1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
|
/*
* Copyright (C) 2016 Broadcom
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* DOC: VC4 DSI0/DSI1 module
*
* BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
* single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
* controller.
*
* Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
* while the compute module brings both DSI0 and DSI1 out.
*
* This driver has been tested for DSI1 video-mode display only
* currently, with most of the information necessary for DSI0
* hopefully present.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/completion.h>
#include <linux/component.h>
#include <linux/dmaengine.h>
#include <linux/i2c.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
#define DSI_CMD_FIFO_DEPTH 16
#define DSI_PIX_FIFO_DEPTH 256
#define DSI_PIX_FIFO_WIDTH 4
#define DSI0_CTRL 0x00
/* Command packet control. */
#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
#define DSI1_TXPKT1C 0x04
# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
/* Primary display where cmdfifo provides part of the payload and
* pixelvalve the rest.
*/
# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
/* Secondary display where cmdfifo provides part of the payload and
* pixfifo the rest.
*/
# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
/* Command only. Uses TXPKT1H and DISPLAY_NO */
# define DSI_TXPKT1C_CMD_CTRL_TX 0
/* Command with BTA for either ack or read data. */
# define DSI_TXPKT1C_CMD_CTRL_RX 1
/* Trigger according to TRIG_CMD */
# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
/* BTA alone for getting error status after a command, or a TE trigger
* without a previous command.
*/
# define DSI_TXPKT1C_CMD_CTRL_BTA 3
# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
# define DSI_TXPKT1C_CMD_EN BIT(0)
/* Command packet header. */
#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
#define DSI1_TXPKT1H 0x08
# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
# define DSI_TXPKT1H_BC_DT_SHIFT 0
#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
#define DSI1_RXPKT1H 0x14
# define DSI_RXPKT1H_CRC_ERR BIT(31)
# define DSI_RXPKT1H_DET_ERR BIT(30)
# define DSI_RXPKT1H_ECC_ERR BIT(29)
# define DSI_RXPKT1H_COR_ERR BIT(28)
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
# define DSI_RXPKT1H_SHORT_1_SHIFT 16
# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
# define DSI_RXPKT1H_SHORT_0_SHIFT 8
# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
#define DSI1_RXPKT2H 0x18
# define DSI_RXPKT1H_DET_ERR BIT(30)
# define DSI_RXPKT1H_ECC_ERR BIT(29)
# define DSI_RXPKT1H_COR_ERR BIT(28)
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
# define DSI_RXPKT1H_DT_SHIFT 0
#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
#define DSI1_TXPKT_CMD_FIFO 0x1c
#define DSI0_DISP0_CTRL 0x18
# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
# define DSI_DISP0_LP_STOP_DISABLE 0
# define DSI_DISP0_LP_STOP_PERLINE 1
# define DSI_DISP0_LP_STOP_PERFRAME 2
/* Transmit RGB pixels and null packets only during HACTIVE, instead
* of going to LP-STOP.
*/
# define DSI_DISP_HACTIVE_NULL BIT(10)
/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
# define DSI_DISP_VBLP_CTRL BIT(9)
/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
# define DSI_DISP_HFP_CTRL BIT(8)
/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
# define DSI_DISP_HBP_CTRL BIT(7)
# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
# define DSI_DISP0_CHANNEL_SHIFT 5
/* Enables end events for HSYNC/VSYNC, not just start events. */
# define DSI_DISP0_ST_END BIT(4)
# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
# define DSI_DISP0_PFORMAT_SHIFT 2
# define DSI_PFORMAT_RGB565 0
# define DSI_PFORMAT_RGB666_PACKED 1
# define DSI_PFORMAT_RGB666 2
# define DSI_PFORMAT_RGB888 3
/* Default is VIDEO mode. */
# define DSI_DISP0_COMMAND_MODE BIT(1)
# define DSI_DISP0_ENABLE BIT(0)
#define DSI0_DISP1_CTRL 0x1c
#define DSI1_DISP1_CTRL 0x2c
/* Format of the data written to TXPKT_PIX_FIFO. */
# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
# define DSI_DISP1_PFORMAT_SHIFT 1
# define DSI_DISP1_PFORMAT_16BIT 0
# define DSI_DISP1_PFORMAT_24BIT 1
# define DSI_DISP1_PFORMAT_32BIT_LE 2
# define DSI_DISP1_PFORMAT_32BIT_BE 3
/* DISP1 is always command mode. */
# define DSI_DISP1_ENABLE BIT(0)
#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
#define DSI0_INT_STAT 0x24
#define DSI0_INT_EN 0x28
# define DSI1_INT_PHY_D3_ULPS BIT(30)
# define DSI1_INT_PHY_D3_STOP BIT(29)
# define DSI1_INT_PHY_D2_ULPS BIT(28)
# define DSI1_INT_PHY_D2_STOP BIT(27)
# define DSI1_INT_PHY_D1_ULPS BIT(26)
# define DSI1_INT_PHY_D1_STOP BIT(25)
# define DSI1_INT_PHY_D0_ULPS BIT(24)
# define DSI1_INT_PHY_D0_STOP BIT(23)
# define DSI1_INT_FIFO_ERR BIT(22)
# define DSI1_INT_PHY_DIR_RTF BIT(21)
# define DSI1_INT_PHY_RXLPDT BIT(20)
# define DSI1_INT_PHY_RXTRIG BIT(19)
# define DSI1_INT_PHY_D0_LPDT BIT(18)
# define DSI1_INT_PHY_DIR_FTR BIT(17)
/* Signaled when the clock lane enters the given state. */
# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
# define DSI1_INT_PHY_CLOCK_HS BIT(15)
# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
/* Signaled on timeouts */
# define DSI1_INT_PR_TO BIT(13)
# define DSI1_INT_TA_TO BIT(12)
# define DSI1_INT_LPRX_TO BIT(11)
# define DSI1_INT_HSTX_TO BIT(10)
/* Contention on a line when trying to drive the line low */
# define DSI1_INT_ERR_CONT_LP1 BIT(9)
# define DSI1_INT_ERR_CONT_LP0 BIT(8)
/* Control error: incorrect line state sequence on data lane 0. */
# define DSI1_INT_ERR_CONTROL BIT(7)
/* LPDT synchronization error (bits received not a multiple of 8. */
# define DSI1_INT_ERR_SYNC_ESC BIT(6)
/* Signaled after receiving an error packet from the display in
* response to a read.
