// SPDX-License-Identifier: GPL-2.0 /* * cfg80211 scan result handling * * Copyright 2008 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2016 Intel Deutschland GmbH * Copyright (C) 2018-2024 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "nl80211.h" #include "wext-compat.h" #include "rdev-ops.h" /** * DOC: BSS tree/list structure * * At the top level, the BSS list is kept in both a list in each * registered device (@bss_list) as well as an RB-tree for faster * lookup. In the RB-tree, entries can be looked up using their * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID * for other BSSes. * * Due to the possibility of hidden SSIDs, there's a second level * structure, the "hidden_list" and "hidden_beacon_bss" pointer. * The hidden_list connects all BSSes belonging to a single AP * that has a hidden SSID, and connects beacon and probe response * entries. For a probe response entry for a hidden SSID, the * hidden_beacon_bss pointer points to the BSS struct holding the * beacon's information. * * Reference counting is done for all these references except for * the hidden_list, so that a beacon BSS struct that is otherwise * not referenced has one reference for being on the bss_list and * one for each probe response entry that points to it using the * hidden_beacon_bss pointer. When a BSS struct that has such a * pointer is get/put, the refcount update is also propagated to * the referenced struct, this ensure that it cannot get removed * while somebody is using the probe response version. * * Note that the hidden_beacon_bss pointer never changes, due to * the reference counting. Therefore, no locking is needed for * it. * * Also note that the hidden_beacon_bss pointer is only relevant * if the driver uses something other than the IEs, e.g. private * data stored in the BSS struct, since the beacon IEs are * also linked into the probe response struct. */ /* * Limit the number of BSS entries stored in mac80211. Each one is * a bit over 4k at most, so this limits to roughly 4-5M of memory. * If somebody wants to really attack this though, they'd likely * use small beacons, and only one type of frame, limiting each of * the entries to a much smaller size (in order to generate more * entries in total, so overhead is bigger.) */ static int bss_entries_limit = 1000; module_param(bss_entries_limit, int, 0644); MODULE_PARM_DESC(bss_entries_limit, "limit to number of scan BSS entries (per wiphy, default 1000)"); #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) static void bss_free(struct cfg80211_internal_bss *bss) { struct cfg80211_bss_ies *ies; if (WARN_ON(atomic_read(&bss->hold))) return; ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); if (ies && !bss->pub.hidden_beacon_bss) kfree_rcu(ies, rcu_head); ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); if (ies) kfree_rcu(ies, rcu_head); /* * This happens when the module is removed, it doesn't * really matter any more save for completeness */ if (!list_empty(&bss->hidden_list)) list_del(&bss->hidden_list); kfree(bss); } static inline void bss_ref_get(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *bss) { lockdep_assert_held(&rdev->bss_lock); bss->refcount++; if (bss->pub.hidden_beacon_bss) bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; if (bss->pub.transmitted_bss) bss_from_pub(bss->pub.transmitted_bss)->refcount++; } static inline void bss_ref_put(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *bss) { lockdep_assert_held(&rdev->bss_lock); if (bss->pub.hidden_beacon_bss) { struct cfg80211_internal_bss *hbss; hbss = bss_from_pub(bss->pub.hidden_beacon_bss); hbss->refcount--; if (hbss->refcount == 0) bss_free(hbss); } if (bss->pub.transmitted_bss) { struct cfg80211_internal_bss *tbss; tbss = bss_from_pub(bss->pub.transmitted_bss); tbss->refcount--; if (tbss->refcount == 0) bss_free(tbss); } bss->refcount--; if (bss->refcount == 0) bss_free(bss); } static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *bss) { lockdep_assert_held(&rdev->bss_lock); if (!list_empty(&bss->hidden_list)) { /* * don't remove the beacon entry if it has * probe responses associated with it */ if (!bss->pub.hidden_beacon_bss) return false; /* * if it's a probe response entry break its * link to the other entries in the group */ list_del_init(&bss->hidden_list); } list_del_init(&bss->list); list_del_init(&bss->pub.nontrans_list); rb_erase(&bss->rbn, &rdev->bss_tree); rdev->bss_entries--; WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), "rdev bss entries[%d]/list[empty:%d] corruption\n", rdev->bss_entries, list_empty(&rdev->bss_list)); bss_ref_put(rdev, bss); return true; } bool cfg80211_is_element_inherited(const struct element *elem, const struct element *non_inherit_elem) { u8 id_len, ext_id_len, i, loop_len, id; const u8 *list; if (elem->id == WLAN_EID_MULTIPLE_BSSID) return false; if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) return false; if (!non_inherit_elem || non_inherit_elem->datalen < 2) return true; /* * non inheritance element format is: * ext ID (56) | IDs list len | list | extension IDs list len | list * Both lists are optional. Both lengths are mandatory. * This means valid length is: * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths */ id_len = non_inherit_elem->data[1]; if (non_inherit_elem->datalen < 3 + id_len) return true; ext_id_len = non_inherit_elem->data[2 + id_len]; if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) return true; if (elem->id == WLAN_EID_EXTENSION) { if (!ext_id_len) return true; loop_len = ext_id_len; list = &non_inherit_elem->data[3 + id_len]; id = elem->data[0]; } else { if (!id_len) return true; loop_len = id_len; list = &non_inherit_elem->data[2]; id = elem->id; } for (i = 0; i < loop_len; i++) { if (list[i] == id) return false; } return true; } EXPORT_SYMBOL(cfg80211_is_element_inherited); static size_t cfg80211_copy_elem_with_frags(const struct element *elem, const u8 *ie, size_t ie_len, u8 **pos, u8 *buf, size_t buf_len) { if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || elem->data + elem->datalen > ie + ie_len)) return 0; if (elem->datalen + 2 > buf + buf_len - *pos) return 0; memcpy(*pos, elem, elem->datalen + 2); *pos += elem->datalen + 2; /* Finish if it is not fragmented */ if (elem->datalen != 255) return *pos - buf; ie_len = ie + ie_len - elem->data - elem->datalen; ie = (const u8 *)elem->data + elem->datalen; for_each_element(elem, ie, ie_len) { if (elem->id != WLAN_EID_FRAGMENT) break; if (elem->datalen + 2 > buf + buf_len - *pos) return 0; memcpy(*pos, elem, elem->datalen + 2); *pos += elem->datalen + 2; if (elem->datalen != 255) break; } return *pos - buf; } VISIBLE_IF_CFG80211_KUNIT size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, const u8 *subie, size_t subie_len, u8 *new_ie, size_t new_ie_len) { const struct element *non_inherit_elem, *parent, *sub; u8 *pos = new_ie; u8 id, ext_id; unsigned int match_len; non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, subie, subie_len); /* We copy the elements one by one from the parent to the generated * elements. * If they are not inherited (included in subie or in the non * inheritance element), then we copy all occurrences the first time * we see this element type. */ for_each_element(parent, ie, ielen) { if (parent->id == WLAN_EID_FRAGMENT) continue; if (parent->id == WLAN_EID_EXTENSION) { if (parent->datalen < 1) continue; id = WLAN_EID_EXTENSION; ext_id = parent->data[0]; match_len = 1; } else { id = parent->id; match_len = 0; } /* Find first occurrence in subie */ sub = cfg80211_find_elem_match(id, subie, subie_len, &ext_id, match_len, 0); /* Copy from parent if not in subie and inherited */ if (!sub && cfg80211_is_element_inherited(parent, non_inherit_elem)) { if (!cfg80211_copy_elem_with_frags(parent, ie, ielen, &pos, new_ie, new_ie_len)) return 0; continue; } /* Already copied if an earlier element had the same type */ if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, &ext_id, match_len, 0)) continue; /* Not inheriting, copy all similar elements from subie */ while (sub) { if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, &pos, new_ie, new_ie_len)) return 0; sub = cfg80211_find_elem_match(id, sub->data + sub->datalen, subie_len + subie - (sub->data + sub->datalen), &ext_id, match_len, 0); } } /* The above misses elements that are included in subie but not in the * parent, so do a pass over subie and append those. * Skip the non-tx BSSID caps and non-inheritance element. */ for_each_element(sub, subie, subie_len) { if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) continue; if (sub->id == WLAN_EID_FRAGMENT) continue; if (sub->id == WLAN_EID_EXTENSION) { if (sub->datalen < 1) continue; id = WLAN_EID_EXTENSION; ext_id = sub->data[0]; match_len = 1; if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) continue; } else { id = sub->id; match_len = 0; } /* Processed if one was included in the parent */ if (cfg80211_find_elem_match(id, ie, ielen, &ext_id, match_len, 0)) continue; if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, &pos, new_ie, new_ie_len)) return 0; } return pos - new_ie; } EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, const u8 *ssid, size_t ssid_len) { const struct cfg80211_bss_ies *ies; const struct element *ssid_elem; if (bssid && !ether_addr_equal(a->bssid, bssid)) return false; if (!ssid) return true; ies = rcu_access_pointer(a->ies); if (!ies) return false; ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); if (!ssid_elem) return false; if (ssid_elem->datalen != ssid_len) return false; return memcmp(ssid_elem->data, ssid, ssid_len) == 0; } static int cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, struct cfg80211_bss *nontrans_bss) { const struct element *ssid_elem; struct cfg80211_bss *bss = NULL; rcu_read_lock(); ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); if (!ssid_elem) { rcu_read_unlock(); return -EINVAL; } /* check if nontrans_bss is in the list */ list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, ssid_elem->datalen)) { rcu_read_unlock(); return 0; } } rcu_read_unlock(); /* * This is a bit weird - it's not on the list, but already on another * one! The only way that could happen is if there's some BSSID/SSID * shared by multiple APs in their multi-BSSID profiles, potentially * with hidden SSID mixed in ... ignore it. */ if (!list_empty(&nontrans_bss->nontrans_list)) return -EINVAL; /* add to the list */ list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); return 0; } static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, unsigned long expire_time) { struct cfg80211_internal_bss *bss, *tmp; bool expired = false; lockdep_assert_held(&rdev->bss_lock); list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { if (atomic_read(&bss->hold)) continue; if (!time_after(expire_time, bss->ts)) continue; if (__cfg80211_unlink_bss(rdev, bss)) expired = true; } if (expired) rdev->bss_generation++; } static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) { struct cfg80211_internal_bss *bss, *oldest = NULL; bool