summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath10k/pci.c
blob: 33af4672c90916d38405870f67cf5773c5df5d43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>

#include "core.h"
#include "debug.h"

#include "targaddrs.h"
#include "bmi.h"

#include "hif.h"
#include "htc.h"

#include "ce.h"
#include "pci.h"

unsigned int ath10k_target_ps;
module_param(ath10k_target_ps, uint, 0644);
MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");

#define QCA988X_1_0_DEVICE_ID	(0xabcd)
#define QCA988X_2_0_DEVICE_ID	(0x003c)

static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
	{ PCI_VDEVICE(ATHEROS, QCA988X_1_0_DEVICE_ID) }, /* PCI-E QCA988X V1 */
	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
	{0}
};

static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
				       u32 *data);

static void ath10k_pci_process_ce(struct ath10k *ar);
static int ath10k_pci_post_rx(struct ath10k *ar);
static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
					     int num);
static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info);
static void ath10k_pci_stop_ce(struct ath10k *ar);

static const struct ce_attr host_ce_config_wlan[] = {
	/* host->target HTC control and raw streams */
	{ /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,},
	/* could be moved to share CE3 */
	/* target->host HTT + HTC control */
	{ /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,},
	/* target->host WMI */
	{ /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,},
	/* host->target WMI */
	{ /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,},
	/* host->target HTT */
	{ /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0,
		    CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,},
	/* unused */
	{ /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
	/* Target autonomous hif_memcpy */
	{ /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
	/* ce_diag, the Diagnostic Window */
	{ /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,},
};

/* Target firmware's Copy Engine configuration. */
static const struct ce_pipe_config target_ce_config_wlan[] = {
	/* host->target HTC control and raw streams */
	{ /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,},
	/* target->host HTT + HTC control */
	{ /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,},
	/* target->host WMI */
	{ /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,},
	/* host->target WMI */
	{ /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
	/* host->target HTT */
	{ /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,},
	/* NB: 50% of src nentries, since tx has 2 frags */
	/* unused */
	{ /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
	/* Reserved for target autonomous hif_memcpy */
	{ /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,},
	/* CE7 used only by Host */
};

/*
 * Diagnostic read/write access is provided for startup/config/debug usage.
 * Caller must guarantee proper alignment, when applicable, and single user
 * at any moment.
 */
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
				    int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 buf;
	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
	unsigned int id;
	unsigned int flags;
	struct ce_state *ce_diag;
	/* Host buffer address in CE space */
	u32 ce_data;
	dma_addr_t ce_data_base = 0;
	void *data_buf = NULL;
	int i;

	/*
	 * This code cannot handle reads to non-memory space. Redirect to the
	 * register read fn but preserve the multi word read capability of
	 * this fn
	 */
	if (address < DRAM_BASE_ADDRESS) {
		if (!IS_ALIGNED(address, 4) ||
		    !IS_ALIGNED((unsigned long)data, 4))
			return -EIO;

		while ((nbytes >= 4) &&  ((ret = ath10k_pci_diag_read_access(
					   ar, address, (u32 *)data)) == 0)) {
			nbytes -= sizeof(u32);
			address += sizeof(u32);
			data += sizeof(u32);
		}
		return ret;
	}

	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed from Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	orig_nbytes = nbytes;
	data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
							 orig_nbytes,
							 &ce_data_base);

	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}
	memset(data_buf, 0, orig_nbytes);

	remaining_bytes = orig_nbytes;
	ce_data = ce_data_base;
	while (remaining_bytes) {
		nbytes = min_t(unsigned int, remaining_bytes,
			       DIAG_TRANSFER_LIMIT);

		ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
		if (ret != 0)
			goto done;

		/* Request CE to send from Target(!) address to Host buffer */
		/*
		 * The address supplied by the caller is in the
		 * Target CPU virtual address space.
		 *
		 * In order to use this address with the diagnostic CE,
		 * convert it from Target CPU virtual address space
		 * to CE address space
		 */
		ath10k_pci_wake(ar);
		address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
						     address);
		ath10k_pci_sleep(ar);

		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
				 0);
		if (ret)
			goto done;

		i = 0;
		while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
						     &completed_nbytes,
						     &id) != 0) {
			mdelay(1);
			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != (u32) address) {
			ret = -EIO;
			goto done;
		}

		i = 0;
		while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
						     &completed_nbytes,
						     &id, &flags) != 0) {
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != ce_data) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		address += nbytes;
		ce_data += nbytes;
	}

done:
	if (ret == 0) {
		/* Copy data from allocated DMA buf to caller's buf */
		WARN_ON_ONCE(orig_nbytes & 3);
		for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
			((u32 *)data)[i] =
				__le32_to_cpu(((__le32 *)data_buf)[i]);
		}
	} else
		ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
			   __func__, address);

	if (data_buf)
		pci_free_consistent(ar_pci->pdev, orig_nbytes,
				    data_buf, ce_data_base);

	return ret;
}

/* Read 4-byte aligned data from Target memory or register */
static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
				       u32 *data)
{
	/* Assume range doesn't cross this boundary */
	if (address >= DRAM_BASE_ADDRESS)
		return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));

	ath10k_pci_wake(ar);
	*data = ath10k_pci_read32(ar, address);
	ath10k_pci_sleep(ar);
	return 0;
}

static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
				     const void *data, int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 buf;
	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
	unsigned int id;
	unsigned int flags;
	struct ce_state *ce_diag;
	void *data_buf = NULL;
	u32 ce_data;	/* Host buffer address in CE space */
	dma_addr_t ce_data_base = 0;
	int i;

	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed to Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	orig_nbytes = nbytes;
	data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
							 orig_nbytes,
							 &ce_data_base);
	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}

	/* Copy caller's data to allocated DMA buf */
	WARN_ON_ONCE(orig_nbytes & 3);
	for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
		((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);

	/*
	 * The address supplied by the caller is in the
	 * Target CPU virtual address space.
	 *
	 * In order to use this address with the diagnostic CE,
	 * convert it from
	 *    Target CPU virtual address space
	 * to
	 *    CE address space
	 */
	ath10k_pci_wake(ar);
	address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
	ath10k_pci_sleep(ar);

	remaining_bytes = orig_nbytes;
	ce_data = ce_data_base;
	while (remaining_bytes) {
		/* FIXME: check cast */
		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);

		/* Set up to receive directly into Target(!) address */
		ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
		if (ret != 0)
			goto done;

