// SPDX-License-Identifier: GPL-2.0-only /* * Testsuite for BPF interpreter and BPF JIT compiler * * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include /* General test specific settings */ #define MAX_SUBTESTS 3 #define MAX_TESTRUNS 1000 #define MAX_DATA 128 #define MAX_INSNS 512 #define MAX_K 0xffffFFFF /* Few constants used to init test 'skb' */ #define SKB_TYPE 3 #define SKB_MARK 0x1234aaaa #define SKB_HASH 0x1234aaab #define SKB_QUEUE_MAP 123 #define SKB_VLAN_TCI 0xffff #define SKB_VLAN_PRESENT 1 #define SKB_DEV_IFINDEX 577 #define SKB_DEV_TYPE 588 /* Redefine REGs to make tests less verbose */ #define R0 BPF_REG_0 #define R1 BPF_REG_1 #define R2 BPF_REG_2 #define R3 BPF_REG_3 #define R4 BPF_REG_4 #define R5 BPF_REG_5 #define R6 BPF_REG_6 #define R7 BPF_REG_7 #define R8 BPF_REG_8 #define R9 BPF_REG_9 #define R10 BPF_REG_10 /* Flags that can be passed to test cases */ #define FLAG_NO_DATA BIT(0) #define FLAG_EXPECTED_FAIL BIT(1) #define FLAG_SKB_FRAG BIT(2) #define FLAG_VERIFIER_ZEXT BIT(3) #define FLAG_LARGE_MEM BIT(4) enum { CLASSIC = BIT(6), /* Old BPF instructions only. */ INTERNAL = BIT(7), /* Extended instruction set. */ }; #define TEST_TYPE_MASK (CLASSIC | INTERNAL) struct bpf_test { const char *descr; union { struct sock_filter insns[MAX_INSNS]; struct bpf_insn insns_int[MAX_INSNS]; struct { void *insns; unsigned int len; } ptr; } u; __u8 aux; __u8 data[MAX_DATA]; struct { int data_size; __u32 result; } test[MAX_SUBTESTS]; int (*fill_helper)(struct bpf_test *self); int expected_errcode; /* used when FLAG_EXPECTED_FAIL is set in the aux */ __u8 frag_data[MAX_DATA]; int stack_depth; /* for eBPF only, since tests don't call verifier */ int nr_testruns; /* Custom run count, defaults to MAX_TESTRUNS if 0 */ }; /* Large test cases need separate allocation and fill handler. */ static int bpf_fill_maxinsns1(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; __u32 k = ~0; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len; i++, k--) insn[i] = __BPF_STMT(BPF_RET | BPF_K, k); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns2(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len; i++) insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns3(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; struct rnd_state rnd; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; prandom_seed_state(&rnd, 3141592653589793238ULL); for (i = 0; i < len - 1; i++) { __u32 k = prandom_u32_state(&rnd); insn[i] = __BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, k); } insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns4(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS + 1; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len; i++) insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns5(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0); for (i = 1; i < len - 1; i++) insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns6(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len - 1; i++) insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns7(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len - 4; i++) insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_CPU); insn[len - 4] = __BPF_STMT(BPF_MISC | BPF_TAX, 0); insn[len - 3] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_CPU); insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns8(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i, jmp_off = len - 3; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[0] = __BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff); for (i = 1; i < len - 1; i++) insn[i] = __BPF_JUMP(BPF_JMP | BPF_JGT, 0xffffffff, jmp_off--, 0); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns9(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct bpf_insn *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[0] = BPF_JMP_IMM(BPF_JA, 0, 0, len - 2); insn[1] = BPF_ALU32_IMM(BPF_MOV, R0, 0xcbababab); insn[2] = BPF_EXIT_INSN(); for (i = 3; i < len - 2; i++) insn[i] = BPF_ALU32_IMM(BPF_MOV, R0, 0xfefefefe); insn[len - 2] = BPF_EXIT_INSN(); insn[len - 1] = BPF_JMP_IMM(BPF_JA, 0, 0, -(len - 