRN_MSG("lockup - turning off hardware "
					"acceleration\n");
				dinfo->ring_lockup = 1;
				break;
			}
		}
		udelay(1);
	}
	return i;
}

static void
do_flush(struct intelfb_info *dinfo) {
	START_RING(2);
	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
	OUT_RING(MI_NOOP);
	ADVANCE_RING();
}

void
intelfbhw_do_sync(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
	DBG_MSG("intelfbhw_do_sync\n");
#endif

	if (!dinfo->accel)
		return;

	/*
	 * Send a flush, then wait until the ring is empty.  This is what
	 * the XFree86 driver does, and actually it doesn't seem a lot worse
	 * than the recommended method (both have problems).
	 */
	do_flush(dinfo);
	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
}

static void
refresh_ring(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
	DBG_MSG("refresh_ring\n");
#endif

	dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
					   RING_HEAD_MASK);
	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
	if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
		dinfo->ring_space = (u32 __iomem) dinfo->ring_head
			- (dinfo->ring_tail + RING_MIN_FREE);
	else
		dinfo->ring_space = (dinfo->ring.size +
				     (u32 __iomem) dinfo->ring_head)
			- (dinfo->ring_tail + RING_MIN_FREE);
}

static void
reset_state(struct intelfb_info *dinfo)
{
	int i;
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("reset_state\n");
#endif

	for (i = 0; i < FENCE_NUM; i++)
		OUTREG(FENCE + (i << 2), 0);

	/* Flush the ring buffer if it's enabled. */
	tmp = INREG(PRI_RING_LENGTH);
	if (tmp & RING_ENABLE) {
#if VERBOSE > 0
		DBG_MSG("reset_state: ring was enabled\n");
#endif
		refresh_ring(dinfo);
		intelfbhw_do_sync(dinfo);
		DO_RING_IDLE();
	}

	OUTREG(PRI_RING_LENGTH, 0);
	OUTREG(PRI_RING_HEAD, 0);
	OUTREG(PRI_RING_TAIL, 0);
	OUTREG(PRI_RING_START, 0);
}

/* Stop the 2D engine, and turn off the ring buffer. */
void
intelfbhw_2d_stop(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
		dinfo->ring_active);
#endif

	if (!dinfo->accel)
		return;

	dinfo->ring_active = 0;
	reset_state(dinfo);
}

/*
 * Enable the ring buffer, and initialise the 2D engine.
 * It is assumed that the graphics engine has been stopped by previously
 * calling intelfb_2d_stop().
 */
void
intelfbhw_2d_start(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
		dinfo->accel, dinfo->ring_active);
#endif

	if (!dinfo->accel)
		return;

	/* Initialise the primary ring buffer. */
	OUTREG(PRI_RING_LENGTH, 0);
	OUTREG(PRI_RING_TAIL, 0);
	OUTREG(PRI_RING_HEAD, 0);

	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
	OUTREG(PRI_RING_LENGTH,
		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
		RING_NO_REPORT | RING_ENABLE);
	refresh_ring(dinfo);
	dinfo->ring_active = 1;
}

/* 2D fillrect (solid fill or invert) */
void
intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
		      u32 color, u32 pitch, u32 bpp, u32 rop)
{
	u32 br00, br09, br13, br14, br16;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
#endif

	br00 = COLOR_BLT_CMD;
	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
	br13 = (rop << ROP_SHIFT) | pitch;
	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
	br16 = color;

	switch (bpp) {
	case 8:
		br13 |= COLOR_DEPTH_8;
		break;
	case 16:
		br13 |= COLOR_DEPTH_16;
		break;
	case 32:
		br13 |= COLOR_DEPTH_32;
		br00 |= WRITE_ALPHA | WRITE_RGB;
		break;
	}

	START_RING(6);
	OUT_RING(br00);
	OUT_RING(br13);
	OUT_RING(br14);
	OUT_RING(br09);
	OUT_RING(br16);
	OUT_RING(MI_NOOP);
	ADVANCE_RING();

#if VERBOSE > 0
	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
		dinfo->ring_tail, dinfo->ring_space);
#endif
}

void
intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
{
	u32 br00, br09, br11, br12, br13, br22, br23, br26;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
		curx, cury, dstx, dsty, w, h, pitch, bpp);
#endif

	br00 = XY_SRC_COPY_BLT_CMD;
	br09 = dinfo->fb_start;
	br11 = (pitch << PITCH_SHIFT);
	br12 = dinfo->fb_start;
	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
	br23 = ((dstx + w) << WIDTH_SHIFT) |
	       ((dsty + h) << HEIGHT_SHIFT);
	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);

	switch (bpp) {
	case 8:
		br13 |= COLOR_DEPTH_8;
		break;
	case 16:
		br13 |= COLOR_DEPTH_16;
		break;
	case 32:
		br13 |= COLOR_DEPTH_32;
		br00 |= WRITE_ALPHA | WRITE_RGB;
		break;
	}

	START_RING(8);
	OUT_RING(br00);
	OUT_RING(br13);
	OUT_RING(br22);
	OUT_RING(br23);
	OUT_RING(br09);
	OUT_RING(br26);
	OUT_RING(br11);
	OUT_RING(br12);
	ADVANCE_RING();
}

int
intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
		       u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
{
	int nbytes, ndwords, pad, tmp;
	u32 br00, br09, br13, br18, br19, br22, br23;
	int dat, ix, iy, iw;
	int i, j;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
#endif

	/* size in bytes of a padded scanline */
	nbytes = ROUND_UP_TO(w, 16) / 8;