		/*
		 * Request CE to send caller-supplied data that
		 * was copied to bounce buffer to Target(!) address.
		 */
		ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
				     nbytes, 0, 0);
		if (ret != 0)
			goto done;

		i = 0;
		while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
						     &completed_nbytes,
						     &id) != 0) {
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != ce_data) {
			ret = -EIO;
			goto done;
		}

		i = 0;
		while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
						     &completed_nbytes,
						     &id, &flags) != 0) {
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != address) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		address += nbytes;
		ce_data += nbytes;
	}

done:
	if (data_buf) {
		pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
				    ce_data_base);
	}

	if (ret != 0)
		ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
			   address);

	return ret;
}

/* Write 4B data to Target memory or register */
static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
					u32 data)
{
	/* Assume range doesn't cross this boundary */
	if (address >= DRAM_BASE_ADDRESS)
		return ath10k_pci_diag_write_mem(ar, address, &data,
						 sizeof(u32));

	ath10k_pci_wake(ar);
	ath10k_pci_write32(ar, address, data);
	ath10k_pci_sleep(ar);
	return 0;
}

static bool ath10k_pci_target_is_awake(struct ath10k *ar)
{
	void __iomem *mem = ath10k_pci_priv(ar)->mem;
	u32 val;
	val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
		       RTC_STATE_ADDRESS);
	return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
}

static void ath10k_pci_wait(struct ath10k *ar)
{
	int n = 100;

	while (n-- && !ath10k_pci_target_is_awake(ar))
		msleep(10);

	if (n < 0)
		ath10k_warn("Unable to wakeup target\n");
}

void ath10k_do_pci_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	void __iomem *pci_addr = ar_pci->mem;
	int tot_delay = 0;
	int curr_delay = 5;

	if (atomic_read(&ar_pci->keep_awake_count) == 0) {
		/* Force AWAKE */
		iowrite32(PCIE_SOC_WAKE_V_MASK,
			  pci_addr + PCIE_LOCAL_BASE_ADDRESS +
			  PCIE_SOC_WAKE_ADDRESS);
	}
	atomic_inc(&ar_pci->keep_awake_count);

	if (ar_pci->verified_awake)
		return;

	for (;;) {
		if (ath10k_pci_target_is_awake(ar)) {
			ar_pci->verified_awake = true;
			break;
		}

		if (tot_delay > PCIE_WAKE_TIMEOUT) {
			ath10k_warn("target takes too long to wake up (awake count %d)\n",
				    atomic_read(&ar_pci->keep_awake_count));
			break;
		}

		udelay(curr_delay);
		tot_delay += curr_delay;

		if (curr_delay < 50)
			curr_delay += 5;
	}
}

void ath10k_do_pci_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	void __iomem *pci_addr = ar_pci->mem;

	if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
		/* Allow sleep */
		ar_pci->verified_awake = false;
		iowrite32(PCIE_SOC_WAKE_RESET,
			  pci_addr + PCIE_LOCAL_BASE_ADDRESS +
			  PCIE_SOC_WAKE_ADDRESS);
	}
}

/*
 * FIXME: Handle OOM properly.
 */
static inline
struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info)
{
	struct ath10k_pci_compl *compl = NULL;

	spin_lock_bh(&pipe_info->pipe_lock);
	if (list_empty(&pipe_info->compl_free)) {
		ath10k_warn("Completion buffers are full\n");
		goto exit;
	}
	compl = list_first_entry(&pipe_info->compl_free,
				 struct ath10k_pci_compl, list);
	list_del(&compl->list);
exit:
	spin_unlock_bh(&pipe_info->pipe_lock);
	return compl;
}

/* Called by lower (CE) layer when a send to Target completes. */
static void ath10k_pci_ce_send_done(struct ce_state *ce_state,
				    void *transfer_context,
				    u32 ce_data,
				    unsigned int nbytes,
				    unsigned int transfer_id)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
	struct ath10k_pci_compl *compl;
	bool process = false;

	do {
		/*
		 * For the send completion of an item in sendlist, just
		 * increment num_sends_allowed. The upper layer callback will
		 * be triggered when last fragment is done with send.
		 */
		if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
			spin_lock_bh(&pipe_info->pipe_lock);
			pipe_info->num_sends_allowed++;
			spin_unlock_bh(&pipe_info->pipe_lock);
			continue;
		}

		compl = get_free_compl(pipe_info);
		if (!compl)
			break;

		compl->send_or_recv = HIF_CE_COMPLETE_SEND;
		compl->ce_state = ce_state;
		compl->pipe_info = pipe_info;
		compl->transfer_context = transfer_context;
		compl->nbytes = nbytes;
		compl->transfer_id = transfer_id;
		compl->flags = 0;

		/*
		 * Add the completion to the processing queue.
		 */
		spin_lock_bh(&ar_pci->compl_lock);
		list_add_tail(&compl->list, &ar_pci->compl_process);
		spin_unlock_bh(&ar_pci->compl_lock);

		process = true;
	} while (ath10k_ce_completed_send_next(ce_state,
							   &transfer_context,
							   &ce_data, &nbytes,
							   &transfer_id) == 0);

	/*
	 * If only some of the items within a sendlist have completed,
	 * don't invoke completion processing until the entire sendlist
	 * has been sent.
	 */
	if (!process)
		return;

	ath10k_pci_process_ce(ar);
}

/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_ce_recv_data(struct ce_state *ce_state,
				    void *transfer_context, u32 ce_data,
				    unsigned int nbytes,
				    unsigned int transfer_id,
				    unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
	struct ath10k_pci_compl *compl;
	struct sk_buff *skb;

	do {
		compl = get_free_compl(pipe_info);
		if (!compl)
			break;

		compl->send_or_recv = HIF_CE_COMPLETE_RECV;
		compl->ce_state = ce_state;
		compl->pipe_info = pipe_info;
		compl->transfer_context = transfer_context;
		compl->nbytes = nbytes;
		compl->transfer_id = transfer_id;
		compl->flags = flags;

		skb = transfer_context;
		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
				 skb->len + skb_tailroom(skb),
				 DMA_FROM_DEVICE);
		/*
		 * Add the completion to the processing queue.
		 */
		spin_lock_bh(&ar_pci->compl_lock);
		list_add_tail(&compl->list, &ar_pci->compl_process);
		spin_unlock_bh(&ar_pci->compl_lock);

	} while (ath10k_ce_completed_recv_next(ce_state,
							   &transfer_context,
							   &ce_data, &nbytes,
							   &transfer_id,
							   &flags) == 0);

	ath10k_pci_process_ce(ar);
}

/* Send the first nbytes bytes of the buffer */
static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
				    unsigned int transfer_id,
				    unsigned int bytes, struct sk_buff *nbuf)
{
	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]);
	struct ce_state *ce_hdl = pipe_info->ce_hdl;
	struct ce_sendlist sendlist;
	unsigned int len;
	u32 flags = 0;
	int ret;

	memset(&sendlist, 0, sizeof(struct ce_sendlist));

	len = min(bytes, nbuf->len);
	bytes -= len;

	if (len & 3)
		ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);

	ath10k_dbg(ATH10K_DBG_PCI,
		   "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
		   nbuf->data, (unsigned long long) skb_cb->paddr,
		   nbuf->len, len);
	ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
			"ath10k tx: data: ",
			nbuf->data, nbuf->len);

	ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);

	/* Make sure we have resources to handle this request */
	spin_lock_bh(&pipe_info->pipe_lock);
	if (!pipe_info->num_sends_allowed) {
		ath10k_warn("Pipe: %d is full\n", pipe_id);
		spin_unlock_bh(&pipe_info->pipe_lock);
		return -ENOSR;
	}
	pipe_info->num_sends_allowed--;
	spin_unlock_bh(&pipe_info->pipe_lock);

	ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
	if (ret)
		ath10k_warn("CE send failed: %p\n", nbuf);

	return ret;
}

static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]);
	int ret;

	spin_lock_bh(&pipe_info->pipe_lock);
	ret = pipe_info->num_sends_allowed;
	spin_unlock_bh(&pipe_info->pipe_lock);

	return ret;
}

static void ath10k_pci_hif_dump_area(struct ath10k *ar)
{
	u32 reg_dump_area = 0;
	u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
	u32 host_addr;
	int ret;
	u32 i;

	ath10k_err("firmware crashed!\n");
	ath10k_err("hardware name %s version 0x%x\n",
		   ar->hw_params.name, ar->target_version);
	ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
		   ar->fw_version_minor, ar->fw_version_release,
		   ar->fw_version_build);

	host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
	if (ath10k_pci_diag_read_mem(ar, host_addr,
				     &reg_dump_area, sizeof(u32)) != 0) {
		ath10k_warn("could not read hi_failure_state\n");
		return;
	}

	ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);

	ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
				       &reg_dump_values[0],
				       REG_DUMP_COUNT_QCA988X * sizeof(u32));
	if (ret != 0) {
		ath10k_err("could not dump FW Dump Area\n");
		return;
	}

	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);

	ath10k_err("target Register Dump\n");
	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
		ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
			   i,
			   reg_dump_values[i],
			   reg_dump_values[i + 1],
			   reg_dump_values[i + 2],
			   reg_dump_values[i + 3]);
}

static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
					       int force)
{
	if (!force) {
		int resources;
		/*
		 * Decide whether to actually poll for completions, or just
		 * wait for a later chance.
		 * If there seem to be plenty of resources left, then just wait
		 * since checking involves reading a CE register, which is a
		 * relatively expensive operation.
		 */
		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);

		/*
		 * If at least 50% of the total resources are still available,
		 * don't bother checking again yet.
		 */
		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
			return;
	}
	ath10k_ce_per_engine_service(ar, pipe);
}

static void ath10k_pci_hif_post_init(struct ath10k *ar,
				     struct ath10k_hif_cb *callbacks)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	memcpy(&ar_pci->msg_callbacks_current, callbacks,
	       sizeof(ar_pci->msg_callbacks_current));
}

static int ath10k_pci_start_ce(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_state *ce_diag = ar_pci->ce_diag;
	const struct ce_attr *attr;
	struct hif_ce_pipe_info *pipe_info;
	struct ath10k_pci_compl *compl;
	int i, pipe_num, completions, disable_interrupts;

	spin_lock_init(&ar_pci->compl_lock);
	INIT_LIST_HEAD(&ar_pci->compl_process);

	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		pipe_info = &ar_pci->pipe_info[pipe_num];

		spin_lock_init(&pipe_info->pipe_lock);
		INIT_LIST_HEAD(&pipe_info->compl_free);

		/* Handle Diagnostic CE specially */
		if (pipe_info->ce_hdl == ce_diag)
			continue;

		attr = &host_ce_config_wlan[pipe_num];
		completions = 0;

		if (attr->src_nentries) {
			disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
			ath10k_ce_send_cb_register(pipe_info->ce_hdl,
						   ath10k_pci_ce_send_done,
						   disable_interrupts);
			completions += attr->src_nentries;
			pipe_info->num_sends_allowed = attr->src_nentries - 1;
		}

		if (attr->dest_nentries) {
			ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
						   ath10k_pci_ce_recv_data);
			completions += attr->dest_nentries;
		}

		if (completions == 0)
			continue;

		for (i = 0; i < completions; i++) {
			compl = kmalloc(sizeof(struct ath10k_pci_compl),
					GFP_KERNEL);
			if (!compl) {
				ath10k_warn("No memory for completion state\n");
				ath10k_pci_stop_ce(ar);
				return -ENOMEM;
			}

			compl->send_or_recv = HIF_CE_COMPLETE_FREE;
			list_add_tail(&compl->list, &pipe_info->compl_free);
		}
	}

	return 0;
}

static void ath10k_pci_stop_ce(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_compl *compl;
	struct sk_buff *skb;
	int i;

	ath10k_ce_disable_interrupts(ar);

	/* Cancel the pending tasklet */
	tasklet_kill(&ar_pci->intr_tq);

	for (i = 0; i < CE_COUNT; i++)
		tasklet_kill(&ar_pci->pipe_info[i].intr);

	/* Mark pending completions as aborted, so that upper layers free up
	 * their associated resources */
	spin_lock_bh(&ar_pci->compl_lock);
	list_for_each_entry(compl, &ar_pci->compl_process, list) {
		skb = (struct sk_buff *)compl->transfer_context;
		ATH10K_SKB_CB(skb)->is_aborted = true;
	}
	spin_unlock_bh(&ar_pci->compl_lock);
}

static void ath10k_pci_cleanup_ce(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_compl *compl, *tmp;
	struct hif_ce_pipe_info *pipe_info;
	struct sk_buff *netbuf;
	int pipe_num;

	/* Free pending completions. */
	spin_lock_bh(&ar_pci->compl_lock);
	if (!list_empty(&ar_pci->compl_process))
		ath10k_warn("pending completions still present! possible memory leaks.\n");

	list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
		list_del(&compl->list);
		netbuf = (struct sk_buff *)compl->transfer_context;
		dev_kfree_skb_any(netbuf);
		kfree(compl);
	}
	spin_unlock_bh(&ar_pci->compl_lock);

	/* Free unused completions for each pipe. */
	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		pipe_info = &ar_pci->pipe_info[pipe_num];

		spin_lock_bh(&pipe_info->pipe_lock);
		list_for_each_entry_safe(compl, tmp,
					 &pipe_info->compl_free, list) {
			list_del(&compl->list);
			kfree(compl);
		}
		spin_unlock_bh(&pipe_info->pipe_lock);
	}
}

static void ath10k_pci_process_ce(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ar->hif.priv;
	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
	struct ath10k_pci_compl *compl;
	struct sk_buff *skb;
	unsigned int nbytes;
	int ret, send_done = 0;

	/* Upper layers aren't ready to handle tx/rx completions in parallel so
	 * we must serialize all completion processing. */

	spin_lock_bh(&ar_pci->compl_lock);
	if (ar_pci->compl_processing) {
		spin_unlock_bh(&ar_pci->compl_lock);
		return;
	}
	ar_pci->compl_processing = true;
	spin_unlock_bh(&ar_pci->compl_lock);

	for (;;) {
		spin_lock_bh(&ar_pci->compl_lock);
		if (list_empty(&ar_pci->compl_process)) {
			spin_unlock_bh(&ar_pci->compl_lock);
			break;
		}
		compl = list_first_entry(&ar_pci->compl_process,
					 struct ath10k_pci_compl, list);
		list_del(&compl->list);
		spin_unlock_bh(&ar_pci->compl_lock);

		if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) {
			cb->tx_completion(ar,
					  compl->transfer_context,
					  compl->transfer_id);
			send_done = 1;
		} else {
			ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
			if (ret) {
				ath10k_warn("Unable to post recv buffer for pipe: %d\n",
					    compl->pipe_info->pipe_num);
				break;
			}

			skb = (struct sk_buff *)compl->transfer_context;
			nbytes = compl->nbytes;

			ath10k_dbg(ATH10K_DBG_PCI,
				   "ath10k_pci_ce_recv_data netbuf=%p  nbytes=%d\n",
				   skb, nbytes);
			ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
					"ath10k rx: ", skb->data, nbytes);

			if (skb->len + skb_tailroom(skb) >= nbytes) {
				skb_trim(skb, 0);
				skb_put(skb, nbytes);
				cb->rx_completion(ar, skb,
						  compl->pipe_info->pipe_num);
			} else {
				ath10k_warn("rxed more than expected (nbytes %d, max %d)",
					    nbytes,
					    skb->len + skb_tailroom(skb));
			}
		}

		compl->send_or_recv = HIF_CE_COMPLETE_FREE;

