summaryrefslogtreecommitdiff
path: root/drivers/md/dm-verity-fec.c
blob: e46aee6f932ee5f56401701d1e3c7a0e086a97c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2015 Google, Inc.
 *
 * Author: Sami Tolvanen <samitolvanen@google.com>
 */

#include "dm-verity-fec.h"
#include <linux/math64.h>

#define DM_MSG_PREFIX	"verity-fec"

/*
 * If error correction has been configured, returns true.
 */
bool verity_fec_is_enabled(struct dm_verity *v)
{
	return v->fec && v->fec->dev;
}

/*
 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
 * length fields.
 */
static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
{
	return (struct dm_verity_fec_io *)
		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
}

/*
 * Return an interleaved offset for a byte in RS block.
 */
static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
{
	u32 mod;

	mod = do_div(offset, v->fec->rsn);
	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
}

/*
 * Decode an RS block using Reed-Solomon.
 */
static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
			  u8 *data, u8 *fec, int neras)
{
	int i;
	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];

	for (i = 0; i < v->fec->roots; i++)
		par[i] = fec[i];

	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
			  fio->erasures, 0, NULL);
}

/*
 * Read error-correcting codes for the requested RS block. Returns a pointer
 * to the data block. Caller is responsible for releasing buf.
 */
static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
			   unsigned int *offset, struct dm_buffer **buf,
			   unsigned short ioprio)
{
	u64 position, block, rem;
	u8 *res;

	position = (index + rsb) * v->fec->roots;
	block = div64_u64_rem(position, v->fec->io_size, &rem);
	*offset = (unsigned int)rem;

	res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio);
	if (IS_ERR(res)) {
		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
		      v->data_dev->name, (unsigned long long)rsb,
		      (unsigned long long)block, PTR_ERR(res));
		*buf = NULL;
	}

	return res;
}

/* Loop over each preallocated buffer slot. */
#define fec_for_each_prealloc_buffer(__i) \
	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)

/* Loop over each extra buffer slot. */
#define fec_for_each_extra_buffer(io, __i) \
	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)

/* Loop over each allocated buffer. */
#define fec_for_each_buffer(io, __i) \
	for (__i = 0; __i < (io)->nbufs; __i++)

/* Loop over each RS block in each allocated buffer. */
#define fec_for_each_buffer_rs_block(io, __i, __j) \
	fec_for_each_buffer(io, __i) \
		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)

/*
 * Return a pointer to the current RS block when called inside
 * fec_for_each_buffer_rs_block.
 */
static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
				      struct dm_verity_fec_io *fio,
				      unsigned int i, unsigned int j)
{
	return &fio->bufs[i][j * v->fec->rsn];
}

/*
 * Return an index to the current RS block when called inside
 * fec_for_each_buffer_rs_block.
 */
static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
{
	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
}

/*
 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
 * starting from block_offset.
 */
static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
			   struct dm_verity_fec_io *fio, u64 rsb, int byte_index,
			   unsigned int block_offset, int neras)
{
	int r, corrected = 0, res;
	struct dm_buffer *buf;
	unsigned int n, i, offset;
	u8 *par, *block;
	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);

	par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
	if (IS_ERR(par))
		return PTR_ERR(par);

	/*
	 * Decode the RS blocks we have in bufs. Each RS block results in
	 * one corrected target byte and consumes fec->roots parity bytes.
	 */
	fec_for_each_buffer_rs_block(fio, n, i) {
		block = fec_buffer_rs_block(v, fio, n, i);
		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
		if (res < 0) {
			r = res;
			goto error;
		}

		corrected += res;
		fio->output[block_offset] = block[byte_index];

		block_offset++;
		if (block_offset >= 1 << v->data_dev_block_bits)
			goto done;

		/* read the next block when we run out of parity bytes */
		offset += v->fec->roots;
		if (offset >= v->fec->io_size) {
			dm_bufio_release(buf);

			par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
			if (IS_ERR(par))
				return PTR_ERR(par);
		}
	}
done:
	r = corrected;
error:
	dm_bufio_release(buf);

	if (r < 0 && neras)
		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
			    v->data_dev->name, (unsigned long long)rsb, r);
	else if (r > 0)
		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
			     v->data_dev->name, (unsigned long long)rsb, r);

	return r;
}

/*
 * Locate data block erasures using verity hashes.
 */
static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
			  u8 *want_digest, u8 *data)
{
	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
				 data, 1 << v->data_dev_block_bits,
				 verity_io_real_digest(v, io), true)))
		return 0;

	return memcmp(verity_io_real_digest(v, io), want_digest,
		      v->digest_size) != 0;
}