ret; lockdep_assert_held(&rdev->bss_lock); list_for_each_entry(bss, &rdev->bss_list, list) { if (atomic_read(&bss->hold)) continue; if (!list_empty(&bss->hidden_list) && !bss->pub.hidden_beacon_bss) continue; if (oldest && time_before(oldest->ts, bss->ts)) continue; oldest = bss; } if (WARN_ON(!oldest)) return false; /* * The callers make sure to increase rdev->bss_generation if anything * gets removed (and a new entry added), so there's no need to also do * it here. */ ret = __cfg80211_unlink_bss(rdev, oldest); WARN_ON(!ret); return ret; } static u8 cfg80211_parse_bss_param(u8 data, struct cfg80211_colocated_ap *coloc_ap) { coloc_ap->oct_recommended = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); coloc_ap->same_ssid = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); coloc_ap->multi_bss = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); coloc_ap->transmitted_bssid = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); coloc_ap->unsolicited_probe = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); coloc_ap->colocated_ess = u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); } static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, const struct element **elem, u32 *s_ssid) { *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) return -EINVAL; *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); return 0; } VISIBLE_IF_CFG80211_KUNIT void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) { struct cfg80211_colocated_ap *ap, *tmp_ap; list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { list_del(&ap->list); kfree(ap); } } EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, const u8 *pos, u8 length, const struct element *ssid_elem, u32 s_ssid_tmp) { u8 bss_params; entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; /* The length is already verified by the caller to contain bss_params */ if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); entry->short_ssid_valid = true; bss_params = tbtt_info->bss_params; /* Ignore disabled links */ if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { if (le16_get_bits(tbtt_info->mld_params.params, IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) return -EINVAL; } if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, psd_20)) entry->psd_20 = tbtt_info->psd_20; } else { struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); bss_params = tbtt_info->bss_params; if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, psd_20)) entry->psd_20 = tbtt_info->psd_20; } /* ignore entries with invalid BSSID */ if (!is_valid_ether_addr(entry->bssid)) return -EINVAL; /* skip non colocated APs */ if (!cfg80211_parse_bss_param(bss_params, entry)) return -EINVAL; /* no information about the short ssid. Consider the entry valid * for now. It would later be dropped in case there are explicit * SSIDs that need to be matched */ if (!entry->same_ssid && !entry->short_ssid_valid) return 0; if (entry->same_ssid) { entry->short_ssid = s_ssid_tmp; entry->short_ssid_valid = true; /* * This is safe because we validate datalen in * cfg80211_parse_colocated_ap(), before calling this * function. */ memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); entry->ssid_len = ssid_elem->datalen; } return 0; } bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, enum cfg80211_rnr_iter_ret (*iter)(void *data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len), void *iter_data) { const struct element *rnr; const u8 *pos, *end; for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, elems, elems_len) { const struct ieee80211_neighbor_ap_info *info; pos = rnr->data; end = rnr->data + rnr->datalen; /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ while (sizeof(*info) <= end - pos) { u8 length, i, count; u8 type; info = (void *)pos; count = u8_get_bits(info->tbtt_info_hdr, IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; length = info->tbtt_info_len; pos += sizeof(*info); if (count * length > end - pos) return false; type = u8_get_bits(info->tbtt_info_hdr, IEEE80211_AP_INFO_TBTT_HDR_TYPE); for (i = 0; i < count; i++) { switch (iter(iter_data, type, info, pos, length)) { case RNR_ITER_CONTINUE: break; case RNR_ITER_BREAK: return true; case RNR_ITER_ERROR: return false; } pos += length; } } if (pos != end) return false; } return true; } EXPORT_SYMBOL_GPL(cfg80211_iter_rnr); struct colocated_ap_data { const struct element *ssid_elem; struct list_head ap_list; u32 s_ssid_tmp; int n_coloc; }; static enum cfg80211_rnr_iter_ret cfg80211_parse_colocated_ap_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { struct colocated_ap_data *data = _data; struct cfg80211_colocated_ap *entry; enum nl80211_band band; if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) return RNR_ITER_CONTINUE; if (!ieee80211_operating_class_to_band(info->op_class, &band)) return RNR_ITER_CONTINUE; /* TBTT info must include bss param + BSSID + (short SSID or * same_ssid bit to be set). Ignore other options, and move to * the next AP info */ if (band != NL80211_BAND_6GHZ || !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, bss_params) || tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, bss_params))) return RNR_ITER_CONTINUE; entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC); if (!entry) return RNR_ITER_ERROR; entry->center_freq = ieee80211_channel_to_frequency(info->channel, band); if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, data->ssid_elem, data->s_ssid_tmp)) { data->n_coloc++; list_add_tail(&entry->list, &data->ap_list); } else { kfree(entry); } return RNR_ITER_CONTINUE; } VISIBLE_IF_CFG80211_KUNIT int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, struct list_head *list) { struct colocated_ap_data data = {}; int ret; INIT_LIST_HEAD(&data.ap_list); ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); if (ret) return 0; if (!cfg80211_iter_rnr(ies->data, ies->len, cfg80211_parse_colocated_ap_iter, &data)) { cfg80211_free_coloc_ap_list(&data.ap_list); return 0; } list_splice_tail(&data.ap_list, list); return data.n_coloc; } EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, struct ieee80211_channel *chan, bool add_to_6ghz) { int i; u32 n_channels = request->n_channels; struct cfg80211_scan_6ghz_params *params = &request->scan_6ghz_params[request->n_6ghz_params]; for (i = 0; i < n_channels; i++) { if (request->channels[i] == chan) { if (add_to_6ghz) params->channel_idx = i; return; } } request->channels[n_channels] = chan; if (add_to_6ghz) request->scan_6ghz_params[request->n_6ghz_params].channel_idx = n_channels; request->n_channels++; } static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, struct cfg80211_scan_request *request) { int i; u32 s_ssid; for (i = 0; i < request->n_ssids; i++) { /* wildcard ssid in the scan request */ if (!request->ssids[i].ssid_len) { if (ap->multi_bss && !ap->transmitted_bssid) continue; return true; } if (ap->ssid_len && ap->ssid_len == request->ssids[i].ssid_len) { if (!memcmp(request->ssids[i].ssid, ap->ssid, ap->ssid_len)) return true; } else if (ap->short_ssid_valid) { s_ssid = ~crc32_le(~0, request->ssids[i].ssid, request->ssids[i].ssid_len); if (ap->short_ssid == s_ssid) return true; } } return false; } static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) { u8 i; struct cfg80211_colocated_ap *ap; int n_channels, count = 0, err; struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; LIST_HEAD(coloc_ap_list); bool need_scan_psc = true; const struct ieee80211_sband_iftype_data *iftd; size_t size, offs_ssids, offs_6ghz_params, offs_ies; rdev_req->scan_6ghz = true; if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) return -EOPNOTSUPP; iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], rdev_req->wdev->iftype); if (!iftd || !iftd->he_cap.has_he) return -EOPNOTSUPP; n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { struct cfg80211_internal_bss *intbss; spin_lock_bh(&rdev->bss_lock); list_for_each_entry(intbss, &rdev->bss_list, list) { struct cfg80211_bss *res = &intbss->pub; const struct cfg80211_bss_ies *ies; const struct element *ssid_elem; struct cfg80211_colocated_ap *entry; u32 s_ssid_tmp; int ret; ies = rcu_access_pointer(res->ies); count += cfg80211_parse_colocated_ap(ies, &coloc_ap_list); /* In case the scan request specified a specific BSSID * and the BSS is found and operating on 6GHz band then * add this AP to the collocated APs list. * This is relevant for ML probe requests when the lower * band APs have not been discovered. */ if (is_broadcast_ether_addr(rdev_req->bssid) || !ether_addr_equal(rdev_req->bssid, res->bssid) || res->channel->band != NL80211_BAND_6GHZ) continue; ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); if (ret) continue; entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC); if (!entry) continue; memcpy(entry->bssid, res->bssid, ETH_ALEN); entry->short_ssid = s_ssid_tmp; memcpy(entry->ssid, ssid_elem->data, ssid_elem->datalen); entry->ssid_len = ssid_elem->datalen; entry->short_ssid_valid = true; entry->center_freq = res->channel->center_freq; list_add_tail(&entry->list, &coloc_ap_list); count++; } spin_unlock_bh(&rdev->bss_lock); } size = struct_size(request, channels, n_channels); offs_ssids = size; size += sizeof(*request->ssids) * rdev_req->n_ssids; offs_6ghz_params = size; size += sizeof(*request->scan_6ghz_params) * count; offs_ies = size; size += rdev_req->ie_len; request = kzalloc(size, GFP_KERNEL); if (!request) { cfg80211_free_coloc_ap_list(&coloc_ap_list); return -ENOMEM; } *request = *rdev_req; request->n_channels = 0; request->n_6ghz_params = 0; if (rdev_req->n_ssids) { /* * Add the ssids from the parent scan request to the new * scan request, so the driver would be able to use them * in its probe requests to discover hidden APs on PSC * channels. */ request->ssids = (void *)request + offs_ssids; memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * request->n_ssids); } request->scan_6ghz_params = (void *)request + offs_6ghz_params; if (rdev_req->ie_len) { void *ie = (void *)request + offs_ies; memcpy(ie, rdev_req->ie, rdev_req->ie_len); request->ie = ie; } /* * PSC channels should not be scanned in case of direct scan with 1 SSID * and at least one of the reported co-located APs with same SSID * indicating that all APs in the same ESS are co-located */ if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { list_for_each_entry(ap, &coloc_ap_list, list) { if (ap->colocated_ess && cfg80211_find_ssid_match(ap, request)) { need_scan_psc = false; break; } } } /* * add to the scan request the channels that need to be scanned * regardless of the collocated APs (PSC channels or all channels * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) */ for (i = 0; i < rdev_req->n_channels; i++) { if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && ((need_scan_psc && cfg80211_channel_is_psc(rdev_req->channels[i])) || !