		/*
		 * Add completion back to the pipe's free list.
		 */
		spin_lock_bh(&compl->pipe_info->pipe_lock);
		list_add_tail(&compl->list, &compl->pipe_info->compl_free);
		compl->pipe_info->num_sends_allowed += send_done;
		spin_unlock_bh(&compl->pipe_info->pipe_lock);
	}

	spin_lock_bh(&ar_pci->compl_lock);
	ar_pci->compl_processing = false;
	spin_unlock_bh(&ar_pci->compl_lock);
}

/* TODO - temporary mapping while we have too few CE's */
static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
					      u16 service_id, u8 *ul_pipe,
					      u8 *dl_pipe, int *ul_is_polled,
					      int *dl_is_polled)
{
	int ret = 0;

	/* polling for received messages not supported */
	*dl_is_polled = 0;

	switch (service_id) {
	case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
		/*
		 * Host->target HTT gets its own pipe, so it can be polled
		 * while other pipes are interrupt driven.
		 */
		*ul_pipe = 4;
		/*
		 * Use the same target->host pipe for HTC ctrl, HTC raw
		 * streams, and HTT.
		 */
		*dl_pipe = 1;
		break;

	case ATH10K_HTC_SVC_ID_RSVD_CTRL:
	case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
		/*
		 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
		 * HTC_CTRL_RSVD_SVC could share the same pipe as the
		 * WMI services.  So, if another CE is needed, change
		 * this to *ul_pipe = 3, which frees up CE 0.
		 */
		/* *ul_pipe = 3; */
		*ul_pipe = 0;
		*dl_pipe = 1;
		break;

	case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
	case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
	case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
	case ATH10K_HTC_SVC_ID_WMI_DATA_VO:

	case ATH10K_HTC_SVC_ID_WMI_CONTROL:
		*ul_pipe = 3;
		*dl_pipe = 2;
		break;

		/* pipe 5 unused   */
		/* pipe 6 reserved */
		/* pipe 7 reserved */

	default:
		ret = -1;
		break;
	}
	*ul_is_polled =
		(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;

	return ret;
}

static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
						u8 *ul_pipe, u8 *dl_pipe)
{
	int ul_is_polled, dl_is_polled;

	(void)ath10k_pci_hif_map_service_to_pipe(ar,
						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
						 ul_pipe,
						 dl_pipe,
						 &ul_is_polled,
						 &dl_is_polled);
}

static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
				   int num)
{
	struct ath10k *ar = pipe_info->hif_ce_state;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_state *ce_state = pipe_info->ce_hdl;
	struct sk_buff *skb;
	dma_addr_t ce_data;
	int i, ret = 0;

	if (pipe_info->buf_sz == 0)
		return 0;

	for (i = 0; i < num; i++) {
		skb = dev_alloc_skb(pipe_info->buf_sz);
		if (!skb) {
			ath10k_warn("could not allocate skbuff for pipe %d\n",
				    num);
			ret = -ENOMEM;
			goto err;
		}

		WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");

		ce_data = dma_map_single(ar->dev, skb->data,
					 skb->len + skb_tailroom(skb),
					 DMA_FROM_DEVICE);

		if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
			ath10k_warn("could not dma map skbuff\n");
			dev_kfree_skb_any(skb);
			ret = -EIO;
			goto err;
		}

		ATH10K_SKB_CB(skb)->paddr = ce_data;

		pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
					       pipe_info->buf_sz,
					       PCI_DMA_FROMDEVICE);

		ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
						 ce_data);
		if (ret) {
			ath10k_warn("could not enqueue to pipe %d (%d)\n",
				    num, ret);
			goto err;
		}
	}

	return ret;

err:
	ath10k_pci_rx_pipe_cleanup(pipe_info);
	return ret;
}

static int ath10k_pci_post_rx(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info;
	const struct ce_attr *attr;
	int pipe_num, ret = 0;

	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		pipe_info = &ar_pci->pipe_info[pipe_num];
		attr = &host_ce_config_wlan[pipe_num];

		if (attr->dest_nentries == 0)
			continue;

		ret = ath10k_pci_post_rx_pipe(pipe_info,
					      attr->dest_nentries - 1);
		if (ret) {
			ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
				    pipe_num);

			for (; pipe_num >= 0; pipe_num--) {
				pipe_info = &ar_pci->pipe_info[pipe_num];
				ath10k_pci_rx_pipe_cleanup(pipe_info);
			}
			return ret;
		}
	}

	return 0;
}

static int ath10k_pci_hif_start(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = ath10k_pci_start_ce(ar);
	if (ret) {
		ath10k_warn("could not start CE (%d)\n", ret);
		return ret;
	}

	/* Post buffers once to start things off. */
	ret = ath10k_pci_post_rx(ar);
	if (ret) {
		ath10k_warn("could not post rx pipes (%d)\n", ret);
		return ret;
	}

	ar_pci->started = 1;
	return 0;
}

static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
{
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
	struct ce_state *ce_hdl;
	u32 buf_sz;
	struct sk_buff *netbuf;
	u32 ce_data;

	buf_sz = pipe_info->buf_sz;

	/* Unused Copy Engine */
	if (buf_sz == 0)
		return;

	ar = pipe_info->hif_ce_state;
	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci->started)
		return;

	ce_hdl = pipe_info->ce_hdl;

	while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
					  &ce_data) == 0) {
		dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
				 netbuf->len + skb_tailroom(netbuf),
				 DMA_FROM_DEVICE);
		dev_kfree_skb_any(netbuf);
	}
}

static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
{
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
	struct ce_state *ce_hdl;
	struct sk_buff *netbuf;
	u32 ce_data;
	unsigned int nbytes;
	unsigned int id;
	u32 buf_sz;

	buf_sz = pipe_info->buf_sz;

	/* Unused Copy Engine */
	if (buf_sz == 0)
		return;

	ar = pipe_info->hif_ce_state;
	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci->started)
		return;

	ce_hdl = pipe_info->ce_hdl;

	while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
					  &ce_data, &nbytes, &id) == 0) {
		if (netbuf != CE_SENDLIST_ITEM_CTXT)
			/*
			 * Indicate the completion to higer layer to free
			 * the buffer
			 */
			ATH10K_SKB_CB(netbuf)->is_aborted = true;
			ar_pci->msg_callbacks_current.tx_completion(ar,
								    netbuf,
								    id);
	}
}

/*
 * Cleanup residual buffers for device shutdown:
 *    buffers that were enqueued for receive
 *    buffers that were to be sent
 * Note: Buffers that had completed but which were
 * not yet processed are on a completion queue. They
 * are handled when the completion thread shuts down.
 */
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int pipe_num;

	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		struct hif_ce_pipe_info *pipe_info;

		pipe_info = &ar_pci->pipe_info[pipe_num];
		ath10k_pci_rx_pipe_cleanup(pipe_info);
		ath10k_pci_tx_pipe_cleanup(pipe_info);
	}
}

static void ath10k_pci_ce_deinit(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info;
	int pipe_num;