/*
 * Read data blocks that are part of the RS block and deinterleave as much as
 * fits into buffers. Check for erasure locations if @neras is non-NULL.
 */
static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
			 u64 rsb, u64 target, unsigned int block_offset,
			 int *neras)
{
	bool is_zero;
	int i, j, target_index = -1;
	struct dm_buffer *buf;
	struct dm_bufio_client *bufio;
	struct dm_verity_fec_io *fio = fec_io(io);
	u64 block, ileaved;
	u8 *bbuf, *rs_block;
	u8 want_digest[HASH_MAX_DIGESTSIZE];
	unsigned int n, k;
	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);

	if (neras)
		*neras = 0;

	if (WARN_ON(v->digest_size > sizeof(want_digest)))
		return -EINVAL;

	/*
	 * read each of the rsn data blocks that are part of the RS block, and
	 * interleave contents to available bufs
	 */
	for (i = 0; i < v->fec->rsn; i++) {
		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);

		/*
		 * target is the data block we want to correct, target_index is
		 * the index of this block within the rsn RS blocks
		 */
		if (ileaved == target)
			target_index = i;

		block = ileaved >> v->data_dev_block_bits;
		bufio = v->fec->data_bufio;

		if (block >= v->data_blocks) {
			block -= v->data_blocks;

			/*
			 * blocks outside the area were assumed to contain
			 * zeros when encoding data was generated
			 */
			if (unlikely(block >= v->fec->hash_blocks))
				continue;

			block += v->hash_start;
			bufio = v->bufio;
		}

		bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio));
		if (IS_ERR(bbuf)) {
			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
				     v->data_dev->name,
				     (unsigned long long)rsb,
				     (unsigned long long)block, PTR_ERR(bbuf));

			/* assume the block is corrupted */
			if (neras && *neras <= v->fec->roots)
				fio->erasures[(*neras)++] = i;

			continue;
		}

		/* locate erasures if the block is on the data device */
		if (bufio == v->fec->data_bufio &&
		    verity_hash_for_block(v, io, block, want_digest,
					  &is_zero) == 0) {
			/* skip known zero blocks entirely */
			if (is_zero)
				goto done;

			/*
			 * skip if we have already found the theoretical
			 * maximum number (i.e. fec->roots) of erasures
			 */
			if (neras && *neras <= v->fec->roots &&
			    fec_is_erasure(v, io, want_digest, bbuf))
				fio->erasures[(*neras)++] = i;
		}

		/*
		 * deinterleave and copy the bytes that fit into bufs,
		 * starting from block_offset
		 */
		fec_for_each_buffer_rs_block(fio, n, j) {
			k = fec_buffer_rs_index(n, j) + block_offset;

			if (k >= 1 << v->data_dev_block_bits)
				goto done;

			rs_block = fec_buffer_rs_block(v, fio, n, j);
			rs_block[i] = bbuf[k];
		}
done:
		dm_bufio_release(buf);
	}

	return target_index;
}

/*
 * Allocate RS control structure and FEC buffers from preallocated mempools,
 * and attempt to allocate as many extra buffers as available.
 */
static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
{
	unsigned int n;

	if (!fio->rs)
		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);

	fec_for_each_prealloc_buffer(n) {
		if (fio->bufs[n])
			continue;

		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
		if (unlikely(!fio->bufs[n])) {
			DMERR("failed to allocate FEC buffer");
			return -ENOMEM;
		}
	}

	/* try to allocate the maximum number of buffers */
	fec_for_each_extra_buffer(fio, n) {
		if (fio->bufs[n])
			continue;

		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
		/* we can manage with even one buffer if necessary */
		if (unlikely(!fio->bufs[n]))
			break;
	}
	fio->nbufs = n;

	if (!fio->output)
		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);

	return 0;
}

/*
 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
 * zeroed before deinterleaving.
 */
static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
{
	unsigned int n;

	fec_for_each_buffer(fio, n)
		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);

	memset(fio->erasures, 0, sizeof(fio->erasures));
}

/*
 * Decode all RS blocks in a single data block and return the target block
 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
 * hashes to locate erasures.
 */
static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
			  bool use_erasures)
{
	int r, neras = 0;
	unsigned int pos;

	r = fec_alloc_bufs(v, fio);
	if (unlikely(r < 0))
		return r;

	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
		fec_init_bufs(v, fio);

		r = fec_read_bufs(v, io, rsb, offset, pos,
				  use_erasures ? &neras : NULL);
		if (unlikely(r < 0))
			return r;

		r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras);
		if (r < 0)
			return r;

		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
	}

	/* Always re-validate the corrected block against the expected hash */
	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
			1 << v->data_dev_block_bits,
			verity_io_real_digest(v, io), true);
	if (unlikely(r < 0))
		return r;

