1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H
#define _ASM_POWERPC_NOHASH_64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the ppc64 non-hashed page table.
*/
#include <asm/nohash/64/pgtable-4k.h>
#include <asm/barrier.h>
#include <asm/asm-const.h>
#define FIRST_USER_ADDRESS 0UL
/*
* Size of EA range mapped by our pagetables.
*/
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#define PUD_CACHE_INDEX PUD_INDEX_SIZE
/*
* Define the address range of the kernel non-linear virtual area
*/
#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
#define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
/*
* The vmalloc space starts at the beginning of that region, and
* occupies a quarter of it on Book3E
* (we keep a quarter for the virtual memmap)
*/
#define VMALLOC_START KERN_VIRT_START
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
/*
* The second half of the kernel virtual space is used for IO mappings,
* it's itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_START (ioremap_bot)
#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
/*
* Region IDs
*/
#define REGION_SHIFT 60UL
#define REGION_MASK (0xfUL << REGION_SHIFT)
#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
#define USER_REGION_ID (0UL)
/*
* Defines the address of the vmemap area, in its own region on
* after the vmalloc space on Book3E
*/
#define VMEMMAP_BASE VMALLOC_END
#define VMEMMAP_END KERN_IO_START
#define vmemmap ((struct page *)VMEMMAP_BASE)
/*
* Include the PTE bits definitions
*/
#include <asm/nohash/pte-book3e.h>
#define _PAGE_SAO 0
#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes.
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
#define H_PAGE_4K_PFN 0
#ifndef __ASSEMBLY__
/* pte_clear moved to later in this file */
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_EXEC);
}
#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
*pmdp = __pmd(val);
}
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
|| (pmd_val(pmd) & PMD_BAD_BITS))
#define pmd_present(pmd) (!pmd_none(pmd))
#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
extern struct page *pmd_page(pmd_t pmd);
static inline void pud_set(pud_t *pudp, unsigned long val)
{
*pudp = __pud(val);
}
static inline void pud_clear(pud_t *pudp)
{
*pudp = __pud(0);
}
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
|| (pud_val(pud) & PUD_BAD_BITS))
#define pud_present(pud) (pud_val(pud) != 0)
#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
extern struct page *pud_page(pud_t pud);
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud(pte_val(pte));
}
#define pud_write(pud) pte_write(pud_pte(pud))
#define p4d_write(pgd) pte_write(p4d_pte(p4d))
static inline void p4d_set(p4d_t *p4dp, unsigned long val)
{
*p4dp = __p4d(val);
}
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
static inline void pte_unmap(pte_t *pte) { }
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* Atomic PTE updates */
static inline unsigned long pte_update(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set,
int huge)
{
unsigned long old = pte_val(*ptep);
*ptep = __pte((old & ~clr) | set);
/* huge pages use the old page table lock */
if (!huge)
assert_pte_locked(mm, addr);
return old;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if (pte_young(*ptep))
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
}
#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_RW) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep) \
({ \
int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
__ptep); \
__young; \
})
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
/* Set the dirty and/or accessed bits atomically in a linux PTE */
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
pte_t *ptep, pte_t entry,
unsigned long address,
int psize)
{
unsigned long bits = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long old = pte_val(*ptep);
*ptep = __pte(old | bits);
flush_tlb_page(vma, address);
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
} while (0)
#define SWP_TYPE_BITS 5
#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << _PAGE_BIT_SWAP_TYPE) \
| ((offset) << PTE_RPN_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) })
#define __swp_entry_to_pte(x) __pte((x).val)
int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot);
extern int __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys);
extern void vmemmap_remove_mapping(unsigned long start,
unsigned long page_size);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */
|