*/
# define DSI1_INT_RXPKT2 BIT(5)
/* Signaled after receiving a packet. The header and optional short
* response will be in RXPKT1H, and a long response will be in the
* RXPKT_FIFO.
*/
# define DSI1_INT_RXPKT1 BIT(4)
# define DSI1_INT_TXPKT2_DONE BIT(3)
# define DSI1_INT_TXPKT2_END BIT(2)
/* Signaled after all repeats of TXPKT1 are transferred. */
# define DSI1_INT_TXPKT1_DONE BIT(1)
/* Signaled after each TXPKT1 repeat is scheduled. */
# define DSI1_INT_TXPKT1_END BIT(0)
#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
DSI1_INT_ERR_CONTROL | \
DSI1_INT_ERR_CONT_LP0 | \
DSI1_INT_ERR_CONT_LP1 | \
DSI1_INT_HSTX_TO | \
DSI1_INT_LPRX_TO | \
DSI1_INT_TA_TO | \
DSI1_INT_PR_TO)
#define DSI0_STAT 0x2c
#define DSI0_HSTX_TO_CNT 0x30
#define DSI0_LPRX_TO_CNT 0x34
#define DSI0_TA_TO_CNT 0x38
#define DSI0_PR_TO_CNT 0x3c
#define DSI0_PHYC 0x40
# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
# define DSI1_PHYC_CLANE_ULPS BIT(17)
# define DSI1_PHYC_CLANE_ENABLE BIT(16)
# define DSI_PHYC_DLANE3_ULPS BIT(13)
# define DSI_PHYC_DLANE3_ENABLE BIT(12)
# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
# define DSI0_PHYC_CLANE_ULPS BIT(9)
# define DSI_PHYC_DLANE2_ULPS BIT(9)
# define DSI0_PHYC_CLANE_ENABLE BIT(8)
# define DSI_PHYC_DLANE2_ENABLE BIT(8)
# define DSI_PHYC_DLANE1_ULPS BIT(5)
# define DSI_PHYC_DLANE1_ENABLE BIT(4)
# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
# define DSI_PHYC_DLANE0_ULPS BIT(1)
# define DSI_PHYC_DLANE0_ENABLE BIT(0)
#define DSI0_HS_CLT0 0x44
#define DSI0_HS_CLT1 0x48
#define DSI0_HS_CLT2 0x4c
#define DSI0_HS_DLT3 0x50
#define DSI0_HS_DLT4 0x54
#define DSI0_HS_DLT5 0x58
#define DSI0_HS_DLT6 0x5c
#define DSI0_HS_DLT7 0x60
#define DSI0_PHY_AFEC0 0x64
# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
# define DSI1_PHY_AFEC0_RESET BIT(13)
# define DSI1_PHY_AFEC0_PD BIT(12)
# define DSI0_PHY_AFEC0_RESET BIT(11)
# define DSI1_PHY_AFEC0_PD_BG BIT(11)
# define DSI0_PHY_AFEC0_PD BIT(10)
# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
# define DSI0_PHY_AFEC0_PD_BG BIT(9)
# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
#define DSI0_PHY_AFEC1 0x68
# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
#define DSI0_TST_SEL 0x6c
#define DSI0_TST_MON 0x70
#define DSI0_ID 0x74
# define DSI_ID_VALUE 0x00647369
#define DSI1_CTRL 0x00
# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
# define DSI_CTRL_HS_CLKC_SHIFT 14
# define DSI_CTRL_HS_CLKC_BYTE 0
# define DSI_CTRL_HS_CLKC_DDR2 1
# define DSI_CTRL_HS_CLKC_DDR 2
# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
# define DSI_CTRL_CAL_BYTE BIT(9)
# define DSI_CTRL_INV_BYTE BIT(8)
# define DSI_CTRL_CLR_LDF BIT(7)
# define DSI0_CTRL_CLR_PBCF BIT(6)
# define DSI1_CTRL_CLR_RXF BIT(6)
# define DSI0_CTRL_CLR_CPBCF BIT(5)
# define DSI1_CTRL_CLR_PDF BIT(5)
# define DSI0_CTRL_CLR_PDF BIT(4)
# define DSI1_CTRL_CLR_CDF BIT(4)
# define DSI0_CTRL_CLR_CDF BIT(3)
# define DSI0_CTRL_CTRL2 BIT(2)
# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
# define DSI0_CTRL_CTRL1 BIT(1)
# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
# define DSI0_CTRL_CTRL0 BIT(0)
# define DSI1_CTRL_EN BIT(0)
# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
DSI0_CTRL_CLR_PBCF | \
DSI0_CTRL_CLR_CPBCF | \
DSI0_CTRL_CLR_PDF | \
DSI0_CTRL_CLR_CDF)
# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
DSI1_CTRL_CLR_RXF | \
DSI1_CTRL_CLR_PDF | \
DSI1_CTRL_CLR_CDF)
#define DSI1_TXPKT2C 0x0c
#define DSI1_TXPKT2H 0x10
#define DSI1_TXPKT_PIX_FIFO 0x20
#define DSI1_RXPKT_FIFO 0x24
#define DSI1_DISP0_CTRL 0x28
#define DSI1_INT_STAT 0x30
#define DSI1_INT_EN 0x34
/* State reporting bits. These mostly behave like INT_STAT, where
* writing a 1 clears the bit.
