1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* umc.c : Unified Memory Controller (UMC) topology helpers
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/*
* MI300 has a fixed, model-specific mapping between a UMC instance and
* its related Data Fabric Coherent Station instance.
*
* The MCA_IPID_UMC[InstanceId] field holds a unique identifier for the
* UMC instance within a Node. Use this to find the appropriate Coherent
* Station ID.
*
* Redundant bits were removed from the map below.
*/
static const u16 umc_coh_st_map[32] = {
0x393, 0x293, 0x193, 0x093,
0x392, 0x292, 0x192, 0x092,
0x391, 0x291, 0x191, 0x091,
0x390, 0x290, 0x190, 0x090,
0x793, 0x693, 0x593, 0x493,
0x792, 0x692, 0x592, 0x492,
0x791, 0x691, 0x591, 0x491,
0x790, 0x690, 0x590, 0x490,
};
#define UMC_ID_MI300 GENMASK(23, 12)
static u8 get_coh_st_inst_id_mi300(struct atl_err *err)
{
u16 umc_id = FIELD_GET(UMC_ID_MI300, err->ipid);
u8 i;
for (i = 0; i < ARRAY_SIZE(umc_coh_st_map); i++) {
if (umc_id == umc_coh_st_map[i])
break;
}
WARN_ON_ONCE(i >= ARRAY_SIZE(umc_coh_st_map));
return i;
}
/* XOR the bits in @val. */
static u16 bitwise_xor_bits(u16 val)
{
u16 tmp = 0;
u8 i;
for (i = 0; i < 16; i++)
tmp ^= (val >> i) & 0x1;
return tmp;
}
struct xor_bits {
bool xor_enable;
u16 col_xor;
u32 row_xor;
};
#define NUM_BANK_BITS 4
static struct {
/* UMC::CH::AddrHashBank */
struct xor_bits bank[NUM_BANK_BITS];
/* UMC::CH::AddrHashPC */
struct xor_bits pc;
/* UMC::CH::AddrHashPC2 */
u8 bank_xor;
} addr_hash;
#define MI300_UMC_CH_BASE 0x90000
#define MI300_ADDR_HASH_BANK0 (MI300_UMC_CH_BASE + 0xC8)
#define MI300_ADDR_HASH_PC (MI300_UMC_CH_BASE + 0xE0)
#define MI300_ADDR_HASH_PC2 (MI300_UMC_CH_BASE + 0xE4)
#define ADDR_HASH_XOR_EN BIT(0)
#define ADDR_HASH_COL_XOR GENMASK(13, 1)
#define ADDR_HASH_ROW_XOR GENMASK(31, 14)
#define ADDR_HASH_BANK_XOR GENMASK(5, 0)
/*
* Read UMC::CH::AddrHash{Bank,PC,PC2} registers to get XOR bits used
* for hashing. Do this during module init, since the values will not
* change during run time.
*
* These registers are instantiated for each UMC across each AMD Node.
* However, they should be identically programmed due to the fixed hardware
* design of MI300 systems. So read the values from Node 0 UMC 0 and keep a
* single global structure for simplicity.
*/
int get_addr_hash_mi300(void)
{
u32 temp;
int ret;
u8 i;
for (i = 0; i < NUM_BANK_BITS; i++) {
ret = amd_smn_read(0, MI300_ADDR_HASH_BANK0 + (i * 4), &temp);
if (ret)
return ret;
addr_hash.bank[i].xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
addr_hash.bank[i].col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
addr_hash.bank[i].row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
}
ret = amd_smn_read(0, MI300_ADDR_HASH_PC, &temp);
if (ret)
return ret;
addr_hash.pc.xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
addr_hash.pc.col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
addr_hash.pc.row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
ret = amd_smn_read(0, MI300_ADDR_HASH_PC2, &temp);
if (ret)
return ret;
addr_hash.bank_xor = FIELD_GET(ADDR_HASH_BANK_XOR, temp);
return 0;
}
/*
* MI300 systems report a DRAM address in MCA_ADDR for DRAM ECC errors. This must
* be converted to the intermediate normalized address (NA) before translating to a
* system physical address.