	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
		   v->digest_size)) {
		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
			    v->data_dev->name, (unsigned long long)rsb, neras);
		return -EILSEQ;
	}

	return 0;
}

static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
		       size_t len)
{
	struct dm_verity_fec_io *fio = fec_io(io);

	memcpy(data, &fio->output[fio->output_pos], len);
	fio->output_pos += len;

	return 0;
}

/*
 * Correct errors in a block. Copies corrected block to dest if non-NULL,
 * otherwise to a bio_vec starting from iter.
 */
int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
		      enum verity_block_type type, sector_t block, u8 *dest,
		      struct bvec_iter *iter)
{
	int r;
	struct dm_verity_fec_io *fio = fec_io(io);
	u64 offset, res, rsb;

	if (!verity_fec_is_enabled(v))
		return -EOPNOTSUPP;

	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
		return -EIO;
	}

	fio->level++;

	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
		block = block - v->hash_start + v->data_blocks;

	/*
	 * For RS(M, N), the continuous FEC data is divided into blocks of N
	 * bytes. Since block size may not be divisible by N, the last block
	 * is zero padded when decoding.
	 *
	 * Each byte of the block is covered by a different RS(M, N) code,
	 * and each code is interleaved over N blocks to make it less likely
	 * that bursty corruption will leave us in unrecoverable state.
	 */

	offset = block << v->data_dev_block_bits;
	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);

	/*
	 * The base RS block we can feed to the interleaver to find out all
	 * blocks required for decoding.
	 */
	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);

	/*
	 * Locating erasures is slow, so attempt to recover the block without
	 * them first. Do a second attempt with erasures if the corruption is
	 * bad enough.
	 */
	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
	if (r < 0) {
		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
		if (r < 0)
			goto done;
	}

	if (dest)
		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
	else if (iter) {
		fio->output_pos = 0;
		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
	}

done:
	fio->level--;
	return r;
}

/*
 * Clean up per-bio data.
 */
void verity_fec_finish_io(struct dm_verity_io *io)
{
	unsigned int n;
	struct dm_verity_fec *f = io->v->fec;
	struct dm_verity_fec_io *fio = fec_io(io);

	if (!verity_fec_is_enabled(io->v))
		return;

	mempool_free(fio->rs, &f->rs_pool);

	fec_for_each_prealloc_buffer(n)
		mempool_free(fio->bufs[n], &f->prealloc_pool);

	fec_for_each_extra_buffer(fio, n)
		mempool_free(fio->bufs[n], &f->extra_pool);

	mempool_free(fio->output, &f->output_pool);
}

/*
 * Initialize per-bio data.
 */
void verity_fec_init_io(struct dm_verity_io *io)
{
	struct dm_verity_fec_io *fio = fec_io(io);

	if (!verity_fec_is_enabled(io->v))
		return;

	fio->rs = NULL;
	memset(fio->bufs, 0, sizeof(fio->bufs));
	fio->nbufs = 0;
	fio->output = NULL;
	fio->level = 0;
}

/*
 * Append feature arguments and values to the status table.
 */
unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
				 char *result, unsigned int maxlen)
{
	if (!verity_fec_is_enabled(v))
		return sz;

	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
	       DM_VERITY_OPT_FEC_START " %llu "
	       DM_VERITY_OPT_FEC_ROOTS " %d",
	       v->fec->dev->name,
	       (unsigned long long)v->fec->blocks,
	       (unsigned long long)v->fec->start,
	       v->fec->roots);

	return sz;
}

void verity_fec_dtr(struct dm_verity *v)
{
	struct dm_verity_fec *f = v->fec;

	if (!verity_fec_is_enabled(v))
		goto out;

	mempool_exit(&f->rs_pool);
	mempool_exit(&f->prealloc_pool);
	mempool_exit(&f->extra_pool);
	mempool_exit(&f->output_pool);
	kmem_cache_destroy(f->cache);

	if (f->data_bufio)
		dm_bufio_client_destroy(f->data_bufio);
	if (f->bufio)
		dm_bufio_client_destroy(f->bufio);

	if (f->dev)
		dm_put_device(v->ti, f->dev);
out:
	kfree(f);
	v->fec = NULL;
}

static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
{
	struct dm_verity *v = pool_data;

	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
}

static void fec_rs_free(void *element, void *pool_data)
{
	struct rs_control *rs = element;

	if (rs)
		free_rs(rs);
}

bool verity_is_fec_opt_arg(const char *arg_name)
{
	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
}

int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
			      unsigned int *argc, const char *arg_name)
{
	int r;
	struct dm_target *ti = v->ti;
	const char *arg_value;
	unsigned long long num_ll;
	unsigned char num_c;
	char dummy;

	if (!*argc) {
		ti->error = "FEC feature arguments require a value";
		return -EINVAL;
	}

	arg_value = dm_shift_arg(as);
	(*argc)--;