*/
#define DSI1_STAT 0x38
# define DSI1_STAT_PHY_D3_ULPS BIT(31)
# define DSI1_STAT_PHY_D3_STOP BIT(30)
# define DSI1_STAT_PHY_D2_ULPS BIT(29)
# define DSI1_STAT_PHY_D2_STOP BIT(28)
# define DSI1_STAT_PHY_D1_ULPS BIT(27)
# define DSI1_STAT_PHY_D1_STOP BIT(26)
# define DSI1_STAT_PHY_D0_ULPS BIT(25)
# define DSI1_STAT_PHY_D0_STOP BIT(24)
# define DSI1_STAT_FIFO_ERR BIT(23)
# define DSI1_STAT_PHY_RXLPDT BIT(22)
# define DSI1_STAT_PHY_RXTRIG BIT(21)
# define DSI1_STAT_PHY_D0_LPDT BIT(20)
/* Set when in forward direction */
# define DSI1_STAT_PHY_DIR BIT(19)
# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
# define DSI1_STAT_PR_TO BIT(15)
# define DSI1_STAT_TA_TO BIT(14)
# define DSI1_STAT_LPRX_TO BIT(13)
# define DSI1_STAT_HSTX_TO BIT(12)
# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
# define DSI1_STAT_ERR_CONTROL BIT(9)
# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
# define DSI1_STAT_RXPKT2 BIT(7)
# define DSI1_STAT_RXPKT1 BIT(6)
# define DSI1_STAT_TXPKT2_BUSY BIT(5)
# define DSI1_STAT_TXPKT2_DONE BIT(4)
# define DSI1_STAT_TXPKT2_END BIT(3)
# define DSI1_STAT_TXPKT1_BUSY BIT(2)
# define DSI1_STAT_TXPKT1_DONE BIT(1)
# define DSI1_STAT_TXPKT1_END BIT(0)
#define DSI1_HSTX_TO_CNT 0x3c
#define DSI1_LPRX_TO_CNT 0x40
#define DSI1_TA_TO_CNT 0x44
#define DSI1_PR_TO_CNT 0x48
#define DSI1_PHYC 0x4c
#define DSI1_HS_CLT0 0x50
# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
# define DSI_HS_CLT0_CZERO_SHIFT 18
# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
# define DSI_HS_CLT0_CPRE_SHIFT 9
# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
# define DSI_HS_CLT0_CPREP_SHIFT 0
#define DSI1_HS_CLT1 0x54
# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
# define DSI_HS_CLT1_CTRAIL_SHIFT 9
# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
# define DSI_HS_CLT1_CPOST_SHIFT 0
#define DSI1_HS_CLT2 0x58
# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
# define DSI_HS_CLT2_WUP_SHIFT 0
#define DSI1_HS_DLT3 0x5c
# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
# define DSI_HS_DLT3_EXIT_SHIFT 18
# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
# define DSI_HS_DLT3_ZERO_SHIFT 9
# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
# define DSI_HS_DLT3_PRE_SHIFT 0
#define DSI1_HS_DLT4 0x60
# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
# define DSI_HS_DLT4_ANLAT_SHIFT 18
# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
# define DSI_HS_DLT4_TRAIL_SHIFT 9
# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
# define DSI_HS_DLT4_LPX_SHIFT 0
#define DSI1_HS_DLT5 0x64
# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
# define DSI_HS_DLT5_INIT_SHIFT 0
#define DSI1_HS_DLT6 0x68
# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
# define DSI_HS_DLT6_TA_GET_SHIFT 24
# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
# define DSI_HS_DLT6_TA_SURE_SHIFT 16
# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
# define DSI_HS_DLT6_TA_GO_SHIFT 8
# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
# define DSI_HS_DLT6_LP_LPX_SHIFT 0
#define DSI1_HS_DLT7 0x6c
# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
# define DSI_HS_DLT7_LP_WUP_SHIFT 0
#define DSI1_PHY_AFEC0 0x70
#define DSI1_PHY_AFEC1 0x74
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
#define DSI1_TST_SEL 0x78
#define DSI1_TST_MON 0x7c
#define DSI1_PHY_TST1 0x80
#define DSI1_PHY_TST2 0x84
#define DSI1_PHY_FIFO_STAT 0x88
/* Actually, all registers in the range that aren't otherwise claimed
* will return the ID.
*/
#define DSI1_ID 0x8c
/* General DSI hardware state. */
struct vc4_dsi {
struct platform_device *pdev;
struct mipi_dsi_host dsi_host;
struct drm_encoder *encoder;
struct drm_bridge *bridge;
void __iomem *regs;
struct dma_chan *reg_dma_chan;
dma_addr_t reg_dma_paddr;
u32 *reg_dma_mem;
dma_addr_t reg_paddr;
/* Whether we're on bcm2835's DSI0 or DSI1. */
int port;
/* DSI channel for the panel we're connected to. */
u32 channel;
u32 lanes;
u32 format;
u32 divider;
u32 mode_flags;
/* Input clock from CPRMAN to the digital PHY, for the DSI
* escape clock.
*/
struct clk *escape_clock;
/* Input clock to the analog PHY, used to generate the DSI bit
* clock.
*/
struct clk *pll_phy_clock;
/* HS Clocks generated within the DSI analog PHY. */
struct clk_fixed_factor phy_clocks[3];
struct clk_hw_onecell_data *clk_onecell;
/* Pixel clock output to the pixelvalve, generated from the HS
* clock.