*
* The DRAM address includes bank, row, and column. Also included are bits for
* pseudochannel (PC) and stack ID (SID).
*
* Abbreviations: (S)tack ID, (P)seudochannel, (R)ow, (B)ank, (C)olumn, (Z)ero
*
* The MCA address format is as follows:
* MCA_ADDR[27:0] = {S[1:0], P[0], R[14:0], B[3:0], C[4:0], Z[0]}
*
* The normalized address format is fixed in hardware and is as follows:
* NA[30:0] = {S[1:0], R[13:0], C4, B[1:0], B[3:2], C[3:2], P, C[1:0], Z[4:0]}
*
* Additionally, the PC and Bank bits may be hashed. This must be accounted for before
* reconstructing the normalized address.
*/
#define MI300_UMC_MCA_COL GENMASK(5, 1)
#define MI300_UMC_MCA_BANK GENMASK(9, 6)
#define MI300_UMC_MCA_ROW GENMASK(24, 10)
#define MI300_UMC_MCA_PC BIT(25)
#define MI300_UMC_MCA_SID GENMASK(27, 26)
#define MI300_NA_COL_1_0 GENMASK(6, 5)
#define MI300_NA_PC BIT(7)
#define MI300_NA_COL_3_2 GENMASK(9, 8)
#define MI300_NA_BANK_3_2 GENMASK(11, 10)
#define MI300_NA_BANK_1_0 GENMASK(13, 12)
#define MI300_NA_COL_4 BIT(14)
#define MI300_NA_ROW GENMASK(28, 15)
#define MI300_NA_SID GENMASK(30, 29)
static unsigned long convert_dram_to_norm_addr_mi300(unsigned long addr)
{
u16 i, col, row, bank, pc, sid, temp;
col = FIELD_GET(MI300_UMC_MCA_COL, addr);
bank = FIELD_GET(MI300_UMC_MCA_BANK, addr);
row = FIELD_GET(MI300_UMC_MCA_ROW, addr);
pc = FIELD_GET(MI300_UMC_MCA_PC, addr);
sid = FIELD_GET(MI300_UMC_MCA_SID, addr);
/* Calculate hash for each Bank bit. */
for (i = 0; i < NUM_BANK_BITS; i++) {
if (!addr_hash.bank[i].xor_enable)
continue;
temp = bitwise_xor_bits(col & addr_hash.bank[i].col_xor);
temp ^= bitwise_xor_bits(row & addr_hash.bank[i].row_xor);
bank ^= temp << i;
}
/* Calculate hash for PC bit. */
if (addr_hash.pc.xor_enable) {
/* Bits SID[1:0] act as Bank[6:5] for PC hash, so apply them here. */
bank |= sid << 5;
temp = bitwise_xor_bits(col & addr_hash.pc.col_xor);
temp ^= bitwise_xor_bits(row & addr_hash.pc.row_xor);
temp ^= bitwise_xor_bits(bank & addr_hash.bank_xor);
pc ^= temp;
/* Drop SID bits for the sake of debug printing later. */
bank &= 0x1F;
}
/* Reconstruct the normalized address starting with NA[4:0] = 0 */
addr = 0;
/* NA[6:5] = Column[1:0] */
temp = col & 0x3;
addr |= FIELD_PREP(MI300_NA_COL_1_0, temp);
/* NA[7] = PC */
addr |= FIELD_PREP(MI300_NA_PC, pc);
/* NA[9:8] = Column[3:2] */
temp = (col >> 2) & 0x3;
addr |= FIELD_PREP(MI300_NA_COL_3_2, temp);
/* NA[11:10] = Bank[3:2] */
temp = (bank >> 2) & 0x3;
addr |= FIELD_PREP(MI300_NA_BANK_3_2, temp);
/* NA[13:12] = Bank[1:0] */
temp = bank & 0x3;
addr |= FIELD_PREP(MI300_NA_BANK_1_0, temp);
/* NA[14] = Column[4] */
temp = (col >> 4) & 0x1;
addr |= FIELD_PREP(MI300_NA_COL_4, temp);
/* NA[28:15] = Row[13:0] */
addr |= FIELD_PREP(MI300_NA_ROW, row);
/* NA[30:29] = SID[1:0] */
addr |= FIELD_PREP(MI300_NA_SID, sid);
pr_debug("Addr=0x%016lx", addr);
pr_debug("Bank=%u Row=%u Column=%u PC=%u SID=%u", bank, row, col, pc, sid);
return addr;
}
/*
* When a DRAM ECC error occurs on MI300 systems, it is recommended to retire
* all memory within that DRAM row. This applies to the memory with a DRAM
* bank.
