summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/smp.c
blob: 7eb18ca7bd45beea76839871edce64a5fba69b2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *	Intel SMP support routines.
 *
 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
 *
 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 */

#include <linux/init.h>

#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/gfp.h>
#include <linux/kexec.h>

#include <asm/mtrr.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/apic.h>
#include <asm/cpu.h>
#include <asm/idtentry.h>
#include <asm/nmi.h>
#include <asm/mce.h>
#include <asm/trace/irq_vectors.h>
#include <asm/kexec.h>
#include <asm/reboot.h>

/*
 *	Some notes on x86 processor bugs affecting SMP operation:
 *
 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 *	The Linux implications for SMP are handled as follows:
 *
 *	Pentium III / [Xeon]
 *		None of the E1AP-E3AP errata are visible to the user.
 *
 *	E1AP.	see PII A1AP
 *	E2AP.	see PII A2AP
 *	E3AP.	see PII A3AP
 *
 *	Pentium II / [Xeon]
 *		None of the A1AP-A3AP errata are visible to the user.
 *
 *	A1AP.	see PPro 1AP
 *	A2AP.	see PPro 2AP
 *	A3AP.	see PPro 7AP
 *
 *	Pentium Pro
 *		None of 1AP-9AP errata are visible to the normal user,
 *	except occasional delivery of 'spurious interrupt' as trap #15.
 *	This is very rare and a non-problem.
 *
 *	1AP.	Linux maps APIC as non-cacheable
 *	2AP.	worked around in hardware
 *	3AP.	fixed in C0 and above steppings microcode update.
 *		Linux does not use excessive STARTUP_IPIs.
 *	4AP.	worked around in hardware
 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 *		'noapic' mode has vector 0xf filled out properly.
 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 *	7AP.	We do not assume writes to the LVT deasserting IRQs
 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 *	9AP.	We do not use mixed mode
 *
 *	Pentium
 *		There is a marginal case where REP MOVS on 100MHz SMP
 *	machines with B stepping processors can fail. XXX should provide
 *	an L1cache=Writethrough or L1cache=off option.
 *
 *		B stepping CPUs may hang. There are hardware work arounds
 *	for this. We warn about it in case your board doesn't have the work
 *	arounds. Basically that's so I can tell anyone with a B stepping
 *	CPU and SMP problems "tough".
 *
 *	Specific items [From Pentium Processor Specification Update]
 *
 *	1AP.	Linux doesn't use remote read
 *	2AP.	Linux doesn't trust APIC errors
 *	3AP.	We work around this
 *	4AP.	Linux never generated 3 interrupts of the same priority
 *		to cause a lost local interrupt.
 *	5AP.	Remote read is never used
 *	6AP.	not affected - worked around in hardware
 *	7AP.	not affected - worked around in hardware
 *	8AP.	worked around in hardware - we get explicit CS errors if not
 *	9AP.	only 'noapic' mode affected. Might generate spurious
 *		interrupts, we log only the first one and count the
 *		rest silently.
 *	10AP.	not affected - worked around in hardware
 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 *		the documentation. Make sure you preserve this as it affects
 *		the C stepping chips too.
 *	12AP.	not affected - worked around in hardware
 *	13AP.	not affected - worked around in hardware
 *	14AP.	we always deassert INIT during bootup
 *	15AP.	not affected - worked around in hardware
 *	16AP.	not affected - worked around in hardware
 *	17AP.	not affected - worked around in hardware
 *	18AP.	not affected - worked around in hardware
 *	19AP.	not affected - worked around in BIOS
 *
 *	If this sounds worrying believe me these bugs are either ___RARE___,
 *	or are signal timing bugs worked around in hardware and there's
 *	about nothing of note with C stepping upwards.
 */

static atomic_t stopping_cpu = ATOMIC_INIT(-1);
static bool smp_no_nmi_ipi = false;

static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
{
	/* We are registered on stopping cpu too, avoid spurious NMI */
	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
		return NMI_HANDLED;

	cpu_emergency_disable_virtualization();
	stop_this_cpu(NULL);

	return NMI_HANDLED;
}

/*
 * Disable virtualization, APIC etc. and park the CPU in a HLT loop
 */
DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
{
	ack_APIC_irq();
	cpu_emergency_disable_virtualization();
	stop_this_cpu(NULL);
}

static int register_stop_handler(void)
{
	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
				    NMI_FLAG_FIRST, "smp_stop");
}

static void native_stop_other_cpus(int wait)
{
	unsigned int cpu = smp_processor_id();
	unsigned long flags, timeout;

	if (reboot_force)
		return;

	/* Only proceed if this is the first CPU to reach this code */
	if (atomic_cmpxchg(&stopping_cpu, -1, cpu) != -1)
		return;

	/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
	if (kexec_in_progress)
		smp_kick_mwait_play_dead();