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { cfg80211_scan_req_add_chan(request, rdev_req->channels[i], false); } } if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) goto skip; list_for_each_entry(ap, &coloc_ap_list, list) { bool found = false; struct cfg80211_scan_6ghz_params *scan_6ghz_params = &request->scan_6ghz_params[request->n_6ghz_params]; struct ieee80211_channel *chan = ieee80211_get_channel(&rdev->wiphy, ap->center_freq); if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) continue; for (i = 0; i < rdev_req->n_channels; i++) { if (rdev_req->channels[i] == chan) found = true; } if (!found) continue; if (request->n_ssids > 0 && !cfg80211_find_ssid_match(ap, request)) continue; if (!is_broadcast_ether_addr(request->bssid) && !ether_addr_equal(request->bssid, ap->bssid)) continue; if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) continue; cfg80211_scan_req_add_chan(request, chan, true); memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); scan_6ghz_params->short_ssid = ap->short_ssid; scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; scan_6ghz_params->psd_20 = ap->psd_20; /* * If a PSC channel is added to the scan and 'need_scan_psc' is * set to false, then all the APs that the scan logic is * interested with on the channel are collocated and thus there * is no need to perform the initial PSC channel listen. */ if (cfg80211_channel_is_psc(chan) && !need_scan_psc) scan_6ghz_params->psc_no_listen = true; request->n_6ghz_params++; } skip: cfg80211_free_coloc_ap_list(&coloc_ap_list); if (request->n_channels) { struct cfg80211_scan_request *old = rdev->int_scan_req; rdev->int_scan_req = request; /* * If this scan follows a previous scan, save the scan start * info from the first part of the scan */ if (old) rdev->int_scan_req->info = old->info; err = rdev_scan(rdev, request); if (err) { rdev->int_scan_req = old; kfree(request); } else { kfree(old); } return err; } kfree(request); return -EINVAL; } int cfg80211_scan(struct cfg80211_registered_device *rdev) { struct cfg80211_scan_request *request; struct cfg80211_scan_request *rdev_req = rdev->scan_req; u32 n_channels = 0, idx, i; if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) return rdev_scan(rdev, rdev_req); for (i = 0; i < rdev_req->n_channels; i++) { if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) n_channels++; } if (!n_channels) return cfg80211_scan_6ghz(rdev); request = kzalloc(struct_size(request, channels, n_channels), GFP_KERNEL); if (!request) return -ENOMEM; *request = *rdev_req; request->n_channels = n_channels; for (i = idx = 0; i < rdev_req->n_channels; i++) { if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) request->channels[idx++] = rdev_req->channels[i]; } rdev_req->scan_6ghz = false; rdev->int_scan_req = request; return rdev_scan(rdev, request); } void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message) { struct cfg80211_scan_request *request, *rdev_req; struct wireless_dev *wdev; struct sk_buff *msg; #ifdef CONFIG_CFG80211_WEXT union iwreq_data wrqu; #endif lockdep_assert_held(&rdev->wiphy.mtx); if (rdev->scan_msg) { nl80211_send_scan_msg(rdev, rdev->scan_msg); rdev->scan_msg = NULL; return; } rdev_req = rdev->scan_req; if (!rdev_req) return; wdev = rdev_req->wdev; request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; if (wdev_running(wdev) && (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && !rdev_req->scan_6ghz && !request->info.aborted && !cfg80211_scan_6ghz(rdev)) return; /* * This must be before sending the other events! * Otherwise, wpa_supplicant gets completely confused with * wext events. */ if (wdev->netdev) cfg80211_sme_scan_done(wdev->netdev); if (!request->info.aborted && request->flags & NL80211_SCAN_FLAG_FLUSH) { /* flush entries from previous scans */ spin_lock_bh(&rdev->bss_lock); __cfg80211_bss_expire(rdev, request->scan_start); spin_unlock_bh(&rdev->bss_lock); } msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); #ifdef CONFIG_CFG80211_WEXT if (wdev->netdev && !request->info.aborted) { memset(&wrqu, 0, sizeof(wrqu)); wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); } #endif dev_put(wdev->netdev); kfree(rdev->int_scan_req); rdev->int_scan_req = NULL; kfree(rdev->scan_req); rdev->scan_req = NULL; if (!send_message) rdev->scan_msg = msg; else nl80211_send_scan_msg(rdev, msg); } void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) { ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); } void cfg80211_scan_done(struct cfg80211_scan_request *request, struct cfg80211_scan_info *info) { struct cfg80211_scan_info old_info = request->info; trace_cfg80211_scan_done(request, info); WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && request != wiphy_to_rdev(request->wiphy)->int_scan_req); request->info = *info; /* * In case the scan is split, the scan_start_tsf and tsf_bssid should * be of the first part. In such a case old_info.scan_start_tsf should * be non zero. */ if (request->scan_6ghz && old_info.scan_start_tsf) { request->info.scan_start_tsf = old_info.scan_start_tsf; memcpy(request->info.tsf_bssid, old_info.tsf_bssid, sizeof(request->info.tsf_bssid)); } request->notified = true; wiphy_work_queue(request->wiphy, &wiphy_to_rdev(request->wiphy)->scan_done_wk); } EXPORT_SYMBOL(cfg80211_scan_done); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req) { lockdep_assert_held(&rdev->wiphy.mtx); list_add_rcu(&req->list, &rdev->sched_scan_req_list); } static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req) { lockdep_assert_held(&rdev->wiphy.mtx); list_del_rcu(&req->list); kfree_rcu(req, rcu_head); } static struct cfg80211_sched_scan_request * cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) { struct cfg80211_sched_scan_request *pos; list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, lockdep_is_held(&rdev->wiphy.mtx)) { if (pos->reqid == reqid) return pos; } return NULL; } /* * Determines if a scheduled scan request can be handled. When a legacy * scheduled scan is running no other scheduled scan is allowed regardless * whether the request is for legacy or multi-support scan. When a multi-support * scheduled scan is running a request for legacy scan is not allowed. In this * case a request for multi-support scan can be handled if resources are * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. */ int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi) { struct cfg80211_sched_scan_request *pos; int i = 0; list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { /* request id zero means legacy in progress */ if (!i && !pos->reqid) return -EINPROGRESS; i++; } if (i) { /* no legacy allowed when multi request(s) are active */ if (!want_multi) return -EINPROGRESS; /* resource limit reached */ if (i == rdev->wiphy.max_sched_scan_reqs) return -ENOSPC; } return 0; } void cfg80211_sched_scan_results_wk(struct work_struct *work) { struct cfg80211_registered_device *rdev; struct cfg80211_sched_scan_request *req, *tmp; rdev = container_of(work, struct cfg80211_registered_device, sched_scan_res_wk); wiphy_lock(&rdev->wiphy); list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { if (req->report_results) { req->report_results = false; if (req->flags & NL80211_SCAN_FLAG_FLUSH) { /* flush entries from previous scans */ spin_lock_bh(&rdev->bss_lock); __cfg80211_bss_expire(rdev, req->scan_start); spin_unlock_bh(&rdev->bss_lock); req->scan_start = jiffies; } nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_RESULTS); } } wiphy_unlock(&rdev->wiphy); } void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_sched_scan_request *request; trace_cfg80211_sched_scan_results(wiphy, reqid); /* ignore if we're not scanning */ rcu_read_lock(); request = cfg80211_find_sched_scan_req(rdev, reqid); if (request) { request->report_results = true; queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); } rcu_read_unlock(); } EXPORT_SYMBOL(cfg80211_sched_scan_results); void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_held(&wiphy->mtx); trace_cfg80211_sched_scan_stopped(wiphy, reqid); __cfg80211_stop_sched_scan(rdev, reqid, true); } EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) { wiphy_lock(wiphy); cfg80211_sched_scan_stopped_locked(wiphy, reqid); wiphy_unlock(wiphy); } EXPORT_SYMBOL(cfg80211_sched_scan_stopped); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated) { lockdep_assert_held(&rdev->wiphy.mtx); if (!driver_initiated) { int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); if (err) return err; } nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); cfg80211_del_sched_scan_req(rdev, req); return 0; } int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated) { struct cfg80211_sched_scan_request *sched_scan_req; lockdep_assert_held(&rdev->wiphy.mtx); sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); if (!sched_scan_req) return -ENOENT; return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, driver_initiated); } void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs) { struct cfg80211_internal_bss *bss; unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); spin_lock_bh(&rdev->bss_lock); list_for_each_entry(bss, &rdev->bss_list, list) bss->ts -= age_jiffies; spin_unlock_bh(&rdev->bss_lock); } void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) { __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); } void cfg80211_bss_flush(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); spin_lock_bh(&rdev->bss_lock); __cfg80211_bss_expire(rdev, jiffies); spin_unlock_bh(&rdev->bss_lock); } EXPORT_SYMBOL(cfg80211_bss_flush); const struct element * cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, const u8 *match, unsigned int match_len, unsigned int match_offset) { const struct element *elem; for_each_element_id(elem, eid, ies, len) { if (elem->datalen >= match_offset + match_len && !memcmp(elem->data + match_offset, match, match_len)) return elem; } return NULL; } EXPORT_SYMBOL(cfg80211_find_elem_match); const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, const u8 *ies, unsigned int len) { const struct element *elem; u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; int match_len = (oui_type < 0) ? 