*
* To find the memory addresses, loop through permutations of the DRAM column
* bits and find the System Physical address of each. The column bits are used
* to calculate the intermediate Normalized address, so all permutations should
* be checked.
*
* See amd_atl::convert_dram_to_norm_addr_mi300() for MI300 address formats.
*/
#define MI300_NUM_COL BIT(HWEIGHT(MI300_UMC_MCA_COL))
static void retire_row_mi300(struct atl_err *a_err)
{
unsigned long addr;
struct page *p;
u8 col;
for (col = 0; col < MI300_NUM_COL; col++) {
a_err->addr &= ~MI300_UMC_MCA_COL;
a_err->addr |= FIELD_PREP(MI300_UMC_MCA_COL, col);
addr = amd_convert_umc_mca_addr_to_sys_addr(a_err);
if (IS_ERR_VALUE(addr))
continue;
addr = PHYS_PFN(addr);
/*
* Skip invalid or already poisoned pages to avoid unnecessary
* error messages from memory_failure().
*/
p = pfn_to_online_page(addr);
if (!p)
continue;
if (PageHWPoison(p))
continue;
memory_failure(addr, 0);
}
}
void amd_retire_dram_row(struct atl_err *a_err)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return retire_row_mi300(a_err);
}
EXPORT_SYMBOL_GPL(amd_retire_dram_row);
static unsigned long get_addr(unsigned long addr)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return convert_dram_to_norm_addr_mi300(addr);
return addr;
}
#define MCA_IPID_INST_ID_HI GENMASK_ULL(47, 44)
static u8 get_die_id(struct atl_err *err)
{
/*
* AMD Node ID is provided in MCA_IPID[InstanceIdHi], and this
* needs to be divided by 4 to get the internal Die ID.
*/
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) {
u8 node_id = FIELD_GET(MCA_IPID_INST_ID_HI, err->ipid);
return node_id >> 2;
}
/*
* For CPUs, this is the AMD Node ID modulo the number
* of AMD Nodes per socket.
*/
return topology_amd_node_id(err->cpu) % topology_amd_nodes_per_pkg();
}
#define UMC_CHANNEL_NUM GENMASK(31, 20)
static u8 get_coh_st_inst_id(struct atl_err *err)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return get_coh_st_inst_id_mi300(err);
return FIELD_GET(UMC_CHANNEL_NUM, err->ipid);
}
unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err)
{
u8 socket_id = topology_physical_package_id(err->cpu);
u8 coh_st_inst_id = get_coh_st_inst_id(err);
unsigned long addr = get_addr(err->addr);
u8 die_id = get_die_id(err);
pr_debug("socket_id=0x%x die_id=0x%x coh_st_inst_id=0x%x addr=0x%016lx",
socket_id, die_id, coh_st_inst_id, addr);
return norm_to_sys_addr(socket_id, die_id, coh_st_inst_id, addr);
}
|