// SPDX-License-Identifier: GPL-2.0-only /* * mm/percpu.c - percpu memory allocator * * Copyright (C) 2009 SUSE Linux Products GmbH * Copyright (C) 2009 Tejun Heo <tj@kernel.org> * * Copyright (C) 2017 Facebook Inc. * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> * * The percpu allocator handles both static and dynamic areas. Percpu * areas are allocated in chunks which are divided into units. There is * a 1-to-1 mapping for units to possible cpus. These units are grouped * based on NUMA properties of the machine. * * c0 c1 c2 * ------------------- ------------------- ------------ * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u * ------------------- ...... ------------------- .... ------------ * * Allocation is done by offsets into a unit's address space. Ie., an * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear * and even sparse. Access is handled by configuring percpu base * registers according to the cpu to unit mappings and offsetting the * base address using pcpu_unit_size. * * There is special consideration for the first chunk which must handle * the static percpu variables in the kernel image as allocation services * are not online yet. In short, the first chunk is structured like so: * * <Static | [Reserved] | Dynamic> * * The static data is copied from the original section managed by the * linker. The reserved section, if non-zero, primarily manages static * percpu variables from kernel modules. Finally, the dynamic section * takes care of normal allocations. * * The allocator organizes chunks into lists according to free size and * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT * flag should be passed. All memcg-aware allocations are sharing one set * of chunks and all unaccounted allocations and allocations performed * by processes belonging to the root memory cgroup are using the second set. * * The allocator tries to allocate from the fullest chunk first. Each chunk * is managed by a bitmap with metadata blocks. The allocation map is updated * on every allocation and free to reflect the current state while the boundary * map is only updated on allocation. Each metadata block contains * information to help mitigate the need to iterate over large portions * of the bitmap. The reverse mapping from page to chunk is stored in * the page's index. Lastly, units are lazily backed and grow in unison. * * There is a unique conversion that goes on here between bytes and bits. * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk * tracks the number of pages it is responsible for in nr_pages. Helper * functions are used to convert from between the bytes, bits, and blocks. * All hints are managed in bits unless explicitly stated. * * To use this allocator, arch code should do the following: * * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * regular address to percpu pointer and back if they need to be * different from the default * * - use pcpu_setup_first_chunk() during percpu area initialization to * setup the first chunk containing the kernel static percpu area */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bitmap.h> #include <linux/cpumask.h> #include <linux/memblock.h> #include <linux/err.h> #include <linux/list.h> #include <linux/log2.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/pfn.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <linux/kmemleak.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/memcontrol.h> #include <asm/cacheflush.h> #include <asm/sections.h> #include <asm/tlbflush.h> #include <asm/io.h> #define CREATE_TRACE_POINTS #include <trace/events/percpu.h> #include "percpu-internal.h" /* * The slots are sorted by the size of the biggest continuous free area. * 1-31 bytes share the same slot. */ #define PCPU_SLOT_BASE_SHIFT 5 /* chunks in slots below this are subject to being sidelined on failed alloc */ #define PCPU_SLOT_FAIL_THRESHOLD 3 #define PCPU_EMPTY_POP_PAGES_LOW 2 #define PCPU_EMPTY_POP_PAGES_HIGH 4 #ifdef CONFIG_SMP /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ #ifndef __addr_to_pcpu_ptr #define __addr_to_pcpu_ptr(addr) \ (void __percpu *)((unsigned long)(addr) - \ (unsigned long)pcpu_base_addr + \ (unsigned long)__per_cpu_start) #endif #ifndef __pcpu_ptr_to_addr #define __pcpu_ptr_to_addr(ptr) \ (void __force *)((unsigned long)(ptr) + \ (unsigned long)pcpu_base_addr - \ (unsigned long)__per_cpu_start) #endif #else /* CONFIG_SMP */ /* on UP, it's always identity mapped */ #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) #endif /* CONFIG_SMP */ static int pcpu_unit_pages __ro_after_init; static int pcpu_unit_size __ro_after_init; static int pcpu_nr_units __ro_after_init; static int pcpu_atom_size __ro_after_init; int pcpu_nr_slots __ro_after_init; static int pcpu_free_slot __ro_after_init; int pcpu_sidelined_slot __ro_after_init; int pcpu_to_depopulate_slot __ro_after_init; static size_t pcpu_chunk_struct_size __ro_after_init; /* cpus with the lowest and highest unit addresses */ static unsigned int pcpu_low_unit_cpu __ro_after_init; static unsigned int pcpu_high_unit_cpu __ro_after_init; /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __ro_after_init; static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ /* group information, used for vm allocation */ static int pcpu_nr_groups __ro_after_init; static const unsigned long *pcpu_group_offsets __ro_after_init; static const size_t *pcpu_group_sizes __ro_after_init; /* * The first chunk which always exists. Note that unlike other * chunks, this one can be allocated and mapped in several different * ways and thus often doesn't live in the vmalloc area. */ struct pcpu_chunk *pcpu_first_chunk __ro_after_init; /* * Optional reserved chunk. This chunk reserves part of the first * chunk and serves it for reserved allocations. When the reserved * region doesn't exist, the following variable is NULL. */ struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ /* * The number of empty populated pages, protected by pcpu_lock. * The reserved chunk doesn't contribute to the count. */ int pcpu_nr_empty_pop_pages; /* * The number of populated pages in use by the allocator, protected by * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets * allocated/deallocated, it is allocated/deallocated in all units of a chunk * and increments/decrements this count by 1). */ static unsigned long pcpu_nr_populated; /* * Balance work is used to populate or destroy chunks asynchronously. We * try to keep the number of populated free pages between * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one * empty chunk. */ static void pcpu_balance_workfn(struct work_struct *work); static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); static bool pcpu_async_enabled __read_mostly; static bool pcpu_atomic_alloc_failed; static void pcpu_schedule_balance_work(void) { if (pcpu_async_enabled) schedule_work(&pcpu_balance_work); } /** * pcpu_addr_in_chunk - check if the address is served from this chunk * @chunk: chunk of interest * @addr: percpu address * * RETURNS: * True if the address is served from this chunk. */ static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) { void *start_addr, *end_addr; if (!chunk) return false; start_addr = chunk->base_addr + chunk->start_offset; end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - chunk->end_offset; return addr >= start_addr && addr < end_addr; } static int __pcpu_size_to_slot(int size) { int highbit = fls(size); /* size is in bytes */ return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); } static int pcpu_size_to_slot(int size) { if (size == pcpu_unit_size) return pcpu_free_slot; return __pcpu_size_to_slot(size); } static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) { const struct pcpu_block_md *chunk_md = &chunk->chunk_md; if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk_md->contig_hint == 0) return 0; return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); } /* set the pointer to a chunk in a page struct */ static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) { page->index = (unsigned long)pcpu; } /* obtain pointer to a chunk from a page struct */ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) { return (struct pcpu_chunk *)page->index; } static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) { return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; } static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) { return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); } static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { return (unsigned long)chunk->base_addr + pcpu_unit_page_offset(cpu, page_idx); } /* * The following are helper functions to help access bitmaps and convert * between bitmap offsets to address offsets. */ static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) { return chunk->alloc_map + (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); } static unsigned long pcpu_off_to_block_index(int off) { return off / PCPU_BITMAP_BLOCK_BITS; } static unsigned long pcpu_off_to_block_off(int off) { return off & (PCPU_BITMAP_BLOCK_BITS - 1); } static unsigned long pcpu_block_off_to_off(int index, int off) { return index * PCPU_BITMAP_BLOCK_BITS + off; } /** * pcpu_check_block_hint - check against the contig hint * @block: block of interest * @bits: size of allocation * @align: alignment of area (max PAGE_SIZE) * * Check to see if the allocation can fit in the block's contig hint. * Note, a chunk uses the same hints as a block so this can also check against * the chunk's contig hint. */ static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, size_t align) { int bit_off = ALIGN(block->contig_hint_start, align) - block->contig_hint_start; return bit_off + bits <= block->contig_hint; } /* * pcpu_next_hint - determine which hint to use * @block: block of interest * @alloc_bits: size of allocation * * This determines if we should scan based on the scan_hint or first_free. * In general, we want to scan from first_free to fulfill allocations by * first fit. However, if we know a scan_hint at position scan_hint_start * cannot fulfill an allocation, we can begin scanning from there knowing * the contig_hint will be our fallback. */ static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) { /* * The three conditions below determine if we can skip past the * scan_hint. First, does the scan hint exist. Second, is the * contig_hint after the scan_hint (possibly not true iff * contig_hint == scan_hint). Third, is the allocation request * larger than the scan_hint. */ if (block->scan_hint && block->contig_hint_start > block->scan_hint_start && alloc_bits > block->scan_hint) return block->scan_hint_start + block->scan_hint; return block->first_free; } /** * pcpu_next_md_free_region - finds the next hint free area * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of free area * * Helper function for pcpu_for_each_md_free_region. It checks * block->contig_hint and performs aggregation across blocks to find the * next hint. It modifies bit_off and bits in-place to be consumed in the * loop. */ static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, int *bits) { int i = pcpu_off_to_block_index(*bit_off); int block_off = pcpu_off_to_block_off(*bit_off); struct pcpu_block_md *block; *bits = 0; for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); block++, i++) { /* handles contig area across blocks */ if (*bits) { *bits += block->left_free; if (block->left_free == PCPU_BITMAP_BLOCK_BITS) continue; return; } /* * This