*/
struct clk *pixel_clock;
struct completion xfer_completion;
int xfer_result;
};
#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
static inline void
dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
{
struct dma_chan *chan = dsi->reg_dma_chan;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
int ret;
/* DSI0 should be able to write normally. */
if (!chan) {
writel(val, dsi->regs + offset);
return;
}
*dsi->reg_dma_mem = val;
tx = chan->device->device_prep_dma_memcpy(chan,
dsi->reg_paddr + offset,
dsi->reg_dma_paddr,
4, 0);
if (!tx) {
DRM_ERROR("Failed to set up DMA register write\n");
return;
}
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
DRM_ERROR("Failed to submit DMA: %d\n", ret);
return;
}
ret = dma_sync_wait(chan, cookie);
if (ret)
DRM_ERROR("Failed to wait for DMA: %d\n", ret);
}
#define DSI_READ(offset) readl(dsi->regs + (offset))
#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
#define DSI_PORT_READ(offset) \
DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
#define DSI_PORT_WRITE(offset, val) \
DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
/* VC4 DSI encoder KMS struct */
struct vc4_dsi_encoder {
struct vc4_encoder base;
struct vc4_dsi *dsi;
};
static inline struct vc4_dsi_encoder *
to_vc4_dsi_encoder(struct drm_encoder *encoder)
{
return container_of(encoder, struct vc4_dsi_encoder, base.base);
}
#define DSI_REG(reg) { reg, #reg }
static const struct {
u32 reg;
const char *name;
} dsi0_regs[] = {
DSI_REG(DSI0_CTRL),
DSI_REG(DSI0_STAT),
DSI_REG(DSI0_HSTX_TO_CNT),
DSI_REG(DSI0_LPRX_TO_CNT),
DSI_REG(DSI0_TA_TO_CNT),
DSI_REG(DSI0_PR_TO_CNT),
DSI_REG(DSI0_DISP0_CTRL),
DSI_REG(DSI0_DISP1_CTRL),
DSI_REG(DSI0_INT_STAT),
DSI_REG(DSI0_INT_EN),
DSI_REG(DSI0_PHYC),
DSI_REG(DSI0_HS_CLT0),
DSI_REG(DSI0_HS_CLT1),
DSI_REG(DSI0_HS_CLT2),
DSI_REG(DSI0_HS_DLT3),
DSI_REG(DSI0_HS_DLT4),
DSI_REG(DSI0_HS_DLT5),
DSI_REG(DSI0_HS_DLT6),
DSI_REG(DSI0_HS_DLT7),
DSI_REG(DSI0_PHY_AFEC0),
DSI_REG(DSI0_PHY_AFEC1),
DSI_REG(DSI0_ID),
};
static const struct {
u32 reg;
const char *name;
} dsi1_regs[] = {
DSI_REG(DSI1_CTRL),
DSI_REG(DSI1_STAT),
DSI_REG(DSI1_HSTX_TO_CNT),
DSI_REG(DSI1_LPRX_TO_CNT),
DSI_REG(DSI1_TA_TO_CNT),
DSI_REG(DSI1_PR_TO_CNT),
DSI_REG(DSI1_DISP0_CTRL),
DSI_REG(DSI1_DISP1_CTRL),
DSI_REG(DSI1_INT_STAT),
DSI_REG(DSI1_INT_EN),
DSI_REG(DSI1_PHYC),
DSI_REG(DSI1_HS_CLT0),
DSI_REG(DSI1_HS_CLT1),
DSI_REG(DSI1_HS_CLT2),
DSI_REG(DSI1_HS_DLT3),
DSI_REG(DSI1_HS_DLT4),
DSI_REG(DSI1_HS_DLT5),
DSI_REG(DSI1_HS_DLT6),
DSI_REG(DSI1_HS_DLT7),
DSI_REG(DSI1_PHY_AFEC0),
DSI_REG(DSI1_PHY_AFEC1),
DSI_REG(DSI1_ID),
};
static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
{
int i;
if (dsi->port == 0) {
for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
dsi0_regs[i].reg, dsi0_regs[i].name,
DSI_READ(dsi0_regs[i].reg));
}
} else {
for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
dsi1_regs[i].reg, dsi1_regs[i].name,
DSI_READ(dsi1_regs[i].reg));
}
}
}
#ifdef CONFIG_DEBUG_FS
int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *drm = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(drm);
int dsi_index = (uintptr_t)node->info_ent->data;
struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
int i;
if (!dsi)
return 0;
if (dsi->port == 0) {
for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
seq_printf(m, "0x%04x (%s): 0x%08x\n",
dsi0_regs[i].reg, dsi0_regs[i].name,
DSI_READ(dsi0_regs[i].reg));
}
} else {
for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
seq_printf(m, "0x%04x (%s): 0x%08x\n",
dsi1_regs[i].reg, dsi1_regs[i].name,
DSI_READ(dsi1_regs[i].reg));
}
}
return 0;
}
#endif
static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
.destroy = vc4_dsi_encoder_destroy,
};
static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
{
u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
if (latch)
afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
else
afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
DSI_PORT_WRITE(PHY_AFEC0, afec0);
}
/* Enters or exits Ultra Low Power State. */
static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
{
bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
DSI_PHYC_DLANE0_ULPS |
(dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
(dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
(dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
DSI1_STAT_PHY_D0_ULPS |
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
DSI1_STAT_PHY_D0_STOP |
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
int ret;
bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
if (ulps == ulps_currently_enabled)
return;
DSI_PORT_WRITE(STAT, stat_ulps);
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
if (ret) {
dev_warn(&dsi->pdev->dev,
"Timeout waiting for DSI ULPS entry: STAT 0x%08x",
DSI_PORT_READ(STAT));
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
vc4_dsi_latch_ulps(dsi, false);
return;
}
/* The DSI module can't be disabled while the module is
* generating ULPS state. So, to be able to disable the
* module, we have the AFE latch the ULPS state and continue
* on to having the module enter STOP.
