1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
*
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <linux/unaligned.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/internal/simd.h>
#include <linux/cpufeature.h>
#include <linux/module.h>
#include "aes-ce-setkey.h"
MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
struct aes_block {
u8 b[AES_BLOCK_SIZE];
};
asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
asmlinkage u32 __aes_ce_sub(u32 l);
asmlinkage void __aes_ce_invert(struct aes_block *out,
const struct aes_block *in);
static int num_rounds(struct crypto_aes_ctx *ctx)
{
/*
* # of rounds specified by AES:
* 128 bit key 10 rounds
* 192 bit key 12 rounds
* 256 bit key 14 rounds
* => n byte key => 6 + (n/4) rounds
*/
return 6 + ctx->key_length / 4;
}
static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
{
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (!crypto_simd_usable()) {
aes_encrypt(ctx, dst, src);
return;
}
kernel_neon_begin();
__aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
kernel_neon_end();
}
static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
{
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (!crypto_simd_usable()) {
aes_decrypt(ctx, dst, src);
return;
}
kernel_neon_begin();
__aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
kernel_neon_end();
}
int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
unsigned int key_len)
{
/*
* The AES key schedule round constants
*/
static u8 const rcon[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
};
u32 kwords = key_len / sizeof(u32);
struct aes_block *key_enc, *key_dec;
int i, j;
if (key_len != AES_KEYSIZE_128 &&
key_len != AES_KEYSIZE_192 &&
key_len != AES_KEYSIZE_256)
return -EINVAL;
ctx->key_length = key_len;
for (i = 0; i < kwords; i++)
ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
kernel_neon_begin();
for (i = 0; i < sizeof(rcon); i++) {
u32 *rki = ctx->key_enc + (i * kwords);
u32 *rko = rki + kwords;
rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
rko[1] = rko[0] ^ rki[1];
rko[2] = rko[1] ^ rki[2];
rko[3] = rko[2] ^ rki[3];
if (key_len == AES_KEYSIZE_192) {
if (i >= 7)
break;
rko[4] = rko[3] ^ rki[4];
rko[5] = rko[4] ^ rki[5];
} else if (key_len == AES_KEYSIZE_256) {
if (i >= 6)
break;
rko[4] = __aes_ce_sub(rko[3]) ^ rki[4];
rko[5] = rko[4] ^ rki[5];
rko[6] = rko[5] ^ rki[6];
rko[7] = rko[6] ^ rki[7];
}
}
/*
* Generate the decryption keys for the Equivalent Inverse Cipher.
* This involves reversing the order of the round keys, and applying
* the Inverse Mix Columns transformation on all but the first and
* the last one.
*/
key_enc = (struct aes_block *)ctx->key_enc;
key_dec = (struct aes_block *)ctx->key_dec;
j = num_rounds(ctx);
key_dec[0] = key_enc[j];
for (i = 1, j--; j > 0; i++, j--)
__aes_ce_invert(key_dec + i, key_enc + j);
key_dec[i] = key_enc[0];
kernel_neon_end();
return 0;
}
EXPORT_SYMBOL(ce_aes_expandkey);
int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
return ce_aes_expandkey(ctx, in_key, key_len);
}
EXPORT_SYMBOL(ce_aes_setkey);
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-ce",
.cra_priority = 250,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
.cra_cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = ce_aes_setkey,
.cia_encrypt = aes_cipher_encrypt,
.cia_decrypt = aes_cipher_decrypt
}
};
static int __init aes_mod_init(void)
{
return crypto_register_alg(&aes_alg);
}
static void __exit aes_mod_exit(void)
{
crypto_unregister_alg(&aes_alg);
}
module_cpu_feature_match(AES, aes_mod_init);
module_exit(aes_mod_exit);
|