	/* Total bytes of padded scanline data to write out. */
	nbytes = nbytes * h;

	/*
	 * Check if the glyph data exceeds the immediate mode limit.
	 * It would take a large font (1K pixels) to hit this limit.
	 */
	if (nbytes > MAX_MONO_IMM_SIZE)
		return 0;

	/* Src data is packaged a dword (32-bit) at a time. */
	ndwords = ROUND_UP_TO(nbytes, 4) / 4;

	/*
	 * Ring has to be padded to a quad word. But because the command starts
	   with 7 bytes, pad only if there is an even number of ndwords
	 */
	pad = !(ndwords % 2);

	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
	br09 = dinfo->fb_start;
	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
	br18 = bg;
	br19 = fg;
	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);

	switch (bpp) {
	case 8:
		br13 |= COLOR_DEPTH_8;
		break;
	case 16:
		br13 |= COLOR_DEPTH_16;
		break;
	case 32:
		br13 |= COLOR_DEPTH_32;
		br00 |= WRITE_ALPHA | WRITE_RGB;
		break;
	}

	START_RING(8 + ndwords);
	OUT_RING(br00);
	OUT_RING(br13);
	OUT_RING(br22);
	OUT_RING(br23);
	OUT_RING(br09);
	OUT_RING(br18);
	OUT_RING(br19);
	ix = iy = 0;
	iw = ROUND_UP_TO(w, 8) / 8;
	while (ndwords--) {
		dat = 0;
		for (j = 0; j < 2; ++j) {
			for (i = 0; i < 2; ++i) {
				if (ix != iw || i == 0)
					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
			}
			if (ix == iw && iy != (h-1)) {
				ix = 0;
				++iy;
			}
		}
		OUT_RING(dat);
	}
	if (pad)
		OUT_RING(MI_NOOP);
	ADVANCE_RING();

	return 1;
}

/* HW cursor functions. */
void
intelfbhw_cursor_init(struct intelfb_info *dinfo)
{
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_init\n");
#endif

	if (dinfo->mobile) {
		if (!dinfo->cursor.physical)
			return;
		tmp = INREG(CURSOR_A_CONTROL);
		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
			 CURSOR_MEM_TYPE_LOCAL |
			 (1 << CURSOR_PIPE_SELECT_SHIFT));
		tmp |= CURSOR_MODE_DISABLE;
		OUTREG(CURSOR_A_CONTROL, tmp);
		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
	} else {
		tmp = INREG(CURSOR_CONTROL);
		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
		tmp = CURSOR_FORMAT_3C;
		OUTREG(CURSOR_CONTROL, tmp);
		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
		      (64 << CURSOR_SIZE_V_SHIFT);
		OUTREG(CURSOR_SIZE, tmp);
	}
}

void
intelfbhw_cursor_hide(struct intelfb_info *dinfo)
{
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_hide\n");
#endif

	dinfo->cursor_on = 0;
	if (dinfo->mobile) {
		if (!dinfo->cursor.physical)
			return;
		tmp = INREG(CURSOR_A_CONTROL);
		tmp &= ~CURSOR_MODE_MASK;
		tmp |= CURSOR_MODE_DISABLE;
		OUTREG(CURSOR_A_CONTROL, tmp);
		/* Flush changes */
		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
	} else {
		tmp = INREG(CURSOR_CONTROL);
		tmp &= ~CURSOR_ENABLE;
		OUTREG(CURSOR_CONTROL, tmp);
	}
}

void
intelfbhw_cursor_show(struct intelfb_info *dinfo)
{
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_show\n");
#endif

	dinfo->cursor_on = 1;

	if (dinfo->cursor_blanked)
		return;

	if (dinfo->mobile) {
		if (!dinfo->cursor.physical)
			return;
		tmp = INREG(CURSOR_A_CONTROL);
		tmp &= ~CURSOR_MODE_MASK;
		tmp |= CURSOR_MODE_64_4C_AX;
		OUTREG(CURSOR_A_CONTROL, tmp);
		/* Flush changes */
		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
	} else {
		tmp = INREG(CURSOR_CONTROL);
		tmp |= CURSOR_ENABLE;
		OUTREG(CURSOR_CONTROL, tmp);
	}
}

void
intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
{
	u32 tmp;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
#endif

	/*
	 * Sets the position.  The coordinates are assumed to already
	 * have any offset adjusted.  Assume that the cursor is never
	 * completely off-screen, and that x, y are always >= 0.
	 */

	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
	OUTREG(CURSOR_A_POSITION, tmp);
}

void
intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
{
#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_setcolor\n");
#endif

	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
}

void
intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
		      u8 *data)
{
	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
	int i, j, w = width / 8;
	int mod = width % 8, t_mask, d_mask;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_load\n");
#endif

	if (!dinfo->cursor.virtual)
		return;

	t_mask = 0xff >> mod;
	d_mask = ~(0xff >> mod);
	for (i = height; i--; ) {
		for (j = 0; j < w; j++) {
			writeb(0x00, addr + j);
			writeb(*(data++), addr + j+8);
		}
		if (mod) {
			writeb(t_mask, addr + j);
			writeb(*(data++) & d_mask, addr + j+8);
		}
		addr += 16;
	}
}

void
intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
	int i, j;

#if VERBOSE > 0
	DBG_MSG("intelfbhw_cursor_reset\n");
#endif

	if (!dinfo->cursor.virtual)
		return;

	for (i = 64; i--; ) {
		for (j = 0; j < 8; j++) {
			writeb(0xff, addr + j+0);
			writeb(0x00, addr + j+8);
		}
		addr += 16;
	}
}