	/*
	 * 1) Send an IPI on the reboot vector to all other CPUs.
	 *
	 *    The other CPUs should react on it after leaving critical
	 *    sections and re-enabling interrupts. They might still hold
	 *    locks, but there is nothing which can be done about that.
	 *
	 * 2) Wait for all other CPUs to report that they reached the
	 *    HLT loop in stop_this_cpu()
	 *
	 * 3) If the system uses INIT/STARTUP for CPU bringup, then
	 *    send all present CPUs an INIT vector, which brings them
	 *    completely out of the way.
	 *
	 * 4) If #3 is not possible and #2 timed out send an NMI to the
	 *    CPUs which did not yet report
	 *
	 * 5) Wait for all other CPUs to report that they reached the
	 *    HLT loop in stop_this_cpu()
	 *
	 * #4 can obviously race against a CPU reaching the HLT loop late.
	 * That CPU will have reported already and the "have all CPUs
	 * reached HLT" condition will be true despite the fact that the
	 * other CPU is still handling the NMI. Again, there is no
	 * protection against that as "disabled" APICs still respond to
	 * NMIs.
	 */
	cpumask_copy(&cpus_stop_mask, cpu_online_mask);
	cpumask_clear_cpu(cpu, &cpus_stop_mask);

	if (!cpumask_empty(&cpus_stop_mask)) {
		apic_send_IPI_allbutself(REBOOT_VECTOR);

		/*
		 * Don't wait longer than a second for IPI completion. The
		 * wait request is not checked here because that would
		 * prevent an NMI/INIT shutdown in case that not all
		 * CPUs reach shutdown state.
		 */
		timeout = USEC_PER_SEC;
		while (!cpumask_empty(&cpus_stop_mask) && timeout--)
			udelay(1);
	}

	/*
	 * Park all other CPUs in INIT including "offline" CPUs, if
	 * possible. That's a safe place where they can't resume execution
	 * of HLT and then execute the HLT loop from overwritten text or
	 * page tables.
	 *
	 * The only downside is a broadcast MCE, but up to the point where
	 * the kexec() kernel brought all APs online again an MCE will just
	 * make HLT resume and handle the MCE. The machine crashes and burns
	 * due to overwritten text, page tables and data. So there is a
	 * choice between fire and frying pan. The result is pretty much
	 * the same. Chose frying pan until x86 provides a sane mechanism
	 * to park a CPU.
	 */
	if (smp_park_other_cpus_in_init())
		goto done;

	/*
	 * If park with INIT was not possible and the REBOOT_VECTOR didn't
	 * take all secondary CPUs offline, try with the NMI.
	 */
	if (!cpumask_empty(&cpus_stop_mask)) {
		/*
		 * If NMI IPI is enabled, try to register the stop handler
		 * and send the IPI. In any case try to wait for the other
		 * CPUs to stop.
		 */
		if (!smp_no_nmi_ipi && !register_stop_handler()) {
			pr_emerg("Shutting down cpus with NMI\n");

			for_each_cpu(cpu, &cpus_stop_mask)
				apic->send_IPI(cpu, NMI_VECTOR);
		}
		/*
		 * Don't wait longer than 10 ms if the caller didn't
		 * request it. If wait is true, the machine hangs here if
		 * one or more CPUs do not reach shutdown state.
		 */
		timeout = USEC_PER_MSEC * 10;
		while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
			udelay(1);
	}

done:
	local_irq_save(flags);
	disable_local_APIC();
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
	local_irq_restore(flags);

	/*
	 * Ensure that the cpus_stop_mask cache lines are invalidated on
	 * the other CPUs. See comment vs. SME in stop_this_cpu().
	 */
	cpumask_clear(&cpus_stop_mask);
}

/*
 * Reschedule call back. KVM uses this interrupt to force a cpu out of
 * guest mode.
 */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
{
	ack_APIC_irq();
	trace_reschedule_entry(RESCHEDULE_VECTOR);
	inc_irq_stat(irq_resched_count);
	scheduler_ipi();
	trace_reschedule_exit(RESCHEDULE_VECTOR);
}

DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
{
	ack_APIC_irq();
	trace_call_function_entry(CALL_FUNCTION_VECTOR);
	inc_irq_stat(irq_call_count);
	generic_smp_call_function_interrupt();
	trace_call_function_exit(CALL_FUNCTION_VECTOR);
}

DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
{
	ack_APIC_irq();
	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
	inc_irq_stat(irq_call_count);
	generic_smp_call_function_single_interrupt();
	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
}

static int __init nonmi_ipi_setup(char *str)
{
	smp_no_nmi_ipi = true;
	return 1;
}

__setup("nonmi_ipi", nonmi_ipi_setup);

struct smp_ops smp_ops = {
	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
	.smp_prepare_cpus	= native_smp_prepare_cpus,
	.smp_cpus_done		= native_smp_cpus_done,

	.stop_other_cpus	= native_stop_other_cpus,
#if defined(CONFIG_KEXEC_CORE)
	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
#endif
	.smp_send_reschedule	= native_smp_send_reschedule,

	.kick_ap_alive		= native_kick_ap,
	.cpu_disable		= native_cpu_disable,
	.play_dead		= native_play_dead,

	.send_call_func_ipi	= native_send_call_func_ipi,
	.send_call_func_single_ipi = native_send_call_func_single_ipi,
};
EXPORT_SYMBOL_GPL(smp_ops);