	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		pipe_info = &ar_pci->pipe_info[pipe_num];
		if (pipe_info->ce_hdl) {
			ath10k_ce_deinit(pipe_info->ce_hdl);
			pipe_info->ce_hdl = NULL;
			pipe_info->buf_sz = 0;
		}
	}
}

static void ath10k_pci_hif_stop(struct ath10k *ar)
{
	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	ath10k_pci_stop_ce(ar);

	/* At this point, asynchronous threads are stopped, the target should
	 * not DMA nor interrupt. We process the leftovers and then free
	 * everything else up. */

	ath10k_pci_process_ce(ar);
	ath10k_pci_cleanup_ce(ar);
	ath10k_pci_buffer_cleanup(ar);
	ath10k_pci_ce_deinit(ar);
}

static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
					   void *req, u32 req_len,
					   void *resp, u32 *resp_len)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl;
	struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl;
	dma_addr_t req_paddr = 0;
	dma_addr_t resp_paddr = 0;
	struct bmi_xfer xfer = {};
	void *treq, *tresp = NULL;
	int ret = 0;

	if (resp && !resp_len)
		return -EINVAL;

	if (resp && resp_len && *resp_len == 0)
		return -EINVAL;

	treq = kmemdup(req, req_len, GFP_KERNEL);
	if (!treq)
		return -ENOMEM;

	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(ar->dev, req_paddr);
	if (ret)
		goto err_dma;

	if (resp && resp_len) {
		tresp = kzalloc(*resp_len, GFP_KERNEL);
		if (!tresp) {
			ret = -ENOMEM;
			goto err_req;
		}

		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
					    DMA_FROM_DEVICE);
		ret = dma_mapping_error(ar->dev, resp_paddr);
		if (ret)
			goto err_req;

		xfer.wait_for_resp = true;
		xfer.resp_len = 0;

		ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
	}

	init_completion(&xfer.done);

	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
	if (ret)
		goto err_resp;

	ret = wait_for_completion_timeout(&xfer.done,
					  BMI_COMMUNICATION_TIMEOUT_HZ);
	if (ret <= 0) {
		u32 unused_buffer;
		unsigned int unused_nbytes;
		unsigned int unused_id;

		ret = -ETIMEDOUT;
		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
					   &unused_nbytes, &unused_id);
	} else {
		/* non-zero means we did not time out */
		ret = 0;
	}

err_resp:
	if (resp) {
		u32 unused_buffer;

		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
		dma_unmap_single(ar->dev, resp_paddr,
				 *resp_len, DMA_FROM_DEVICE);
	}
err_req:
	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);

	if (ret == 0 && resp_len) {
		*resp_len = min(*resp_len, xfer.resp_len);
		memcpy(resp, tresp, xfer.resp_len);
	}
err_dma:
	kfree(treq);
	kfree(tresp);

	return ret;
}

static void ath10k_pci_bmi_send_done(struct ce_state *ce_state,
				     void *transfer_context,
				     u32 data,
				     unsigned int nbytes,
				     unsigned int transfer_id)
{
	struct bmi_xfer *xfer = transfer_context;

	if (xfer->wait_for_resp)
		return;

	complete(&xfer->done);
}

static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state,
				     void *transfer_context,
				     u32 data,
				     unsigned int nbytes,
				     unsigned int transfer_id,
				     unsigned int flags)
{
	struct bmi_xfer *xfer = transfer_context;

	if (!xfer->wait_for_resp) {
		ath10k_warn("unexpected: BMI data received; ignoring\n");
		return;
	}

	xfer->resp_len = nbytes;
	complete(&xfer->done);
}

/*
 * Map from service/endpoint to Copy Engine.
 * This table is derived from the CE_PCI TABLE, above.
 * It is passed to the Target at startup for use by firmware.
 */
static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 3,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 2,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 3,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 2,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 3,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 2,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 3,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 2,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_CONTROL,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 3,
	},
	{
		 ATH10K_HTC_SVC_ID_WMI_CONTROL,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 2,
	},
	{
		 ATH10K_HTC_SVC_ID_RSVD_CTRL,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 0,		/* could be moved to 3 (share with WMI) */
	},
	{
		 ATH10K_HTC_SVC_ID_RSVD_CTRL,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 1,
	},
	{
		 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,	/* not currently used */
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 0,
	},
	{
		 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,	/* not currently used */
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 1,
	},
	{
		 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
		 PIPEDIR_OUT,		/* out = UL = host -> target */
		 4,
	},
	{
		 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
		 PIPEDIR_IN,		/* in = DL = target -> host */
		 1,
	},

	/* (Additions here) */

	{				/* Must be last */
		 0,
		 0,
		 0,
	},
};

/*
 * Send an interrupt to the device to wake up the Target CPU
 * so it has an opportunity to notice any changed state.
 */
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
	int ret;
	u32 core_ctrl;

	ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
					      CORE_CTRL_ADDRESS,
					  &core_ctrl);
	if (ret) {
		ath10k_warn("Unable to read core ctrl\n");
		return ret;
	}

	/* A_INUM_FIRMWARE interrupt to Target CPU */
	core_ctrl |= CORE_CTRL_CPU_INTR_MASK;

	ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
					       CORE_CTRL_ADDRESS,
					   core_ctrl);
	if (ret)
		ath10k_warn("Unable to set interrupt mask\n");

	return ret;
}

static int ath10k_pci_init_config(struct ath10k *ar)
{
	u32 interconnect_targ_addr;
	u32 pcie_state_targ_addr = 0;
	u32 pipe_cfg_targ_addr = 0;
	u32 svc_to_pipe_map = 0;
	u32 pcie_config_flags = 0;
	u32 ealloc_value;
	u32 ealloc_targ_addr;
	u32 flag2_value;
	u32 flag2_targ_addr;
	int ret = 0;

	/* Download to Target the CE Config and the service-to-CE map */
	interconnect_targ_addr =
		host_interest_item_address(HI_ITEM(hi_interconnect_state));

	/* Supply Target-side CE configuration */
	ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
					  &pcie_state_targ_addr);
	if (ret != 0) {
		ath10k_err("Failed to get pcie state addr: %d\n", ret);
		return ret;
	}

	if (pcie_state_targ_addr == 0) {
		ret = -EIO;
		ath10k_err("Invalid pcie state addr\n");
		return ret;
	}

	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   pipe_cfg_addr),
					  &pipe_cfg_targ_addr);
	if (ret != 0) {
		ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
		return ret;
	}

	if (pipe_cfg_targ_addr == 0) {
		ret = -EIO;
		ath10k_err("Invalid pipe cfg addr\n");
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
				 target_ce_config_wlan,
				 sizeof(target_ce_config_wlan));

	if (ret != 0) {
		ath10k_err("Failed to write pipe cfg: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   svc_to_pipe_map),
					  &svc_to_pipe_map);
	if (ret != 0) {
		ath10k_err("Failed to get svc/pipe map: %d\n", ret);
		return ret;
	}

	if (svc_to_pipe_map == 0) {
		ret = -EIO;
		ath10k_err("Invalid svc_to_pipe map\n");
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
				 target_service_to_ce_map_wlan,
				 sizeof(target_service_to_ce_map_wlan));
	if (ret != 0) {
		ath10k_err("Failed to write svc/pipe map: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
					  offsetof(struct pcie_state,
						   config_flags),
					  &pcie_config_flags);
	if (ret != 0) {
		ath10k_err("Failed to get pcie config_flags: %d\n", ret);
		return ret;
	}