	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
		if (r) {
			ti->error = "FEC device lookup failed";
			return r;
		}

	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
			return -EINVAL;
		}
		v->fec->blocks = num_ll;

	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
			return -EINVAL;
		}
		v->fec->start = num_ll;

	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
			return -EINVAL;
		}
		v->fec->roots = num_c;

	} else {
		ti->error = "Unrecognized verity FEC feature request";
		return -EINVAL;
	}

	return 0;
}

/*
 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
 */
int verity_fec_ctr_alloc(struct dm_verity *v)
{
	struct dm_verity_fec *f;

	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
	if (!f) {
		v->ti->error = "Cannot allocate FEC structure";
		return -ENOMEM;
	}
	v->fec = f;

	return 0;
}

/*
 * Validate arguments and preallocate memory. Must be called after arguments
 * have been parsed using verity_fec_parse_opt_args.
 */
int verity_fec_ctr(struct dm_verity *v)
{
	struct dm_verity_fec *f = v->fec;
	struct dm_target *ti = v->ti;
	u64 hash_blocks, fec_blocks;
	int ret;

	if (!verity_fec_is_enabled(v)) {
		verity_fec_dtr(v);
		return 0;
	}

	/*
	 * FEC is computed over data blocks, possible metadata, and
	 * hash blocks. In other words, FEC covers total of fec_blocks
	 * blocks consisting of the following:
	 *
	 *  data blocks | hash blocks | metadata (optional)
	 *
	 * We allow metadata after hash blocks to support a use case
	 * where all data is stored on the same device and FEC covers
	 * the entire area.
	 *
	 * If metadata is included, we require it to be available on the
	 * hash device after the hash blocks.
	 */

	hash_blocks = v->hash_blocks - v->hash_start;

	/*
	 * Require matching block sizes for data and hash devices for
	 * simplicity.
	 */
	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
		ti->error = "Block sizes must match to use FEC";
		return -EINVAL;
	}

	if (!f->roots) {
		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
		return -EINVAL;
	}
	f->rsn = DM_VERITY_FEC_RSM - f->roots;

	if (!f->blocks) {
		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
		return -EINVAL;
	}

	f->rounds = f->blocks;
	if (sector_div(f->rounds, f->rsn))
		f->rounds++;

	/*
	 * Due to optional metadata, f->blocks can be larger than
	 * data_blocks and hash_blocks combined.
	 */
	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
		return -EINVAL;
	}

	/*
	 * Metadata is accessed through the hash device, so we require
	 * it to be large enough.
	 */
	f->hash_blocks = f->blocks - v->data_blocks;
	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
		ti->error = "Hash device is too small for "
			DM_VERITY_OPT_FEC_BLOCKS;
		return -E2BIG;
	}

	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
		f->io_size = 1 << v->data_dev_block_bits;
	else
		f->io_size = v->fec->roots << SECTOR_SHIFT;

	f->bufio = dm_bufio_client_create(f->dev->bdev,
					  f->io_size,
					  1, 0, NULL, NULL, 0);
	if (IS_ERR(f->bufio)) {
		ti->error = "Cannot initialize FEC bufio client";
		return PTR_ERR(f->bufio);
	}

	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));

	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
		ti->error = "FEC device is too small";
		return -E2BIG;
	}

	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
					       1 << v->data_dev_block_bits,
					       1, 0, NULL, NULL, 0);
	if (IS_ERR(f->data_bufio)) {
		ti->error = "Cannot initialize FEC data bufio client";
		return PTR_ERR(f->data_bufio);
	}

	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
		ti->error = "Data device is too small";
		return -E2BIG;
	}

	/* Preallocate an rs_control structure for each worker thread */
	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
			   fec_rs_free, (void *) v);
	if (ret) {
		ti->error = "Cannot allocate RS pool";
		return ret;
	}

	f->cache = kmem_cache_create("dm_verity_fec_buffers",
				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
				     0, 0, NULL);
	if (!f->cache) {
		ti->error = "Cannot create FEC buffer cache";
		return -ENOMEM;
	}

	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
				     DM_VERITY_FEC_BUF_PREALLOC,
				     f->cache);
	if (ret) {
		ti->error = "Cannot allocate FEC buffer prealloc pool";
		return ret;
	}

	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
	if (ret) {
		ti->error = "Cannot allocate FEC buffer extra pool";
		return ret;
	}

	/* Preallocate an output buffer for each thread */
	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
					1 << v->data_dev_block_bits);
	if (ret) {
		ti->error = "Cannot allocate FEC output pool";
		return ret;
	}

	/* Reserve space for our per-bio data */
	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);

	return 0;
}