checks three things. First is there a contig_hint to * check. Second, have we checked this hint before by * comparing the block_off. Third, is this the same as the * right contig hint. In the last case, it spills over into * the next block and should be handled by the contig area * across blocks code. */ *bits = block->contig_hint; if (*bits && block->contig_hint_start >= block_off && *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { *bit_off = pcpu_block_off_to_off(i, block->contig_hint_start); return; } /* reset to satisfy the second predicate above */ block_off = 0; *bits = block->right_free; *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; } } /** * pcpu_next_fit_region - finds fit areas for a given allocation request * @chunk: chunk of interest * @alloc_bits: size of allocation * @align: alignment of area (max PAGE_SIZE) * @bit_off: chunk offset * @bits: size of free area * * Finds the next free region that is viable for use with a given size and * alignment. This only returns if there is a valid area to be used for this * allocation. block->first_free is returned if the allocation request fits * within the block to see if the request can be fulfilled prior to the contig * hint. */ static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, int align, int *bit_off, int *bits) { int i = pcpu_off_to_block_index(*bit_off); int block_off = pcpu_off_to_block_off(*bit_off); struct pcpu_block_md *block; *bits = 0; for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); block++, i++) { /* handles contig area across blocks */ if (*bits) { *bits += block->left_free; if (*bits >= alloc_bits) return; if (block->left_free == PCPU_BITMAP_BLOCK_BITS) continue; } /* check block->contig_hint */ *bits = ALIGN(block->contig_hint_start, align) - block->contig_hint_start; /* * This uses the block offset to determine if this has been * checked in the prior iteration. */ if (block->contig_hint && block->contig_hint_start >= block_off && block->contig_hint >= *bits + alloc_bits) { int start = pcpu_next_hint(block, alloc_bits); *bits += alloc_bits + block->contig_hint_start - start; *bit_off = pcpu_block_off_to_off(i, start); return; } /* reset to satisfy the second predicate above */ block_off = 0; *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, align); *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; *bit_off = pcpu_block_off_to_off(i, *bit_off); if (*bits >= alloc_bits) return; } /* no valid offsets were found - fail condition */ *bit_off = pcpu_chunk_map_bits(chunk); } /* * Metadata free area iterators. These perform aggregation of free areas * based on the metadata blocks and return the offset @bit_off and size in * bits of the free area @bits. pcpu_for_each_fit_region only returns when * a fit is found for the allocation request. */ #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ (bit_off) < pcpu_chunk_map_bits((chunk)); \ (bit_off) += (bits) + 1, \ pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ &(bits)); \ (bit_off) < pcpu_chunk_map_bits((chunk)); \ (bit_off) += (bits), \ pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ &(bits))) /** * pcpu_mem_zalloc - allocate memory * @size: bytes to allocate * @gfp: allocation flags * * Allocate @size bytes. If @size is smaller than PAGE_SIZE, * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. * This is to facilitate passing through whitelisted flags. The * returned memory is always zeroed. * * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) { if (WARN_ON_ONCE(!slab_is_available())) return NULL; if (size <= PAGE_SIZE) return kzalloc(size, gfp); else return __vmalloc(size, gfp | __GFP_ZERO); } /** * pcpu_mem_free - free memory * @ptr: memory to free * * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). */ static void pcpu_mem_free(void *ptr) { kvfree(ptr); } static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, bool move_front) { if (chunk != pcpu_reserved_chunk) { if (move_front) list_move(&chunk->list, &pcpu_chunk_lists[slot]); else list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); } } static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) { __pcpu_chunk_move(chunk, slot, true); } /** * pcpu_chunk_relocate - put chunk in the appropriate chunk slot * @chunk: chunk of interest * @oslot: the previous slot it was on * * This function is called after an allocation or free changed @chunk. * New slot according to the changed state is determined and @chunk is * moved to the slot. Note that the reserved chunk is never put on * chunk slots. * * CONTEXT: * pcpu_lock. */ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) { int nslot = pcpu_chunk_slot(chunk); /* leave isolated chunks in-place */ if (chunk->isolated) return; if (oslot != nslot) __pcpu_chunk_move(chunk, nslot, oslot < nslot); } static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); if (!chunk->isolated) { chunk->isolated = true; pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; } list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); } static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); if (chunk->isolated) { chunk->isolated = false; pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; pcpu_chunk_relocate(chunk, -1); } } /* * pcpu_update_empty_pages - update empty page counters * @chunk: chunk of interest * @nr: nr of empty pages * * This is used to keep track of the empty pages now based on the premise * a md_block covers a page. The hint update functions recognize if a block * is made full or broken to calculate deltas for keeping track of free pages. */ static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) { chunk->nr_empty_pop_pages += nr; if (chunk != pcpu_reserved_chunk && !chunk->isolated) pcpu_nr_empty_pop_pages += nr; } /* * pcpu_region_overlap - determines if two regions overlap * @a: start of first region, inclusive * @b: end of first region, exclusive * @x: start of second region, inclusive * @y: end of second region, exclusive * * This is used to determine if the hint region [a, b) overlaps with the * allocated region [x, y). */ static inline bool pcpu_region_overlap(int a, int b, int x, int y) { return (a < y) && (x < b); } /** * pcpu_block_update - updates a block given a free area * @block: block of interest * @start: start offset in block * @end: end offset in block * * Updates a block given a known free area. The region [start, end) is * expected to be the entirety of the free area within a block. Chooses * the best starting offset if the contig hints are equal. */ static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) { int contig = end - start; block->first_free = min(block->first_free, start); if (start == 0) block->left_free = contig; if (end == block->nr_bits) block->right_free = contig; if (contig > block->contig_hint) { /* promote the old contig_hint to be the new scan_hint */ if (start > block->contig_hint_start) { if (block->contig_hint > block->scan_hint) { block->scan_hint_start = block->contig_hint_start; block->scan_hint = block->contig_hint; } else if (start < block->scan_hint_start) { /* * The old contig_hint == scan_hint. But, the * new contig is larger so hold the invariant * scan_hint_start < contig_hint_start. */ block->scan_hint = 0; } } else { block->scan_hint = 0; } block->contig_hint_start = start; block->contig_hint = contig; } else if (contig == block->contig_hint) { if (block->contig_hint_start && (!start || __ffs(start) > __ffs(block->contig_hint_start))) { /* start has a better alignment so use it */ block->contig_hint_start = start; if (start < block->scan_hint_start && block->contig_hint > block->scan_hint) block->scan_hint = 0; } else if (start > block->scan_hint_start || block->contig_hint > block->scan_hint) { /* * Knowing contig == contig_hint, update the scan_hint * if it is farther than or larger than the current * scan_hint. */ block->scan_hint_start = start; block->scan_hint = contig; } } else { /* * The region is smaller than the contig_hint. So only update * the scan_hint if it is larger than or equal and farther than * the current scan_hint. */ if ((start < block->contig_hint_start && (contig > block->scan_hint || (contig == block->scan_hint && start > block->scan_hint_start)))) { block->scan_hint_start = start; block->scan_hint = contig; } } } /* * pcpu_block_update_scan - update a block given a free area from a scan * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of free area * * Finding the final allocation spot first goes through pcpu_find_block_fit() * to find a block that can hold the allocation and then pcpu_alloc_area() * where a scan is used. When allocations require specific alignments, * we can inadvertently create holes which will not be seen in the alloc * or free paths. * * This takes a given free area hole and updates a block as it may change the * scan_hint. We need to scan backwards to ensure we don't miss free bits * from alignment. */ static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, int bits) { int s_off = pcpu_off_to_block_off(bit_off); int e_off = s_off + bits; int s_index, l_bit; struct pcpu_block_md *block; if (e_off > PCPU_BITMAP_BLOCK_BITS) return; s_index = pcpu_off_to_block_index(bit_off); block = chunk->md_blocks + s_index; /* scan backwards in case of alignment skipping free bits */ l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); s_off = (s_off == l_bit) ? 0 : l_bit + 1; pcpu_block_update(block, s_off, e_off); } /** * pcpu_chunk_refresh_hint - updates metadata about a chunk * @chunk: chunk of interest * @full_scan: if we should scan from the beginning * * Iterates over the metadata blocks to find the largest contig area. * A full scan can be avoided on the allocation path as this is triggered * if we broke the contig_hint. In doing so, the scan_hint will be before * the contig_hint or after if the scan_hint == contig_hint. This cannot * be prevented on freeing as we want to find the largest area possibly * spanning blocks. */ static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits; /* promote scan_hint to contig_hint */ if (!full_scan && chunk_md->scan_hint) { bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; chunk_md->contig_hint_start = chunk_md->scan_hint_start; chunk_md->contig_hint = chunk_md->scan_hint; chunk_md->scan_hint = 0; } else { bit_off = chunk_md->first_free; chunk_md->contig_hint = 0; } bits = 0; pcpu_for_each_md_free_region(chunk, bit_off, bits) pcpu_block_update(chunk_md, bit_off, bit_off + bits); } /** * pcpu_block_refresh_hint * @chunk: chunk of interest * @index: index of the metadata block * * Scans over the block beginning at first_free and updates the block * metadata accordingly. */ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) { struct pcpu_block_md *block = chunk->md_blocks + index; unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); unsigned int start, end; /* region start, region end */ /* promote scan_hint to contig_hint */ if (block->scan_hint) { start = block->scan_hint_start + block->scan_hint; block->contig_hint_start = block->scan_hint_start; block->contig_hint = block->scan_hint; block->scan_hint = 0; } else { start = block->first_free; block->contig_hint = 0; } block->right_free = 0; /* iterate over free areas and update the contig hints */ for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) pcpu_block_update(block, start, end); } /** * pcpu_block_update_hint_alloc - update hint on allocation path * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of request * * Updates metadata for the allocation