/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/in.h> #include <linux/module.h> #include <net/tcp.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/addrconf.h> #include "rds.h" #include "tcp.h" /* only for info exporting */ static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); static LIST_HEAD(rds_tcp_tc_list); /* rds_tcp_tc_count counts only IPv4 connections. * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. */ static unsigned int rds_tcp_tc_count; #if IS_ENABLED(CONFIG_IPV6) static unsigned int rds6_tcp_tc_count; #endif /* Track rds_tcp_connection structs so they can be cleaned up */ static DEFINE_SPINLOCK(rds_tcp_conn_lock); static LIST_HEAD(rds_tcp_conn_list); static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); static struct kmem_cache *rds_tcp_conn_slab; static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos); static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; static struct ctl_table rds_tcp_sysctl_table[] = { #define RDS_TCP_SNDBUF 0 { .procname = "rds_tcp_sndbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_sndbuf, }, #define RDS_TCP_RCVBUF 1 { .procname = "rds_tcp_rcvbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_rcvbuf, }, { } }; u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) { /* seq# of the last byte of data in tcp send buffer */ return tcp_sk(tc->t_sock->sk)->write_seq; } u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) { return tcp_sk(tc->t_sock->sk)->snd_una; } void rds_tcp_restore_callbacks(struct socket *sock, struct rds_tcp_connection *tc) { rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_del_init(&tc->t_list_item); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count--; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count--; spin_unlock(&rds_tcp_tc_list_lock); tc->t_sock = NULL; sock->sk->sk_write_space = tc->t_orig_write_space; sock->sk->sk_data_ready = tc->t_orig_data_ready; sock->sk->sk_state_change = tc->t_orig_state_change; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); } /* * rds_tcp_reset_callbacks() switches the to the new sock and * returns the existing tc->t_sock. * * The only functions that set tc->t_sock are rds_tcp_set_callbacks * and rds_tcp_reset_callbacks. Send and receive trust that * it is set. The absence of RDS_CONN_UP bit protects those paths * from being called while it isn't set. */ void rds_tcp_reset_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *osock = tc->t_sock; if (!osock) goto newsock; /* Need to resolve a duelling SYN between peers. * We have an outstanding SYN to this peer, which may * potentially have transitioned to the RDS_CONN_UP state, * so we must quiesce any send threads before resetting * cp_transport_data. We quiesce these threads by setting * cp_state to something other than RDS_CONN_UP, and then * waiting for any existing threads in rds_send_xmit to * complete release_in_xmit(). (Subsequent threads entering * rds_send_xmit() will bail on !rds_conn_up(). * * However an incoming syn-ack at this point would end up * marking the conn as RDS_CONN_UP, and would again permit * rds_send_xmi() threads through, so ideally we would * synchronize on RDS_CONN_UP after lock_sock(), but cannot * do that: waiting on !RDS_IN_XMIT after lock_sock() may * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT * would not get set. As a result, we set c_state to * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change * cannot mark rds_conn_path_up() in the window before lock_sock() */ atomic_set(&cp->cp_state, RDS_CONN_RESETTING); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); /* reset receive side state for rds_tcp_data_recv() for osock */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); lock_sock(osock->sk); if (tc->t_tinc) { rds_inc_put(&tc->t_tinc->ti_inc); tc->t_tinc = NULL; } tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; rds_tcp_restore_callbacks(osock, tc); release_sock(osock->sk); sock_release(osock); newsock: rds_send_path_reset(cp); lock_sock(sock->sk); rds_tcp_set_callbacks(sock, cp); release_sock(sock->sk); } /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments * above rds_tcp_reset_callbacks for notes about synchronization * with data path */ void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count++; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count++; spin_unlock(&rds_tcp_tc_list_lock); /* accepted sockets need our listen data ready undone */ if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) sock->sk->sk_data_ready = sock->sk->sk_user_data; tc->t_sock = sock; tc->t_cpath = cp; tc->t_orig_data_ready = sock->sk->sk_data_ready; tc->t_orig_write_space = sock->sk->sk_write_space; tc->t_orig_state_change = sock->sk->sk_state_change; sock->sk->sk_user_data = cp; sock->sk->sk_data_ready = rds_tcp_data_ready; sock->sk->sk_write_space = rds_tcp_write_space; sock->sk->sk_state_change = rds_tcp_state_change; write_unlock_bh(&sock->sk->sk_callback_lock); } /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 * connections for backward compatibility. */ static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_tcp_socket tsinfo; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo) < rds_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct inet_sock *inet = inet_sk(tc->t_sock->sk); if (tc->t_cpath->cp_conn->c_isv6) continue; tsinfo.local_addr = inet->inet_saddr; tsinfo.local_port = inet->inet_sport; tsinfo.peer_addr = inet->inet_daddr; tsinfo.peer_port = inet->inet_dport; tsinfo.hdr_rem = tc->t_tinc_hdr_rem; tsinfo.data_rem = tc->t_tinc_data_rem; tsinfo.last_sent_nxt = tc->t_last_sent_nxt; tsinfo.last_expected_una = tc->t_last_expected_una; tsinfo.last_seen_una = tc->t_last_seen_una; tsinfo.tos = tc->t_cpath->cp_conn->c_tos; rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); } out: lens->nr = rds_tcp_tc_count; lens->each = sizeof(tsinfo); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #if IS_ENABLED(CONFIG_IPV6) /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped * address. */ static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds6_info_tcp_socket tsinfo6; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct sock *sk = tc->t_sock->sk; struct inet_sock *inet = inet_sk(sk); tsinfo6.local_addr = sk->sk_v6_rcv_saddr; tsinfo6.local_port = inet->inet_sport; tsinfo6.peer_addr = sk->sk_v6_daddr; tsinfo6.peer_port = inet->inet_dport; tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; tsinfo6.data_rem = tc->t_tinc_data_rem; tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; tsinfo6.last_expected_una = tc->t_last_expected_una; tsinfo6.last_seen_una = tc->t_last_seen_una; rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); } out: lens->nr = rds6_tcp_tc_count; lens->each = sizeof(tsinfo6); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #endif int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, __u32 scope_id) { struct net_device *dev = NULL; #if IS_ENABLED(CONFIG_IPV6) int ret; #endif if (ipv6_addr_v4mapped(addr)) { if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) return 0; return -EADDRNOTAVAIL; } /* If the scope_id is specified, check only those addresses * hosted on the specified interface. */ if (scope_id != 0) { rcu_read_lock(); dev = dev_get_by_index_rcu(net, scope_id); /* scope_id is not valid... */ if (!dev) { rcu_read_unlock(); return -EADDRNOTAVAIL; } rcu_read_unlock(); } #if IS_ENABLED(CONFIG_IPV6) ret = ipv6_chk_addr(net, addr, dev, 0); if (ret) return 0; #endif return -EADDRNOTAVAIL; } static void rds_tcp_conn_free(void *arg) { struct rds_tcp_connection *tc = arg; unsigned long flags; rdsdebug("freeing tc %p\n", tc); spin_lock_irqsave(&rds_tcp_conn_lock, flags); if (!tc->t_tcp_node_detached) list_del(&tc->t_tcp_node); spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); kmem_cache_free(rds_tcp_conn_slab, tc); } static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_tcp_connection *tc; int i, j; int ret = 0; for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); if (!tc) { ret = -ENOMEM; goto fail; } mutex_init(&tc->t_conn_path_lock); tc->t_sock = NULL; tc->t_tinc = NULL; tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; conn->c_path[i].cp_transport_data = tc; tc->t_cpath = &conn->c_path[i]; tc->t_tcp_node_detached = true; rdsdebug("rds_conn_path [%d] tc %p\n", i, conn->c_path[i].cp_transport_data); } spin_lock_irq(&rds_tcp_conn_lock); for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = conn->c_path[i].cp_transport_data; tc->t_tcp_node_detached = false; list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); } spin_unlock_irq(&rds_tcp_conn_lock); fail: if (ret) { for (j = 0; j < i; j++) rds_tcp_conn_free(conn->c_path[j].cp_transport_data); } return ret; } static bool list_has_conn(struct list_head *list, struct rds_connection *conn) { struct rds_tcp_connection *tc, *_tc; list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { if (tc->t_cpath->cp_conn == conn) return true; } return false; } static void rds_tcp_set_unloading(void) { atomic_set(&rds_tcp_unloading, 1); } static bool rds_tcp_is_unloading(struct rds_connection *conn) { return atomic_read(&rds_tcp_unloading) != 0; } static void rds_tcp_destroy_conns(void) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) list_move_tail(&tc->t_tcp_node, &tmp_list); } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void rds_tcp_exit(void); static u8 rds_tcp_get_tos_map(u8 tos) { /* all user tos mapped to default 0 for TCP transport */ return 0; } struct rds_transport rds_tcp_transport = { .laddr_check = rds_tcp_laddr_check, .xmit_path_prepare = rds_tcp_xmit_path_prepare, .xmit_path_complete = rds_tcp_xmit_path_complete, .xmit = rds_tcp_xmit, .recv_path = rds_tcp_recv_path, .conn_alloc = rds_tcp_conn_alloc, .conn_free = rds_tcp_conn_free, .conn_path_connect = rds_tcp_conn_path_connect, .conn_path_shutdown = rds_tcp_conn_path_shutdown, .inc_copy_to_user = rds_tcp_inc_copy_to_user, .inc_free = rds_tcp_inc_free, .stats_info_copy = rds_tcp_stats_info_copy, .exit = rds_tcp_exit, .get_tos_map = rds_tcp_get_tos_map, .t_owner = THIS_MODULE, .t_name = "tcp", .t_type = RDS_TRANS_TCP, .t_prefer_loopback = 1, .t_mp_capable = 1, .t_unloading = rds_tcp_is_unloading, }; static unsigned int rds_tcp_netid; /* per-network namespace private data for this module */ struct rds_tcp_net { struct socket *rds_tcp_listen_sock; struct work_struct rds_tcp_accept_w; struct ctl_table_header *rds_tcp_sysctl; struct ctl_table *ctl_table; int sndbuf_size; int rcvbuf_size; }; /* All module specific customizations to the RDS-TCP socket should be done in * rds_tcp_tune() and applied after socket creation. */ bool rds_tcp_tune(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct rds_tcp_net *rtn; tcp_sock_set_nodelay(sock->sk); lock_sock(sk); /* TCP timer functions might access net namespace even after * a process which created this net namespace terminated. */ if (!sk->sk_net_refcnt) { if (!maybe_get_net(net)) { release_sock(sk); return false; } /* Update ns_tracker to current stack trace and refcounted tracker */ __netns_tracker_free(net, &sk->ns_tracker, false); sk->sk_net_refcnt = 1; netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); sock_inuse_add(net, 1); } rtn = net_generic(net, rds_tcp_netid); if (rtn->sndbuf_size > 0) { sk->sk_sndbuf = rtn->sndbuf_size; sk->sk_userlocks |= SOCK_SNDBUF_LOCK; } if (rtn->rcvbuf_size > 0) { sk->sk_rcvbuf = rtn->rcvbuf_size; sk->sk_userlocks |= SOCK_RCVBUF_LOCK; } release_sock(sk); return true; } static void rds_tcp_accept_worker(struct work_struct *work) { struct rds_tcp_net *rtn = container_of(work, struct rds_tcp_net, rds_tcp_accept_w); while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) cond_resched(); } void rds_tcp_accept_work(struct sock *sk) { struct net *net = sock_net(sk); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); queue_work(rds_wq, &rtn->rds_tcp_accept_w); } static __net_init int rds_tcp_init_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct ctl_table *tbl; int err = 0; memset(rtn, 0, sizeof(*rtn)); /* {snd, rcv}buf_size default to 0, which implies we let the * stack pick the value, and permit auto-tuning of