// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/stat.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <net/net_namespace.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/fcntl.h> #include <linux/termios.h> /* For TIOCINQ/OUTQ */ #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/notifier.h> #include <net/netrom.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <net/ip.h> #include <net/tcp_states.h> #include <net/arp.h> #include <linux/init.h> static int nr_ndevs = 4; int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; static unsigned short circuit = 0x101; static HLIST_HEAD(nr_list); static DEFINE_SPINLOCK(nr_list_lock); static const struct proto_ops nr_proto_ops; /* * NETROM network devices are virtual network devices encapsulating NETROM * frames into AX.25 which will be sent through an AX.25 device, so form a * special "super class" of normal net devices; split their locks off into a * separate class since they always nest. */ static struct lock_class_key nr_netdev_xmit_lock_key; static struct lock_class_key nr_netdev_addr_lock_key; static void nr_set_lockdep_one(struct net_device *dev, struct netdev_queue *txq, void *_unused) { lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key); } static void nr_set_lockdep_key(struct net_device *dev) { lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key); netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL); } /* * Socket removal during an interrupt is now safe. */ static void nr_remove_socket(struct sock *sk) { spin_lock_bh(&nr_list_lock); sk_del_node_init(sk); spin_unlock_bh(&nr_list_lock); } /* * Kill all bound sockets on a dropped device. */ static void nr_kill_by_device(struct net_device *dev) { struct sock *s; spin_lock_bh(&nr_list_lock); sk_for_each(s, &nr_list) if (nr_sk(s)->device == dev) nr_disconnect(s, ENETUNREACH); spin_unlock_bh(&nr_list_lock); } /* * Handle device status changes. */ static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (event != NETDEV_DOWN) return NOTIFY_DONE; nr_kill_by_device(dev); nr_rt_device_down(dev); return NOTIFY_DONE; } /* * Add a socket to the bound sockets list. */ static void nr_insert_socket(struct sock *sk) { spin_lock_bh(&nr_list_lock); sk_add_node(sk, &nr_list); spin_unlock_bh(&nr_list_lock); } /* * Find a socket that wants to accept the Connect Request we just * received. */ static struct sock *nr_find_listener(ax25_address *addr) { struct sock *s; spin_lock_bh(&nr_list_lock); sk_for_each(s, &nr_list) if (!ax25cmp(&nr_sk(s)->source_addr, addr) && s->sk_state == TCP_LISTEN) { sock_hold(s); goto found; } s = NULL; found: spin_unlock_bh(&nr_list_lock); return s; } /* * Find a connected NET/ROM socket given my circuit IDs. */ static struct sock *nr_find_socket(unsigned char index, unsigned char id) { struct sock *s; spin_lock_bh(&nr_list_lock); sk_for_each(s, &nr_list) { struct nr_sock *nr = nr_sk(s); if (nr->my_index == index && nr->my_id == id) { sock_hold(s); goto found; } } s = NULL; found: spin_unlock_bh(&nr_list_lock); return s; } /* * Find a connected NET/ROM socket given their circuit IDs. */ static struct sock *nr_find_peer(unsigned char index, unsigned char id, ax25_address *dest) { struct sock *s; spin_lock_bh(&nr_list_lock); sk_for_each(s, &nr_list) { struct nr_sock *nr = nr_sk(s); if (nr->your_index == index && nr->your_id == id && !ax25cmp(&nr->dest_addr, dest)) { sock_hold(s); goto found; } } s = NULL; found: spin_unlock_bh(&nr_list_lock); return s; } /* * Find next free circuit ID. */ static unsigned short nr_find_next_circuit(void) { unsigned short id = circuit; unsigned char i, j; struct sock *sk; for (;;) { i = id / 256; j = id % 256; if (i != 0 && j != 0) { if ((sk=nr_find_socket(i, j)) == NULL) break; sock_put(sk); } id++; } return id; } /* * Deferred destroy. */ void nr_destroy_socket(struct sock *); /* * Handler for deferred