path. The metadata only has to be * refreshed by a full scan iff the chunk's contig hint is broken. Block level * scans are required if the block's contig hint is broken. */ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, int bits) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int nr_empty_pages = 0; struct pcpu_block_md *s_block, *e_block, *block; int s_index, e_index; /* block indexes of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */ /* * Calculate per block offsets. * The calculation uses an inclusive range, but the resulting offsets * are [start, end). e_index always points to the last block in the * range. */ s_index = pcpu_off_to_block_index(bit_off); e_index = pcpu_off_to_block_index(bit_off + bits - 1); s_off = pcpu_off_to_block_off(bit_off); e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; s_block = chunk->md_blocks + s_index; e_block = chunk->md_blocks + e_index; /* * Update s_block. */ if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; /* * block->first_free must be updated if the allocation takes its place. * If the allocation breaks the contig_hint, a scan is required to * restore this hint. */ if (s_off == s_block->first_free) s_block->first_free = find_next_zero_bit( pcpu_index_alloc_map(chunk, s_index), PCPU_BITMAP_BLOCK_BITS, s_off + bits); if (pcpu_region_overlap(s_block->scan_hint_start, s_block->scan_hint_start + s_block->scan_hint, s_off, s_off + bits)) s_block->scan_hint = 0; if (pcpu_region_overlap(s_block->contig_hint_start, s_block->contig_hint_start + s_block->contig_hint, s_off, s_off + bits)) { /* block contig hint is broken - scan to fix it */ if (!s_off) s_block->left_free = 0; pcpu_block_refresh_hint(chunk, s_index); } else { /* update left and right contig manually */ s_block->left_free = min(s_block->left_free, s_off); if (s_index == e_index) s_block->right_free = min_t(int, s_block->right_free, PCPU_BITMAP_BLOCK_BITS - e_off); else s_block->right_free = 0; } /* * Update e_block. */ if (s_index != e_index) { if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; /* * When the allocation is across blocks, the end is along * the left part of the e_block. */ e_block->first_free = find_next_zero_bit( pcpu_index_alloc_map(chunk, e_index), PCPU_BITMAP_BLOCK_BITS, e_off); if (e_off == PCPU_BITMAP_BLOCK_BITS) { /* reset the block */ e_block++; } else { if (e_off > e_block->scan_hint_start) e_block->scan_hint = 0; e_block->left_free = 0; if (e_off > e_block->contig_hint_start) { /* contig hint is broken - scan to fix it */ pcpu_block_refresh_hint(chunk, e_index); } else { e_block->right_free = min_t(int, e_block->right_free, PCPU_BITMAP_BLOCK_BITS - e_off); } } /* update in-between md_blocks */ nr_empty_pages += (e_index - s_index - 1); for (block = s_block + 1; block < e_block; block++) { block->scan_hint = 0; block->contig_hint = 0; block->left_free = 0; block->right_free = 0; } } /* * If the allocation is not atomic, some blocks may not be * populated with pages, while we account it here. The number * of pages will be added back with pcpu_chunk_populated() * when populating pages. */ if (nr_empty_pages) pcpu_update_empty_pages(chunk, -nr_empty_pages); if (pcpu_region_overlap(chunk_md->scan_hint_start, chunk_md->scan_hint_start + chunk_md->scan_hint, bit_off, bit_off + bits)) chunk_md->scan_hint = 0; /* * The only time a full chunk scan is required is if the chunk * contig hint is broken. Otherwise, it means a smaller space * was used and therefore the chunk contig hint is still correct. */ if (pcpu_region_overlap(chunk_md->contig_hint_start, chunk_md->contig_hint_start + chunk_md->contig_hint, bit_off, bit_off + bits)) pcpu_chunk_refresh_hint(chunk, false); } /** * pcpu_block_update_hint_free - updates the block hints on the free path * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of request * * Updates metadata for the allocation path. This avoids a blind block * refresh by making use of the block contig hints. If this fails, it scans * forward and backward to determine the extent of the free area. This is * capped at the boundary of blocks. * * A chunk update is triggered if a page becomes free, a block becomes free, * or the free spans across blocks. This tradeoff is to minimize iterating * over the block metadata to update chunk_md->contig_hint. * chunk_md->contig_hint may be off by up to a page, but it will never be more * than the available space. If the contig hint is contained in one block, it * will be accurate. */ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, int bits) { int nr_empty_pages = 0; struct pcpu_block_md *s_block, *e_block, *block; int s_index, e_index; /* block indexes of the freed allocation */ int s_off, e_off; /* block offsets of the freed allocation */ int start, end; /* start and end of the whole free area */ /* * Calculate per block offsets. * The calculation uses an inclusive range, but the resulting offsets * are [start, end). e_index always points to the last block in the * range. */ s_index = pcpu_off_to_block_index(bit_off); e_index = pcpu_off_to_block_index(bit_off + bits - 1); s_off = pcpu_off_to_block_off(bit_off); e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; s_block = chunk->md_blocks + s_index; e_block = chunk->md_blocks + e_index; /* * Check if the freed area aligns with the block->contig_hint. * If it does, then the scan to find the beginning/end of the * larger free area can be avoided. * * start and end refer to beginning and end of the free area * within each their respective blocks. This is not necessarily * the entire free area as it may span blocks past the beginning * or end of the block. */ start = s_off; if (s_off == s_block->contig_hint + s_block->contig_hint_start) { start = s_block->contig_hint_start; } else { /* * Scan backwards to find the extent of the free area. * find_last_bit returns the starting bit, so if the start bit * is returned, that means there was no last bit and the * remainder of the chunk is free. */ int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), start); start = (start == l_bit) ? 0 : l_bit + 1; } end = e_off; if (e_off == e_block->contig_hint_start) end = e_block->contig_hint_start + e_block->contig_hint; else end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), PCPU_BITMAP_BLOCK_BITS, end); /* update s_block */ e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; pcpu_block_update(s_block, start, e_off); /* freeing in the same block */ if (s_index != e_index) { /* update e_block */ if (end == PCPU_BITMAP_BLOCK_BITS) nr_empty_pages++; pcpu_block_update(e_block, 0, end); /* reset md_blocks in the middle */ nr_empty_pages += (e_index - s_index - 1); for (block = s_block + 1; block < e_block; block++) { block->first_free = 0; block->scan_hint = 0; block->contig_hint_start = 0; block->contig_hint = PCPU_BITMAP_BLOCK_BITS; block->left_free = PCPU_BITMAP_BLOCK_BITS; block->right_free = PCPU_BITMAP_BLOCK_BITS; } } if (nr_empty_pages) pcpu_update_empty_pages(chunk, nr_empty_pages); /* * Refresh chunk metadata when the free makes a block free or spans * across blocks. The contig_hint may be off by up to a page, but if * the contig_hint is contained in a block, it will be accurate with * the else condition below. */ if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) pcpu_chunk_refresh_hint(chunk, true); else pcpu_block_update(&chunk->chunk_md, pcpu_block_off_to_off(s_index, start), end); } /** * pcpu_is_populated - determines if the region is populated * @chunk: chunk of interest * @bit_off: chunk offset * @bits: size of area * @next_off: return value for the next offset to start searching * * For atomic allocations, check if the backing pages are populated. * * RETURNS: * Bool if the backing pages are populated. * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. */ static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, int *next_off) { unsigned int start, end; start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); start = find_next_zero_bit(chunk->populated, end, start); if (start >= end) return true; end = find_next_bit(chunk->populated, end, start + 1); *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; return false; } /** * pcpu_find_block_fit - finds the block index to start searching * @chunk: chunk of interest * @alloc_bits: size of request in allocation units * @align: alignment of area (max PAGE_SIZE bytes) * @pop_only: use populated regions only * * Given a chunk and an allocation spec, find the offset to begin searching * for a free region. This iterates over the bitmap metadata blocks to * find an offset that will be guaranteed to fit the requirements. It is * not quite first fit as if the allocation does not fit in the contig hint * of a block or chunk, it is skipped. This errs on the side of caution * to prevent excess iteration. Poor alignment can cause the allocator to * skip over blocks and chunks that have valid free areas. * * RETURNS: * The offset in the bitmap to begin searching. * -1 if no offset is found. */ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, size_t align, bool pop_only) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits, next_off; /* * This is an optimization to prevent scanning by assuming if the * allocation cannot fit in the global hint, there is memory pressure * and creating a new chunk would happen soon. */ if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) return -1; bit_off = pcpu_next_hint(chunk_md, alloc_bits); bits = 0; pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, &next_off)) break; bit_off = next_off; bits = 0; } if (bit_off == pcpu_chunk_map_bits(chunk)) return -1; return bit_off; } /* * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() * @map: the address to base the search on * @size: the bitmap size in bits * @start: the bitnumber to start searching at * @nr: the number of zeroed bits we're looking for * @align_mask: alignment mask for zero area * @largest_off: offset of the largest area skipped * @largest_bits: size of the largest area skipped * * The @align_mask should be one less than a power of 2. * * This is a modified version of bitmap_find_next_zero_area_off() to remember * the largest area that was skipped. This is imperfect, but in general is * good enough. The largest remembered region is the largest failed region * seen. This does not include anything we possibly skipped due to alignment. * pcpu_block_update_scan() does scan backwards to try and recover what was * lost to alignment. While this can cause scanning to miss earlier possible * free areas, smaller allocations will eventually fill those holes. */ static unsigned long pcpu_find_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned long nr, unsigned long align_mask, unsigned long *largest_off, unsigned long *largest_bits) { unsigned long index, end, i, area_off, area_bits; again: index = find_next_zero_bit(map, size, start); /* Align allocation */ index = __ALIGN_MASK(index, align_mask); area_off = index; end = index + nr; if (end > size) return end; i = find_next_bit(map, end, index); if (i < end) { area_bits = i - area_off; /* remember largest unused area with best alignment */ if (area_bits > *largest_bits || (area_bits == *largest_bits && *largest_off && (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { *largest_off = area_off; *largest_bits = area_bits; } start = i + 1; goto again; } return index; } /** * pcpu_alloc_area - allocates an area from a pcpu_chunk * @chunk: chunk of interest * @alloc_bits: size of request in allocation units * @align: alignment of area (max PAGE_SIZE) * @start: bit_off to start searching * * This function takes in a @start offset to begin searching to fit an * allocation of @alloc_bits with alignment @align. It needs to scan * the allocation map because if it fits within the block's contig hint, * @start will be block->first_free. This is an attempt to fill the * allocation prior to breaking the contig hint. The allocation and * boundary maps are updated accordingly if it confirms a valid * free area. * * RETURNS: * Allocated addr offset in @chunk on success. * -1 if no matching area is found. */ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, size_t align, int start) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; size_t align_mask = (align) ? (align - 1) : 0; unsigned long area_off = 0, area_bits = 0; int bit_off, end, oslot; lockdep_assert_held(&pcpu_lock); oslot = pcpu_chunk_slot(chunk); /* * Search to find a fit. */ end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, pcpu_chunk_map_bits(chunk)); bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, align_mask, &area_off, &area_bits); if (bit_off >= end) return -1; if (area_bits) pcpu_block_update_scan(chunk, area_off, area_bits); /* update alloc map */ bitmap_set(chunk->alloc_map, bit_off, alloc_bits); /* update boundary map */ set_bit(bit_off, chunk->bound_map); bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); set_bit(bit_off + alloc_bits, chunk->bound_map); chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; /* update first free bit */ if (bit_off == chunk_md->first_free) chunk_md->first_free = find_next_zero_bit( chunk->alloc_map, pcpu_chunk_map_bits(chunk), bit_off + alloc_bits); pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); pcpu_chunk_relocate(chunk, oslot); return bit_off * PCPU_MIN_ALLOC_SIZE; } /** * pcpu_free_area - frees the corresponding offset * @chunk: chunk of interest * @off: addr offset into chunk * * This function determines the size of an allocation to free using * the boundary bitmap and clears the allocation map. * * RETURNS: * Number of freed bytes. */ static int pcpu_free_area(struct pcpu_chunk *chunk, int off) { struct pcpu_block_md *chunk_md = &chunk->chunk_md; int bit_off, bits, end, oslot, freed; lockdep_assert_held(&pcpu_lock); pcpu_stats_area_dealloc(chunk); oslot = pcpu_chunk_slot(chunk); bit_off = off / PCPU_MIN_ALLOC_SIZE; /* find end index */ end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), bit_off + 1); bits = end - bit_off; bitmap_clear(chunk->alloc_map, bit_off, bits); freed = bits * PCPU_MIN_ALLOC_SIZE; /* update metadata */ chunk->free_bytes += freed; /* update first free bit */ chunk_md->first_free = min(chunk_md->first_free, bit_off); pcpu_block_update_hint_free(chunk, bit_off, bits); pcpu_chunk_relocate(chunk, oslot); return freed; } static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) { block->scan_hint = 0; block->contig_hint = nr_bits; block->left_free = nr_bits; block->right_free = nr_bits; block->first_free = 0; block->nr_bits = nr_bits; } static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) { struct pcpu_block_md *md_block; /* init the chunk's block */ pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); for (md_block = chunk->md_blocks; md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); md_block++) pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); } /** * pcpu_alloc_first_chunk - creates chunks that serve the first chunk * @tmp_addr: the start of the region served * @map_size: size of the region served * * This is responsible for creating the chunks that serve the first chunk. The * base_addr is page aligned down of @tmp_addr while the region end is page * aligned up. Offsets are kept track of to determine the region served. All * this is done to appease the bitmap allocator in avoiding partial blocks. * * RETURNS: * Chunk serving the region at @tmp_addr of @map_size. */ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, int map_size) { struct pcpu_chunk *chunk; unsigned long aligned_addr; int start_offset, offset_bits, region_size, region_bits; size_t alloc_size; /* region calculations */ aligned_addr = tmp_addr & PAGE_MASK; start_offset = tmp_addr - aligned_addr; region_size = ALIGN(start_offset + map_size, PAGE_SIZE); /* allocate chunk */ alloc_size = struct_size(chunk, populated, BITS_TO_LONGS(region_size >> PAGE_SHIFT)); chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); INIT_LIST_HEAD(&chunk->list); chunk->base_addr = (void *)aligned_addr; chunk->start_offset = start_offset; chunk->end_offset = region_size - chunk->start_offset - map_size; chunk->nr_pages = region_size >> PAGE_SHIFT; region_bits = pcpu_chunk_map_bits(chunk); alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->alloc_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->bound_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!chunk->md_blocks) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); #ifdef CONFIG_MEMCG_KMEM /* first chunk is free to use */ chunk->obj_cgroups = NULL; #endif pcpu_init_md_blocks(chunk); /* manage populated page bitmap */ chunk->immutable = true; bitmap_fill(chunk->populated, chunk->nr_pages); chunk->nr_populated = chunk->nr_pages; chunk->nr_empty_pop_pages = chunk->nr_pages; chunk->free_bytes = map_size; if (chunk->start_offset) { /* hide the beginning of the bitmap */ offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; bitmap_set(chunk->alloc_map, 0, offset_bits); set_bit(0, chunk->bound_map); set_bit(offset_bits, chunk->bound_map); chunk->chunk_md.first_free = offset_bits; pcpu_block_update_hint_alloc(chunk, 0, offset_bits); } if (chunk->end_offset) { /* hide the end of the bitmap */ offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; bitmap_set(chunk->alloc_map, pcpu_chunk_map_bits(chunk) - offset_bits, offset_bits); set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, chunk->bound_map); set_bit(region_bits, chunk->bound_map); pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) - offset_bits, offset_bits); } return chunk; } static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) { struct pcpu_chunk *chunk; int region_bits; chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); if (!chunk) return NULL; INIT_LIST_HEAD(&chunk->list); chunk->nr_pages = pcpu_unit_pages; region_bits = pcpu_chunk_map_bits(chunk); chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]), gfp); if (!chunk->alloc_map) goto alloc_map_fail; chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]), gfp); if (!chunk->bound_map) goto bound_map_fail; chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]), gfp); if (!chunk->md_blocks) goto md_blocks_fail; #ifdef CONFIG_MEMCG_KMEM if (!mem_cgroup_kmem_disabled()) { chunk->obj_cgroups = pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * sizeof(struct obj_cgroup *), gfp); if (!chunk->obj_cgroups) goto objcg_fail; } #endif pcpu_init_md_blocks(chunk); /* init metadata */ chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; return chunk; #ifdef CONFIG_MEMCG_KMEM objcg_fail: pcpu_mem_free(chunk->md_blocks); #endif md_blocks_fail: pcpu_mem_free(chunk->bound_map); bound_map_fail: pcpu_mem_free(chunk->alloc_map); alloc_map_fail: pcpu_mem_free(chunk); return NULL; } static void pcpu_free_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; #ifdef CONFIG_MEMCG_KMEM pcpu_mem_free(chunk->obj_cgroups); #endif pcpu_mem_free(chunk->md_blocks); pcpu_mem_free(chunk->bound_map); pcpu_mem_free(chunk->alloc_map); pcpu_mem_free(chunk); } /** * pcpu_chunk_populated - post-population bookkeeping * @chunk: pcpu_chunk which got populated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been populated to @chunk. Update * the bookkeeping information accordingly. Must be called after each * successful population. */ static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_set(chunk->populated, page_start, nr); chunk->nr_populated += nr; pcpu_nr_populated += nr; pcpu_update_empty_pages(chunk, nr); } /** * pcpu_chunk_depopulated - post-depopulation bookkeeping * @chunk: pcpu_chunk which got depopulated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been depopulated from @chunk. * Update the bookkeeping information accordingly. Must be called after * each successful depopulation. */ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_clear(chunk->populated, page_start, nr); chunk->nr_populated -= nr; pcpu_nr_populated -= nr; pcpu_update_empty_pages(chunk, -nr); } /* * Chunk management implementation. * * To allow different implementations, chunk alloc/free and * [de]population are implemented in a separate file which is pulled * into this file and compiled together. The following functions * should be implemented. * * pcpu_populate_chunk - populate the specified range of a chunk * pcpu_depopulate_chunk - depopulate the specified range of a chunk * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk * pcpu_create_chunk - create a new chunk * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop * pcpu_addr_to_page - translate address to physical address * pcpu_verify_alloc_info - check alloc_info is acceptable during init */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end, gfp_t gfp); static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int page_start, int page_end); static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, int page_start, int page_end); static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); static struct page *pcpu_addr_to_page(void *addr); static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); #ifdef CONFIG_NEED_PER_CPU_KM #include "percpu-km.c" #else #include "percpu-vm.c" #endif /** * pcpu_chunk_addr_search - determine chunk containing specified address * @addr: address for which the chunk needs to be determined. * * This is an internal function that handles all but static allocations. * Static percpu address values should never be passed into the allocator. * * RETURNS: * The address of the found chunk. */ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) { /* is it in the dynamic region (first chunk)? */ if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) return pcpu_first_chunk; /* is it in the reserved region? */ if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) return pcpu_reserved_chunk; /* * The address is relative to unit0 which might be unused and * thus unmapped. Offset the address to the unit space of the * current processor before looking it up in the vmalloc * space. Note that any possible cpu id can be used here, so * there's no need to worry about preemption or cpu hotplug. */ addr += pcpu_unit_offsets[raw_smp_processor_id()]; return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); } #ifdef CONFIG_MEMCG_KMEM static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) { struct obj_cgroup *objcg; if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT)) return true; objcg = get_obj_cgroup_from_current(); if (!objcg) return true; if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) { obj_cgroup_put(objcg); return false; } *objcgp = objcg; return true; } static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, struct pcpu_chunk *chunk, int off, size_t size) { if (!objcg) return; if (likely(chunk && chunk->obj_cgroups)) { chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; rcu_read_lock(); mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, pcpu_obj_full_size(size)); rcu_read_unlock(); } else { obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); obj_cgroup_put(objcg); } } static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) { struct obj_cgroup *objcg; if (unlikely(!chunk->obj_cgroups)) return; objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; if (!objcg) return; chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); rcu_read_lock(); mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, -pcpu_obj_full_size(size)); rcu_read_unlock(); obj_cgroup_put(objcg); } #else /* CONFIG_MEMCG_KMEM */ static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) { return true; } static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, struct pcpu_chunk *chunk, int off, size_t size) { } static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) { } #endif /* CONFIG_MEMCG_KMEM */ /** * pcpu_alloc - the percpu allocator * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @reserved: allocate from the reserved chunk if available * @gfp: allocation flags * * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN * then no warning will be triggered on invalid or failed allocation * requests. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, gfp_t gfp) { gfp_t pcpu_gfp; bool is_atomic; bool do_warn; struct obj_cgroup *objcg = NULL; static int warn_limit = 10; struct pcpu_chunk *chunk, *next; const char *err; int slot, off, cpu, ret; unsigned long flags; void __percpu *ptr; size_t bits, bit_align; gfp = current_gfp_context(gfp); /* whitelisted flags that can be passed to the backing allocators */ pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; do_warn = !(gfp & __GFP_NOWARN); /* * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, * therefore alignment must be a minimum of that many bytes. * An allocation may have internal fragmentation from rounding up * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. */ if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) align = PCPU_MIN_ALLOC_SIZE; size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); bits = size >> PCPU_MIN_ALLOC_SHIFT; bit_align = align >> PCPU_MIN_ALLOC_SHIFT; if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || !is_power_of_2(align))) { WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", size, align); return NULL; } if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) return NULL; if (!is_atomic) { /* * pcpu_balance_workfn() allocates memory under this mutex, * and it may wait for memory reclaim. Allow current task * to become OOM victim, in case of memory pressure. */ if (gfp & __GFP_NOFAIL) { mutex_lock(&pcpu_alloc_mutex); } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); return NULL; } } spin_lock_irqsave(&pcpu_lock, flags); /* serve reserved allocations from the reserved chunk if available */ if (reserved && pcpu_reserved_chunk) { chunk = pcpu_reserved_chunk; off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); if (off < 0) { err = "alloc from reserved chunk failed"; goto fail_unlock; } off = pcpu_alloc_area(chunk, bits, bit_align, off); if (off >= 0) goto area_found; err = "alloc from reserved chunk failed"; goto fail_unlock; } restart: /* search through normal chunks */ for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], list) { off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); if (off < 0) { if (slot < PCPU_SLOT_FAIL_THRESHOLD) pcpu_chunk_move(chunk, 0); continue; } off = pcpu_alloc_area(chunk, bits, bit_align, off); if (off >= 0) { pcpu_reintegrate_chunk(chunk); goto area_found; } } } spin_unlock_irqrestore(&pcpu_lock, flags); if (is_atomic) { err = "atomic alloc failed, no space left"; goto fail; } /* No space left. Create a new chunk. */ if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { chunk = pcpu_create_chunk(pcpu_gfp); if (!chunk) { err = "failed to allocate new chunk"; goto fail; } spin_lock_irqsave(&pcpu_lock, flags); pcpu_chunk_relocate(chunk, -1); } else { spin_lock_irqsave(&pcpu_lock, flags); } goto restart; area_found: pcpu_stats_area_alloc(chunk, size); spin_unlock_irqrestore(&pcpu_lock, flags); /* populate if not all pages are already there */ if (!is_atomic) { unsigned int page_end, rs, re; rs = PFN_DOWN(off); page_end = PFN_UP(off + size); for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { WARN_ON(chunk->immutable); ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); spin_lock_irqsave(&pcpu_lock, flags); if (ret) { pcpu_free_area(chunk, off); err = "failed to populate"; goto fail_unlock; } pcpu_chunk_populated(chunk, rs, re); spin_unlock_irqrestore(&pcpu_lock, flags); } mutex_unlock(&pcpu_alloc_mutex); } if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) pcpu_schedule_balance_work(); /* clear the areas and return address relative to base address */ for_each_possible_cpu(cpu) memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); kmemleak_alloc_percpu(ptr, size, gfp); trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, chunk->base_addr, off, ptr, pcpu_obj_full_size(size), gfp); pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); return ptr; fail_unlock: spin_unlock_irqrestore(&pcpu_lock, flags); fail: trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); if (do_warn && warn_limit) { pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", size, align, is_atomic, err); if (!is_atomic) dump_stack(); if (!--warn_limit) pr_info("limit reached, disable warning\n"); } if (is_atomic) { /* see the flag handling in pcpu_balance_workfn() */ pcpu_atomic_alloc_failed = true; pcpu_schedule_balance_work(); } else { mutex_unlock(&pcpu_alloc_mutex); } pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); return NULL; } /** * __alloc_percpu_gfp - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @gfp: allocation flags * * Allocate zero-filled percpu area of @size bytes aligned at @align. If * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can * be called from any context but is a lot more likely to fail. If @gfp * has __GFP_NOWARN then no warning will be triggered on invalid or failed * allocation requests. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) { return pcpu_alloc(size, align, false, gfp); } EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); /** * __alloc_percpu - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). */ void __percpu *__alloc_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, false, GFP_KERNEL); } EXPORT_SYMBOL_GPL(__alloc_percpu); /** * __alloc_reserved_percpu - allocate reserved percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Allocate zero-filled percpu area of @size bytes aligned at @align * from reserved percpu area if arch has set it up; otherwise, * allocation is served from the same dynamic area. Might sleep. * Might trigger writeouts. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_reserved_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, true, GFP_KERNEL); } /** * pcpu_balance_free - manage the amount of free chunks * @empty_only: free chunks only if there are no populated pages * * If empty_only is %false, reclaim all fully free chunks regardless of the * number of populated pages. Otherwise, only reclaim chunks that have no * populated pages. * * CONTEXT: * pcpu_lock (can be dropped temporarily) */ static void pcpu_balance_free(bool empty_only) { LIST_HEAD(to_free); struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; struct pcpu_chunk *chunk, *next; lockdep_assert_held(&pcpu_lock); /* * There's no reason to keep around multiple unused chunks and VM * areas can be scarce. Destroy all free chunks except for one. */ list_for_each_entry_safe(chunk, next, free_head, list) { WARN_ON(chunk->immutable); /* spare the first one */ if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) continue; if (!empty_only || chunk->nr_empty_pop_pages == 0) list_move(&chunk->list, &to_free); } if (list_empty(&to_free)) return; spin_unlock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, &to_free, list) { unsigned int rs, re; for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { pcpu_depopulate_chunk(chunk, rs, re); spin_lock_irq(&pcpu_lock); pcpu_chunk_depopulated(chunk, rs, re); spin_unlock_irq(&pcpu_lock); } pcpu_destroy_chunk(chunk); cond_resched(); } spin_lock_irq(&pcpu_lock); } /** * pcpu_balance_populated - manage the amount of populated pages * * Maintain a certain amount of populated pages to satisfy atomic allocations. * It is possible that this is called when physical memory is scarce causing * OOM killer to be triggered. We should avoid doing so until an actual * allocation causes the failure as it is possible that requests can be * serviced from already backed regions. * * CONTEXT: * pcpu_lock (can be dropped temporarily) */ static void pcpu_balance_populated(void) { /* gfp flags passed to underlying allocators */ const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; struct pcpu_chunk *chunk; int slot, nr_to_pop, ret; lockdep_assert_held(&pcpu_lock); /* * Ensure there are certain number of free populated pages for * atomic allocs. Fill up from the most packed so that atomic * allocs don't increase fragmentation. If atomic allocation * failed previously, always populate the maximum amount. This * should prevent atomic allocs larger than PAGE_SIZE from keeping * failing indefinitely; however, large atomic allocs are not * something we support properly and can be highly unreliable and * inefficient. */ retry_pop: if (pcpu_atomic_alloc_failed) { nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; /* best effort anyway, don't worry about synchronization */ pcpu_atomic_alloc_failed = false; } else { nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - pcpu_nr_empty_pop_pages, 0, PCPU_EMPTY_POP_PAGES_HIGH); } for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { unsigned int nr_unpop = 0, rs, re; if (!nr_to_pop) break; list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { nr_unpop = chunk->nr_pages - chunk->nr_populated; if (nr_unpop) break; } if (!nr_unpop) continue; /* @chunk can't go away while pcpu_alloc_mutex is held */ for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { int nr = min_t(int, re - rs, nr_to_pop); spin_unlock_irq(&pcpu_lock); ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); cond_resched(); spin_lock_irq(&pcpu_lock); if (!ret) { nr_to_pop -= nr; pcpu_chunk_populated(chunk, rs, rs + nr); } else { nr_to_pop = 0; } if (!nr_to_pop) break; } } if (nr_to_pop) { /* ran out of chunks to populate, create a new one and retry */ spin_unlock_irq(&pcpu_lock); chunk = pcpu_create_chunk(gfp); cond_resched(); spin_lock_irq(&pcpu_lock); if (chunk) { pcpu_chunk_relocate(chunk, -1); goto retry_pop; } } } /** * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages * * Scan over chunks in the depopulate list and try to release unused populated * pages back to the system. Depopulated chunks are sidelined to prevent * repopulating these pages unless required. Fully free chunks are reintegrated * and freed accordingly (1 is kept around). If we drop below the empty * populated pages threshold, reintegrate the chunk if it has empty free pages. * Each chunk is scanned in the reverse order to keep populated pages close to * the beginning of the chunk. * * CONTEXT: * pcpu_lock (can be dropped temporarily) * */ static void pcpu_reclaim_populated(void) { struct pcpu_chunk *chunk; struct pcpu_block_md *block; int freed_page_start, freed_page_end; int i, end; bool reintegrate; lockdep_assert_held(&pcpu_lock); /* * Once a chunk is isolated to the to_depopulate list, the chunk is no * longer discoverable to allocations whom may populate pages. The only * other