// SPDX-License-Identifier: GPL-2.0 #include "bpf_misc.h" #include "bpf_experimental.h" struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, 8); __type(key, __u32); __type(value, __u64); } map SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_USER_RINGBUF); __uint(max_entries, 8); } ringbuf SEC(".maps"); struct vm_area_struct; struct bpf_map; struct buf_context { char *buf; }; struct num_context { __u64 i; __u64 j; }; __u8 choice_arr[2] = { 0, 1 }; static int unsafe_on_2nd_iter_cb(__u32 idx, struct buf_context *ctx) { if (idx == 0) { ctx->buf = (char *)(0xDEAD); return 0; } if (bpf_probe_read_user(ctx->buf, 8, (void *)(0xBADC0FFEE))) return 1; return 0; } SEC("?raw_tp") __failure __msg("R1 type=scalar expected=fp") int unsafe_on_2nd_iter(void *unused) { char buf[4]; struct buf_context loop_ctx = { .buf = buf }; bpf_loop(100, unsafe_on_2nd_iter_cb, &loop_ctx, 0); return 0; } static int unsafe_on_zero_iter_cb(__u32 idx, struct num_context *ctx) { ctx->i = 0; return 0; } SEC("?raw_tp") __failure __msg("invalid access to map value, value_size=2 off=32 size=1") int unsafe_on_zero_iter(void *unused) { struct num_context loop_ctx = { .i = 32 }; bpf_loop(100, unsafe_on_zero_iter_cb, &loop_ctx, 0); return choice_arr[loop_ctx.i]; } static int widening_cb(__u32 idx, struct num_context *ctx) { ++ctx->i; return 0; } SEC("?raw_tp") __success int widening(void *unused) { struct num_context loop_ctx = { .i = 0, .j = 1 }; bpf_loop(100, widening_cb, &loop_ctx, 0); /* loop_ctx.j is not changed during callback iteration, * verifier should not apply widening to it. */ return choice_arr[loop_ctx.j]; } static int loop_detection_cb(__u32 idx, struct num_context *ctx) { for (;;) {} return 0; } SEC("?raw_tp") __failure __msg("infinite loop detected") int loop_detection(void *unused) { struct num_context loop_ctx = { .i = 0 }; bpf_loop(100, loop_detection_cb, &loop_ctx, 0); return 0; } static __always_inline __u64 oob_state_machine(struct num_context *ctx) { switch (ctx->i) { case 0: ctx->i = 1; break; case 1: ctx->i = 32; break; } return 0; } static __u64 for_each_map_elem_cb(struct bpf_map *map, __u32 *key, __u64 *val, void *data) { return oob_state_machine(data); } SEC("?raw_tp") __failure __msg("invalid access to map value, value_size=2 off=32 size=1") int unsafe_for_each_map_elem(void *unused) { struct num_context loop_ctx = { .i = 0 }; bpf_for_each_map_elem(&map, for_each_map_elem_cb, &loop_ctx, 0); return choice_arr[loop_ctx.i]; } static __u64 ringbuf_drain_cb(struct bpf_dynptr *dynptr, void *data) { return oob_state_machine(data); } SEC("?raw_tp") __failure __msg("invalid access to map value, value_size=2 off=32 size=1") int unsafe_ringbuf_drain(void *unused) { struct num_context loop_ctx = { .i = 0 }; bpf_user_ringbuf_drain(&ringbuf, ringbuf_drain_cb, &loop_ctx, 0); return choice_arr[loop_ctx.i]; } static __u64 find_vma_cb(struct task_struct *task, struct vm_area_struct *vma, void *data) { return oob_state_machine(data); } SEC("?raw_tp") __failure __msg("invalid access to map value, value_size=2 off=32 size=1") int unsafe_find_vma(void *unused) { struct task_struct *task = bpf_get_current_task_btf(); struct num_context loop_ctx = { .i = 0 }; bpf_find_vma(task, 0, find_vma_cb, &loop_ctx, 0); return choice_arr[loop_ctx.i]; } static int iter_limit_cb(__u32 idx, struct num_context *ctx) { ctx->i++; return 0; } SEC("?raw_tp") __success int bpf_loop_iter_limit_ok(void *unused) { struct num_context ctx = { .i = 0 }; bpf_loop(1, iter_limit_cb, &ctx, 