1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
/*
* omap_vout_vrfb.c
*
* Copyright (C) 2010 Texas Instruments.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/videodev2.h>
#include <linux/slab.h>
#include <media/v4l2-device.h>
#include <video/omapvrfb.h>
#include "omap_voutdef.h"
#include "omap_voutlib.h"
#include "omap_vout_vrfb.h"
#define OMAP_DMA_NO_DEVICE 0
/*
* Function for allocating video buffers
*/
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
unsigned int *count, int startindex)
{
int i, j;
for (i = 0; i < *count; i++) {
if (!vout->smsshado_virt_addr[i]) {
vout->smsshado_virt_addr[i] =
omap_vout_alloc_buffer(vout->smsshado_size,
&vout->smsshado_phy_addr[i]);
}
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
if (vout->vq.memory == V4L2_MEMORY_MMAP && i >= startindex)
break;
}
if (!vout->smsshado_virt_addr[i]) {
for (j = 0; j < i; j++) {
omap_vout_free_buffer(
vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
*count = 0;
return -ENOMEM;
}
memset((void *)(long)vout->smsshado_virt_addr[i], 0,
vout->smsshado_size);
}
return 0;
}
/*
* Wakes up the application once the DMA transfer to VRFB space is completed.
*/
static void omap_vout_vrfb_dma_tx_callback(void *data)
{
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
t->tx_status = 1;
wake_up_interruptible(&t->wait);
}
/*
* Free VRFB buffers
*/
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
{
int j;
for (j = 0; j < VRFB_NUM_BUFS; j++) {
if (vout->smsshado_virt_addr[j]) {
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
}
}
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
bool static_vrfb_allocation)
{
int ret = 0, i, j;
struct omap_vout_device *vout;
struct video_device *vfd;
dma_cap_mask_t mask;
int image_width, image_height;
int vrfb_num_bufs = VRFB_NUM_BUFS;
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
struct omap2video_device *vid_dev =
container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
vout = vid_dev->vouts[vid_num];
vfd = vout->vfd;
for (i = 0; i < VRFB_NUM_BUFS; i++) {
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
dev_info(&pdev->dev, ": VRFB allocation failed\n");
for (j = 0; j < i; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
return -ENOMEM;
}
}
/* Calculate VRFB memory size */
/* allocate for worst case size */
image_width = VID_MAX_WIDTH / TILE_SIZE;
if (VID_MAX_WIDTH % TILE_SIZE)
image_width++;
image_width = image_width * TILE_SIZE;
image_height = VID_MAX_HEIGHT / TILE_SIZE;
if (VID_MAX_HEIGHT % TILE_SIZE)
image_height++;
image_height = image_height * TILE_SIZE;
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
/*
* Request and Initialize DMA, for DMA based VRFB transfer
*/
dma_cap_zero(mask);
dma_cap_set(DMA_INTERLEAVE, mask);
vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(vout->vrfb_dma_tx.chan)) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
} else {
size_t xt_size = sizeof(struct dma_interleaved_template) +
sizeof(struct data_chunk);
vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
if (!vout->vrfb_dma_tx.xt) {
dma_release_channel(vout->vrfb_dma_tx.chan);
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
}
}
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
dev_info(&pdev->dev,
": failed to allocate DMA Channel for video%d\n",
vfd->minor);
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
/*
* statically allocated the VRFB buffer is done through
* command line arguments
*/
if (static_vrfb_allocation) {
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
ret = -ENOMEM;
goto release_vrfb_ctx;
}
vout->vrfb_static_allocation = true;
}
return 0;
release_vrfb_ctx:
for (j = 0; j < VRFB_NUM_BUFS; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
return ret;
}
/*
* Release the VRFB context once the module exits
*/
void omap_vout_release_vrfb(struct omap_vout_device *vout)
{
int i;
for (i = 0; i < VRFB_NUM_BUFS; i++)
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
kfree(vout->vrfb_dma_tx.xt);
dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
dma_release_channel(vout->vrfb_dma_tx.chan);
}
}
/*
* Allocate the buffers for the VRFB space. Data is copied from V4L2
* buffers to the VRFB buffers using the DMA engine.
*/
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex)
{
int i;
bool yuv_mode;
if (!is_rotation_enabled(vout))
return 0;
/* If rotation is enabled, allocate memory for VRFB space also */
*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
/* Allocate the VRFB buffers only if the buffers are not
* allocated during init time.