*/
vc4_dsi_latch_ulps(dsi, ulps);
DSI_PORT_WRITE(STAT, stat_stop);
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
if (ret) {
dev_warn(&dsi->pdev->dev,
"Timeout waiting for DSI STOP entry: STAT 0x%08x",
DSI_PORT_READ(STAT));
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
return;
}
}
static u32
dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
{
/* The HS timings have to be rounded up to a multiple of 8
* because we're using the byte clock.
*/
return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
}
/* ESC always runs at 100Mhz. */
#define ESC_TIME_NS 10
static u32
dsi_esc_timing(u32 ns)
{
return DIV_ROUND_UP(ns, ESC_TIME_NS);
}
static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
{
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct device *dev = &dsi->pdev->dev;
drm_bridge_disable(dsi->bridge);
vc4_dsi_ulps(dsi, true);
drm_bridge_post_disable(dsi->bridge);
clk_disable_unprepare(dsi->pll_phy_clock);
clk_disable_unprepare(dsi->escape_clock);
clk_disable_unprepare(dsi->pixel_clock);
pm_runtime_put(dev);
}
/* Extends the mode's blank intervals to handle BCM2835's integer-only
* DSI PLL divider.
*
* On 2835, PLLD is set to 2Ghz, and may not be changed by the display
* driver since most peripherals are hanging off of the PLLD_PER
* divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
* the pixel clock), only has an integer divider off of DSI.
*
* To get our panel mode to refresh at the expected 60Hz, we need to
* extend the horizontal blank time. This means we drive a
* higher-than-expected clock rate to the panel, but that's what the
* firmware does too.
*/
static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
unsigned long parent_rate = clk_get_rate(phy_parent);
unsigned long pixel_clock_hz = mode->clock * 1000;
unsigned long pll_clock = pixel_clock_hz * dsi->divider;
int divider;
/* Find what divider gets us a faster clock than the requested
* pixel clock.
*/
for (divider = 1; divider < 8; divider++) {
if (parent_rate / divider < pll_clock) {
divider--;
break;
}
}
/* Now that we've picked a PLL divider, calculate back to its
* pixel clock.
*/
pll_clock = parent_rate / divider;
pixel_clock_hz = pll_clock / dsi->divider;
adjusted_mode->clock = pixel_clock_hz / 1000;
/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
mode->clock;
adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
return true;
}
static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
{
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
struct vc4_dsi *dsi = vc4_encoder->dsi;
struct device *dev = &dsi->pdev->dev;
bool debug_dump_regs = false;
unsigned long hs_clock;
u32 ui_ns;
/* Minimum LP state duration in escape clock cycles. */
u32 lpx = dsi_esc_timing(60);
unsigned long pixel_clock_hz = mode->clock * 1000;
unsigned long dsip_clock;
unsigned long phy_clock;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret) {
DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
return;
}
if (debug_dump_regs) {
DRM_INFO("DSI regs before:\n");
vc4_dsi_dump_regs(dsi);
}
/* Round up the clk_set_rate() request slightly, since
* PLLD_DSI1 is an integer divider and its rate selection will
* never round up.
*/
phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
if (ret) {
dev_err(&dsi->pdev->dev,
"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
}
/* Reset the DSI and all its fifos. */
DSI_PORT_WRITE(CTRL,
DSI_CTRL_SOFT_RESET_CFG |
DSI_PORT_BIT(CTRL_RESET_FIFOS));
DSI_PORT_WRITE(CTRL,
DSI_CTRL_HSDT_EOT_DISABLE |
DSI_CTRL_RX_LPDT_EOT_DISABLE);
/* Clear all stat bits so we see what has happened during enable. */
DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
/* Set AFE CTR00/CTR1 to release powerdown of analog. */
if (dsi->port == 0) {
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
if (dsi->lanes < 2)
afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
afec0 |= DSI0_PHY_AFEC0_RESET;
DSI_PORT_WRITE(PHY_AFEC0, afec0);
DSI_PORT_WRITE(PHY_AFEC1,
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
} else {
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
if (dsi->lanes < 4)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
if (dsi->lanes < 3)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
if (dsi->lanes < 2)
afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
afec0 |= DSI1_PHY_AFEC0_RESET;
DSI_PORT_WRITE(PHY_AFEC0, afec0);
DSI_PORT_WRITE(PHY_AFEC1, 0);
/* AFEC reset hold time */
mdelay(1);
}
ret = clk_prepare_enable(dsi->escape_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
return;
}
ret = clk_prepare_enable(dsi->pll_phy_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
return;
}
hs_clock = clk_get_rate(dsi->pll_phy_clock);
/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
* not the pixel clock rate. DSIxP take from the APHY's byte,
* DDR2, or DDR4 clock (we use byte) and feed into the PV at
* that rate. Separately, a value derived from PIX_CLK_DIV
* and HS_CLKC is fed into the PV to divide down to the actual
* pixel clock for pushing pixels into DSI.
*/
dsip_clock = phy_clock / 8;
ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
if (ret) {
dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
dsip_clock, ret);
}
ret = clk_prepare_enable(dsi->pixel_clock);
if (ret) {
DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
return;
}
/* How many ns one DSI unit interval is. Note that the clock
* is DDR, so there's an extra divide by 2.
*/
ui_ns = DIV_ROUND_UP(500000000, hs_clock);
DSI_PORT_WRITE(HS_CLT0,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
DSI_HS_CLT0_CZERO) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
DSI_HS_CLT0_CPRE) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
DSI_HS_CLT0_CPREP));
DSI_PORT_WRITE(HS_CLT1,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
DSI_HS_CLT1_CTRAIL) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
DSI_HS_CLT1_CPOST));
DSI_PORT_WRITE(HS_CLT2,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
DSI_HS_CLT2_WUP));
DSI_PORT_WRITE(HS_DLT3,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
DSI_HS_DLT3_EXIT) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
DSI_HS_DLT3_ZERO) |
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
DSI_HS_DLT3_PRE));
DSI_PORT_WRITE(HS_DLT4,
VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
DSI_HS_DLT4_LPX) |
VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
dsi_hs_timing(ui_ns, 60, 4)),
DSI_HS_DLT4_TRAIL) |
VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
/* T_INIT is how long STOP is driven after power-up to
* indicate to the slave (also coming out of power-up) that
* master init is complete, and should be greater than the
* maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
* D-PHY spec gives a minimum 100us for T_INIT,MASTER and
* T_INIT,SLAVE, while allowing protocols on top of it to give
* greater minimums. The vc4 firmware uses an extremely
* conservative 5ms, and we maintain that here.