0); return choice_arr[ctx.i]; } SEC("?raw_tp") __failure __msg("invalid access to map value, value_size=2 off=2 size=1") int bpf_loop_iter_limit_overflow(void *unused) { struct num_context ctx = { .i = 0 }; bpf_loop(2, iter_limit_cb, &ctx, 0); return choice_arr[ctx.i]; } static int iter_limit_level2a_cb(__u32 idx, struct num_context *ctx) { ctx->i += 100; return 0; } static int iter_limit_level2b_cb(__u32 idx, struct num_context *ctx) { ctx->i += 10; return 0; } static int iter_limit_level1_cb(__u32 idx, struct num_context *ctx) { ctx->i += 1; bpf_loop(1, iter_limit_level2a_cb, ctx, 0); bpf_loop(1, iter_limit_level2b_cb, ctx, 0); return 0; } /* Check that path visiting every callback function once had been * reached by verifier. Variables 'ctx{1,2}i' below serve as flags, * with each decimal digit corresponding to a callback visit marker. */ SEC("socket") __success __retval(111111) int bpf_loop_iter_limit_nested(void *unused) { struct num_context ctx1 = { .i = 0 }; struct num_context ctx2 = { .i = 0 }; __u64 a, b, c; bpf_loop(1, iter_limit_level1_cb, &ctx1, 0); bpf_loop(1, iter_limit_level1_cb, &ctx2, 0); a = ctx1.i; b = ctx2.i; /* Force 'ctx1.i' and 'ctx2.i' precise. */ c = choice_arr[(a + b) % 2]; /* This makes 'c' zero, but neither clang nor verifier know it. */ c /= 10; /* Make sure that verifier does not visit 'impossible' states: * enumerate all possible callback visit masks. */ if (a != 0 && a != 1 && a != 11 && a != 101 && a != 111 && b != 0 && b != 1 && b != 11 && b != 101 && b != 111) asm volatile ("r0 /= 0;" ::: "r0"); return 1000 * a + b + c; } struct iter_limit_bug_ctx { __u64 a; __u64 b; __u64 c; }; static __naked void iter_limit_bug_cb(void) { /* This is the same as C code below, but written * in assembly to control which branches are fall-through. * * switch (bpf_get_prandom_u32()) { * case 1: ctx->a = 42; break; * case 2: ctx->b = 42; break; * default: ctx->c = 42; break; * } */ asm volatile ( "r9 = r2;" "call %[bpf_get_prandom_u32];" "r1 = r0;" "r2 = 42;" "r0 = 0;" "if r1 == 0x1 goto 1f;" "if r1 == 0x2 goto 2f;" "*(u64 *)(r9 + 16) = r2;" "exit;" "1: *(u64 *)(r9 + 0) = r2;" "exit;" "2: *(u64 *)(r9 + 8) = r2;" "exit;" : : __imm(bpf_get_prandom_u32) : __clobber_all ); } int tmp_var; SEC("socket") __failure __msg("infinite loop detected at insn 2") __naked void jgt_imm64_and_may_goto(void) { asm volatile (" \ r0 = %[tmp_var] ll; \ l0_%=: .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short -3; /* off -3 */ \ .long 0; /* imm */ \ if r0 > 10 goto l0_%=; \ r0 = 0; \ exit; \ " :: __imm_addr(tmp_var) : __clobber_all); } SEC("socket") __failure __msg("infinite loop detected at insn 1") __naked void may_goto_self(void) { asm volatile (" \ r0 = *(u32 *)(r10 - 4); \ l0_%=: .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short -1; /* off -1 */ \ .long 0; /* imm */ \ if r0 > 10 goto l0_%=; \ r0 = 0; \ exit; \ " ::: __clobber_all); } SEC("socket") __success __retval(0) __naked void may_goto_neg_off(void) { asm volatile (" \ r0 = *(u32 *)(r10 - 4); \ goto l0_%=; \ goto l1_%=; \ l0_%=: .