1)); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns10(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS, hlen = len - 2; struct bpf_insn *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < hlen / 2; i++) insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 2 - 2 * i); for (i = hlen - 1; i > hlen / 2; i--) insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 1 - 2 * i); insn[hlen / 2] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen / 2 - 1); insn[hlen] = BPF_ALU32_IMM(BPF_MOV, R0, 0xabababac); insn[hlen + 1] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int __bpf_fill_ja(struct bpf_test *self, unsigned int len, unsigned int plen) { struct sock_filter *insn; unsigned int rlen; int i, j; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; rlen = (len % plen) - 1; for (i = 0; i + plen < len; i += plen) for (j = 0; j < plen; j++) insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA, plen - 1 - j, 0, 0); for (j = 0; j < rlen; j++) insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA, rlen - 1 - j, 0, 0); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xababcbac); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns11(struct bpf_test *self) { /* Hits 70 passes on x86_64 and triggers NOPs padding. */ return __bpf_fill_ja(self, BPF_MAXINSNS, 68); } static int bpf_fill_maxinsns12(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0); for (i = 1; i < len - 1; i++) insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_maxinsns13(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len - 3; i++) insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0); insn[len - 3] = __BPF_STMT(BPF_LD | BPF_IMM, 0xabababab); insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0); insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int bpf_fill_ja(struct bpf_test *self) { /* Hits exactly 11 passes on x86_64 JIT. */ return __bpf_fill_ja(self, 12, 9); } static int bpf_fill_ld_abs_get_processor_id(struct bpf_test *self) { unsigned int len = BPF_MAXINSNS; struct sock_filter *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; for (i = 0; i < len - 1; i += 2) { insn[i] = __BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 0); insn[i + 1] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_CPU); } insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xbee); self->u.ptr.insns = insn; self->u.ptr.len = len; return 0; } static int __bpf_fill_stxdw(struct bpf_test *self, int size) { unsigned int len = BPF_MAXINSNS; struct bpf_insn *insn; int i; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[0] = BPF_ALU32_IMM(BPF_MOV, R0, 1); insn[1] = BPF_ST_MEM(size, R10, -40, 42); for (i = 2; i < len - 2; i++) insn[i] = BPF_STX_XADD(size, R10, R0, -40); insn[len - 2] = BPF_LDX_MEM(size, R0, R10, -40); insn[len - 1] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; self->stack_depth = 40; return 0; } static int bpf_fill_stxw(struct bpf_test *self) { return __bpf_fill_stxdw(self, BPF_W); } static int bpf_fill_stxdw(struct bpf_test *self) { return __bpf_fill_stxdw(self, BPF_DW); } static int __bpf_ld_imm64(struct bpf_insn insns[2], u8 reg, s64 imm64) { struct bpf_insn tmp[] = {BPF_LD_IMM64(reg, imm64)}; memcpy(insns, tmp, sizeof(tmp)); return 2; } /* * Branch conversion tests. Complex operations can expand to a lot * of instructions when JITed. This in turn may cause jump offsets * to overflow the field size of the native instruction, triggering * a branch conversion mechanism in some JITs. */ static int __bpf_fill_max_jmp(struct bpf_test *self, int jmp, int imm) { struct bpf_insn *insns; int len = S16_MAX + 5; int i; insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL); if (!insns) return -ENOMEM; i = __bpf_ld_imm64(insns, R1, 0x0123456789abcdefULL); insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insns[i++] = BPF_JMP_IMM(jmp, R0, imm, S16_MAX); insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 2); insns[i++] = BPF_EXIT_INSN(); while (i < len - 1) { static const int ops[] = { BPF_LSH, BPF_RSH, BPF_ARSH, BPF_ADD, BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD, }; int op = ops[(i >> 1) % ARRAY_SIZE(ops)]; if (i & 