*/
DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
5 * 1000 * 1000, 0),
DSI_HS_DLT5_INIT));
DSI_PORT_WRITE(HS_DLT6,
VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
DSI_PORT_WRITE(HS_DLT7,
VC4_SET_FIELD(dsi_esc_timing(1000000),
DSI_HS_DLT7_LP_WUP));
DSI_PORT_WRITE(PHYC,
DSI_PHYC_DLANE0_ENABLE |
(dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
(dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
(dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
(dsi->port == 0 ?
VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
DSI_PORT_WRITE(CTRL,
DSI_PORT_READ(CTRL) |
DSI_CTRL_CAL_BYTE);
/* HS timeout in HS clock cycles: disabled. */
DSI_PORT_WRITE(HSTX_TO_CNT, 0);
/* LP receive timeout in HS clocks. */
DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
/* Bus turnaround timeout */
DSI_PORT_WRITE(TA_TO_CNT, 100000);
/* Display reset sequence timeout */
DSI_PORT_WRITE(PR_TO_CNT, 100000);
/* Set up DISP1 for transferring long command payloads through
* the pixfifo.
*/
DSI_PORT_WRITE(DISP1_CTRL,
VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
DSI_DISP1_PFORMAT) |
DSI_DISP1_ENABLE);
/* Ungate the block. */
if (dsi->port == 0)
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
else
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
/* Bring AFE out of reset. */
if (dsi->port == 0) {
} else {
DSI_PORT_WRITE(PHY_AFEC0,
DSI_PORT_READ(PHY_AFEC0) &
~DSI1_PHY_AFEC0_RESET);
}
vc4_dsi_ulps(dsi, false);
drm_bridge_pre_enable(dsi->bridge);
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
DSI_PORT_WRITE(DISP0_CTRL,
VC4_SET_FIELD(dsi->divider,
DSI_DISP0_PIX_CLK_DIV) |
VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
DSI_DISP0_LP_STOP_CTRL) |
DSI_DISP0_ST_END |
DSI_DISP0_ENABLE);
} else {
DSI_PORT_WRITE(DISP0_CTRL,
DSI_DISP0_COMMAND_MODE |
DSI_DISP0_ENABLE);
}
drm_bridge_enable(dsi->bridge);
if (debug_dump_regs) {
DRM_INFO("DSI regs after:\n");
vc4_dsi_dump_regs(dsi);
}
}
static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct vc4_dsi *dsi = host_to_dsi(host);
struct mipi_dsi_packet packet;
u32 pkth = 0, pktc = 0;
int i, ret;
bool is_long = mipi_dsi_packet_format_is_long(msg->type);
u32 cmd_fifo_len = 0, pix_fifo_len = 0;
mipi_dsi_create_packet(&packet, msg);
pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
pkth |= VC4_SET_FIELD(packet.header[1] |
(packet.header[2] << 8),
DSI_TXPKT1H_BC_PARAM);
if (is_long) {
/* Divide data across the various FIFOs we have available.
* The command FIFO takes byte-oriented data, but is of
* limited size. The pixel FIFO (never actually used for
* pixel data in reality) is word oriented, and substantially
* larger. So, we use the pixel FIFO for most of the data,
* sending the residual bytes in the command FIFO at the start.
*
* With this arrangement, the command FIFO will never get full.
*/
if (packet.payload_length <= 16) {
cmd_fifo_len = packet.payload_length;
pix_fifo_len = 0;
} else {
cmd_fifo_len = (packet.payload_length %
DSI_PIX_FIFO_WIDTH);
pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
DSI_PIX_FIFO_WIDTH);
}
WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
}
if (msg->rx_len) {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
DSI_TXPKT1C_CMD_CTRL);
} else {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
DSI_TXPKT1C_CMD_CTRL);
}
for (i = 0; i < cmd_fifo_len; i++)
DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
for (i = 0; i < pix_fifo_len; i++) {
const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
DSI_PORT_WRITE(TXPKT_PIX_FIFO,
pix[0] |
pix[1] << 8 |
pix[2] << 16 |
pix[3] << 24);
}
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
pktc |= DSI_TXPKT1C_CMD_MODE_LP;
if (is_long)
pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
/* Send one copy of the packet. Larger repeats are used for pixel
* data in command mode.