kills. */ static void nr_destroy_timer(struct timer_list *t) { struct sock *sk = from_timer(sk, t, sk_timer); bh_lock_sock(sk); sock_hold(sk); nr_destroy_socket(sk); bh_unlock_sock(sk); sock_put(sk); } /* * This is called from user mode and the timers. Thus it protects itself * against interrupt users but doesn't worry about being called during * work. Once it is removed from the queue no interrupt or bottom half * will touch it and we are (fairly 8-) ) safe. */ void nr_destroy_socket(struct sock *sk) { struct sk_buff *skb; nr_remove_socket(sk); nr_stop_heartbeat(sk); nr_stop_t1timer(sk); nr_stop_t2timer(sk); nr_stop_t4timer(sk); nr_stop_idletimer(sk); nr_clear_queues(sk); /* Flush the queues */ while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { if (skb->sk != sk) { /* A pending connection */ /* Queue the unaccepted socket for death */ sock_set_flag(skb->sk, SOCK_DEAD); nr_start_heartbeat(skb->sk); nr_sk(skb->sk)->state = NR_STATE_0; } kfree_skb(skb); } if (sk_has_allocations(sk)) { /* Defer: outstanding buffers */ sk->sk_timer.function = nr_destroy_timer; sk->sk_timer.expires = jiffies + 2 * HZ; add_timer(&sk->sk_timer); } else sock_put(sk); } /* * Handling for system calls applied via the various interfaces to a * NET/ROM socket object. */ static int nr_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); unsigned long opt; if (level != SOL_NETROM) return -ENOPROTOOPT; if (optlen < sizeof(unsigned int)) return -EINVAL; if (get_user(opt, (unsigned int __user *)optval)) return -EFAULT; switch (optname) { case NETROM_T1: if (opt < 1 || opt > ULONG_MAX / HZ) return -EINVAL; nr->t1 = opt * HZ; return 0; case NETROM_T2: if (opt < 1 || opt > ULONG_MAX / HZ) return -EINVAL; nr->t2 = opt * HZ; return 0; case NETROM_N2: if (opt < 1 || opt > 31) return -EINVAL; nr->n2 = opt; return 0; case NETROM_T4: if (opt < 1 || opt > ULONG_MAX / HZ) return -EINVAL; nr->t4 = opt * HZ; return 0; case NETROM_IDLE: if (opt > ULONG_MAX / (60 * HZ)) return -EINVAL; nr->idle = opt * 60 * HZ; return 0; default: return -ENOPROTOOPT; } } static int nr_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); int val = 0; int len; if (level != SOL_NETROM) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case NETROM_T1: val = nr->t1 / HZ; break; case NETROM_T2: val = nr->t2 / HZ; break; case NETROM_N2: val = nr->n2; break; case NETROM_T4: val = nr->t4 / HZ; break; case NETROM_IDLE: val = nr->idle / (60 * HZ); break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, len, sizeof(int)); if (put_user(len, optlen)) return -EFAULT; return copy_to_user(optval, &val, len) ? -EFAULT : 0; } static int nr_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; lock_sock(sk); if (sk->sk_state != TCP_LISTEN) { memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); sk->sk_max_ack_backlog = backlog; sk->sk_state = TCP_LISTEN; release_sock(sk); return 0; } release_sock(sk); return -EOPNOTSUPP; } static struct proto nr_proto = { .name = "NETROM", .owner = THIS_MODULE, .obj_size = sizeof(struct nr_sock), }; static int nr_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct nr_sock *nr; if (!net_eq(net, &init_net)) return -EAFNOSUPPORT; if (sock->type != SOCK_SEQPACKET || protocol != 0) return -ESOCKTNOSUPPORT; sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern); if (sk == NULL) return -ENOMEM; nr = nr_sk(sk); sock_init_data(sock, sk); sock->ops = &nr_proto_ops; sk->sk_protocol = protocol; skb_queue_head_init(&nr->ack_queue); skb_queue_head_init(&nr->reseq_queue); skb_queue_head_init(&nr->frag_queue); nr_init_timers(sk); nr->t1 = msecs_to_jiffies(sysctl_netrom_transport_timeout); nr->t2 = msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); nr->n2 = msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); nr->t4 = msecs_to_jiffies(sysctl_netrom_transport_busy_delay); nr->idle = msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); nr->window = sysctl_netrom_transport_requested_window_size; nr->bpqext = 1; nr->state = NR_STATE_0; return 0; } static struct sock *nr_make_new(struct sock *osk) { struct sock *sk; struct nr_sock *nr, *onr; if (osk->sk_type != SOCK_SEQPACKET) return NULL; sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0); if (sk == NULL) return NULL; nr = nr_sk(sk); sock_init_data(NULL, sk); sk->sk_type = osk->sk_type; sk->sk_priority = osk->sk_priority; sk->sk_protocol = osk->sk_protocol; sk->sk_rcvbuf = osk->sk_rcvbuf; sk->sk_sndbuf = osk->sk_sndbuf; sk->sk_state = TCP_ESTABLISHED; sock_copy_flags(sk, osk); skb_queue_head_init(&nr->ack_queue); skb_queue_head_init(&nr->reseq_queue); skb_queue_head_init(&nr->frag_queue); nr_init_timers(sk); onr = nr_sk(osk); nr->t1 = onr->t1; nr->t2 = onr->t2; nr->n2 = onr->n2; nr->t4 = onr->t4; nr->idle = onr->idle; nr->window = onr->window; nr->device = onr->device; nr->bpqext = onr->bpqext; return sk; } static int nr_release(struct socket *sock) { struct sock *sk = sock->sk; struct nr_sock *nr; if (sk == NULL) return 0; sock_hold(sk); sock_orphan(sk); lock_sock(sk); nr = nr_sk(sk); switch (nr->state) { case NR_STATE_0: case NR_STATE_1: case NR_STATE_2: nr_disconnect(sk, 0); nr_destroy_socket(sk); break; case NR_STATE_3: nr_clear_queues(sk); nr->n2count = 0; nr_write_internal(sk, NR_DISCREQ); nr_start_t1timer(sk); nr_stop_t2timer(sk); nr_stop_t4timer(sk); nr_stop_idletimer(sk); nr->state = NR_STATE_2; sk->sk_state = TCP_CLOSE; sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DESTROY); break; default: break; } sock->sk = NULL; release_sock(sk); sock_put(sk); return 0; } static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; struct net_device *dev; ax25_uid_assoc *user; ax25_address *source; lock_sock(sk); if (!sock_flag(sk, SOCK_ZAPPED)) { release_sock(sk); return -EINVAL; } if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { release_sock(sk); return -EINVAL; } if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { release_sock(sk); return -EINVAL; } if (addr->fsa_ax25.sax25_family != AF_NETROM) { release_sock(sk); return -EINVAL; } if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { release_sock(sk); return -EADDRNOTAVAIL; } /* * Only the super user can set an arbitrary user callsign. */ if (addr->fsa_ax25.sax25_ndigis == 1) { if (!capable(CAP_NET_BIND_SERVICE)) { dev_put(dev); release_sock(sk); return -EPERM; } nr->user_addr = addr->fsa_digipeater[0]; nr->source_addr = addr->fsa_ax25.sax25_call; } else { source = &addr->fsa_ax25.sax25_call; user = ax25_findbyuid(current_euid()); if (user) { nr->user_addr = user->call; ax25_uid_put(user); } else { if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { release_sock(sk); dev_put(dev); return -EPERM; } nr->user_addr = *source; } nr->source_addr = *source; } nr->device = dev; nr_insert_socket(sk); sock_reset_flag(sk, SOCK_ZAPPED); dev_put(dev); release_sock(sk); return 0; } static int nr_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; ax25_address *source = NULL; ax25_uid_assoc *user; struct net_device *dev; int err = 0; lock_sock(sk); if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { sock->state = SS_CONNECTED; goto out_release; /* Connect completed during a ERESTARTSYS event */ } if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { sock->state = SS_UNCONNECTED; err = -ECONNREFUSED; goto out_release; } if (sk->sk_state == TCP_ESTABLISHED) { err = -EISCONN; /* No reconnect on a seqpacket socket */ goto out_release; } sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { err = -EINVAL; goto out_release; } if (addr->sax25_family != AF_NETROM) { err = -EINVAL; goto out_release; } if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ sock_reset_flag(sk, SOCK_ZAPPED); if ((dev = nr_dev_first()) == NULL) { err = -ENETUNREACH; goto out_release; } source = (ax25_address *)dev->dev_addr; user = ax25_findbyuid(current_euid()); if (user) { nr->user_addr = user->call; ax25_uid_put(user); } else { if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { dev_put(dev); err = -EPERM; goto out_release; } nr->user_addr = *source; } nr->source_addr = *source; nr->device = dev; dev_put(dev); nr_insert_socket(sk); /* Finish the bind */ } nr->dest_addr = addr->sax25_call; release_sock(sk); circuit = nr_find_next_circuit(); lock_sock(sk); nr->my_index = circuit / 256; nr->my_id = circuit % 256; circuit++; /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->sk_state = TCP_SYN_SENT; nr_establish_data_link(sk); nr->state = NR_STATE_1; nr_start_heartbeat(sk); /* Now the loop */ if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { err = -EINPROGRESS; goto out_release; } /* * A Connect Ack with Choke or timeout or failed routing will go to * closed. */ if (sk->sk_state == TCP_SYN_SENT) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (sk->sk_state != TCP_SYN_SENT) break; if (!signal_pending(current)) { release_sock(sk); schedule(); lock_sock(sk); continue; } err = -ERESTARTSYS; break; } finish_wait(sk_sleep(sk), &wait); if (err) goto out_release; } if (sk->sk_state != TCP_ESTABLISHED) { sock->state = SS_UNCONNECTED; err = sock_error(sk); /* Always set at this point */ goto out_release; } sock->state = SS_CONNECTED; out_release: release_sock(sk); return err; } static int nr_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { struct sk_buff *skb; struct sock *newsk; DEFINE_WAIT(wait); struct sock *sk; int err = 0; if ((sk = sock->sk) == NULL) return -EINVAL; lock_sock(sk); if (sk->sk_type != SOCK_SEQPACKET) { err = -EOPNOTSUPP; goto out_release; } if (sk->sk_state != TCP_LISTEN) { err = -EINVAL; goto out_release; } /* * The write queue this time is holding sockets ready to use * hooked into the SABM we saved */ for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); skb = skb_dequeue(&sk->sk_receive_queue); if (skb) break; if (flags & O_NONBLOCK) { err = -EWOULDBLOCK; break; } if (!signal_pending(current)) { release_sock(sk); schedule(); lock_sock(sk); continue; } err = -ERESTARTSYS; break; } finish_wait(sk_sleep(sk), &wait); if (err) goto out_release; newsk = skb->sk; sock_graft(newsk, newsock); /* Now attach up the new socket */ kfree_skb(skb); sk_acceptq_removed(sk); out_release: release_sock(sk); return err; } static int nr_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); int uaddr_len; memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25)); lock_sock(sk); if (peer != 0) { if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 1; sax->fsa_ax25.sax25_call = nr->user_addr; memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater)); sax->fsa_digipeater[0] = nr->dest_addr; uaddr_len = sizeof(struct full_sockaddr_ax25); } else { sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 0; sax->fsa_ax25.sax25_call = nr->source_addr; uaddr_len = sizeof(struct sockaddr_ax25); } release_sock(sk); return uaddr_len; } int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) { struct sock *sk; struct sock *make; struct nr_sock *nr_make; ax25_address *src, *dest, *user; unsigned short circuit_index, circuit_id; unsigned short peer_circuit_index, peer_circuit_id; unsigned short frametype, flags, window, timeout; int ret; skb_orphan(skb); /* * skb->data points to the netrom frame start */ src = (ax25_address *)(skb->data + 0); dest = (ax25_address *)(skb->data + 7); circuit_index = skb->data[15]; circuit_id = skb->data[16]; peer_circuit_index = skb->data[17]; peer_circuit_id = skb->data[18]; frametype = skb->data[19] & 0x0F; flags = skb->data[19] & 0xF0; /* * Check for an incoming IP over NET/ROM frame. */ if (frametype == NR_PROTOEXT && circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); skb_reset_transport_header(skb); return