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short -2; /* off -2 */ \ .long 0; /* imm */ \ if r0 > 10 goto l0_%=; \ l1_%=: r0 = 0; \ exit; \ " ::: __clobber_all); } SEC("tc") __failure __flag(BPF_F_TEST_STATE_FREQ) int iter_limit_bug(struct __sk_buff *skb) { struct iter_limit_bug_ctx ctx = { 7, 7, 7 }; bpf_loop(2, iter_limit_bug_cb, &ctx, 0); /* This is the same as C code below, * written in assembly to guarantee checks order. * * if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7) * asm volatile("r1 /= 0;":::"r1"); */ asm volatile ( "r1 = *(u64 *)%[ctx_a];" "if r1 != 42 goto 1f;" "r1 = *(u64 *)%[ctx_b];" "if r1 != 42 goto 1f;" "r1 = *(u64 *)%[ctx_c];" "if r1 != 7 goto 1f;" "r1 /= 0;" "1:" : : [ctx_a]"m"(ctx.a), [ctx_b]"m"(ctx.b), [ctx_c]"m"(ctx.c) : "r1" ); return 0; } SEC("socket") __success __retval(0) __naked void ja_and_may_goto(void) { asm volatile (" \ l0_%=: .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short 1; /* off 1 */ \ .long 0; /* imm */ \ goto l0_%=; \ r0 = 0; \ exit; \ " ::: __clobber_common); } SEC("socket") __success __retval(0) __naked void ja_and_may_goto2(void) { asm volatile (" \ l0_%=: r0 = 0; \ .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short 1; /* off 1 */ \ .long 0; /* imm */ \ goto l0_%=; \ r0 = 0; \ exit; \ " ::: __clobber_common); } SEC("socket") __success __retval(0) __naked void jlt_and_may_goto(void) { asm volatile (" \ l0_%=: call %[bpf_jiffies64]; \ .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short 1; /* off 1 */ \ .long 0; /* imm */ \ if r0 < 10 goto l0_%=; \ r0 = 0; \ exit; \ " :: __imm(bpf_jiffies64) : __clobber_all); } #if (defined(__TARGET_ARCH_arm64) || defined(__TARGET_ARCH_x86) || \ (defined(__TARGET_ARCH_riscv) && __riscv_xlen == 64) || \ defined(__TARGET_ARCH_arm) || defined(__TARGET_ARCH_s390) || \ defined(__TARGET_ARCH_loongarch)) && \ __clang_major__ >= 18 SEC("socket") __success __retval(0) __naked void gotol_and_may_goto(void) { asm volatile (" \ l0_%=: r0 = 0; \ .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short 1; /* off 1 */ \ .long 0; /* imm */ \ gotol l0_%=; \ r0 = 0; \ exit; \ " ::: __clobber_common); } #endif SEC("socket") __success __retval(0) __naked void ja_and_may_goto_subprog(void) { asm volatile (" \ call subprog_with_may_goto; \ exit; \ " ::: __clobber_all); } static __naked __noinline __used void subprog_with_may_goto(void) { asm volatile (" \ l0_%=: .byte 0xe5; /* may_goto */ \ .byte 0; /* regs */ \ .short 1; /* off 1 */ \ .long 0; /* imm */ \ goto l0_%=; \ r0 = 0; \ exit; \ " ::: __clobber_all); } #define ARR_SZ 1000000 int zero; char arr[ARR_SZ]; SEC("socket") __success __retval(0xd495cdc0) int cond_break1(const void *ctx) { unsigned long i; unsigned int sum = 0; for (i = zero; i < ARR_SZ && can_loop; i++) sum += i; for (i = zero; i < ARR_SZ; i++) { barrier_var(i); sum += i + arr[i]; cond_break; } return sum; } SEC("socket") __success __retval(999000000) int cond_break2(const void *ctx) { int i, j; int sum = 0; for (i = zero; i < 1000 && can_loop; i++) for (j = zero; j < 1000; j++) { sum += i + j; cond_break; } return sum; } static __noinline int loop(void) { int i, sum = 0; for (i = zero; i <= 1000000 && can_loop; i++) sum += i; return sum; } SEC("socket") __success __retval(0x6a5a2920) int cond_break3(const void *ctx) { return loop(); } SEC("socket") __success __retval(1) int cond_break4(const void *ctx) { int cnt = zero; for (;;) { /* should eventually break out of the loop */ cond_break; cnt++; } /* if we looped a bit, it's a success */ return cnt > 1 ? 1 : 0; } static __noinline int static_subprog(void) { int cnt = zero; for (;;) { cond_break; cnt++; } return cnt; } SEC("socket") __success __retval(1) int cond_break5(const void *ctx) { int cnt1 = zero, cnt2; for (;;) { cond_break; cnt1++; } cnt2 = static_subprog(); /* main and subprog have to loop a bit */ return cnt1 > 1 && cnt2 > 1 ? 1 : 0; } char _license[] SEC("license") = "GPL";