3 : sizeof(match); if (WARN_ON(oui_type > 0xff)) return NULL; elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, match, match_len, 0); if (!elem || elem->datalen < 4) return NULL; return elem; } EXPORT_SYMBOL(cfg80211_find_vendor_elem); /** * enum bss_compare_mode - BSS compare mode * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode */ enum bss_compare_mode { BSS_CMP_REGULAR, BSS_CMP_HIDE_ZLEN, BSS_CMP_HIDE_NUL, }; static int cmp_bss(struct cfg80211_bss *a, struct cfg80211_bss *b, enum bss_compare_mode mode) { const struct cfg80211_bss_ies *a_ies, *b_ies; const u8 *ie1 = NULL; const u8 *ie2 = NULL; int i, r; if (a->channel != b->channel) return (b->channel->center_freq * 1000 + b->channel->freq_offset) - (a->channel->center_freq * 1000 + a->channel->freq_offset); a_ies = rcu_access_pointer(a->ies); if (!a_ies) return -1; b_ies = rcu_access_pointer(b->ies); if (!b_ies) return 1; if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, a_ies->data, a_ies->len); if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, b_ies->data, b_ies->len); if (ie1 && ie2) { int mesh_id_cmp; if (ie1[1] == ie2[1]) mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); else mesh_id_cmp = ie2[1] - ie1[1]; ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, a_ies->data, a_ies->len); ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, b_ies->data, b_ies->len); if (ie1 && ie2) { if (mesh_id_cmp) return mesh_id_cmp; if (ie1[1] != ie2[1]) return ie2[1] - ie1[1]; return memcmp(ie1 + 2, ie2 + 2, ie1[1]); } } r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); if (r) return r; ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); if (!ie1 && !ie2) return 0; /* * Note that with "hide_ssid", the function returns a match if * the already-present BSS ("b") is a hidden SSID beacon for * the new BSS ("a"). */ /* sort missing IE before (left of) present IE */ if (!ie1) return -1; if (!ie2) return 1; switch (mode) { case BSS_CMP_HIDE_ZLEN: /* * In ZLEN mode we assume the BSS entry we're * looking for has a zero-length SSID. So if * the one we're looking at right now has that, * return 0. Otherwise, return the difference * in length, but since we're looking for the * 0-length it's really equivalent to returning * the length of the one we're looking at. * * No content comparison is needed as we assume * the content length is zero. */ return ie2[1]; case BSS_CMP_REGULAR: default: /* sort by length first, then by contents */ if (ie1[1] != ie2[1]) return ie2[1] - ie1[1]; return memcmp(ie1 + 2, ie2 + 2, ie1[1]); case BSS_CMP_HIDE_NUL: if (ie1[1] != ie2[1]) return ie2[1] - ie1[1]; /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ for (i = 0; i < ie2[1]; i++) if (ie2[i + 2]) return -1; return 0; } } static bool cfg80211_bss_type_match(u16 capability, enum nl80211_band band, enum ieee80211_bss_type bss_type) { bool ret = true; u16 mask, val; if (bss_type == IEEE80211_BSS_TYPE_ANY) return ret; if (band == NL80211_BAND_60GHZ) { mask = WLAN_CAPABILITY_DMG_TYPE_MASK; switch (bss_type) { case IEEE80211_BSS_TYPE_ESS: val = WLAN_CAPABILITY_DMG_TYPE_AP; break; case IEEE80211_BSS_TYPE_PBSS: val = WLAN_CAPABILITY_DMG_TYPE_PBSS; break; case IEEE80211_BSS_TYPE_IBSS: val = WLAN_CAPABILITY_DMG_TYPE_IBSS; break; default: return false; } } else { mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; switch (bss_type) { case IEEE80211_BSS_TYPE_ESS: val = WLAN_CAPABILITY_ESS; break; case IEEE80211_BSS_TYPE_IBSS: val = WLAN_CAPABILITY_IBSS; break; case IEEE80211_BSS_TYPE_MBSS: val = 0; break; default: return false; } } ret = ((capability & mask) == val); return ret; } /* Returned bss is reference counted and must be cleaned up appropriately. */ struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, const u8 *ssid, size_t ssid_len, enum ieee80211_bss_type bss_type, enum ieee80211_privacy privacy, u32 use_for) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_internal_bss *bss, *res = NULL; unsigned long now = jiffies; int bss_privacy; trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, privacy); spin_lock_bh(&rdev->bss_lock); list_for_each_entry(bss, &rdev->bss_list, list) { if (!cfg80211_bss_type_match(bss->pub.capability, bss->pub.channel->band, bss_type)) continue; bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) continue; if (channel && bss->pub.channel != channel) continue; if (!is_valid_ether_addr(bss->pub.bssid)) continue; if ((bss->pub.use_for & use_for) != use_for) continue; /* Don't get expired BSS structs */ if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && !atomic_read(&bss->hold)) continue; if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { res = bss; bss_ref_get(rdev, res); break; } } spin_unlock_bh(&rdev->bss_lock); if (!res) return NULL; trace_cfg80211_return_bss(&res->pub); return &res->pub; } EXPORT_SYMBOL(__cfg80211_get_bss); static void rb_insert_bss(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *bss) { struct rb_node **p = &rdev->bss_tree.rb_node; struct rb_node *parent = NULL; struct cfg80211_internal_bss *tbss; int cmp; while (*p) { parent = *p; tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); if (WARN_ON(!cmp)) { /* will sort of leak this BSS */ return; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&bss->rbn, parent, p); rb_insert_color(&bss->rbn, &rdev->bss_tree); } static struct cfg80211_internal_bss * rb_find_bss(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *res, enum bss_compare_mode mode) { struct rb_node *n = rdev->bss_tree.rb_node; struct cfg80211_internal_bss *bss; int r; while (n) { bss = rb_entry(n, struct cfg80211_internal_bss, rbn); r = cmp_bss(&res->pub, &bss->pub, mode); if (r == 0) return bss; else if (r < 0) n = n->rb_left; else n = n->rb_right; } return NULL; } static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *new) { const struct cfg80211_bss_ies *ies; struct cfg80211_internal_bss *bss; const u8 *ie; int i, ssidlen; u8 fold = 0; u32 n_entries = 0; ies = rcu_access_pointer(new->pub.beacon_ies); if (WARN_ON(!ies)) return false; ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); if (!ie) { /* nothing to do */ return true; } ssidlen = ie[1]; for (i = 0; i < ssidlen; i++) fold |= ie[2 + i]; if (fold) { /* not a hidden SSID */ return true; } /* This is the bad part ... */ list_for_each_entry(bss, &rdev->bss_list, list) { /* * we're iterating all the entries anyway, so take the * opportunity to validate the list length accounting */ n_entries++; if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) continue; if (bss->pub.channel != new->pub.channel) continue; if (rcu_access_pointer(bss->pub.beacon_ies)) continue; ies = rcu_access_pointer(bss->pub.ies); if (!ies) continue; ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); if (!ie) continue; if (ssidlen && ie[1] != ssidlen) continue; if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) continue; if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) list_del(&bss->hidden_list); /* combine them */ list_add(&bss->hidden_list, &new->hidden_list); bss->pub.hidden_beacon_bss = &new->pub; new->refcount += bss->refcount; rcu_assign_pointer(bss->pub.beacon_ies, new->pub.beacon_ies); } WARN_ONCE(n_entries != rdev->bss_entries, "rdev bss entries[%d]/list[len:%d] corruption\n", rdev->bss_entries, n_entries); return true; } static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, const struct cfg80211_bss_ies *new_ies, const struct cfg80211_bss_ies *old_ies) { struct cfg80211_internal_bss *bss; /* Assign beacon IEs to all sub entries */ list_for_each_entry(bss, &known->hidden_list, hidden_list) { const struct cfg80211_bss_ies *ies; ies = rcu_access_pointer(bss->pub.beacon_ies); WARN_ON(ies != old_ies); rcu_assign_pointer(bss->pub.beacon_ies, new_ies); } } static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *known, const struct cfg80211_bss_ies *old) { const struct ieee80211_ext_chansw_ie *ecsa; const struct element *elem_new, *elem_old; const struct cfg80211_bss_ies *new, *bcn; if (known->pub.proberesp_ecsa_stuck) return; new = rcu_dereference_protected(known->pub.proberesp_ies, lockdep_is_held(&rdev->bss_lock)); if (WARN_ON(!new)) return; if (new->tsf - old->tsf < USEC_PER_SEC) return; elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, old->data, old->len); if (!elem_old) return; elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, new->data, new->len); if (!elem_new) return; bcn = rcu_dereference_protected(known->pub.beacon_ies, lockdep_is_held(&rdev->bss_lock)); if (bcn && cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, bcn->data, bcn->len)) return; if (elem_new->datalen != elem_old->datalen) return; if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) return; if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) return; ecsa = (void *)elem_new->data; if (!ecsa->mode) return; if (ecsa->new_ch_num != ieee80211_frequency_to_channel(known->pub.channel->center_freq)) return; known->pub.proberesp_ecsa_stuck = 1; } static bool cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *known, struct cfg80211_internal_bss *new, bool signal_valid) { lockdep_assert_held(&rdev->bss_lock); /* Update IEs */ if (rcu_access_pointer(new->pub.proberesp_ies)) { const struct cfg80211_bss_ies *old; old = rcu_access_pointer(known->pub.proberesp_ies); rcu_assign_pointer(known->pub.proberesp_ies, new->pub.proberesp_ies); /* Override possible earlier Beacon frame IEs */ rcu_assign_pointer(known->pub.ies, new->pub.proberesp_ies); if (old) { cfg80211_check_stuck_ecsa(rdev, known, old); kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); } } if (rcu_access_pointer(new->pub.beacon_ies)) { const struct cfg80211_bss_ies *old; if (known->pub.hidden_beacon_bss && !list_empty(&known->hidden_list)) { const struct cfg80211_bss_ies *f; /* The known BSS struct is one of the probe * response members of a group, but we're * receiving a beacon (beacon_ies in the new * bss is used). This can only mean that the * AP changed its beacon from not having an * SSID to showing it, which is confusing so * drop this information. */ f = rcu_access_pointer(new->pub.beacon_ies); kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); return false; } old = rcu_access_pointer(known->pub.beacon_ies); rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); /* Override IEs if they were from a beacon before */ if (old == rcu_access_pointer(known->pub.ies)) rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); cfg80211_update_hidden_bsses(known, rcu_access_pointer(new->pub.beacon_ies), old); if (old) kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); } known->pub.beacon_interval = new->pub.beacon_interval; /* don't update the signal if beacon was heard on * adjacent channel. */ if (signal_valid) known->pub.signal = new->pub.signal; known->pub.capability = new->pub.capability; known->ts = new->ts; known->ts_boottime = new->ts_boottime; known->parent_tsf = new->parent_tsf; known->pub.chains = new->pub.chains; memcpy(known->pub.chain_signal, new->pub.chain_signal, IEEE80211_MAX_CHAINS); ether_addr_copy(known->parent_bssid, new->parent_bssid); known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; known->pub.bssid_index = new->pub.bssid_index; known->pub.use_for &= new->pub.use_for; known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; return true; } /* Returned bss is reference counted and must be cleaned up appropriately. */ static struct cfg80211_internal_bss * __cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts) { struct cfg80211_internal_bss *found = NULL; struct cfg80211_bss_ies *ies; if (WARN_ON(!tmp->pub.channel)) goto free_ies; tmp->ts = ts; if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) goto free_ies; found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); if (found) { if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) return NULL; } else { struct cfg80211_internal_bss *new; struct cfg80211_internal_bss *hidden; /* * create a copy -- the "res" variable that is passed in * is allocated on the stack since it's not needed in the * more common case of an update */ new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, GFP_ATOMIC); if (!new) goto free_ies; memcpy(new, tmp, sizeof(*new)); new->refcount = 1; INIT_LIST_HEAD(&new->hidden_list); INIT_LIST_HEAD(&new->pub.nontrans_list); /* we'll