1) insns[i++] = BPF_ALU32_REG(op, R0, R1); else insns[i++] = BPF_ALU64_REG(op, R0, R1); } insns[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insns; self->u.ptr.len = len; BUG_ON(i != len); return 0; } /* Branch taken by runtime decision */ static int bpf_fill_max_jmp_taken(struct bpf_test *self) { return __bpf_fill_max_jmp(self, BPF_JEQ, 1); } /* Branch not taken by runtime decision */ static int bpf_fill_max_jmp_not_taken(struct bpf_test *self) { return __bpf_fill_max_jmp(self, BPF_JEQ, 0); } /* Branch always taken, known at JIT time */ static int bpf_fill_max_jmp_always_taken(struct bpf_test *self) { return __bpf_fill_max_jmp(self, BPF_JGE, 0); } /* Branch never taken, known at JIT time */ static int bpf_fill_max_jmp_never_taken(struct bpf_test *self) { return __bpf_fill_max_jmp(self, BPF_JLT, 0); } /* ALU result computation used in tests */ static bool __bpf_alu_result(u64 *res, u64 v1, u64 v2, u8 op) { *res = 0; switch (op) { case BPF_MOV: *res = v2; break; case BPF_AND: *res = v1 & v2; break; case BPF_OR: *res = v1 | v2; break; case BPF_XOR: *res = v1 ^ v2; break; case BPF_LSH: *res = v1 << v2; break; case BPF_RSH: *res = v1 >> v2; break; case BPF_ARSH: *res = v1 >> v2; if (v2 > 0 && v1 > S64_MAX) *res |= ~0ULL << (64 - v2); break; case BPF_ADD: *res = v1 + v2; break; case BPF_SUB: *res = v1 - v2; break; case BPF_MUL: *res = v1 * v2; break; case BPF_DIV: if (v2 == 0) return false; *res = div64_u64(v1, v2); break; case BPF_MOD: if (v2 == 0) return false; div64_u64_rem(v1, v2, res); break; } return true; } /* Test an ALU shift operation for all valid shift values */ static int __bpf_fill_alu_shift(struct bpf_test *self, u8 op, u8 mode, bool alu32) { static const s64 regs[] = { 0x0123456789abcdefLL, /* dword > 0, word < 0 */ 0xfedcba9876543210LL, /* dword < 0, word > 0 */ 0xfedcba0198765432LL, /* dword < 0, word < 0 */ 0x0123458967abcdefLL, /* dword > 0, word > 0 */ }; int bits = alu32 ? 32 : 64; int len = (2 + 7 * bits) * ARRAY_SIZE(regs) + 3; struct bpf_insn *insn; int imm, k; int i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0); for (k = 0; k < ARRAY_SIZE(regs); k++) { s64 reg = regs[k]; i += __bpf_ld_imm64(&insn[i], R3, reg); for (imm = 0; imm < bits; imm++) { u64 val; /* Perform operation */ insn[i++] = BPF_ALU64_REG(BPF_MOV, R1, R3); insn[i++] = BPF_ALU64_IMM(BPF_MOV, R2, imm); if (alu32) { if (mode == BPF_K) insn[i++] = BPF_ALU32_IMM(op, R1, imm); else insn[i++] = BPF_ALU32_REG(op, R1, R2); if (op == BPF_ARSH) reg = (s32)reg; else reg = (u32)reg; __bpf_alu_result(&val, reg, imm, op); val = (u32)val; } else { if (mode == BPF_K) insn[i++] = BPF_ALU64_IMM(op, R1, imm); else insn[i++] = BPF_ALU64_REG(op, R1, R2); __bpf_alu_result(&val, reg, imm, op); } /* * When debugging a JIT that fails this test, one * can write the immediate value to R0 here to find * out which operand values that fail. */ /* Load reference and check the result */ i += __bpf_ld_imm64(&insn[i], R4, val); insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R4, 1); insn[i++] = BPF_EXIT_INSN(); } } insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insn[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; BUG_ON(i != len); return 0; } static int bpf_fill_alu64_lsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, false); } static int bpf_fill_alu64_rsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, false); } static int bpf_fill_alu64_arsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, false); } static int bpf_fill_alu64_lsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, false); } static int bpf_fill_alu64_rsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, false); } static int bpf_fill_alu64_arsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, false); } static int bpf_fill_alu32_lsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, true); } static int bpf_fill_alu32_rsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, true); } static int bpf_fill_alu32_arsh_imm(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, true); } static int bpf_fill_alu32_lsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, true); } static int bpf_fill_alu32_rsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, true); } static int bpf_fill_alu32_arsh_reg(struct bpf_test *self) { return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, true); } /* * Test an ALU register shift operation for all valid shift values * for the case when the source and destination are the same. */ static int __bpf_fill_alu_shift_same_reg(struct bpf_test *self, u8 op, bool alu32) { int bits = alu32 ? 