*/
pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
pktc |= DSI_TXPKT1C_CMD_EN;
if (pix_fifo_len) {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
DSI_TXPKT1C_DISPLAY_NO);
} else {
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
DSI_TXPKT1C_DISPLAY_NO);
}
/* Enable the appropriate interrupt for the transfer completion. */
dsi->xfer_result = 0;
reinit_completion(&dsi->xfer_completion);
DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
if (msg->rx_len) {
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
DSI1_INT_PHY_DIR_RTF));
} else {
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
DSI1_INT_TXPKT1_DONE));
}
/* Send the packet. */
DSI_PORT_WRITE(TXPKT1H, pkth);
DSI_PORT_WRITE(TXPKT1C, pktc);
if (!wait_for_completion_timeout(&dsi->xfer_completion,
msecs_to_jiffies(1000))) {
dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
DSI_PORT_READ(INT_STAT));
ret = -ETIMEDOUT;
} else {
ret = dsi->xfer_result;
}
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
if (ret)
goto reset_fifo_and_return;
if (ret == 0 && msg->rx_len) {
u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
u8 *msg_rx = msg->rx_buf;
if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
u32 rxlen = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_BC_PARAM);
if (rxlen != msg->rx_len) {
DRM_ERROR("DSI returned %db, expecting %db\n",
rxlen, (int)msg->rx_len);
ret = -ENXIO;
goto reset_fifo_and_return;
}
for (i = 0; i < msg->rx_len; i++)
msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
} else {
/* FINISHME: Handle AWER */
msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_SHORT_0);
if (msg->rx_len > 1) {
msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
DSI_RXPKT1H_SHORT_1);
}
}
}
return ret;
reset_fifo_and_return:
DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
udelay(1);
DSI_PORT_WRITE(CTRL,
DSI_PORT_READ(CTRL) |
DSI_PORT_BIT(CTRL_RESET_FIFOS));
DSI_PORT_WRITE(TXPKT1C, 0);
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
return ret;
}
static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct vc4_dsi *dsi = host_to_dsi(host);
dsi->lanes = device->lanes;
dsi->channel = device->channel;
dsi->mode_flags = device->mode_flags;
switch (device->format) {
case MIPI_DSI_FMT_RGB888:
dsi->format = DSI_PFORMAT_RGB888;
dsi->divider = 24 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB666:
dsi->format = DSI_PFORMAT_RGB666;
dsi->divider = 24 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
dsi->format = DSI_PFORMAT_RGB666_PACKED;
dsi->divider = 18 / dsi->lanes;
break;
case MIPI_DSI_FMT_RGB565:
dsi->format = DSI_PFORMAT_RGB565;
dsi->divider = 16 / dsi->lanes;
break;
default:
dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
dsi->format);
return 0;
}
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
dev_err(&dsi->pdev->dev,
"Only VIDEO mode panels supported currently.\n");
return 0;
}
return 0;
}
static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
return 0;
}
static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
.attach = vc4_dsi_host_attach,
.detach = vc4_dsi_host_detach,
.transfer = vc4_dsi_host_transfer,
};
static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
.disable = vc4_dsi_encoder_disable,
.enable = vc4_dsi_encoder_enable,
.mode_fixup = vc4_dsi_encoder_mode_fixup,
};
static const struct of_device_id vc4_dsi_dt_match[] = {
{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
{}
};
static void dsi_handle_error(struct vc4_dsi *dsi,
irqreturn_t *ret, u32 stat, u32 bit,
const char *type)
{
if (!(stat & bit))
return;
DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
*ret = IRQ_HANDLED;
}
/*
* Initial handler for port 1 where we need the reg_dma workaround.
* The register DMA writes sleep, so we can't do it in the top half.
* Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
* parent interrupt contrller until our interrupt thread is done.
*/
static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
{
struct vc4_dsi *dsi = data;
u32 stat = DSI_PORT_READ(INT_STAT);
if (!stat)
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
/*
* Normal IRQ handler for port 0, or the threaded IRQ handler for port
* 1 where we need the reg_dma workaround.
*/
static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
{
struct vc4_dsi *dsi = data;
u32 stat = DSI_PORT_READ(INT_STAT);
irqreturn_t ret = IRQ_NONE;
DSI_PORT_WRITE(INT_STAT, stat);
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONT_LP0, "LP0 contention");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_ERR_CONT_LP1, "LP1 contention");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_HSTX_TO, "HSTX timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_LPRX_TO, "LPRX timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_TA_TO, "turnaround timeout");
dsi_handle_error(dsi, &ret, stat,
DSI1_INT_PR_TO, "peripheral reset timeout");
if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
complete(&dsi->xfer_completion);
ret = IRQ_HANDLED;
} else if (stat & DSI1_INT_HSTX_TO) {
complete(&dsi->xfer_completion);
dsi->xfer_result = -ETIMEDOUT;
ret = IRQ_HANDLED;
}
return ret;
}
/**
* vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
* PHY that are consumed by CPRMAN (clk-bcm2835.c).
* @dsi: DSI encoder
*/
static int
vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
{
struct device *dev = &dsi->pdev->dev;
const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
static const struct {
const char *dsi0_name, *dsi1_name;
int div;
} phy_clocks[] = {
{ "dsi0_byte", "dsi1_byte", 8 },
{ "dsi0_ddr2", "dsi1_ddr2", 4 },
{ "dsi0_ddr", "dsi1_ddr", 2 },
};
int i;
dsi->clk_onecell = devm_kzalloc(dev,
sizeof(*dsi->clk_onecell) +
ARRAY_SIZE(phy_clocks) *
sizeof(struct clk_hw *),
GFP_KERNEL);
if (!dsi->clk_onecell)
return -ENOMEM;
dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
struct clk_init_data init;
int ret;
/* We just use core fixed factor clock ops for the PHY
* clocks. The clocks are actually gated by the
* PHY_AFEC0_DDRCLK_EN bits, which we should be
* setting if we use the DDR/DDR2 clocks. However,
* vc4_dsi_encoder_enable() is setting up both AFEC0,
* setting both our parent DSI PLL's rate and this
* clock's rate, so it knows if DDR/DDR2 are going to
* be used and could enable the gates itself.