set this later if it was non-NULL */ new->pub.transmitted_bss = NULL; if (rcu_access_pointer(tmp->pub.proberesp_ies)) { hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); if (!hidden) hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_NUL); if (hidden) { new->pub.hidden_beacon_bss = &hidden->pub; list_add(&new->hidden_list, &hidden->hidden_list); hidden->refcount++; ies = (void *)rcu_access_pointer(new->pub.beacon_ies); rcu_assign_pointer(new->pub.beacon_ies, hidden->pub.beacon_ies); if (ies) kfree_rcu(ies, rcu_head); } } else { /* * Ok so we found a beacon, and don't have an entry. If * it's a beacon with hidden SSID, we might be in for an * expensive search for any probe responses that should * be grouped with this beacon for updates ... */ if (!cfg80211_combine_bsses(rdev, new)) { bss_ref_put(rdev, new); return NULL; } } if (rdev->bss_entries >= bss_entries_limit && !cfg80211_bss_expire_oldest(rdev)) { bss_ref_put(rdev, new); return NULL; } /* This must be before the call to bss_ref_get */ if (tmp->pub.transmitted_bss) { new->pub.transmitted_bss = tmp->pub.transmitted_bss; bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); } list_add_tail(&new->list, &rdev->bss_list); rdev->bss_entries++; rb_insert_bss(rdev, new); found = new; } rdev->bss_generation++; bss_ref_get(rdev, found); return found; free_ies: ies = (void *)rcu_dereference(tmp->pub.beacon_ies); if (ies) kfree_rcu(ies, rcu_head); ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); if (ies) kfree_rcu(ies, rcu_head); return NULL; } struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts) { struct cfg80211_internal_bss *res; spin_lock_bh(&rdev->bss_lock); res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); spin_unlock_bh(&rdev->bss_lock); return res; } int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, enum nl80211_band band) { const struct element *tmp; if (band == NL80211_BAND_6GHZ) { struct ieee80211_he_operation *he_oper; tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); if (tmp && tmp->datalen >= sizeof(*he_oper) && tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { const struct ieee80211_he_6ghz_oper *he_6ghz_oper; he_oper = (void *)&tmp->data[1]; he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); if (!he_6ghz_oper) return -1; return he_6ghz_oper->primary; } } else if (band == NL80211_BAND_S1GHZ) { tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; return s1gop->oper_ch; } } else { tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); if (tmp && tmp->datalen == 1) return tmp->data[0]; tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); if (tmp && tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { struct ieee80211_ht_operation *htop = (void *)tmp->data; return htop->primary_chan; } } return -1; } EXPORT_SYMBOL(cfg80211_get_ies_channel_number); /* * Update RX channel information based on the available frame payload * information. This is mainly for the 2.4 GHz band where frames can be received * from neighboring channels and the Beacon frames use the DSSS Parameter Set * element to indicate the current (transmitting) channel, but this might also * be needed on other bands if RX frequency does not match with the actual * operating channel of a BSS, or if the AP reports a different primary channel. */ static struct ieee80211_channel * cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, struct ieee80211_channel *channel) { u32 freq; int channel_number; struct ieee80211_channel *alt_channel; channel_number = cfg80211_get_ies_channel_number(ie, ielen, channel->band); if (channel_number < 0) { /* No channel information in frame payload */ return channel; } freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); /* * Frame info (beacon/prob res) is the same as received channel, * no need for further processing. */ if (freq == ieee80211_channel_to_khz(channel)) return channel; alt_channel = ieee80211_get_channel_khz(wiphy, freq); if (!alt_channel) { if (channel->band == NL80211_BAND_2GHZ || channel->band == NL80211_BAND_6GHZ) { /* * Better not allow unexpected channels when that could * be going beyond the 1-11 range (e.g., discovering * BSS on channel 12 when radio is configured for * channel 11) or beyond the 6 GHz channel range. */ return NULL; } /* No match for the payload channel number - ignore it */ return channel; } /* * Use the channel determined through the payload channel number * instead of the RX channel reported by the driver. */ if (alt_channel->flags & IEEE80211_CHAN_DISABLED) return NULL; return alt_channel; } struct cfg80211_inform_single_bss_data { struct cfg80211_inform_bss *drv_data; enum cfg80211_bss_frame_type ftype; struct ieee80211_channel *channel; u8 bssid[ETH_ALEN]; u64 tsf; u16 capability; u16 beacon_interval; const u8 *ie; size_t ielen; enum { BSS_SOURCE_DIRECT = 0, BSS_SOURCE_MBSSID, BSS_SOURCE_STA_PROFILE, } bss_source; /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ struct cfg80211_bss *source_bss; u8 max_bssid_indicator; u8 bssid_index; u8 use_for; u64 cannot_use_reasons; }; static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen, const u32 flags) { const struct element *tmp; struct ieee80211_he_operation *he_oper; tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen); if (tmp && tmp->datalen >= sizeof(*he_oper) + 1 && tmp->datalen >= ieee80211_he_oper_size(tmp->data + 1)) { const struct ieee80211_he_6ghz_oper *he_6ghz_oper; he_oper = (void *)&tmp->data[1]; he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); if (!he_6ghz_oper) return false; switch (u8_get_bits(he_6ghz_oper->control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { case IEEE80211_6GHZ_CTRL_REG_LPI_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: return true; case IEEE80211_6GHZ_CTRL_REG_SP_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); case IEEE80211_6GHZ_CTRL_REG_VLP_AP: return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); default: return false; } } return false; } /* Returned bss is reference counted and must be cleaned up appropriately. */ static struct cfg80211_bss * cfg80211_inform_single_bss_data(struct wiphy *wiphy, struct cfg80211_inform_single_bss_data *data, gfp_t gfp) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_inform_bss *drv_data = data->drv_data; struct cfg80211_bss_ies *ies; struct ieee80211_channel *channel; struct cfg80211_internal_bss tmp = {}, *res; int bss_type; bool signal_valid; unsigned long ts; if (WARN_ON(!wiphy)) return NULL; if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && (drv_data->signal < 0 || drv_data->signal > 100))) return NULL; if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) return NULL; channel = data->channel; if (!channel) channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, drv_data->chan); if (!channel) return NULL; if (channel->band == NL80211_BAND_6GHZ && !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, channel->flags)) { data->use_for = 0; data->cannot_use_reasons = NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; } memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); tmp.pub.channel = channel; if (data->bss_source != BSS_SOURCE_STA_PROFILE) tmp.pub.signal = drv_data->signal; else tmp.pub.signal = 0; tmp.pub.beacon_interval = data->beacon_interval; tmp.pub.capability = data->capability; tmp.ts_boottime = drv_data->boottime_ns; tmp.parent_tsf = drv_data->parent_tsf; ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); tmp.pub.chains = drv_data->chains; memcpy(tmp.pub.chain_signal, drv_data->chain_signal, IEEE80211_MAX_CHAINS); tmp.pub.use_for = data->use_for; tmp.pub.cannot_use_reasons = data->cannot_use_reasons; switch (data->bss_source) { case BSS_SOURCE_MBSSID: tmp.pub.transmitted_bss = data->source_bss; fallthrough; case BSS_SOURCE_STA_PROFILE: ts = bss_from_pub(data->source_bss)->ts; tmp.pub.bssid_index = data->bssid_index; tmp.pub.max_bssid_indicator = data->max_bssid_indicator; break; case BSS_SOURCE_DIRECT: ts = jiffies; if (channel->band == NL80211_BAND_60GHZ) { bss_type = data->capability & WLAN_CAPABILITY_DMG_TYPE_MASK; if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) regulatory_hint_found_beacon(wiphy, channel, gfp); } else { if (data->capability & WLAN_CAPABILITY_ESS) regulatory_hint_found_beacon(wiphy, channel, gfp); } break; } /* * If we do not know here whether the IEs are from a Beacon or Probe * Response frame, we need to pick one of the options and only use it * with the driver that does not provide the full Beacon/Probe Response * frame. Use Beacon frame pointer to avoid indicating that this should * override the IEs pointer should we have received an earlier * indication of Probe Response data. */ ies = kzalloc(sizeof(*ies) + data->ielen, gfp); if (!ies) return NULL; ies->len = data->ielen; ies->tsf = data->tsf; ies->from_beacon = false; memcpy(ies->data, data->ie, data->ielen); switch (data->ftype) { case CFG80211_BSS_FTYPE_BEACON: case CFG80211_BSS_FTYPE_S1G_BEACON: ies->from_beacon = true; fallthrough; case CFG80211_BSS_FTYPE_UNKNOWN: rcu_assign_pointer(tmp.pub.beacon_ies, ies); break; case CFG80211_BSS_FTYPE_PRESP: rcu_assign_pointer(tmp.pub.proberesp_ies, ies); break; } rcu_assign_pointer(tmp.pub.ies, ies); signal_valid = drv_data->chan == channel; spin_lock_bh(&rdev->bss_lock); res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); if (!res) goto drop; rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); if (data->bss_source == BSS_SOURCE_MBSSID) { /* this is a nontransmitting bss, we need to add it to * transmitting bss' list if it is not there */ if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { if (__cfg80211_unlink_bss(rdev, res)) { rdev->bss_generation++; res = NULL; } } if (!res) goto drop; } spin_unlock_bh(&rdev->bss_lock); trace_cfg80211_return_bss(&res->pub); /* __cfg80211_bss_update gives us a referenced result */ return &res->pub; drop: spin_unlock_bh(&rdev->bss_lock); return NULL; } static const struct element *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, const struct element *mbssid_elem, const struct element *sub_elem) { const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; const struct element *next_mbssid; const struct element *next_sub; next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, mbssid_end, ielen - (mbssid_end - ie)); /* * If it is not the last subelement in current MBSSID IE or there isn't * a next MBSSID IE - profile is complete. */ if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || !next_mbssid) return NULL; /* For any length error, just return NULL */ if (next_mbssid->datalen < 4) return NULL; next_sub = (void *)&next_mbssid->data[1]; if (next_mbssid->data + next_mbssid->datalen < next_sub->data + next_sub->datalen) return NULL; if (next_sub->id != 0 || next_sub->datalen < 2) return NULL; /* * Check if the first element in the next sub element is a start * of a new profile */ return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? NULL : next_mbssid; } size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, const struct element *mbssid_elem, const struct element *sub_elem, u8 *merged_ie, size_t max_copy_len) { size_t copied_len = sub_elem->datalen; const struct element *next_mbssid; if (sub_elem->datalen > max_copy_len) return 0; memcpy(merged_ie, sub_elem->data, sub_elem->datalen); while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, mbssid_elem, sub_elem))) { const struct element *next_sub = (void *)&next_mbssid->data[1]; if (copied_len + next_sub->datalen > max_copy_len) break; memcpy(merged_ie + copied_len, next_sub->data, next_sub->datalen); copied_len += next_sub->datalen; } return copied_len; } EXPORT_SYMBOL(cfg80211_merge_profile); static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, struct cfg80211_inform_single_bss_data *tx_data, struct cfg80211_bss *source_bss, gfp_t gfp) { struct cfg80211_inform_single_bss_data data = { .drv_data = tx_data->drv_data, .ftype = tx_data->ftype, .tsf = tx_data->tsf, .beacon_interval = tx_data->beacon_interval, .source_bss = source_bss, .bss_source = BSS_SOURCE_MBSSID, .use_for = tx_data->use_for, .cannot_use_reasons = tx_data->cannot_use_reasons, }; const u8 *mbssid_index_ie; const struct element *elem, *sub; u8 *new_ie, *profile; u64 seen_indices = 0; struct cfg80211_bss *bss; if (!source_bss) return; if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, tx_data->ie, tx_data->ielen)) return; if (!wiphy->support_mbssid) return; if (wiphy->support_only_he_mbssid && !