//! Memory allocation APIs #![stable(feature = "alloc_module", since = "1.28.0")] #[cfg(not(test))] use core::intrinsics; use core::intrinsics::{min_align_of_val, size_of_val}; use core::ptr::Unique; #[cfg(not(test))] use core::ptr::{self, NonNull}; #[stable(feature = "alloc_module", since = "1.28.0")] #[doc(inline)] pub use core::alloc::*; use core::marker::Destruct; #[cfg(test)] mod tests; extern "Rust" { // These are the magic symbols to call the global allocator. rustc generates // them to call `__rg_alloc` etc. if there is a `#[global_allocator]` attribute // (the code expanding that attribute macro generates those functions), or to call // the default implementations in libstd (`__rdl_alloc` etc. in `library/std/src/alloc.rs`) // otherwise. // The rustc fork of LLVM also special-cases these function names to be able to optimize them // like `malloc`, `realloc`, and `free`, respectively. #[rustc_allocator] #[rustc_allocator_nounwind] fn __rust_alloc(size: usize, align: usize) -> *mut u8; #[rustc_allocator_nounwind] fn __rust_dealloc(ptr: *mut u8, size: usize, align: usize); #[rustc_allocator_nounwind] fn __rust_realloc(ptr: *mut u8, old_size: usize, align: usize, new_size: usize) -> *mut u8; #[rustc_allocator_nounwind] fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8; } /// The global memory allocator. /// /// This type implements the [`Allocator`] trait by forwarding calls /// to the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// Note: while this type is unstable, the functionality it provides can be /// accessed through the [free functions in `alloc`](self#functions). #[unstable(feature = "allocator_api", issue = "32838")] #[derive(Copy, Clone, Default, Debug)] #[cfg(not(test))] pub struct Global; #[cfg(test)] pub use std::alloc::Global; /// Allocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::alloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `alloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::alloc`]. /// /// # Examples /// /// ``` /// use std::alloc::{alloc, dealloc, Layout}; /// /// unsafe { /// let layout = Layout::new::(); /// let ptr = alloc(layout); /// /// *(ptr as *mut u16) = 42; /// assert_eq!(*(ptr as *mut u16), 42); /// /// dealloc(ptr, layout); /// } /// ``` #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn alloc(layout: Layout) -> *mut u8 { unsafe { __rust_alloc(layout.size(), layout.align()) } } /// Deallocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::dealloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `dealloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::dealloc`]. #[stable(feature = "global_alloc", since = "1.28.0")] #[inline] pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) { unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) } } /// Reallocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::realloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `realloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::realloc`]. #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn realloc(ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { unsafe { __rust_realloc(ptr, layout.size(), layout.align(), new_size) } } /// Allocate zero-initialized memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::alloc_zeroed`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `alloc_zeroed` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::alloc_zeroed`]. /// /// # Examples /// /// ``` /// use std::alloc::{alloc_zeroed, dealloc, Layout}; /// /// unsafe { /// let layout = Layout::new::(); /// let ptr = alloc_zeroed(layout); /// /// assert_eq!(*(ptr as *mut u16), 0); /// /// dealloc(ptr, layout); /// } /// ``` #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8 { unsafe { __rust_alloc_zeroed(layout.size(), layout.align()) } } #[cfg(not(test))] impl Global { #[inline] fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result, AllocError> { match layout.size() { 0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)), // SAFETY: `layout` is non-zero in size, size => unsafe { let raw_ptr = if zeroed { alloc_zeroed(layout) } else { alloc(layout) }; let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; Ok(NonNull::slice_from_raw_parts(ptr, size)) }, } } // SAFETY: Same as `Allocator::grow` #[inline] unsafe fn grow_impl( &self, ptr: NonNull, old_layout: Layout, new_layout: Layout, zeroed: bool, ) -> Result, AllocError> { debug_assert!( new_layout.size() >= old_layout.size(), "`new_layout.size()` must be greater than or equal to `old_layout.size()`" ); match old_layout.size() { 0 => self.alloc_impl(new_layout, zeroed), // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size` // as required by safety conditions. Other conditions must be upheld by the caller old_size if old_layout.align() == new_layout.align() => unsafe { let new_size = new_layout.size(); // `realloc` probably checks for `new_size >= old_layout.size()` or something similar. intrinsics::assume(new_size >= old_layout.size()); let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; if zeroed { raw_ptr.add(old_size).write_bytes(0, new_size - old_size); } Ok(NonNull::slice_from_raw_parts(ptr, new_size)) }, // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`, // both the old and new memory allocation are valid for reads and writes for `old_size` // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract // for `dealloc` must be upheld by the caller. old_size => unsafe { let new_ptr = self.alloc_impl(new_layout, zeroed)?; ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size); self.deallocate(ptr, old_layout); Ok(new_ptr) }, } } } #[unstable(feature = "allocator_api", issue = "32838")] #[cfg(not(test))] unsafe impl Allocator for Global { #[inline] fn allocate(&self, layout: Layout) -> Result, AllocError> { self.alloc_impl(layout, false) } #[inline] fn allocate_zeroed(&self, layout: Layout) -> Result, AllocError> { self.alloc_impl(layout, true) } #[inline] unsafe fn deallocate(&self, ptr: NonNull, layout: Layout) { if layout.size() != 0 { // SAFETY: `layout` is non-zero in size, // other conditions must be upheld by the caller unsafe { dealloc(ptr.as_ptr(), layout) } } } #[inline] unsafe fn grow( &self, ptr: NonNull, old_layout: Layout, new_layout: Layout, ) -> Result, AllocError> { // SAFETY: all conditions must be upheld by the caller unsafe { self.grow_impl(ptr, old_layout, new_layout, false) } } #[inline] unsafe fn grow_zeroed( &self, ptr: NonNull, old_layout: Layout, new_layout: Layout, ) -> Result, AllocError> { // SAFETY: all conditions must be upheld by the caller unsafe { self.grow_impl(ptr, old_layout, new_layout, true) } } #[inline] unsafe fn shrink( &self, ptr: NonNull, old_layout: Layout, new_layout: Layout, ) -> Result, AllocError> { debug_assert!