*/
fix->mult = 1;
fix->div = phy_clocks[i].div;
fix->hw.init = &init;
memset(&init, 0, sizeof(init));
init.parent_names = &parent_name;
init.num_parents = 1;
if (dsi->port == 1)
init.name = phy_clocks[i].dsi1_name;
else
init.name = phy_clocks[i].dsi0_name;
init.ops = &clk_fixed_factor_ops;
ret = devm_clk_hw_register(dev, &fix->hw);
if (ret)
return ret;
dsi->clk_onecell->hws[i] = &fix->hw;
}
return of_clk_add_hw_provider(dev->of_node,
of_clk_hw_onecell_get,
dsi->clk_onecell);
}
static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_dsi *dsi = dev_get_drvdata(dev);
struct vc4_dsi_encoder *vc4_dsi_encoder;
struct drm_panel *panel;
const struct of_device_id *match;
dma_cap_mask_t dma_mask;
int ret;
match = of_match_device(vc4_dsi_dt_match, dev);
if (!match)
return -ENODEV;
dsi->port = (uintptr_t)match->data;
vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
GFP_KERNEL);
if (!vc4_dsi_encoder)
return -ENOMEM;
vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
vc4_dsi_encoder->dsi = dsi;
dsi->encoder = &vc4_dsi_encoder->base.base;
dsi->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(dsi->regs))
return PTR_ERR(dsi->regs);
if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
DSI_PORT_READ(ID), DSI_ID_VALUE);
return -ENODEV;
}
/* DSI1 has a broken AXI slave that doesn't respond to writes
* from the ARM. It does handle writes from the DMA engine,
* so set up a channel for talking to it.
*/
if (dsi->port == 1) {
dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
&dsi->reg_dma_paddr,
GFP_KERNEL);
if (!dsi->reg_dma_mem) {
DRM_ERROR("Failed to get DMA memory\n");
return -ENOMEM;
}
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
if (IS_ERR(dsi->reg_dma_chan)) {
ret = PTR_ERR(dsi->reg_dma_chan);
if (ret != -EPROBE_DEFER)
DRM_ERROR("Failed to get DMA channel: %d\n",
ret);
return ret;
}
/* Get the physical address of the device's registers. The
* struct resource for the regs gives us the bus address
* instead.
*/
dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
0, NULL, NULL));
}
init_completion(&dsi->xfer_completion);
/* At startup enable error-reporting interrupts and nothing else. */
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
/* Clear any existing interrupt state. */
DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
if (dsi->reg_dma_mem)
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
vc4_dsi_irq_defer_to_thread_handler,
vc4_dsi_irq_handler,
IRQF_ONESHOT,
"vc4 dsi", dsi);
else
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get interrupt: %d\n", ret);
return ret;
}
dsi->escape_clock = devm_clk_get(dev, "escape");
if (IS_ERR(dsi->escape_clock)) {
ret = PTR_ERR(dsi->escape_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get escape clock: %d\n", ret);
return ret;
}
dsi->pll_phy_clock = devm_clk_get(dev, "phy");
if (IS_ERR(dsi->pll_phy_clock)) {
ret = PTR_ERR(dsi->pll_phy_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get phy clock: %d\n", ret);
return ret;
}
dsi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(dsi->pixel_clock)) {
ret = PTR_ERR(dsi->pixel_clock);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get pixel clock: %d\n", ret);
return ret;
}
ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
&panel, &dsi->bridge);
if (ret) {
/* If the bridge or panel pointed by dev->of_node is not
* enabled, just return 0 here so that we don't prevent the DRM
* dev from being registered. Of course that means the DSI
* encoder won't be exposed, but that's not a problem since
* nothing is connected to it.
*/
if (ret == -ENODEV)
return 0;
return ret;
}
if (panel) {
dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
DRM_MODE_CONNECTOR_DSI);
if (IS_ERR(dsi->bridge))
return PTR_ERR(dsi->bridge);
}
/* The esc clock rate is supposed to always be 100Mhz. */
ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
if (ret) {
dev_err(dev, "Failed to set esc clock: %d\n", ret);
return ret;
}
ret = vc4_dsi_init_phy_clocks(dsi);
if (ret)
return ret;
if (dsi->port == 1)
vc4->dsi1 = dsi;
drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
DRM_MODE_ENCODER_DSI, NULL);
drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
if (ret) {
dev_err(dev, "bridge attach failed: %d\n", ret);
return ret;
}
/* Disable the atomic helper calls into the bridge. We
* manually call the bridge pre_enable / enable / etc. calls
* from our driver, since we need to sequence them within the
* encoder's enable/disable paths.
*/
dsi->encoder->bridge = NULL;
pm_runtime_enable(dev);
return 0;
}
static void vc4_dsi_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_dsi *dsi = dev_get_drvdata(dev);
if (dsi->bridge)
pm_runtime_disable(dev);
vc4_dsi_encoder_destroy(dsi->encoder);
if (dsi->port == 1)
vc4->dsi1 = NULL;
}
static const struct component_ops vc4_dsi_ops = {
.bind = vc4_dsi_bind,
.unbind = vc4_dsi_unbind,
};
static int vc4_dsi_dev_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vc4_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dev_set_drvdata(dev, dsi);
dsi->pdev = pdev;
/* Note, the initialization sequence for DSI and panels is
* tricky. The component bind above won't get past its
* -EPROBE_DEFER until the panel/bridge probes. The
* panel/bridge will return -EPROBE_DEFER until it has a
* mipi_dsi_host to register its device to. So, we register
* the host during pdev probe time, so vc4 as a whole can then
* -EPROBE_DEFER its component bind process until the panel
* successfully attaches.
*/
dsi->dsi_host.ops = &vc4_dsi_host_ops;
dsi->dsi_host.dev = dev;
mipi_dsi_host_register(&dsi->dsi_host);
ret = component_add(&pdev->dev, &vc4_dsi_ops);
if (ret) {
mipi_dsi_host_unregister(&dsi->dsi_host);
return ret;
}
return 0;
}
static int vc4_dsi_dev_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vc4_dsi *dsi = dev_get_drvdata(dev);
component_del(&pdev->dev, &vc4_dsi_ops);
mipi_dsi_host_unregister(&dsi->dsi_host);
return 0;
}
struct platform_driver vc4_dsi_driver = {
.probe = vc4_dsi_dev_probe,
.remove = vc4_dsi_dev_remove,
.driver = {
.name = "vc4_dsi",
.of_match_table = vc4_dsi_dt_match,
},
};
|