accessor is the free path which only returns area back to the * allocator not touching the populated bitmap. */ while ((chunk = list_first_entry_or_null( &pcpu_chunk_lists[pcpu_to_depopulate_slot], struct pcpu_chunk, list))) { WARN_ON(chunk->immutable); /* * Scan chunk's pages in the reverse order to keep populated * pages close to the beginning of the chunk. */ freed_page_start = chunk->nr_pages; freed_page_end = 0; reintegrate = false; for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { /* no more work to do */ if (chunk->nr_empty_pop_pages == 0) break; /* reintegrate chunk to prevent atomic alloc failures */ if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { reintegrate = true; break; } /* * If the page is empty and populated, start or * extend the (i, end) range. If i == 0, decrease * i and perform the depopulation to cover the last * (first) page in the chunk. */ block = chunk->md_blocks + i; if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && test_bit(i, chunk->populated)) { if (end == -1) end = i; if (i > 0) continue; i--; } /* depopulate if there is an active range */ if (end == -1) continue; spin_unlock_irq(&pcpu_lock); pcpu_depopulate_chunk(chunk, i + 1, end + 1); cond_resched(); spin_lock_irq(&pcpu_lock); pcpu_chunk_depopulated(chunk, i + 1, end + 1); freed_page_start = min(freed_page_start, i + 1); freed_page_end = max(freed_page_end, end + 1); /* reset the range and continue */ end = -1; } /* batch tlb flush per chunk to amortize cost */ if (freed_page_start < freed_page_end) { spin_unlock_irq(&pcpu_lock); pcpu_post_unmap_tlb_flush(chunk, freed_page_start, freed_page_end); cond_resched(); spin_lock_irq(&pcpu_lock); } if (reintegrate || chunk->free_bytes == pcpu_unit_size) pcpu_reintegrate_chunk(chunk); else list_move_tail(&chunk->list, &pcpu_chunk_lists[pcpu_sidelined_slot]); } } /** * pcpu_balance_workfn - manage the amount of free chunks and populated pages * @work: unused * * For each chunk type, manage the number of fully free chunks and the number of * populated pages. An important thing to consider is when pages are freed and * how they contribute to the global counts. */ static void pcpu_balance_workfn(struct work_struct *work) { /* * pcpu_balance_free() is called twice because the first time we may * trim pages in the active pcpu_nr_empty_pop_pages which may cause us * to grow other chunks. This then gives pcpu_reclaim_populated() time * to move fully free chunks to the active list to be freed if * appropriate. */ mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); pcpu_balance_free(false); pcpu_reclaim_populated(); pcpu_balance_populated(); pcpu_balance_free(true); spin_unlock_irq(&pcpu_lock); mutex_unlock(&pcpu_alloc_mutex); } /** * free_percpu - free percpu area * @ptr: pointer to area to free * * Free percpu area @ptr. * * CONTEXT: * Can be called from atomic context. */ void free_percpu(void __percpu *ptr) { void *addr; struct pcpu_chunk *chunk; unsigned long flags; int size, off; bool need_balance = false; if (!ptr) return; kmemleak_free_percpu(ptr); addr = __pcpu_ptr_to_addr(ptr); spin_lock_irqsave(&pcpu_lock, flags); chunk = pcpu_chunk_addr_search(addr); off = addr - chunk->base_addr; size = pcpu_free_area(chunk, off); pcpu_memcg_free_hook(chunk, off, size); /* * If there are more than one fully free chunks, wake up grim reaper. * If the chunk is isolated, it may be in the process of being * reclaimed. Let reclaim manage cleaning up of that chunk. */ if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { struct pcpu_chunk *pos; list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) if (pos != chunk) { need_balance = true; break; } } else if (pcpu_should_reclaim_chunk(chunk)) { pcpu_isolate_chunk(chunk); need_balance = true; } trace_percpu_free_percpu(chunk->base_addr, off, ptr); spin_unlock_irqrestore(&pcpu_lock, flags); if (need_balance) pcpu_schedule_balance_work(); } EXPORT_SYMBOL_GPL(free_percpu); bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) { #ifdef CONFIG_SMP const size_t static_size = __per_cpu_end - __per_cpu_start; void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); unsigned int cpu; for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); void *va = (void *)addr; if (va >= start && va < start + static_size) { if (can_addr) { *can_addr = (unsigned long) (va - start); *can_addr += (unsigned long) per_cpu_ptr(base, get_boot_cpu_id()); } return true; } } #endif /* on UP, can't distinguish from other static vars, always false */ return false; } /** * is_kernel_percpu_address - test whether address is from static percpu area * @addr: address to test * * Test whether @addr belongs to in-kernel static percpu area. Module * static percpu areas are not considered. For those, use * is_module_percpu_address(). * * RETURNS: * %true if @addr is from in-kernel static percpu area, %false otherwise. */ bool is_kernel_percpu_address(unsigned long addr) { return __is_kernel_percpu_address(addr, NULL); } /** * per_cpu_ptr_to_phys - convert translated percpu address to physical address * @addr: the address to be converted to physical address * * Given @addr which is dereferenceable address obtained via one of * percpu access macros, this function translates it into its physical * address. The caller is responsible for ensuring @addr stays valid * until this function finishes. * * percpu allocator has special setup for the first chunk, which currently * supports either embedding in linear address space or vmalloc mapping, * and, from the second one, the backing allocator (currently either vm or * km) provides translation. * * The addr can be translated simply without checking if it falls into the * first chunk. But the current code reflects better how percpu allocator * actually works, and the verification can discover both bugs in percpu * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current * code. * * RETURNS: * The physical address for @addr. */ phys_addr_t per_cpu_ptr_to_phys(void *addr) { void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); bool in_first_chunk = false; unsigned long first_low, first_high; unsigned int cpu; /* * The following test on unit_low/high isn't strictly * necessary but will speed up lookups of addresses which * aren't in the first chunk. * * The address check is against full chunk sizes. pcpu_base_addr * points to the beginning of the first chunk including the * static region. Assumes good intent as the first chunk may * not be full (ie. < pcpu_unit_pages in size). */ first_low = (unsigned long)pcpu_base_addr + pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); first_high = (unsigned long)pcpu_base_addr + pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); if ((unsigned long)addr >= first_low && (unsigned long)addr < first_high) { for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); if (addr >= start && addr < start + pcpu_unit_size) { in_first_chunk = true; break; } } } if (in_first_chunk) { if (!is_vmalloc_addr(addr)) return __pa(addr); else return page_to_phys(vmalloc_to_page(addr)) + offset_in_page(addr); } else return page_to_phys(pcpu_addr_to_page(addr)) + offset_in_page(addr); } /** * pcpu_alloc_alloc_info - allocate percpu allocation info * @nr_groups: the number of groups * @nr_units: the number of units * * Allocate ai which is large enough for @nr_groups groups containing * @nr_units units. The returned ai's groups[0].cpu_map points to the * cpu_map array which is long enough for @nr_units and filled with * NR_CPUS. It's the caller's responsibility to initialize cpu_map * pointer of other groups. * * RETURNS: * Pointer to the allocated pcpu_alloc_info on success, NULL on * failure. */ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, int nr_units) { struct pcpu_alloc_info *ai; size_t base_size, ai_size; void *ptr; int unit; base_size = ALIGN(struct_size(ai, groups, nr_groups), __alignof__(ai->groups[0].cpu_map[0])); ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); if (!ptr) return NULL; ai = ptr; ptr += base_size; ai->groups[0].cpu_map = ptr; for (unit = 0; unit < nr_units; unit++) ai->groups[0].cpu_map[unit] = NR_CPUS; ai->nr_groups = nr_groups; ai->__ai_size = PFN_ALIGN(ai_size); return ai; } /** * pcpu_free_alloc_info - free percpu allocation info * @ai: pcpu_alloc_info to free * * Free @ai which was allocated by pcpu_alloc_alloc_info(). */ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) { memblock_free(ai, ai->__ai_size); } /** * pcpu_dump_alloc_info - print out information about pcpu_alloc_info * @lvl: loglevel * @ai: allocation info to dump * * Print out information about @ai using loglevel @lvl. */ static void pcpu_dump_alloc_info(const char *lvl, const struct pcpu_alloc_info *ai) { int group_width = 1, cpu_width = 1, width; char empty_str[] = "--------"; int alloc = 0, alloc_end = 0; int group, v; int upa, apl; /* units per alloc, allocs per line */ v = ai->nr_groups; while (v /= 10) group_width++; v = num_possible_cpus(); while (v /= 10) cpu_width++; empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; upa = ai->alloc_size / ai->unit_size; width = upa * (cpu_width + 1) + group_width + 3; apl = rounddown_pow_of_two(max(60 / width, 1)); printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", lvl, ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); for (group = 0; group < ai->nr_groups; group++) { const struct pcpu_group_info *gi = &ai->groups[group]; int unit = 0, unit_end = 0; BUG_ON(gi->nr_units % upa); for (alloc_end += gi->nr_units / upa; alloc < alloc_end; alloc++) { if (!(alloc % apl)) { pr_cont("\n"); printk("%spcpu-alloc: ", lvl); } pr_cont("[%0*d] ", group_width, group); for (unit_end += upa; unit < unit_end; unit++) if (gi->cpu_map[unit] != NR_CPUS) pr_cont("%0*d ", cpu_width, gi->cpu_map[unit]); else pr_cont("%s ", empty_str); } } pr_cont("\n"); } /** * pcpu_setup_first_chunk - initialize the first percpu chunk * @ai: pcpu_alloc_info describing how to percpu area is shaped * @base_addr: mapped address * * Initialize the first percpu chunk which contains the kernel static * percpu area. This function is to be called from arch percpu area * setup path. * * @ai contains all information necessary to initialize the first * chunk and prime the dynamic percpu allocator. * * @ai->static_size is the size of static percpu area. * * @ai->reserved_size, if non-zero, specifies the amount of bytes to * reserve after the static area in the first chunk. This reserves * the first chunk such that it's available only through reserved * percpu allocation. This is primarily used to serve module percpu * static areas on architectures where the addressing model has * limited offset range for symbol relocations to guarantee module * percpu symbols fall inside the relocatable range. * * @ai->dyn_size determines the number of bytes available for dynamic * allocation in the first chunk. The area between @ai->static_size + * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. * * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE * and equal to or larger than @ai->static_size + @ai->reserved_size + * @ai->dyn_size. * * @ai->atom_size is the allocation atom size and used as alignment * for vm areas. * * @ai->alloc_size is the allocation size and always multiple of * @ai->atom_size. This is larger than @ai->atom_size if * @ai->unit_size is larger than @ai->atom_size. * * @ai->nr_groups and @ai->groups describe virtual memory layout of * percpu areas. Units which should be colocated are put into the * same group. Dynamic VM areas will