nr_rx_ip(skb, dev); } /* * Find an existing socket connection, based on circuit ID, if it's * a Connect Request base it on their circuit ID. * * Circuit ID 0/0 is not valid but it could still be a "reset" for a * circuit that no longer exists at the other end ... */ sk = NULL; if (circuit_index == 0 && circuit_id == 0) { if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); } else { if (frametype == NR_CONNREQ) sk = nr_find_peer(circuit_index, circuit_id, src); else sk = nr_find_socket(circuit_index, circuit_id); } if (sk != NULL) { bh_lock_sock(sk); skb_reset_transport_header(skb); if (frametype == NR_CONNACK && skb->len == 22) nr_sk(sk)->bpqext = 1; else nr_sk(sk)->bpqext = 0; ret = nr_process_rx_frame(sk, skb); bh_unlock_sock(sk); sock_put(sk); return ret; } /* * Now it should be a CONNREQ. */ if (frametype != NR_CONNREQ) { /* * Here it would be nice to be able to send a reset but * NET/ROM doesn't have one. We've tried to extend the protocol * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that * apparently kills BPQ boxes... :-( * So now we try to follow the established behaviour of * G8PZT's Xrouter which is sending packets with command type 7 * as an extension of the protocol. */ if (sysctl_netrom_reset_circuit && (frametype != NR_RESET || flags != 0)) nr_transmit_reset(skb, 1); return 0; } sk = nr_find_listener(dest); user = (ax25_address *)(skb->data + 21); if (sk == NULL || sk_acceptq_is_full(sk) || (make = nr_make_new(sk)) == NULL) { nr_transmit_refusal(skb, 0); if (sk) sock_put(sk); return 0; } bh_lock_sock(sk); window = skb->data[20]; sock_hold(make); skb->sk = make; skb->destructor = sock_efree; make->sk_state = TCP_ESTABLISHED; /* Fill in his circuit details */ nr_make = nr_sk(make); nr_make->source_addr = *dest; nr_make->dest_addr = *src; nr_make->user_addr = *user; nr_make->your_index = circuit_index; nr_make->your_id = circuit_id; bh_unlock_sock(sk); circuit = nr_find_next_circuit(); bh_lock_sock(sk); nr_make->my_index = circuit / 256; nr_make->my_id = circuit % 256; circuit++; /* Window negotiation */ if (window < nr_make->window) nr_make->window = window; /* L4 timeout negotiation */ if (skb->len == 37) { timeout = skb->data[36] * 256 + skb->data[35]; if (timeout * HZ < nr_make->t1) nr_make->t1 = timeout * HZ; nr_make->bpqext = 1; } else { nr_make->bpqext = 0; } nr_write_internal(make, NR_CONNACK); nr_make->condition = 0x00; nr_make->vs = 0; nr_make->va = 0; nr_make->vr = 0; nr_make->vl = 0; nr_make->state = NR_STATE_3; sk_acceptq_added(sk); skb_queue_head(&sk->sk_receive_queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); bh_unlock_sock(sk); sock_put(sk); nr_insert_socket(make); nr_start_heartbeat(make); nr_start_idletimer(make); return 1; } static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct nr_sock *nr = nr_sk(sk); DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name); int err; struct sockaddr_ax25 sax; struct sk_buff *skb; unsigned char *asmptr; int size; if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) return -EINVAL; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { err = -EADDRNOTAVAIL; goto out; } if (sk->sk_shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); err = -EPIPE; goto out; } if (nr->device == NULL) { err = -ENETUNREACH; goto out; } if (usax) { if (msg->msg_namelen < sizeof(sax)) { err = -EINVAL; goto out; } sax = *usax; if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { err = -EISCONN; goto out; } if (sax.sax25_family != AF_NETROM) { err = -EINVAL; goto out; } } else { if (sk->sk_state != TCP_ESTABLISHED) { err = -ENOTCONN; goto out; } sax.sax25_family = AF_NETROM; sax.sax25_call = nr->dest_addr; } /* Build a packet - the conventional user limit is 236 bytes. We can do ludicrously large NetROM frames but must not overflow */ if (len > 65536) { err = -EMSGSIZE; goto