*/
if (!vout->vrfb_static_allocation)
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
return -ENOMEM;
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
yuv_mode = true;
else
yuv_mode = false;
for (i = 0; i < *count; i++)
omap_vrfb_setup(&vout->vrfb_context[i],
vout->smsshado_phy_addr[i], vout->pix.width,
vout->pix.height, vout->bpp, yuv_mode);
return 0;
}
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
struct vb2_buffer *vb)
{
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
struct dma_chan *chan = vout->vrfb_dma_tx.chan;
struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
dma_cookie_t cookie;
dma_addr_t buf_phy_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
enum dma_status status;
enum dss_rotation rotation;
size_t dst_icg;
u32 pixsize;
if (!is_rotation_enabled(vout))
return 0;
/* If rotation is enabled, copy input buffer into VRFB
* memory space using DMA. We are copying input buffer
* into VRFB memory space of desired angle and DSS will
* read image VRFB memory for 0 degree angle
*/
pixsize = vout->bpp * vout->vrfb_bpp;
dst_icg = MAX_PIXELS_PER_LINE * pixsize - vout->pix.width * vout->bpp;
xt->src_start = buf_phy_addr;
xt->dst_start = vout->vrfb_context[vb->index].paddr[0];
xt->numf = vout->pix.height;
xt->frame_size = 1;
xt->sgl[0].size = vout->pix.width * vout->bpp;
xt->sgl[0].icg = dst_icg;
xt->dir = DMA_MEM_TO_MEM;
xt->src_sgl = false;
xt->src_inc = true;
xt->dst_sgl = true;
xt->dst_inc = true;
tx = dmaengine_prep_interleaved_dma(chan, xt, flags);
if (tx == NULL) {
pr_err("%s: DMA interleaved prep error\n", __func__);
return -EINVAL;
}
tx->callback = omap_vout_vrfb_dma_tx_callback;
tx->callback_param = &vout->vrfb_dma_tx;
cookie = dmaengine_submit(tx);
if (dma_submit_error(cookie)) {
pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
return -EINVAL;
}
vout->vrfb_dma_tx.tx_status = 0;
dma_async_issue_pending(chan);
wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
vout->vrfb_dma_tx.tx_status == 1,
VRFB_TX_TIMEOUT);
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (vout->vrfb_dma_tx.tx_status == 0) {
pr_err("%s: Timeout while waiting for DMA\n", __func__);
dmaengine_terminate_sync(chan);
return -EINVAL;
} else if (status != DMA_COMPLETE) {
pr_err("%s: DMA completion %s status\n", __func__,
status == DMA_ERROR ? "error" : "busy");
dmaengine_terminate_sync(chan);
return -EINVAL;
}
/* Store buffers physical address into an array. Addresses
* from this array will be used to configure DSS */
rotation = calc_rotation(vout);
vout->queued_buf_addr[vb->index] = (u8 *)
vout->vrfb_context[vb->index].paddr[rotation];
return 0;
}
/*
* Calculate the buffer offsets from which the streaming should
* start. This offset calculation is mainly required because of
* the VRFB 32 pixels alignment with rotation.
*/
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
{
enum dss_rotation rotation;
bool mirroring = vout->mirror;
struct v4l2_rect *crop = &vout->crop;
struct v4l2_pix_format *pix = &vout->pix;
int *cropped_offset = &vout->cropped_offset;
int vr_ps = 1, ps = 2, temp_ps = 2;
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
rotation = calc_rotation(vout);
if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
V4L2_PIX_FMT_UYVY == pix->pixelformat) {
if (is_rotation_enabled(vout)) {
/*
* ps - Actual pixel size for YUYV/UYVY for
* VRFB/Mirroring is 4 bytes
* vr_ps - Virtually pixel size for YUYV/UYVY is
* 2 bytes
*/
ps = 4;
vr_ps = 2;
} else {
ps = 2; /* otherwise the pixel size is 2 byte */
}
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
ps = 4;
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
ps = 3;
}
vout->ps = ps;
vout->vr_ps = vr_ps;
if (is_rotation_enabled(vout)) {
line_length = MAX_PIXELS_PER_LINE;
ctop = (pix->height - crop->height) - crop->top;
cleft = (pix->width - crop->width) - crop->left;
} else {
line_length = pix->width;
}
vout->line_length = line_length;
switch (rotation) {
case dss_rotation_90_degree:
offset = vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (!mirroring) {
*cropped_offset = offset + line_length *
temp_ps * cleft + crop->top * temp_ps;
} else {
*cropped_offset = offset + line_length * temp_ps *
cleft + crop->top * temp_ps + (line_length *
((crop->width / (vr_ps)) - 1) * ps);
}
break;
case dss_rotation_180_degree:
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp) +
(vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp));
if (!mirroring) {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps;
} else {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps + (line_length *
(crop->height - 1) * ps);
}
break;
case dss_rotation_270_degree:
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (!mirroring) {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps;
} else {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps +
(line_length * ((crop->width / vr_ps) - 1) *
ps);
}
break;
case dss_rotation_0_degree:
if (!mirroring) {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps;
} else {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps +
(line_length * (crop->height - 1) * ps);
}
break;
default:
*cropped_offset = (line_length * ps * crop->top) /
vr_ps + (crop->left * ps) / vr_ps +
((crop->width / vr_ps) - 1) * ps;
break;
}
}
|