	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;

	ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
				 offsetof(struct pcie_state, config_flags),
				 &pcie_config_flags,
				 sizeof(pcie_config_flags));
	if (ret != 0) {
		ath10k_err("Failed to write pcie config_flags: %d\n", ret);
		return ret;
	}

	/* configure early allocation */
	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));

	ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
	if (ret != 0) {
		ath10k_err("Faile to get early alloc val: %d\n", ret);
		return ret;
	}

	/* first bank is switched to IRAM */
	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
			 HI_EARLY_ALLOC_MAGIC_MASK);
	ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);

	ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
	if (ret != 0) {
		ath10k_err("Failed to set early alloc val: %d\n", ret);
		return ret;
	}

	/* Tell Target to proceed with initialization */
	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));

	ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
	if (ret != 0) {
		ath10k_err("Failed to get option val: %d\n", ret);
		return ret;
	}

	flag2_value |= HI_OPTION_EARLY_CFG_DONE;

	ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
	if (ret != 0) {
		ath10k_err("Failed to set option val: %d\n", ret);
		return ret;
	}

	return 0;
}



static int ath10k_pci_ce_init(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct hif_ce_pipe_info *pipe_info;
	const struct ce_attr *attr;
	int pipe_num;

	for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
		pipe_info = &ar_pci->pipe_info[pipe_num];
		pipe_info->pipe_num = pipe_num;
		pipe_info->hif_ce_state = ar;
		attr = &host_ce_config_wlan[pipe_num];

		pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
		if (pipe_info->ce_hdl == NULL) {
			ath10k_err("Unable to initialize CE for pipe: %d\n",
				   pipe_num);

			/* It is safe to call it here. It checks if ce_hdl is
			 * valid for each pipe */
			ath10k_pci_ce_deinit(ar);
			return -1;
		}

		if (pipe_num == ar_pci->ce_count - 1) {
			/*
			 * Reserve the ultimate CE for
			 * diagnostic Window support
			 */
			ar_pci->ce_diag =
			ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
			continue;
		}

		pipe_info->buf_sz = (size_t) (attr->src_sz_max);
	}

	/*
	 * Initially, establish CE completion handlers for use with BMI.
	 * These are overwritten with generic handlers after we exit BMI phase.
	 */
	pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
	ath10k_ce_send_cb_register(pipe_info->ce_hdl,
				   ath10k_pci_bmi_send_done, 0);

	pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
	ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
				   ath10k_pci_bmi_recv_data);

	return 0;
}

static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 fw_indicator_address, fw_indicator;

	ath10k_pci_wake(ar);

	fw_indicator_address = ar_pci->fw_indicator_address;
	fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);

	if (fw_indicator & FW_IND_EVENT_PENDING) {
		/* ACK: clear Target-side pending event */
		ath10k_pci_write32(ar, fw_indicator_address,
				   fw_indicator & ~FW_IND_EVENT_PENDING);

		if (ar_pci->started) {
			ath10k_pci_hif_dump_area(ar);
		} else {
			/*
			 * Probable Target failure before we're prepared
			 * to handle it.  Generally unexpected.
			 */
			ath10k_warn("early firmware event indicated\n");
		}
	}

	ath10k_pci_sleep(ar);
}

static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
	.send_head		= ath10k_pci_hif_send_head,
	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
	.start			= ath10k_pci_hif_start,
	.stop			= ath10k_pci_hif_stop,
	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
	.send_complete_check	= ath10k_pci_hif_send_complete_check,
	.init			= ath10k_pci_hif_post_init,
	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
};

static void ath10k_pci_ce_tasklet(unsigned long ptr)
{
	struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr;
	struct ath10k_pci *ar_pci = pipe->ar_pci;

	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
}

static void ath10k_msi_err_tasklet(unsigned long data)
{
	struct ath10k *ar = (struct ath10k *)data;

	ath10k_pci_fw_interrupt_handler(ar);
}

/*
 * Handler for a per-engine interrupt on a PARTICULAR CE.
 * This is used in cases where each CE has a private MSI interrupt.
 */
static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;

	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
		ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
		return IRQ_HANDLED;
	}

	/*
	 * NOTE: We are able to derive ce_id from irq because we
	 * use a one-to-one mapping for CE's 0..5.
	 * CE's 6 & 7 do not use interrupts at all.
	 *
	 * This mapping must be kept in sync with the mapping
	 * used by firmware.
	 */
	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
	return IRQ_HANDLED;
}

static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	tasklet_schedule(&ar_pci->msi_fw_err);
	return IRQ_HANDLED;
}

/*
 * Top-level interrupt handler for all PCI interrupts from a Target.
 * When a block of MSI interrupts is allocated, this top-level handler
 * is not used; instead, we directly call the correct sub-handler.
 */
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	if (ar_pci->num_msi_intrs == 0) {
		/*
		 * IMPORTANT: INTR_CLR regiser has to be set after
		 * INTR_ENABLE is set to 0, otherwise interrupt can not be
		 * really cleared.
		 */
		iowrite32(0, ar_pci->mem +
			  (SOC_CORE_BASE_ADDRESS |
			   PCIE_INTR_ENABLE_ADDRESS));
		iowrite32(PCIE_INTR_FIRMWARE_MASK |
			  PCIE_INTR_CE_MASK_ALL,
			  ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
					 PCIE_INTR_CLR_ADDRESS));
		/*
		 * IMPORTANT: this extra read transaction is required to
		 * flush the posted write buffer.
		 */
		(void) ioread32(ar_pci->mem +
				(SOC_CORE_BASE_ADDRESS |
				 PCIE_INTR_ENABLE_ADDRESS));
	}

	tasklet_schedule(&ar_pci->intr_tq);

	return IRQ_HANDLED;
}

static void ath10k_pci_tasklet(unsigned long data)
{
	struct ath10k *ar = (struct ath10k *)data;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
	ath10k_ce_per_engine_service_any(ar);

	if (ar_pci->num_msi_intrs == 0) {
		/* Enable Legacy PCI line interrupts */
		iowrite32(PCIE_INTR_FIRMWARE_MASK |
			  PCIE_INTR_CE_MASK_ALL,
			  ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
					 PCIE_INTR_ENABLE_ADDRESS));
		/*
		 * IMPORTANT: this extra read transaction is required to
		 * flush the posted write buffer
		 */
		(void) ioread32(ar_pci->mem +
				(SOC_CORE_BASE_ADDRESS |
				 PCIE_INTR_ENABLE_ADDRESS));
	}
}

static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;
	int i;

	ret = pci_enable_msi_block(ar_pci->pdev, num);
	if (ret)
		return ret;

	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
			  ath10k_pci_msi_fw_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
	if (ret)
		return ret;

	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
		ret = request_irq(ar_pci->pdev->irq + i,
				  ath10k_pci_per_engine_handler,
				  IRQF_SHARED, "ath10k_pci", ar);
		if (ret) {
			ath10k_warn("request_irq(%d) failed %d\n",
				    ar_pci->pdev->irq + i, ret);

			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
				free_irq(ar_pci->pdev->irq + i, ar);