out; } size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) goto out; skb_reserve(skb, size - len); skb_reset_transport_header(skb); /* * Push down the NET/ROM header */ asmptr = skb_push(skb, NR_TRANSPORT_LEN); /* Build a NET/ROM Transport header */ *asmptr++ = nr->your_index; *asmptr++ = nr->your_id; *asmptr++ = 0; /* To be filled in later */ *asmptr++ = 0; /* Ditto */ *asmptr++ = NR_INFO; /* * Put the data on the end */ skb_put(skb, len); /* User data follows immediately after the NET/ROM transport header */ if (memcpy_from_msg(skb_transport_header(skb), msg, len)) { kfree_skb(skb); err = -EFAULT; goto out; } if (sk->sk_state != TCP_ESTABLISHED) { kfree_skb(skb); err = -ENOTCONN; goto out; } nr_output(sk, skb); /* Shove it onto the queue */ err = len; out: release_sock(sk); return err; } static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name); size_t copied; struct sk_buff *skb; int er; /* * This works for seqpacket too. The receiver has ordered the queue for * us! We do one quick check first though */ lock_sock(sk); if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } /* Now we can treat all alike */ if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { release_sock(sk); return er; } skb_reset_transport_header(skb); copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } er = skb_copy_datagram_msg(skb, 0, msg, copied); if (er < 0) { skb_free_datagram(sk, skb); release_sock(sk); return er; } if (sax != NULL) { memset(sax, 0, sizeof(*sax)); sax->sax25_family = AF_NETROM; skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call, AX25_ADDR_LEN); msg->msg_namelen = sizeof(*sax); } skb_free_datagram(sk, skb); release_sock(sk); return copied; } static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; void __user *argp = (void __user *)arg; switch (cmd) { case TIOCOUTQ: { long amount; lock_sock(sk); amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (amount < 0) amount = 0; release_sock(sk); return put_user(amount, (int __user *)argp); } case TIOCINQ: { struct sk_buff *skb; long amount = 0L; lock_sock(sk); /* These two are safe on a single CPU system as only user tasks fiddle here */ if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) amount = skb->len; release_sock(sk); return put_user(amount, (int __user *)argp); } case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: return -EINVAL; case SIOCADDRT: case SIOCDELRT: case SIOCNRDECOBS: if (!capable(CAP_NET_ADMIN)) return -EPERM; return nr_rt_ioctl(cmd, argp); default: return -ENOIOCTLCMD; } return 0; } #ifdef CONFIG_PROC_FS static void *nr_info_start(struct seq_file *seq, loff_t *pos) __acquires(&nr_list_lock) { spin_lock_bh(&nr_list_lock); return seq_hlist_start_head(&nr_list, *pos); } static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_hlist_next(v, &nr_list, pos); } static void nr_info_stop(struct seq_file *seq, void *v) __releases(&nr_list_lock) { spin_unlock_bh(&nr_list_lock); } static int nr_info_show(struct seq_file *seq, void *v) { struct sock *s = sk_entry(v); struct net_device *dev; struct nr_sock *nr; const char *devname; char buf[11]; if (v == SEQ_START_TOKEN) seq_puts(seq, "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); else { bh_lock_sock(s); nr = nr_sk(s); if ((dev = nr->device) == NULL) devname = "???"; else devname = dev->name; seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); seq_printf(seq, "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", ax2asc(buf, &nr->source_addr), devname, nr->my_index, nr->my_id, nr->your_index, nr->your_id, nr->state, nr->vs, nr->vr, nr->va, ax25_display_timer(&nr->t1timer) / HZ, nr->t1 / HZ, ax25_display_timer(&nr->t2timer) / HZ, nr->t2 / HZ, ax25_display_timer(&nr->t4timer) / HZ, nr->t4 / HZ, ax25_display_timer(&nr->idletimer) / (60 * HZ), nr->idle / (60 * HZ), nr->n2count, nr->n2, nr->window, sk_wmem_alloc_get(s), sk_rmem_alloc_get(s), s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); bh_unlock_sock(s); } return 