( new_layout.size() <= old_layout.size(), "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" ); match new_layout.size() { // SAFETY: conditions must be upheld by the caller 0 => unsafe { self.deallocate(ptr, old_layout); Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0)) }, // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller new_size if old_layout.align() == new_layout.align() => unsafe { // `realloc` probably checks for `new_size <= old_layout.size()` or something similar. intrinsics::assume(new_size <= old_layout.size()); let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; Ok(NonNull::slice_from_raw_parts(ptr, new_size)) }, // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`, // both the old and new memory allocation are valid for reads and writes for `new_size` // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract // for `dealloc` must be upheld by the caller. new_size => unsafe { let new_ptr = self.allocate(new_layout)?; ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size); self.deallocate(ptr, old_layout); Ok(new_ptr) }, } } } /// The allocator for unique pointers. #[cfg(all(not(no_global_oom_handling), not(test)))] #[lang = "exchange_malloc"] #[inline] unsafe fn exchange_malloc(size: usize, align: usize) -> *mut u8 { let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; match Global.allocate(layout) { Ok(ptr) => ptr.as_mut_ptr(), Err(_) => handle_alloc_error(layout), } } #[cfg_attr(not(test), lang = "box_free")] #[inline] #[rustc_const_unstable(feature = "const_box", issue = "92521")] // This signature has to be the same as `Box`, otherwise an ICE will happen. // When an additional parameter to `Box` is added (like `A: Allocator`), this has to be added here as // well. // For example if `Box` is changed to `struct Box(Unique, A)`, // this function has to be changed to `fn box_free(Unique, A)` as well. pub(crate) const unsafe fn box_free( ptr: Unique, alloc: A, ) { unsafe { let size = size_of_val(ptr.as_ref()); let align = min_align_of_val(ptr.as_ref()); let layout = Layout::from_size_align_unchecked(size, align); alloc.deallocate(From::from(ptr.cast()), layout) } } // # Allocation error handler #[cfg(not(no_global_oom_handling))] extern "Rust" { // This is the magic symbol to call the global alloc error handler. rustc generates // it to call `__rg_oom` if there is a `#[alloc_error_handler]`, or to call the // default implementations below (`__rdl_oom`) otherwise. fn __rust_alloc_error_handler(size: usize, align: usize) -> !; } /// Abort on memory allocation error or failure. /// /// Callers of memory allocation APIs wishing to abort computation /// in response to an allocation error are encouraged to call this function, /// rather than directly invoking `panic!` or similar. /// /// The default behavior of this function is to print a message to standard error /// and abort the process. /// It can be replaced with [`set_alloc_error_hook`] and [`take_alloc_error_hook`]. /// /// [`set_alloc_error_hook`]: ../../std/alloc/fn.set_alloc_error_hook.html /// [`take_alloc_error_hook`]: ../../std/alloc/fn.take_alloc_error_hook.html #[stable(feature = "global_alloc", since = "1.28.0")] #[rustc_const_unstable(feature = "const_alloc_error", issue = "92523")] #[cfg(all(not(no_global_oom_handling), not(test)))] #[cold] pub const fn handle_alloc_error(layout: Layout) -> ! { const fn ct_error(_: Layout) -> ! { panic!("allocation failed"); } fn rt_error(layout: Layout) -> ! { unsafe { __rust_alloc_error_handler(layout.size(), layout.align()); } } unsafe { core::intrinsics::const_eval_select((layout,), ct_error, rt_error) } } // For alloc test `std::alloc::handle_alloc_error` can be used directly. #[cfg(all(not(no_global_oom_handling), test))] pub use std::alloc::handle_alloc_error; #[cfg(all(not(no_global_oom_handling), not(test)))] #[doc(hidden)] #[allow(unused_attributes)] #[unstable(feature = "alloc_internals", issue = "none")] pub mod __alloc_error_handler { use crate::alloc::Layout; // called via generated `__rust_alloc_error_handler` // if there is no `#[alloc_error_handler]` #[rustc_std_internal_symbol] pub unsafe extern "C-unwind" fn __rdl_oom(size: usize, _align: usize) -> ! { panic!("memory allocation of {size} bytes failed") } // if there is an `#[alloc_error_handler]` #[rustc_std_internal_symbol] pub unsafe extern "C-unwind" fn __rg_oom(size: usize, align: usize) -> ! { let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; extern "Rust" { #[lang = "oom"] fn oom_impl(layout: Layout) -> !; } unsafe { oom_impl(layout) } } } /// Specialize clones into pre-allocated, uninitialized memory. /// Used by `Box::clone` and `Rc`/`Arc::make_mut`. pub(crate) trait WriteCloneIntoRaw: Sized { unsafe fn write_clone_into_raw(&self, target: *mut Self); } impl WriteCloneIntoRaw for T { #[inline] default unsafe fn write_clone_into_raw(&self, target: *mut Self) { // Having allocated *first* may allow the optimizer to create // the cloned value in-place, skipping the local and move. unsafe { target.write(self.clone()) }; } } impl WriteCloneIntoRaw for T { #[inline] unsafe fn write_clone_into_raw(&self, target: *mut Self) { // We can always copy in-place, without ever involving a local value. unsafe { target.copy_from_nonoverlapping(self, 1) }; } }