be allocated according to these * groupings. If @ai->nr_groups is zero, a single group containing * all units is assumed. * * The caller should have mapped the first chunk at @base_addr and * copied static data to each unit. * * The first chunk will always contain a static and a dynamic region. * However, the static region is not managed by any chunk. If the first * chunk also contains a reserved region, it is served by two chunks - * one for the reserved region and one for the dynamic region. They * share the same vm, but use offset regions in the area allocation map. * The chunk serving the dynamic region is circulated in the chunk slots * and available for dynamic allocation like any other chunk. */ void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, void *base_addr) { size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; size_t static_size, dyn_size; unsigned long *group_offsets; size_t *group_sizes; unsigned long *unit_off; unsigned int cpu; int *unit_map; int group, unit, i; unsigned long tmp_addr; size_t alloc_size; #define PCPU_SETUP_BUG_ON(cond) do { \ if (unlikely(cond)) { \ pr_emerg("failed to initialize, %s\n", #cond); \ pr_emerg("cpu_possible_mask=%*pb\n", \ cpumask_pr_args(cpu_possible_mask)); \ pcpu_dump_alloc_info(KERN_EMERG, ai); \ BUG(); \ } \ } while (0) /* sanity checks */ PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); #ifdef CONFIG_SMP PCPU_SETUP_BUG_ON(!ai->static_size); PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); #endif PCPU_SETUP_BUG_ON(!base_addr); PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); /* process group information and build config tables accordingly */ alloc_size = ai->nr_groups * sizeof(group_offsets[0]); group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!group_offsets) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = ai->nr_groups * sizeof(group_sizes[0]); group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!group_sizes) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = nr_cpu_ids * sizeof(unit_map[0]); unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!unit_map) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); alloc_size = nr_cpu_ids * sizeof(unit_off[0]); unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!unit_off) panic("%s: Failed to allocate %zu bytes\n", __func__, alloc_size); for (cpu = 0; cpu < nr_cpu_ids; cpu++) unit_map[cpu] = UINT_MAX; pcpu_low_unit_cpu = NR_CPUS; pcpu_high_unit_cpu = NR_CPUS; for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { const struct pcpu_group_info *gi = &ai->groups[group]; group_offsets[group] = gi->base_offset; group_sizes[group] = gi->nr_units * ai->unit_size; for (i = 0; i < gi->nr_units; i++) { cpu = gi->cpu_map[i]; if (cpu == NR_CPUS) continue; PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); unit_map[cpu] = unit + i; unit_off[cpu] = gi->base_offset + i * ai->unit_size; /* determine low/high unit_cpu */ if (pcpu_low_unit_cpu == NR_CPUS || unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) pcpu_low_unit_cpu = cpu; if (pcpu_high_unit_cpu == NR_CPUS || unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) pcpu_high_unit_cpu = cpu; } } pcpu_nr_units = unit; for_each_possible_cpu(cpu) PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); /* we're done parsing the input, undefine BUG macro and dump config */ #undef PCPU_SETUP_BUG_ON pcpu_dump_alloc_info(KERN_DEBUG, ai); pcpu_nr_groups = ai->nr_groups; pcpu_group_offsets = group_offsets; pcpu_group_sizes = group_sizes; pcpu_unit_map = unit_map; pcpu_unit_offsets = unit_off; /* determine basic parameters */ pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; pcpu_atom_size = ai->atom_size; pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated, BITS_TO_LONGS(pcpu_unit_pages)); pcpu_stats_save_ai(ai); /* * Allocate chunk slots. The slots after the active slots are: * sidelined_slot - isolated, depopulated chunks * free_slot - fully free chunks * to_depopulate_slot - isolated, chunks to depopulate */ pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; pcpu_free_slot = pcpu_sidelined_slot + 1; pcpu_to_depopulate_slot = pcpu_free_slot + 1; pcpu_nr_slots = pcpu_to_depopulate_slot + 1; pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]), SMP_CACHE_BYTES); if (!pcpu_chunk_lists) panic("%s: Failed to allocate %zu bytes\n", __func__, pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); for (i = 0; i < pcpu_nr_slots; i++) INIT_LIST_HEAD(&pcpu_chunk_lists[i]); /* * The end of the static region needs to be aligned with the * minimum allocation size as this offsets the reserved and * dynamic region. The first chunk ends page aligned by * expanding the dynamic region, therefore the dynamic region * can be shrunk to compensate while still staying above the * configured sizes. */ static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); dyn_size = ai->dyn_size - (static_size - ai->static_size); /* * Initialize first chunk: * This chunk is broken up into 3 parts: * < static | [reserved] | dynamic > * - static - there is no backing chunk because these allocations can * never be freed. * - reserved (pcpu_reserved_chunk) - exists primarily to serve * allocations from module load. * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first * chunk. */ tmp_addr = (unsigned long)base_addr + static_size; if (ai->reserved_size) pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr, ai->reserved_size); tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size; pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size); pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; pcpu_chunk_relocate(pcpu_first_chunk, -1); /* include all regions of the first chunk */ pcpu_nr_populated += PFN_DOWN(size_sum); pcpu_stats_chunk_alloc(); trace_percpu_create_chunk(base_addr); /* we're done */ pcpu_base_addr = base_addr; } #ifdef CONFIG_SMP const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { [PCPU_FC_AUTO] = "auto", [PCPU_FC_EMBED] = "embed", [PCPU_FC_PAGE] = "page", }; enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; static int __init percpu_alloc_setup(char *str) { if (!str) return -EINVAL; if (0) /* nada */; #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK else if (!strcmp(str, "embed")) pcpu_chosen_fc = PCPU_FC_EMBED; #endif #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK else if (!strcmp(str, "page")) pcpu_chosen_fc = PCPU_FC_PAGE; #endif else pr_warn("unknown allocator %s specified\n", str); return 0; } early_param("percpu_alloc", percpu_alloc_setup); /* * pcpu_embed_first_chunk() is used by the generic percpu setup. * Build it if needed by the arch config or the generic setup is going * to be used. */ #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) #define BUILD_EMBED_FIRST_CHUNK #endif /* build pcpu_page_first_chunk() iff needed by the arch config */ #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) #define BUILD_PAGE_FIRST_CHUNK #endif /* pcpu_build_alloc_info() is used by both embed and page first chunk */ #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) /** * pcpu_build_alloc_info - build alloc_info considering distances between CPUs * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * * This function determines grouping of units, their mappings to cpus * and other parameters considering needed percpu size, allocation * atom size and distances between CPUs. * * Groups are always multiples of atom size and CPUs which are of * LOCAL_DISTANCE both ways are grouped together and share space for * units in the same group. The returned configuration is guaranteed * to have CPUs on different nodes on different groups and >=75% usage * of allocated virtual address space. * * RETURNS: * On success, pointer to the new allocation_info is returned. On * failure, ERR_PTR value is returned. */ static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn) { static int group_map[NR_CPUS] __initdata; static int group_cnt[NR_CPUS] __initdata; static struct cpumask mask __initdata; const size_t static_size = __per_cpu_end - __per_cpu_start; int nr_groups = 1, nr_units = 0; size_t size_sum, min_unit_size, alloc_size; int upa, max_upa, best_upa; /* units_per_alloc */ int last_allocs, group, unit; unsigned int cpu, tcpu; struct pcpu_alloc_info *ai; unsigned int *cpu_map; /* this function may be called multiple times */ memset(group_map, 0, sizeof(group_map)); memset(group_cnt, 0, sizeof(group_cnt)); cpumask_clear(&mask); /* calculate size_sum and ensure dyn_size is enough for early alloc */ size_sum = PFN_ALIGN(static_size + reserved_size + max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); dyn_size = size_sum - static_size - reserved_size; /* * Determine min_unit_size, alloc_size and max_upa such that * alloc_size is multiple of atom_size and is the smallest * which can accommodate 4k aligned segments which are equal to * or larger than min_unit_size. */ min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); /* determine the maximum # of units that can fit in an allocation */ alloc_size = roundup(min_unit_size, atom_size); upa = alloc_size / min_unit_size; while (alloc_size % upa || (offset_in_page(alloc_size / upa))) upa--; max_upa = upa; cpumask_copy(&mask, cpu_possible_mask); /* group cpus according to their proximity */ for (group = 0; !cpumask_empty(&mask); group++) { /* pop the group's first cpu */ cpu = cpumask_first(&mask); group_map[cpu] = group; group_cnt[group]++; cpumask_clear_cpu(cpu, &mask); for_each_cpu(tcpu, &mask) { if (!cpu_distance_fn || (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { group_map[tcpu] = group; group_cnt[group]++; cpumask_clear_cpu(tcpu, &mask); } } } nr_groups = group; /* * Wasted space is caused by a ratio imbalance of upa to group_cnt. * Expand the unit_size until we use >= 75% of the units allocated. * Related to atom_size, which could be much larger than the unit_size. */ last_allocs = INT_MAX; best_upa = 0; for (upa = max_upa; upa; upa--) { int allocs = 0, wasted = 0; if (alloc_size % upa || (offset_in_page(alloc_size / upa))) continue; for (group = 0; group < nr_groups; group++) { int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); allocs += this_allocs; wasted += this_allocs * upa - group_cnt[group]; } /* * Don't accept if wastage is over 1/3. The * greater-than comparison ensures upa==1 always * passes the following check. */ if (wasted > num_possible_cpus() / 3) continue; /* and then don't consume more memory */ if (allocs > last_allocs) break; last_allocs = allocs; best_upa = upa; } BUG_ON(!best_upa); upa = best_upa; /* allocate and fill alloc_info */ for (group = 0; group < nr_groups; group++) nr_units += roundup(group_cnt[group], upa); ai = pcpu_alloc_alloc_info(nr_groups, nr_units); if (!ai) return ERR_PTR(-ENOMEM); cpu_map = ai->groups[0].cpu_map; for (group = 0; group < nr_groups; group++) { ai->groups[group].cpu_map = cpu_map; cpu_map += roundup(group_cnt[group], upa); } ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = alloc_size / upa; ai->atom_size = atom_size; ai->alloc_size = alloc_size; for (group = 0, unit = 0; group < nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; /* * Initialize base_offset as if all groups are located * back-to-back. The caller should update this to * reflect actual allocation. */ gi->base_offset = unit * ai->unit_size; for_each_possible_cpu(cpu) if (group_map[cpu] == group) gi->cpu_map[gi->nr_units++] = cpu; gi->nr_units = roundup(gi->nr_units, upa); unit += gi->nr_units; } BUG_ON(unit != nr_units); return