0; } static const struct seq_operations nr_info_seqops = { .start = nr_info_start, .next = nr_info_next, .stop = nr_info_stop, .show = nr_info_show, }; #endif /* CONFIG_PROC_FS */ static const struct net_proto_family nr_family_ops = { .family = PF_NETROM, .create = nr_create, .owner = THIS_MODULE, }; static const struct proto_ops nr_proto_ops = { .family = PF_NETROM, .owner = THIS_MODULE, .release = nr_release, .bind = nr_bind, .connect = nr_connect, .socketpair = sock_no_socketpair, .accept = nr_accept, .getname = nr_getname, .poll = datagram_poll, .ioctl = nr_ioctl, .gettstamp = sock_gettstamp, .listen = nr_listen, .shutdown = sock_no_shutdown, .setsockopt = nr_setsockopt, .getsockopt = nr_getsockopt, .sendmsg = nr_sendmsg, .recvmsg = nr_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct notifier_block nr_dev_notifier = { .notifier_call = nr_device_event, }; static struct net_device **dev_nr; static struct ax25_protocol nr_pid = { .pid = AX25_P_NETROM, .func = nr_route_frame }; static struct ax25_linkfail nr_linkfail_notifier = { .func = nr_link_failed, }; static int __init nr_proto_init(void) { int i; int rc = proto_register(&nr_proto, 0); if (rc) return rc; if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { pr_err("NET/ROM: %s - nr_ndevs parameter too large\n", __func__); rc = -EINVAL; goto unregister_proto; } dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL); if (!dev_nr) { pr_err("NET/ROM: %s - unable to allocate device array\n", __func__); rc = -ENOMEM; goto unregister_proto; } for (i = 0; i < nr_ndevs; i++) { char name[IFNAMSIZ]; struct net_device *dev; sprintf(name, "nr%d", i); dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup); if (!dev) { rc = -ENOMEM; goto fail; } dev->base_addr = i; rc = register_netdev(dev); if (rc) { free_netdev(dev); goto fail; } nr_set_lockdep_key(dev); dev_nr[i] = dev; } rc = sock_register(&nr_family_ops); if (rc) goto fail; rc = register_netdevice_notifier(&nr_dev_notifier); if (rc) goto out_sock; ax25_register_pid(&nr_pid); ax25_linkfail_register(&nr_linkfail_notifier); #ifdef CONFIG_SYSCTL rc = nr_register_sysctl(); if (rc) goto out_sysctl; #endif nr_loopback_init(); rc = -ENOMEM; if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops)) goto proc_remove1; if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net, &nr_neigh_seqops)) goto proc_remove2; if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net, &nr_node_seqops)) goto proc_remove3; return 0; proc_remove3: remove_proc_entry("nr_neigh", init_net.proc_net); proc_remove2: remove_proc_entry("nr", init_net.proc_net); proc_remove1: nr_loopback_clear(); nr_rt_free(); #ifdef CONFIG_SYSCTL nr_unregister_sysctl(); out_sysctl: #endif ax25_linkfail_release(&nr_linkfail_notifier); ax25_protocol_release(AX25_P_NETROM); unregister_netdevice_notifier(&nr_dev_notifier); out_sock: sock_unregister(PF_NETROM); fail: while (--i >= 0) { unregister_netdev(dev_nr[i]); free_netdev(dev_nr[i]); } kfree(dev_nr); unregister_proto: proto_unregister(&nr_proto); return rc; } module_init(nr_proto_init); module_param(nr_ndevs, int, 0); MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_NETROM); static void __exit nr_exit(void) { int i; remove_proc_entry("nr", init_net.proc_net); remove_proc_entry("nr_neigh", init_net.proc_net); remove_proc_entry("nr_nodes", init_net.proc_net); nr_loopback_clear(); nr_rt_free(); #ifdef CONFIG_SYSCTL nr_unregister_sysctl(); #endif ax25_linkfail_release(&nr_linkfail_notifier); ax25_protocol_release(AX25_P_NETROM); unregister_netdevice_notifier(&nr_dev_notifier); sock_unregister(PF_NETROM); for (i = 0; i < nr_ndevs; i++) { struct net_device *dev = dev_nr[i]; if (dev) { unregister_netdev(dev); free_netdev(dev); } } kfree(dev_nr); proto_unregister(&nr_proto); } module_exit(nr_exit);