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, tx_data->ie, tx_data->ielen)) return; new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); if (!new_ie) return; profile = kmalloc(tx_data->ielen, gfp); if (!profile) goto out; for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, tx_data->ie, tx_data->ielen) { if (elem->datalen < 4) continue; if (elem->data[0] < 1 || (int)elem->data[0] > 8) continue; for_each_element(sub, elem->data + 1, elem->datalen - 1) { u8 profile_len; if (sub->id != 0 || sub->datalen < 4) { /* not a valid BSS profile */ continue; } if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || sub->data[1] != 2) { /* The first element within the Nontransmitted * BSSID Profile is not the Nontransmitted * BSSID Capability element. */ continue; } memset(profile, 0, tx_data->ielen); profile_len = cfg80211_merge_profile(tx_data->ie, tx_data->ielen, elem, sub, profile, tx_data->ielen); /* found a Nontransmitted BSSID Profile */ mbssid_index_ie = cfg80211_find_ie (WLAN_EID_MULTI_BSSID_IDX, profile, profile_len); if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || mbssid_index_ie[2] == 0 || mbssid_index_ie[2] > 46 || mbssid_index_ie[2] >= (1 << elem->data[0])) { /* No valid Multiple BSSID-Index element */ continue; } if (seen_indices & BIT_ULL(mbssid_index_ie[2])) /* We don't support legacy split of a profile */ net_dbg_ratelimited("Partial info for BSSID index %d\n", mbssid_index_ie[2]); seen_indices |= BIT_ULL(mbssid_index_ie[2]); data.bssid_index = mbssid_index_ie[2]; data.max_bssid_indicator = elem->data[0]; cfg80211_gen_new_bssid(tx_data->bssid, data.max_bssid_indicator, data.bssid_index, data.bssid); memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); data.ie = new_ie; data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, profile, profile_len, new_ie, IEEE80211_MAX_DATA_LEN); if (!data.ielen) continue; data.capability = get_unaligned_le16(profile + 2); bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); if (!bss) break; cfg80211_put_bss(wiphy, bss); } } out: kfree(new_ie); kfree(profile); } ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, size_t ieslen, u8 *data, size_t data_len, u8 frag_id) { const struct element *next; ssize_t copied; u8 elem_datalen; if (!elem) return -EINVAL; /* elem might be invalid after the memmove */ next = (void *)(elem->data + elem->datalen); elem_datalen = elem->datalen; if (elem->id == WLAN_EID_EXTENSION) { copied = elem->datalen - 1; if (data) { if (copied > data_len) return -ENOSPC; memmove(data, elem->data + 1, copied); } } else { copied = elem->datalen; if (data) { if (copied > data_len) return -ENOSPC; memmove(data, elem->data, copied); } } /* Fragmented elements must have 255 bytes */ if (elem_datalen < 255) return copied; for (elem = next; elem->data < ies + ieslen && elem->data + elem->datalen <= ies + ieslen; elem = next) { /* elem might be invalid after the memmove */ next = (void *)(elem->data + elem->datalen); if (elem->id != frag_id) break; elem_datalen = elem->datalen; if (data) { if (copied + elem_datalen > data_len) return -ENOSPC; memmove(data + copied, elem->data, elem_datalen); } copied += elem_datalen; /* Only the last fragment may be short */ if (elem_datalen != 255) break; } return copied; } EXPORT_SYMBOL(cfg80211_defragment_element); struct cfg80211_mle { struct ieee80211_multi_link_elem *mle; struct ieee80211_mle_per_sta_profile *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; u8 data[]; }; static struct cfg80211_mle * cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, gfp_t gfp) { const struct element *elem; struct cfg80211_mle *res; size_t buf_len; ssize_t mle_len; u8 common_size, idx; if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) return NULL; /* Required length for first defragmentation */ buf_len = mle->datalen - 1; for_each_element(elem, mle->data + mle->datalen, ielen - sizeof(*mle) + mle->datalen) { if (elem->id != WLAN_EID_FRAGMENT) break; buf_len += elem->datalen; } res = kzalloc(struct_size(res, data, buf_len), gfp); if (!res) return NULL; mle_len = cfg80211_defragment_element(mle, ie, ielen, res->data, buf_len, WLAN_EID_FRAGMENT); if (mle_len < 0) goto error; res->mle = (void *)res->data; /* Find the sub-element area in the buffer */ common_size = ieee80211_mle_common_size((u8 *)res->mle); ie = res->data + common_size; ielen = mle_len - common_size; idx = 0; for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, ie, ielen) { res->sta_prof[idx] = (void *)elem->data; res->sta_prof_len[idx] = elem->datalen; idx++; if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) break; } if (!for_each_element_completed(elem, ie, ielen)) goto error; /* Defragment sta_info in-place */ for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; idx++) { if (res->sta_prof_len[idx] < 255) continue; elem = (void *)res->sta_prof[idx] - 2; if (idx + 1 < ARRAY_SIZE(res->sta_prof) && res->sta_prof[idx + 1]) buf_len = (u8 *)res->sta_prof[idx + 1] - (u8 *)res->sta_prof[idx]; else buf_len = ielen + ie - (u8 *)elem; res->sta_prof_len[idx] = cfg80211_defragment_element(elem, (u8 *)elem, buf_len, (u8 *)res->sta_prof[idx], buf_len, IEEE80211_MLE_SUBELEM_FRAGMENT); if (res->sta_prof_len[idx] < 0) goto error; } return res; error: kfree(res); return NULL; } struct tbtt_info_iter_data { const struct ieee80211_neighbor_ap_info *ap_info; u8 param_ch_count; u32 use_for; u8 mld_id, link_id; bool non_tx; }; static enum cfg80211_rnr_iter_ret cfg802121_mld_ap_rnr_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { const struct ieee80211_rnr_mld_params *mld_params; struct tbtt_info_iter_data *data = _data; u8 link_id; bool non_tx = false; if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, mld_params)) { const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 = (void *)tbtt_info; non_tx = (tbtt_info_ge_11->bss_params & (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID | IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) == IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; mld_params = &tbtt_info_ge_11->mld_params; } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) mld_params = (void *)tbtt_info; else return RNR_ITER_CONTINUE; link_id = le16_get_bits(mld_params->params, IEEE80211_RNR_MLD_PARAMS_LINK_ID); if (data->mld_id != mld_params->mld_id) return RNR_ITER_CONTINUE; if (data->link_id != link_id) return RNR_ITER_CONTINUE; data->ap_info = info; data->param_ch_count = le16_get_bits(mld_params->params, IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); data->non_tx = non_tx; if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) data->use_for = NL80211_BSS_USE_FOR_ALL; else data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; return RNR_ITER_BREAK; } static u8 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, const struct ieee80211_neighbor_ap_info **ap_info, u8 *param_ch_count, bool *non_tx) { struct tbtt_info_iter_data data = { .mld_id = mld_id, .link_id = link_id, }; cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); *ap_info = data.ap_info; *param_ch_count = data.param_ch_count; *non_tx = data.non_tx; return data.use_for; } static struct element * cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, bool same_mld, u8 link_id, u8 bss_change_count, gfp_t gfp) { const struct cfg80211_bss_ies *ies; struct ieee80211_neighbor_ap_info ap_info; struct ieee80211_tbtt_info_ge_11 tbtt_info; u32 short_ssid; const struct element *elem; struct element *res; /* * We only generate the RNR to permit ML lookups. For that we do not * need an entry for the corresponding transmitting BSS, lets just skip * it even though it would be easy to add. */ if (!same_mld) return NULL; /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ rcu_read_lock(); ies = rcu_dereference(source_bss->ies); ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); ap_info.tbtt_info_hdr = u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, IEEE80211_AP_INFO_TBTT_HDR_TYPE) | u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); /* operating class */ elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, ies->data, ies->len); if (elem && elem->datalen >= 1) { ap_info.op_class = elem->data[0]; } else { struct cfg80211_chan_def chandef; /* The AP is not providing us with anything to work with. So * make up a somewhat reasonable operating class, but don't * bother with it too much as no one will ever use the * information. */ cfg80211_chandef_create(&chandef, source_bss->channel, NL80211_CHAN_NO_HT); if (!ieee80211_chandef_to_operating_class(&chandef, &ap_info.op_class)) goto out_unlock; } /* Just set TBTT offset and PSD 20 to invalid/unknown */ tbtt_info.tbtt_offset = 255; tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) goto out_unlock; rcu_read_unlock(); tbtt_info.short_ssid = cpu_to_le32(short_ssid); tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; if (is_mbssid) { tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; } tbtt_info.mld_params.mld_id = 0; tbtt_info.mld_params.params = le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | le16_encode_bits(bss_change_count, IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); res = kzalloc(struct_size(res, data, sizeof(ap_info) + ap_info.tbtt_info_len), gfp); if (!res) return NULL; /* Copy the data */ res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; memcpy(res->data, &ap_info, sizeof(ap_info)); memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); return res; out_unlock: rcu_read_unlock(); return NULL; } static void cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, struct cfg80211_inform_single_bss_data *tx_data, struct cfg80211_bss *source_bss, const struct element *elem, gfp_t gfp) { struct cfg80211_inform_single_bss_data