ai; } static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) { const unsigned long goal = __pa(MAX_DMA_ADDRESS); #ifdef CONFIG_NUMA int node = NUMA_NO_NODE; void *ptr; if (cpu_to_nd_fn) node = cpu_to_nd_fn(cpu); if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { ptr = memblock_alloc_from(size, align, goal); pr_info("cpu %d has no node %d or node-local memory\n", cpu, node); pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", cpu, size, (u64)__pa(ptr)); } else { ptr = memblock_alloc_try_nid(size, align, goal, MEMBLOCK_ALLOC_ACCESSIBLE, node); pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", cpu, size, node, (u64)__pa(ptr)); } return ptr; #else return memblock_alloc_from(size, align, goal); #endif } static void __init pcpu_fc_free(void *ptr, size_t size) { memblock_free(ptr, size); } #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ #if defined(BUILD_EMBED_FIRST_CHUNK) /** * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * @cpu_to_nd_fn: callback to convert cpu to it's node, optional * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. * * If this function is used to setup the first chunk, it is allocated * by calling pcpu_fc_alloc and used as-is without being mapped into * vmalloc area. Allocations are always whole multiples of @atom_size * aligned to @atom_size. * * This enables the first chunk to piggy back on the linear physical * mapping which often uses larger page size. Please note that this * can result in very sparse cpu->unit mapping on NUMA machines thus * requiring large vmalloc address space. Don't use this allocator if * vmalloc space is not orders of magnitude larger than distances * between node memory addresses (ie. 32bit NUMA machines). * * @dyn_size specifies the minimum dynamic area size. * * If the needed size is smaller than the minimum or specified unit * size, the leftover is returned using pcpu_fc_free. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) { void *base = (void *)ULONG_MAX; void **areas = NULL; struct pcpu_alloc_info *ai; size_t size_sum, areas_size; unsigned long max_distance; int group, i, highest_group, rc = 0; ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, cpu_distance_fn); if (IS_ERR(ai)) return PTR_ERR(ai); size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); if (!areas) { rc = -ENOMEM; goto out_free; } /* allocate, copy and determine base address & max_distance */ highest_group = 0; for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; unsigned int cpu = NR_CPUS; void *ptr; for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) cpu = gi->cpu_map[i]; BUG_ON(cpu == NR_CPUS); /* allocate space for the whole group */ ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); if (!ptr) { rc = -ENOMEM; goto out_free_areas; } /* kmemleak tracks the percpu allocations separately */ kmemleak_ignore_phys(__pa(ptr)); areas[group] = ptr; base = min(ptr, base); if (ptr > areas[highest_group]) highest_group = group; } max_distance = areas[highest_group] - base; max_distance += ai->unit_size * ai->groups[highest_group].nr_units; /* warn if maximum distance is further than 75% of vmalloc space */ if (max_distance > VMALLOC_TOTAL * 3 / 4) { pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", max_distance, VMALLOC_TOTAL); #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK /* and fail if we have fallback */ rc = -EINVAL; goto out_free_areas; #endif } /* * Copy data and free unused parts. This should happen after all * allocations are complete; otherwise, we may end up with * overlapping groups. */ for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; void *ptr = areas[group]; for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { if (gi->cpu_map[i] == NR_CPUS) { /* unused unit, free whole */ pcpu_fc_free(ptr, ai->unit_size); continue; } /* copy and return the unused part */ memcpy(ptr, __per_cpu_load, ai->static_size); pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); } } /* base address is now known, determine group base offsets */ for (group = 0; group < ai->nr_groups; group++) { ai->groups[group].base_offset = areas[group] - base; } pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size); pcpu_setup_first_chunk(ai, base); goto out_free; out_free_areas: for (group = 0; group < ai->nr_groups; group++) if (areas[group]) pcpu_fc_free(areas[group], ai->groups[group].nr_units * ai->unit_size); out_free: pcpu_free_alloc_info(ai); if (areas) memblock_free(areas, areas_size); return rc; } #endif /* BUILD_EMBED_FIRST_CHUNK */ #ifdef BUILD_PAGE_FIRST_CHUNK #include <asm/pgalloc.h> #ifndef P4D_TABLE_SIZE #define P4D_TABLE_SIZE PAGE_SIZE #endif #ifndef PUD_TABLE_SIZE #define PUD_TABLE_SIZE PAGE_SIZE #endif #ifndef PMD_TABLE_SIZE #define PMD_TABLE_SIZE PAGE_SIZE #endif #ifndef PTE_TABLE_SIZE #define PTE_TABLE_SIZE PAGE_SIZE #endif void __init __weak pcpu_populate_pte(unsigned long addr) { pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; if (pgd_none(*pgd)) { p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE); if (!p4d) goto err_alloc; pgd_populate(&init_mm, pgd, p4d); } p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) { pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); if (!pud) goto err_alloc; p4d_populate(&init_mm, p4d, pud); } pud = pud_offset(p4d, addr); if (pud_none(*pud)) { pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); if (!pmd) goto err_alloc; pud_populate(&init_mm, pud, pmd); } pmd = pmd_offset(pud, addr); if (!pmd_present(*pmd)) { pte_t *new; new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); if (!new) goto err_alloc; pmd_populate_kernel(&init_mm, pmd, new); } return; err_alloc: panic("%s: Failed to allocate memory\n", __func__); } /** * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages * @reserved_size: the size of reserved percpu area in bytes * @cpu_to_nd_fn: callback to convert cpu to it's node, optional * * This is a helper to ease setting up page-remapped first percpu * chunk and can be called where pcpu_setup_first_chunk() is expected. * * This is the basic allocator. Static percpu area is allocated * page-by-page into vmalloc area. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) { static struct vm_struct vm; struct pcpu_alloc_info *ai; char psize_str[16]; int unit_pages; size_t pages_size; struct page **pages; int unit, i, j, rc = 0; int upa; int nr_g0_units; snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); if (IS_ERR(ai)) return PTR_ERR(ai); BUG_ON(ai->nr_groups != 1); upa = ai->alloc_size/ai->unit_size; nr_g0_units = roundup(num_possible_cpus(), upa); if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { pcpu_free_alloc_info(ai); return -EINVAL; } unit_pages = ai->unit_size >> PAGE_SHIFT; /* unaligned allocations can't be freed, round up to page size */ pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * sizeof(pages[0])); pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); if (!pages) panic("%s: Failed to allocate %zu bytes\n", __func__, pages_size); /* allocate pages */ j = 0; for (unit = 0; unit < num_possible_cpus(); unit++) { unsigned int cpu = ai->groups[0].cpu_map[unit]; for (i = 0; i < unit_pages; i++) { void *ptr; ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); if (!ptr) { pr_warn("failed to allocate %s page for cpu%u\n", psize_str, cpu); goto enomem; } /* kmemleak tracks the percpu allocations separately */ kmemleak_ignore_phys(__pa(ptr)); pages[j++] = virt_to_page(ptr); } } /* allocate vm area, map the pages and copy static data */ vm.flags = VM_ALLOC; vm.size = num_possible_cpus() * ai->unit_size; vm_area_register_early(&vm, PAGE_SIZE); for (unit = 0; unit < num_possible_cpus(); unit++) { unsigned long unit_addr = (unsigned long)vm.addr + unit * ai->unit_size; for (i = 0; i < unit_pages; i++) pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); /* pte already populated, the following shouldn't fail */ rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], unit_pages); if (rc < 0) panic("failed to map percpu area, err=%d\n", rc); /* * FIXME: Archs with virtual cache should flush local * cache for the linear mapping here - something * equivalent to flush_cache_vmap() on the local cpu. * flush_cache_vmap() can't be used as most supporting * data structures are not set up yet. */ /* copy static data */ memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); } /* we're ready, commit */ pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", unit_pages, psize_str, ai->static_size, ai->reserved_size, ai->dyn_size); pcpu_setup_first_chunk(ai, vm.addr); goto out_free_ar; enomem: while (--j >= 0) pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); rc = -ENOMEM; out_free_ar: memblock_free(pages, pages_size); pcpu_free_alloc_info(ai); return rc; } #endif /* BUILD_PAGE_FIRST_CHUNK */ #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA /* * Generic SMP percpu area setup. * * The embedding helper is used because its behavior closely resembles * the original non-dynamic generic percpu area setup. This is * important because many archs have addressing restrictions and might * fail if the percpu area is located far away from the previous * location. As an added bonus, in non-NUMA cases, embedding is * generally a good idea TLB-wise because percpu area can piggy back * on the physical linear memory mapping which uses large page * mappings on applicable archs. */ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; EXPORT_SYMBOL(__per_cpu_offset); void __init setup_per_cpu_areas(void) { unsigned long delta; unsigned int cpu; int rc; /* * Always reserve area for module percpu variables. That's * what the legacy allocator did. */ rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, NULL); if (rc < 0) panic("Failed to initialize percpu areas."); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ #else /* CONFIG_SMP */ /* * UP percpu area setup. * * UP always uses km-based percpu allocator with identity mapping. * Static percpu variables are indistinguishable from the usual static * variables and don't require any special preparation. */ void __init setup_per_cpu_areas(void) { const size_t unit_size = roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, PERCPU_DYNAMIC_RESERVE)); struct pcpu_alloc_info *ai; void *fc; ai = pcpu_alloc_alloc_info(1, 1); fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!ai || !fc) panic("Failed to allocate memory for percpu areas."); /* kmemleak tracks the percpu allocations separately */ kmemleak_ignore_phys(__pa(fc)); ai->dyn_size = unit_size; ai->unit_size = unit_size; ai->atom_size = unit_size; ai->alloc_size = unit_size; ai->groups[0].nr_units = 1; ai->groups[0].cpu_map[0] = 0; pcpu_setup_first_chunk(ai, fc); pcpu_free_alloc_info(ai); } #endif /* CONFIG_SMP */ /* * pcpu_nr_pages - calculate total number of populated backing pages * * This reflects the number of pages populated to back chunks. Metadata is * excluded in the number exposed in meminfo as the number of backing pages * scales with the number of cpus and can quickly outweigh the memory used for * metadata. It also keeps this calculation nice and simple. * * RETURNS: * Total number of populated backing pages in use by the allocator. */ unsigned long pcpu_nr_pages(void) { return pcpu_nr_populated * pcpu_nr_units; } /* * Percpu allocator is initialized early during boot when neither slab or * workqueue is available. Plug async management until everything is up * and running. */ static int __init percpu_enable_async(void) { pcpu_async_enabled = true; return 0; } subsys_initcall(percpu_enable_async);