			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
			pci_disable_msi(ar_pci->pdev);
			return ret;
		}
	}

	ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
	return 0;
}

static int ath10k_pci_start_intr_msi(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = pci_enable_msi(ar_pci->pdev);
	if (ret < 0)
		return ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
	if (ret < 0) {
		pci_disable_msi(ar_pci->pdev);
		return ret;
	}

	ath10k_info("MSI interrupt handling\n");
	return 0;
}

static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
	if (ret < 0)
		return ret;

	/*
	 * Make sure to wake the Target before enabling Legacy
	 * Interrupt.
	 */
	iowrite32(PCIE_SOC_WAKE_V_MASK,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);

	ath10k_pci_wait(ar);

	/*
	 * A potential race occurs here: The CORE_BASE write
	 * depends on target correctly decoding AXI address but
	 * host won't know when target writes BAR to CORE_CTRL.
	 * This write might get lost if target has NOT written BAR.
	 * For now, fix the race by repeating the write in below
	 * synchronization checking.
	 */
	iowrite32(PCIE_INTR_FIRMWARE_MASK |
		  PCIE_INTR_CE_MASK_ALL,
		  ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
				 PCIE_INTR_ENABLE_ADDRESS));
	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);

	ath10k_info("legacy interrupt handling\n");
	return 0;
}

static int ath10k_pci_start_intr(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int num = MSI_NUM_REQUEST;
	int ret;
	int i;

	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
		     (unsigned long) ar);

	for (i = 0; i < CE_COUNT; i++) {
		ar_pci->pipe_info[i].ar_pci = ar_pci;
		tasklet_init(&ar_pci->pipe_info[i].intr,
			     ath10k_pci_ce_tasklet,
			     (unsigned long)&ar_pci->pipe_info[i]);
	}

	if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
		num = 1;

	if (num > 1) {
		ret = ath10k_pci_start_intr_msix(ar, num);
		if (ret == 0)
			goto exit;

		ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
		num = 1;
	}

	if (num == 1) {
		ret = ath10k_pci_start_intr_msi(ar);
		if (ret == 0)
			goto exit;

		ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
			    ret);
		num = 0;
	}

	ret = ath10k_pci_start_intr_legacy(ar);

exit:
	ar_pci->num_msi_intrs = num;
	ar_pci->ce_count = CE_COUNT;
	return ret;
}

static void ath10k_pci_stop_intr(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

	/* There's at least one interrupt irregardless whether its legacy INTR
	 * or MSI or MSI-X */
	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
		free_irq(ar_pci->pdev->irq + i, ar);

	if (ar_pci->num_msi_intrs > 0)
		pci_disable_msi(ar_pci->pdev);
}

static int ath10k_pci_reset_target(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int wait_limit = 300; /* 3 sec */

	/* Wait for Target to finish initialization before we proceed. */
	iowrite32(PCIE_SOC_WAKE_V_MASK,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);

	ath10k_pci_wait(ar);

	while (wait_limit-- &&
	       !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
		 FW_IND_INITIALIZED)) {
		if (ar_pci->num_msi_intrs == 0)
			/* Fix potential race by repeating CORE_BASE writes */
			iowrite32(PCIE_INTR_FIRMWARE_MASK |
				  PCIE_INTR_CE_MASK_ALL,
				  ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
						 PCIE_INTR_ENABLE_ADDRESS));
		mdelay(10);
	}

	if (wait_limit < 0) {
		ath10k_err("Target stalled\n");
		iowrite32(PCIE_SOC_WAKE_RESET,
			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
			  PCIE_SOC_WAKE_ADDRESS);
		return -EIO;
	}

	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);

	return 0;
}

static void ath10k_pci_device_reset(struct ath10k_pci *ar_pci)
{
	struct ath10k *ar = ar_pci->ar;
	void __iomem *mem = ar_pci->mem;
	int i;
	u32 val;

	if (!SOC_GLOBAL_RESET_ADDRESS)
		return;

	if (!mem)
		return;

	ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
			       PCIE_SOC_WAKE_V_MASK);
	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
		if (ath10k_pci_target_is_awake(ar))
			break;
		msleep(1);
	}

	/* Put Target, including PCIe, into RESET. */
	val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
	val |= 1;
	ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);

	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
		if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
					  RTC_STATE_COLD_RESET_MASK)
			break;
		msleep(1);
	}

	/* Pull Target, including PCIe, out of RESET. */
	val &= ~1;
	ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);

	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
		if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
					    RTC_STATE_COLD_RESET_MASK))
			break;
		msleep(1);
	}

	ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
}

static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
{
	int i;

	for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
		if (!test_bit(i, ar_pci->features))
			continue;

		switch (i) {
		case ATH10K_PCI_FEATURE_MSI_X:
			ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
			break;
		case ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND:
			ath10k_dbg(ATH10K_DBG_PCI, "QCA988X_1.0 workaround enabled\n");
			break;
		}
	}
}

static int ath10k_pci_probe(struct pci_dev *pdev,
			    const struct pci_device_id *pci_dev)
{
	void __iomem *mem;
	int ret = 0;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
	u32 lcr_val;

	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
	if (ar_pci == NULL)
		return -ENOMEM;

	ar_pci->pdev = pdev;
	ar_pci->dev = &pdev->dev;

	switch (pci_dev->device) {
	case QCA988X_1_0_DEVICE_ID:
		set_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features);
		break;
	case QCA988X_2_0_DEVICE_ID:
		set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
		break;
	default:
		ret = -ENODEV;
		ath10k_err("Unkown device ID: %d\n", pci_dev->device);
		goto err_ar_pci;
	}

	ath10k_pci_dump_features(ar_pci);

	ar = ath10k_core_create(ar_pci, ar_pci->dev, ATH10K_BUS_PCI,
				&ath10k_pci_hif_ops);
	if (!ar) {
		ath10k_err("ath10k_core_create failed!\n");
		ret = -EINVAL;
		goto err_ar_pci;
	}

	/* Enable QCA988X_1.0 HW workarounds */
	if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features))
		spin_lock_init(&ar_pci->hw_v1_workaround_lock);

	ar_pci->ar = ar;
	ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
	atomic_set(&ar_pci->keep_awake_count, 0);

	pci_set_drvdata(pdev, ar);

	/*
	 * Without any knowledge of the Host, the Target may have been reset or
	 * power cycled and its Config Space may no longer reflect the PCI
	 * address space that was assigned earlier by the PCI infrastructure.
	 * Refresh it now.
	 */
	ret = pci_assign_resource(pdev, BAR_NUM);
	if (ret) {
		ath10k_err("cannot assign PCI space: %d\n", ret);
		goto err_ar;
	}

	ret = pci_enable_device(pdev);
	if (ret) {
		ath10k_err("cannot enable PCI device: %d\n", ret);
		goto err_ar;
	}

	/* Request MMIO resources */
	ret = pci_request_region(pdev, BAR_NUM, "ath");
	if (ret) {
		ath10k_err("PCI MMIO reservation error: %d\n", ret);
		goto err_device;
	}

	/*
	 * Target structures have a limit of 32 bit DMA pointers.
	 * DMA pointers can be wider than 32 bits by default on some systems.
	 */
	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
		ath10k_err("32-bit DMA not available: %d\n", ret);
		goto err_region;
	}