buffer size. */ if (net == &init_net) { tbl = rds_tcp_sysctl_table; } else { tbl = kmemdup(rds_tcp_sysctl_table, sizeof(rds_tcp_sysctl_table), GFP_KERNEL); if (!tbl) { pr_warn("could not set allocate sysctl table\n"); return -ENOMEM; } rtn->ctl_table = tbl; } tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; rtn->rds_tcp_sysctl = register_net_sysctl_sz(net, "net/rds/tcp", tbl, ARRAY_SIZE(rds_tcp_sysctl_table)); if (!rtn->rds_tcp_sysctl) { pr_warn("could not register sysctl\n"); err = -ENOMEM; goto fail; } #if IS_ENABLED(CONFIG_IPV6) rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); #else rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); #endif if (!rtn->rds_tcp_listen_sock) { pr_warn("could not set up IPv6 listen sock\n"); #if IS_ENABLED(CONFIG_IPV6) /* Try IPv4 as some systems disable IPv6 */ rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); if (!rtn->rds_tcp_listen_sock) { #endif unregister_net_sysctl_table(rtn->rds_tcp_sysctl); rtn->rds_tcp_sysctl = NULL; err = -EAFNOSUPPORT; goto fail; #if IS_ENABLED(CONFIG_IPV6) } #endif } INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); return 0; fail: if (net != &init_net) kfree(tbl); return err; } static void rds_tcp_kill_sock(struct net *net) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; rtn->rds_tcp_listen_sock = NULL; rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net) continue; if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { list_move_tail(&tc->t_tcp_node, &tmp_list); } else { list_del(&tc->t_tcp_node); tc->t_tcp_node_detached = true; } } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void __net_exit rds_tcp_exit_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); rds_tcp_kill_sock(net); if (rtn->rds_tcp_sysctl) unregister_net_sysctl_table(rtn->rds_tcp_sysctl); if (net != &init_net) kfree(rtn->ctl_table); } static struct pernet_operations rds_tcp_net_ops = { .init = rds_tcp_init_net, .exit = rds_tcp_exit_net, .id = &rds_tcp_netid, .size = sizeof(struct rds_tcp_net), }; void *rds_tcp_listen_sock_def_readable(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; if (!lsock) return NULL; return lsock->sk->sk_user_data; } /* when sysctl is used to modify some kernel socket parameters,this * function resets the RDS connections in that netns so that we can * restart with new parameters. The assumption is that such reset * events are few and far-between. */ static void rds_tcp_sysctl_reset(struct net *net) { struct rds_tcp_connection *tc, *_tc; spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net || !tc->t_sock) continue; /* reconnect with new parameters */ rds_conn_path_drop(tc->t_cpath, false); } spin_unlock_irq(&rds_tcp_conn_lock); } static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { struct net *net = current->nsproxy->net_ns; int err; err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); if (err < 0) { pr_warn("Invalid input. Must be >= %d\n", *(int *)(ctl->extra1)); return err; } if (write) rds_tcp_sysctl_reset(net); return 0; } static void rds_tcp_exit(void) { rds_tcp_set_unloading(); synchronize_rcu(); rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif unregister_pernet_device(&rds_tcp_net_ops); rds_tcp_destroy_conns(); rds_trans_unregister(&rds_tcp_transport); rds_tcp_recv_exit(); kmem_cache_destroy(rds_tcp_conn_slab); } module_exit(rds_tcp_exit); static int __init rds_tcp_init(void) { int ret; rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection", sizeof(struct rds_tcp_connection), 0, 0, NULL); if (!rds_tcp_conn_slab) { ret = -ENOMEM; goto out; } ret = rds_tcp_recv_init(); if (ret) goto out_slab; ret = register_pernet_device(&rds_tcp_net_ops); if (ret) goto out_recv; rds_trans_register(&rds_tcp_transport); rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif goto out; out_recv: rds_tcp_recv_exit(); out_slab: kmem_cache_destroy(rds_tcp_conn_slab); out: return ret; } module_init(rds_tcp_init); MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); MODULE_DESCRIPTION("RDS: TCP transport"); MODULE_LICENSE("Dual BSD/GPL");