data = { .drv_data = tx_data->drv_data, .ftype = tx_data->ftype, .source_bss = source_bss, .bss_source = BSS_SOURCE_STA_PROFILE, }; struct element *reporter_rnr = NULL; struct ieee80211_multi_link_elem *ml_elem; struct cfg80211_mle *mle; u16 control; u8 ml_common_len; u8 *new_ie = NULL; struct cfg80211_bss *bss; u8 mld_id, reporter_link_id, bss_change_count; u16 seen_links = 0; u8 i; if (!ieee80211_mle_type_ok(elem->data + 1, IEEE80211_ML_CONTROL_TYPE_BASIC, elem->datalen - 1)) return; ml_elem = (void *)(elem->data + 1); control = le16_to_cpu(ml_elem->control); ml_common_len = ml_elem->variable[0]; /* Must be present when transmitted by an AP (in a probe response) */ if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) return; reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); /* * The MLD ID of the reporting AP is always zero. It is set if the AP * is part of an MBSSID set and will be non-zero for ML Elements * relating to a nontransmitted BSS (matching the Multi-BSSID Index, * Draft P802.11be_D3.2, 35.3.4.2) */ mld_id = ieee80211_mle_get_mld_id(elem->data + 1); /* Fully defrag the ML element for sta information/profile iteration */ mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); if (!mle) return; /* No point in doing anything if there is no per-STA profile */ if (!mle->sta_prof[0]) goto out; new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); if (!new_ie) goto out; reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID), mld_id == 0, reporter_link_id, bss_change_count, gfp); for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { const struct ieee80211_neighbor_ap_info *ap_info; enum nl80211_band band; u32 freq; const u8 *profile; ssize_t profile_len; u8 param_ch_count; u8 link_id, use_for; bool non_tx; if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], mle->sta_prof_len[i])) continue; control = le16_to_cpu(mle->sta_prof[i]->control); if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) continue; link_id = u16_get_bits(control, IEEE80211_MLE_STA_CONTROL_LINK_ID); if (seen_links & BIT(link_id)) break; seen_links |= BIT(link_id); if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) continue; memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); data.beacon_interval = get_unaligned_le16(mle->sta_prof[i]->variable + 6); data.tsf = tx_data->tsf + get_unaligned_le64(mle->sta_prof[i]->variable + 8); /* sta_info_len counts itself */ profile = mle->sta_prof[i]->variable + mle->sta_prof[i]->sta_info_len - 1; profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - profile; if (profile_len < 2) continue; data.capability = get_unaligned_le16(profile); profile += 2; profile_len -= 2; /* Find in RNR to look up channel information */ use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, tx_data->ielen, mld_id, link_id, &ap_info, ¶m_ch_count, &non_tx); if (!use_for) continue; /* * As of 802.11be_D5.0, the specification does not give us any * way of discovering both the MaxBSSID and the Multiple-BSSID * Index. It does seem like the Multiple-BSSID Index element * may be provided, but section 9.4.2.45 explicitly forbids * including a Multiple-BSSID Element (in this case without any * subelements). * Without both pieces of information we cannot calculate the * reference BSSID, so simply ignore the BSS. */ if (non_tx) continue; /* We could sanity check the BSSID is included */ if (!ieee80211_operating_class_to_band(ap_info->op_class, &band)) continue; freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); data.channel = ieee80211_get_channel_khz(wiphy, freq); if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { use_for = 0; data.cannot_use_reasons = NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; } data.use_for = use_for; /* Generate new elements */ memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); data.ie = new_ie; data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, profile, profile_len, new_ie, IEEE80211_MAX_DATA_LEN); if (!data.ielen) continue; /* The generated elements do not contain: * - Basic ML element * - A TBTT entry in the RNR for the transmitting AP * * This information is needed both internally and in userspace * as such, we should append it here. */ if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > IEEE80211_MAX_DATA_LEN) continue; /* Copy the Basic Multi-Link element including the common * information, and then fix up the link ID and BSS param * change count. * Note that the ML element length has been verified and we * also checked that it contains the link ID. */ new_ie[data.ielen++] = WLAN_EID_EXTENSION; new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; memcpy(new_ie + data.ielen, ml_elem, sizeof(*ml_elem) + ml_common_len); new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = param_ch_count; data.ielen += sizeof(*ml_elem) + ml_common_len; if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { if (data.ielen + sizeof(struct element) + reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) continue; memcpy(new_ie + data.ielen, reporter_rnr, sizeof(struct element) + reporter_rnr->datalen); data.ielen += sizeof(struct element) + reporter_rnr->datalen; } bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); if (!bss) break; cfg80211_put_bss(wiphy, bss); } out: kfree(reporter_rnr); kfree(new_ie); kfree(mle); } static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, struct cfg80211_inform_single_bss_data *tx_data, struct cfg80211_bss *source_bss, gfp_t gfp) { const struct element *elem; if (!source_bss) return; if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) return; for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, tx_data->ie, tx_data->ielen) cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, elem, gfp); } struct cfg80211_bss * cfg80211_inform_bss_data(struct wiphy *wiphy, struct cfg80211_inform_bss *data, enum cfg80211_bss_frame_type ftype, const u8 *bssid, u64 tsf, u16 capability, u16 beacon_interval, const u8 *ie, size_t ielen, gfp_t gfp) { struct cfg80211_inform_single_bss_data inform_data = { .drv_data = data, .ftype = ftype, .tsf = tsf, .capability = capability, .beacon_interval = beacon_interval, .ie = ie, .ielen = ielen, .use_for = data->restrict_use ? data->use_for : NL80211_BSS_USE_FOR_ALL, .cannot_use_reasons = data->cannot_use_reasons, }; struct cfg80211_bss *res; memcpy(inform_data.bssid, bssid, ETH_ALEN); res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); if (!res) return NULL; /* don't do any further MBSSID/ML handling for S1G */ if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) return res; cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); return res; } EXPORT_SYMBOL(cfg80211_inform_bss_data); struct cfg80211_bss * cfg80211_inform_bss_frame_data(struct wiphy *wiphy, struct cfg80211_inform_bss *data, struct ieee80211_mgmt *mgmt, size_t len, gfp_t gfp) { size_t min_hdr_len = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); struct ieee80211_ext *ext = NULL; enum cfg80211_bss_frame_type ftype; u16 beacon_interval; const u8 *bssid; u16 capability; const u8 *ie; size_t ielen; u64 tsf; if (WARN_ON(!mgmt)) return NULL; if (WARN_ON(!wiphy)) return NULL; BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != offsetof(struct ieee80211_mgmt, u.beacon.variable)); trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { ext = (void *) mgmt; min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_short_beacon.variable); } if (WARN_ON(len < min_hdr_len)) return NULL; ielen = len - min_hdr_len; ie = mgmt->u.probe_resp.variable; if (ext) { const struct ieee80211_s1g_bcn_compat_ie *compat; const struct element *elem; if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) ie = ext->u.s1g_short_beacon.variable; else ie = ext->u.s1g_beacon.variable; elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); if (!elem) return NULL; if (elem->datalen < sizeof(*compat)) return NULL; compat = (void *)elem->data; bssid = ext->u.s1g_beacon.sa; capability = le16_to_cpu(compat->compat_info); beacon_interval = le16_to_cpu(compat->beacon_int); } else { bssid = mgmt->bssid; beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); } tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); if (ieee80211_is_probe_resp(mgmt->frame_control)) ftype = CFG80211_BSS_FTYPE_PRESP; else if (ext) ftype = CFG80211_BSS_FTYPE_S1G_BEACON; else ftype = CFG80211_BSS_FTYPE_BEACON; return cfg80211_inform_bss_data(wiphy, data, ftype, bssid, tsf, capability, beacon_interval, ie, ielen, gfp); } EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); if (!pub) return; spin_lock_bh(&rdev->bss_lock); bss_ref_get(rdev, bss_from_pub(pub)); spin_unlock_bh(&rdev->bss_lock); } EXPORT_SYMBOL(cfg80211_ref_bss); void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); if (!pub) return; spin_lock_bh(&rdev->bss_lock); bss_ref_put(rdev, bss_from_pub(pub)); spin_unlock_bh(&rdev->bss_lock); } EXPORT_SYMBOL(cfg80211_put_bss); void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_internal_bss *bss, *tmp1; struct cfg80211_bss *nontrans_bss, *tmp; if (WARN_ON(!pub)) return; bss = bss_from_pub(pub); spin_lock_bh(&rdev->bss_lock); if (list_empty(&bss->list)) goto out; list_for_each_entry_safe(nontrans_bss, tmp, &pub->nontrans_list, nontrans_list) { tmp1 = bss_from_pub(nontrans_bss); if (__cfg80211_unlink_bss(rdev, tmp1)) rdev->bss_generation++; } if (__cfg80211_unlink_bss(rdev, bss)) rdev->bss_generation++; out: spin_unlock_bh(&rdev->bss_lock); } EXPORT_SYMBOL(cfg80211_unlink_bss); void cfg80211_bss_iter(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, void (*iter)(struct wiphy *wiphy, struct cfg80211_bss *bss, void *data), void *iter_data) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_internal_bss *bss; spin_lock_bh(&rdev->bss_lock); list_for_each_entry(bss, &rdev->bss_list, list) { if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, false)) iter(wiphy, &bss->pub, iter_data); } spin_unlock_bh(&rdev->bss_lock); } EXPORT_SYMBOL(cfg80211_bss_iter); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, unsigned int link_id, struct ieee80211_channel *chan) { struct wiphy *wiphy = wdev->wiphy; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; struct cfg80211_internal_bss *new = NULL; struct cfg80211_internal_bss *bss; struct cfg80211_bss *nontrans_bss; struct cfg80211_bss *tmp; spin_lock_bh(&rdev->bss_lock); /* * Some APs use CSA also for bandwidth changes, i.e., without actually * changing the control channel, so no need to update in such a case. */ if (cbss->pub.channel == chan) goto done; /* use transmitting bss */ if (cbss->pub.transmitted_bss) cbss = bss_from_pub(cbss->pub.transmitted_bss); cbss->pub.channel = chan; list_for_each_entry(bss, &rdev->bss_list, list) { if (!cfg80211_bss_type_match(bss->pub.capability, bss->pub.channel->band, wdev->conn_bss_type)) continue; if (bss == cbss) continue; if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { new = bss; break; } } if (new) { /* to save time, update IEs for transmitting bss only */ cfg80211_update_known_bss(rdev, cbss, new, false); new->pub.proberesp_ies = NULL; new->pub.beacon_ies = NULL; list_for_each_entry_safe(nontrans_bss, tmp, &new->pub.nontrans_list, nontrans_list) { bss = bss_from_pub(nontrans_bss); if (__cfg80211_unlink_bss(rdev, bss)) rdev->bss_generation++; } WARN_ON(atomic_read(&new->hold)); if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) rdev->bss_generation++; } rb_erase(&cbss->rbn, &rdev->bss_tree); rb_insert_bss(rdev, cbss); rdev->bss_generation++; list_for_each_entry_safe(nontrans_bss, tmp, &cbss->pub.nontrans_list, nontrans_list) { bss = bss_from_pub(nontrans_bss); bss->pub.channel = chan; rb_erase(&bss->rbn, &rdev->bss_tree); rb_insert_bss(rdev, bss); rdev->bss_generation++; } done: spin_unlock_bh(&rdev->bss_lock); } #ifdef CONFIG_CFG80211_WEXT static struct cfg80211_registered_device * cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) { struct cfg80211_registered_device *rdev; struct net_device *dev; ASSERT_RTNL(); dev = dev_get_by_index(net, ifindex); if (!dev) return ERR_PTR(-ENODEV); if (dev->ieee80211_ptr) rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); else rdev = ERR_PTR(-ENODEV); dev_put(dev); return rdev; } int cfg80211_wext_siwscan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; struct iw_scan_req *wreq = NULL; struct cfg80211_scan_request *creq; int i, err, n_channels = 0; enum nl80211_band band; if (!netif_running(dev)) return -ENETDOWN; if (wrqu->data.length == sizeof(struct iw_scan_req)) wreq = (struct iw_scan_req *)extra; rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); if (IS_ERR(rdev)) return PTR_ERR(rdev); if (rdev->scan_req || rdev->scan_msg) return -EBUSY; wiphy = &rdev->wiphy; /* Determine number of channels, needed to allocate creq */ if (wreq && wreq->num_channels) { /* Passed from userspace so should be checked */ if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) return -EINVAL; n_channels = wreq->num_channels; } else { n_channels = ieee80211_get_num_supported_channels(wiphy); } creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + n_channels * sizeof(void *), GFP_ATOMIC); if (!creq) return -ENOMEM; creq->wiphy = wiphy; creq->wdev = dev->ieee80211_ptr; /* SSIDs come after channels */ creq->ssids = (void *)&creq->channels[n_channels]; creq->n_channels = n_channels; creq->n_ssids = 1; creq->scan_start = jiffies; /* translate "Scan on frequencies" request */ i = 0; for (band = 0; band < NUM_NL80211_BANDS; band++) { int j; if (!wiphy->bands[band]) continue; for (j = 0; j < wiphy->bands[band]->n_channels; j++) { /* ignore disabled channels */ if (wiphy->bands[band]->channels[j].flags & IEEE80211_CHAN_DISABLED) continue; /* If we have a wireless request structure and the * wireless request specifies frequencies, then search * for the matching hardware channel. */ if (wreq && wreq->num_channels) { int k; int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; for (k = 0; k < wreq->num_channels; k++) { struct iw_freq *freq = &wreq->channel_list[k]; int wext_freq = cfg80211_wext_freq(freq); if (wext_freq == wiphy_freq) goto wext_freq_found; } goto wext_freq_not_found; } wext_freq_found: creq->channels[i] = &wiphy->bands[band]->channels[j]; i++; wext_freq_not_found: ; } } /* No channels found? */ if (!i) { err = -EINVAL; goto out; } /* Set real number of channels specified in creq->channels[] */ creq->n_channels = i; /* translate "Scan for SSID" request */ if (wreq) { if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { err = -EINVAL; goto out; } memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); creq->ssids[0].ssid_len = wreq->essid_len; } if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { creq->ssids = NULL; creq->n_ssids = 0; } } for (i = 0; i < NUM_NL80211_BANDS; i++) if (wiphy->bands[i]) creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; eth_broadcast_addr(creq->bssid); wiphy_lock(&rdev->wiphy); rdev->scan_req = creq; err = rdev_scan(rdev, creq); if (err) { rdev->scan_req = NULL; /* creq will be freed below */ } else { nl80211_send_scan_start(rdev, dev->ieee80211_ptr); /* creq now owned by driver */ creq = NULL; dev_hold(dev); } wiphy_unlock(&rdev->wiphy); out: kfree(creq); return err; } EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); static char *ieee80211_scan_add_ies(struct iw_request_info *info, const struct cfg80211_bss_ies *ies, char *current_ev, char *end_buf) { const u8 *pos, *end, *next; struct iw_event iwe; if (!ies) return current_ev; /* * If needed, fragment the IEs buffer (at IE boundaries) into short * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. */ pos = ies->data; end = pos + ies->len; while (end - pos > IW_GENERIC_IE_MAX) { next = pos + 2 + pos[1]; while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) next = next + 2 + next[1]; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = next - pos; current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, (void *)pos); if (IS_ERR(current_ev)) return current_ev; pos = next; } if (end > pos) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = end - pos; current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, (void *)pos); if (IS_ERR(current_ev)) return current_ev; } return current_ev; } static char * ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, struct cfg80211_internal_bss *bss, char *current_ev, char *end_buf) { const struct cfg80211_bss_ies *ies; struct iw_event iwe; const u8 *ie; u8 buf[50]; u8 *cfg, *p, *tmp; int rem, i, sig; bool ismesh = false; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWAP; iwe.u.ap_addr.sa_family = ARPHRD_ETHER; memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, IW_EV_ADDR_LEN); if (IS_ERR(current_ev)) return current_ev; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWFREQ; iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); iwe.u.freq.e = 0; current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); if (IS_ERR(current_ev)) return current_ev; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWFREQ; iwe.u.freq.m = bss->pub.channel->center_freq; iwe.u.freq.e = 6; current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); if (IS_ERR(current_ev)) return current_ev; if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVQUAL; iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | IW_QUAL_NOISE_INVALID | IW_QUAL_QUAL_UPDATED; switch (wiphy->signal_type) { case CFG80211_SIGNAL_TYPE_MBM: sig = bss->pub.signal / 100; iwe.u.qual.level = sig; iwe.u.qual.updated |= IW_QUAL_DBM; if (sig < -110) /* rather bad */ sig = -110; else if (sig > -40) /* perfect */ sig = -40; /* will give a range of 0 .. 70 */ iwe.u.qual.qual = sig + 110; break; case CFG80211_SIGNAL_TYPE_UNSPEC: iwe.u.qual.level = bss->pub.signal; /* will give range 0 .. 100 */ iwe.u.qual.qual = bss->pub.signal; break; default: /* not reached */ break; } current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, IW_EV_QUAL_LEN); if (IS_ERR(current_ev)) return current_ev; } memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWENCODE; if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; else iwe.u.data.flags = IW_ENCODE_DISABLED; iwe.u.data.length = 0; current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, ""); if (IS_ERR(current_ev)) return current_ev; rcu_read_lock(); ies = rcu_dereference(bss->pub.ies); rem = ies->len; ie = ies->data; while (rem >= 2) { /* invalid data */ if (ie[1] > rem - 2) break; switch (ie[0]) { case WLAN_EID_SSID: memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWESSID; iwe.u.data.length = ie[1]; iwe.u.data.flags = 1; current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, (u8 *)ie + 2); if (IS_ERR(current_ev)) goto unlock; break; case WLAN_EID_MESH_ID: memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWESSID; iwe.u.data.length = ie[1]; iwe.u.data.flags = 1; current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, (u8 *)ie + 2); if (IS_ERR(current_ev)) goto unlock; break; case WLAN_EID_MESH_CONFIG: ismesh = true; if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) break; cfg = (u8 *)ie + 2; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; iwe.u.data.length = sprintf(buf, "Mesh Network Path Selection Protocol ID: 0x%02X", cfg[0]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Path Selection Metric ID: 0x%02X", cfg[1]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Congestion Control Mode ID: 0x%02X", cfg[2]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Formation Info: 0x%02X", cfg[5]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; iwe.u.data.length = sprintf(buf, "Capabilities: 0x%02X", cfg[6]); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; break; case WLAN_EID_SUPP_RATES: case WLAN_EID_EXT_SUPP_RATES: /* display all supported rates in readable format */ p = current_ev + iwe_stream_lcp_len(info); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWRATE; /* Those two flags are ignored... */ iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; for (i = 0; i < ie[1]; i++) { iwe.u.bitrate.value = ((ie[i + 2] & 0x7f) * 500000); tmp = p; p = iwe_stream_add_value(info, current_ev, p, end_buf, &iwe, IW_EV_PARAM_LEN); if (p == tmp) { current_ev = ERR_PTR(-E2BIG); goto unlock; } } current_ev = p; break; } rem -= ie[1] + 2; ie += ie[1] + 2; } if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || ismesh) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWMODE; if (ismesh) iwe.u.mode = IW_MODE_MESH; else if (bss->pub.capability & WLAN_CAPABILITY_ESS) iwe.u.mode = IW_MODE_MASTER; else iwe.u.mode = IW_MODE_ADHOC; current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, IW_EV_UINT_LEN); if (IS_ERR(current_ev)) goto unlock; } memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; iwe.u.data.length = sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", elapsed_jiffies_msecs(bss->ts)); current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, &iwe, buf); if (IS_ERR(current_ev)) goto unlock; current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); unlock: rcu_read_unlock(); return current_ev; } static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, struct iw_request_info *info, char *buf, size_t len) { char *current_ev = buf; char *end_buf = buf + len; struct cfg80211_internal_bss *bss; int err = 0; spin_lock_bh(&rdev->bss_lock); cfg80211_bss_expire(rdev); list_for_each_entry(bss, &rdev->bss_list, list) { if (buf + len - current_ev <= IW_EV_ADDR_LEN) { err = -E2BIG; break; } current_ev = ieee80211_bss(&rdev->wiphy, info, bss, current_ev, end_buf); if (IS_ERR(current_ev)) { err = PTR_ERR(current_ev); break; } } spin_unlock_bh(&rdev->bss_lock); if (err) return err; return current_ev - buf; } int cfg80211_wext_giwscan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_point *data = &wrqu->data; struct cfg80211_registered_device *rdev; int res; if (!netif_running(dev)) return -ENETDOWN; rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); if (IS_ERR(rdev)) return PTR_ERR(rdev); if (rdev->scan_req || rdev->scan_msg) return -EAGAIN; res = ieee80211_scan_results(rdev, info, extra, data->length); data->length = 0; if (res >= 0) { data->length = res; res = 0; } return res; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); #endif