	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
		ath10k_err("cannot enable 32-bit consistent DMA\n");
		goto err_region;
	}

	/* Set bus master bit in PCI_COMMAND to enable DMA */
	pci_set_master(pdev);

	/*
	 * Temporary FIX: disable ASPM
	 * Will be removed after the OTP is programmed
	 */
	pci_read_config_dword(pdev, 0x80, &lcr_val);
	pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));

	/* Arrange for access to Target SoC registers. */
	mem = pci_iomap(pdev, BAR_NUM, 0);
	if (!mem) {
		ath10k_err("PCI iomap error\n");
		ret = -EIO;
		goto err_master;
	}

	ar_pci->mem = mem;

	spin_lock_init(&ar_pci->ce_lock);

	ar_pci->cacheline_sz = dma_get_cache_alignment();

	ret = ath10k_pci_start_intr(ar);
	if (ret) {
		ath10k_err("could not start interrupt handling (%d)\n", ret);
		goto err_iomap;
	}

	/*
	 * Bring the target up cleanly.
	 *
	 * The target may be in an undefined state with an AUX-powered Target
	 * and a Host in WoW mode. If the Host crashes, loses power, or is
	 * restarted (without unloading the driver) then the Target is left
	 * (aux) powered and running. On a subsequent driver load, the Target
	 * is in an unexpected state. We try to catch that here in order to
	 * reset the Target and retry the probe.
	 */
	ath10k_pci_device_reset(ar_pci);

	ret = ath10k_pci_reset_target(ar);
	if (ret)
		goto err_intr;

	if (ath10k_target_ps) {
		ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save enabled\n");
	} else {
		/* Force AWAKE forever */
		ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save disabled\n");
		ath10k_do_pci_wake(ar);
	}

	ret = ath10k_pci_ce_init(ar);
	if (ret)
		goto err_intr;

	ret = ath10k_pci_init_config(ar);
	if (ret)
		goto err_ce;

	ret = ath10k_pci_wake_target_cpu(ar);
	if (ret) {
		ath10k_err("could not wake up target CPU (%d)\n", ret);
		goto err_ce;
	}

	ret = ath10k_core_register(ar);
	if (ret) {
		ath10k_err("could not register driver core (%d)\n", ret);
		goto err_ce;
	}

	return 0;

err_ce:
	ath10k_pci_ce_deinit(ar);
err_intr:
	ath10k_pci_stop_intr(ar);
err_iomap:
	pci_iounmap(pdev, mem);
err_master:
	pci_clear_master(pdev);
err_region:
	pci_release_region(pdev, BAR_NUM);
err_device:
	pci_disable_device(pdev);
err_ar:
	pci_set_drvdata(pdev, NULL);
	ath10k_core_destroy(ar);
err_ar_pci:
	/* call HIF PCI free here */
	kfree(ar_pci);

	return ret;
}

static void ath10k_pci_remove(struct pci_dev *pdev)
{
	struct ath10k *ar = pci_get_drvdata(pdev);
	struct ath10k_pci *ar_pci;

	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	if (!ar)
		return;

	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci)
		return;

	tasklet_kill(&ar_pci->msi_fw_err);

	ath10k_core_unregister(ar);
	ath10k_pci_stop_intr(ar);

	pci_set_drvdata(pdev, NULL);
	pci_iounmap(pdev, ar_pci->mem);
	pci_release_region(pdev, BAR_NUM);
	pci_clear_master(pdev);
	pci_disable_device(pdev);

	ath10k_core_destroy(ar);
	kfree(ar_pci);
}

#if defined(CONFIG_PM_SLEEP)

#define ATH10K_PCI_PM_CONTROL 0x44

static int ath10k_pci_suspend(struct device *device)
{
	struct pci_dev *pdev = to_pci_dev(device);
	struct ath10k *ar = pci_get_drvdata(pdev);
	struct ath10k_pci *ar_pci;
	u32 val;
	int ret, retval;

	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	if (!ar)
		return -ENODEV;

	ar_pci = ath10k_pci_priv(ar);
	if (!ar_pci)
		return -ENODEV;

	if (ath10k_core_target_suspend(ar))
		return -EBUSY;

	ret = wait_event_interruptible_timeout(ar->event_queue,
						ar->is_target_paused == true,
						1 * HZ);
	if (ret < 0) {
		ath10k_warn("suspend interrupted (%d)\n", ret);
		retval = ret;
		goto resume;
	} else if (ret == 0) {
		ath10k_warn("suspend timed out - target pause event never came\n");
		retval = EIO;
		goto resume;
	}

	/*
	 * reset is_target_paused and host can check that in next time,
	 * or it will always be TRUE and host just skip the waiting
	 * condition, it causes target assert due to host already
	 * suspend
	 */
	ar->is_target_paused = false;

	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);

	if ((val & 0x000000ff) != 0x3) {
		pci_save_state(pdev);
		pci_disable_device(pdev);
		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
				       (val & 0xffffff00) | 0x03);
	}

	return 0;
resume:
	ret = ath10k_core_target_resume(ar);
	if (ret)
		ath10k_warn("could not resume (%d)\n", ret);

	return retval;
}

static int ath10k_pci_resume(struct device *device)
{
	struct pci_dev *pdev = to_pci_dev(device);
	struct ath10k *ar = pci_get_drvdata(pdev);
	struct ath10k_pci *ar_pci;
	int ret;
	u32 val;

	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);

	if (!ar)
		return -ENODEV;
	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci)
		return -ENODEV;

	ret = pci_enable_device(pdev);
	if (ret) {
		ath10k_warn("cannot enable PCI device: %d\n", ret);
		return ret;
	}

	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);

	if ((val & 0x000000ff) != 0) {
		pci_restore_state(pdev);
		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
				       val & 0xffffff00);
		/*
		 * Suspend/Resume resets the PCI configuration space,
		 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
		 * to keep PCI Tx retries from interfering with C3 CPU state
		 */
		pci_read_config_dword(pdev, 0x40, &val);

		if ((val & 0x0000ff00) != 0)
			pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
	}

	ret = ath10k_core_target_resume(ar);
	if (ret)
		ath10k_warn("target resume failed: %d\n", ret);

	return ret;
}

static SIMPLE_DEV_PM_OPS(ath10k_dev_pm_ops,
			 ath10k_pci_suspend,
			 ath10k_pci_resume);

#define ATH10K_PCI_PM_OPS (&ath10k_dev_pm_ops)

#else

#define ATH10K_PCI_PM_OPS NULL

#endif /* CONFIG_PM_SLEEP */

MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);

static struct pci_driver ath10k_pci_driver = {
	.name = "ath10k_pci",
	.id_table = ath10k_pci_id_table,
	.probe = ath10k_pci_probe,
	.remove = ath10k_pci_remove,
	.driver.pm = ATH10K_PCI_PM_OPS,
};

static int __init ath10k_pci_init(void)
{
	int ret;

	ret = pci_register_driver(&ath10k_pci_driver);
	if (ret)
		ath10k_err("pci_register_driver failed [%d]\n", ret);

	return ret;
}
module_init(ath10k_pci_init);

static void __exit ath10k_pci_exit(void)
{
	pci_unregister_driver(&ath10k_pci_driver);
}

module_exit(ath10k_pci_exit);

MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_FW_FILE);
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_OTP_FILE);
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);