32 : 64; int len = 3 + 6 * bits; struct bpf_insn *insn; int i = 0; u64 val; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0); for (val = 0; val < bits; val++) { u64 res; /* Perform operation */ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R1, val); if (alu32) insn[i++] = BPF_ALU32_REG(op, R1, R1); else insn[i++] = BPF_ALU64_REG(op, R1, R1); /* Compute the reference result */ __bpf_alu_result(&res, val, val, op); if (alu32) res = (u32)res; i += __bpf_ld_imm64(&insn[i], R2, res); /* Check the actual result */ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1); insn[i++] = BPF_EXIT_INSN(); } insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insn[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; BUG_ON(i != len); return 0; } static int bpf_fill_alu64_lsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, false); } static int bpf_fill_alu64_rsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, false); } static int bpf_fill_alu64_arsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, false); } static int bpf_fill_alu32_lsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, true); } static int bpf_fill_alu32_rsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, true); } static int bpf_fill_alu32_arsh_same_reg(struct bpf_test *self) { return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, true); } /* * Common operand pattern generator for exhaustive power-of-two magnitudes * tests. The block size parameters can be adjusted to increase/reduce the * number of combinatons tested and thereby execution speed and memory * footprint. */ static inline s64 value(int msb, int delta, int sign) { return sign * (1LL << msb) + delta; } static int __bpf_fill_pattern(struct bpf_test *self, void *arg, int dbits, int sbits, int block1, int block2, int (*emit)(struct bpf_test*, void*, struct bpf_insn*, s64, s64)) { static const int sgn[][2] = {{1, 1}, {1, -1}, {-1, 1}, {-1, -1}}; struct bpf_insn *insns; int di, si, bt, db, sb; int count, len, k; int extra = 1 + 2; int i = 0; /* Total number of iterations for the two pattern */ count = (dbits - 1) * (sbits - 1) * block1 * block1 * ARRAY_SIZE(sgn); count += (max(dbits, sbits) - 1) * block2 * block2 * ARRAY_SIZE(sgn); /* Compute the maximum number of insns and allocate the buffer */ len = extra + count * (*emit)(self, arg, NULL, 0, 0); insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL); if (!insns) return -ENOMEM; /* Add head instruction(s) */ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0); /* * Pattern 1: all combinations of power-of-two magnitudes and sign, * and with a block of contiguous values around each magnitude. */ for (di = 0; di < dbits - 1; di++) /* Dst magnitudes */ for (si = 0; si < sbits - 1; si++) /* Src magnitudes */ for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */ for (db = -(block1 / 2); db < (block1 + 1) / 2; db++) for (sb = -(block1 / 2); sb < (block1 + 1) / 2; sb++) { s64 dst, src; dst = value(di, db, sgn[k][0]); src = value(si, sb, sgn[k][1]); i += (*emit)(self, arg, &insns[i], dst, src); } /* * Pattern 2: all combinations for a larger block of values * for each power-of-two magnitude and sign, where the magnitude is * the same for both operands. */ for (bt = 0; bt < max(dbits, sbits) - 1; bt++) /* Magnitude */ for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */ for (db = -(block2 / 2); db < (block2 + 1) / 2; db++) for (sb = -(block2 / 2); sb < (block2 + 1) / 2; sb++) { s64 dst, src; dst = value(bt % dbits, db, sgn[k][0]); src = value(bt % sbits, sb, sgn[k][1]); i += (*emit)(self, arg, &insns[i], dst, src); } /* Append tail instructions */ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insns[i++] = BPF_EXIT_INSN(); BUG_ON(i > len); self->u.ptr.insns = insns; self->u.ptr.len = i; return 0; } /* * Block size parameters used in pattern tests below. une as needed to * increase/reduce the number combinations tested, see following examples. * block values per operand MSB * ---------------------------------------- * 0 none * 1 (1 << MSB) * 2 (1 << MSB) + [-1, 0] * 3 (1 << MSB) + [-1, 0, 1] */ #define PATTERN_BLOCK1 1 #define PATTERN_BLOCK2 5 /* Number of test runs for a pattern test */ #define NR_PATTERN_RUNS 1 /* * Exhaustive tests of ALU operations for all combinations of power-of-two * magnitudes of the operands, both for positive and negative values. The * test is designed to verify e.g. the ALU and ALU64 operations for JITs that * emit different code depending on the magnitude of the immediate value. */ static int __bpf_emit_alu64_imm(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 imm) { int op = *(int *)arg; int i = 0; u64 res; if (!insns) return 7; if (__bpf_alu_result(&res, dst, (s32)imm, op)) { i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R3, res); insns[i++] = BPF_ALU64_IMM(op, R1, imm); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); } return i; } static int __bpf_emit_alu32_imm(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 imm) { int op = *(int *)arg; int i = 0; u64 res; if (!insns) return 7; if (__bpf_alu_result(&res, (u32)dst, (u32)imm, op)) { i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R3, (u32)res); insns[i++] = BPF_ALU32_IMM(op, R1, imm); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); } return i; } static int __bpf_emit_alu64_reg(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; int i = 0; u64 res; if (!insns) return 9; if (__bpf_alu_result(&res, dst, src, op)) { i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); i += __bpf_ld_imm64(&insns[i], R3, res); insns[i++] = BPF_ALU64_REG(op, R1, R2); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); } return i; } static int __bpf_emit_alu32_reg(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; int i = 0; u64 res; if (!insns) return 9; if (__bpf_alu_result(&res, (u32)dst, (u32)src, op)) { i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); i += __bpf_ld_imm64(&insns[i], R3, (u32)res); insns[i++] = BPF_ALU32_REG(op, R1, R2); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); } return i; } static int __bpf_fill_alu64_imm(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 32, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_alu64_imm); } static int __bpf_fill_alu32_imm(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 32, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_alu32_imm); } static int __bpf_fill_alu64_reg(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_alu64_reg); } static int __bpf_fill_alu32_reg(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_alu32_reg); } /* ALU64 immediate operations */ static int bpf_fill_alu64_mov_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_MOV); } static int bpf_fill_alu64_and_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_AND); } static int bpf_fill_alu64_or_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_OR); } static int bpf_fill_alu64_xor_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_XOR); } static int bpf_fill_alu64_add_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_ADD); } static int bpf_fill_alu64_sub_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_SUB); } static int bpf_fill_alu64_mul_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_MUL); } static int bpf_fill_alu64_div_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_DIV); } static int bpf_fill_alu64_mod_imm(struct bpf_test *self) { return __bpf_fill_alu64_imm(self, BPF_MOD); } /* ALU32 immediate operations */ static int bpf_fill_alu32_mov_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_MOV); } static int bpf_fill_alu32_and_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_AND); } static int bpf_fill_alu32_or_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_OR); } static int bpf_fill_alu32_xor_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_XOR); } static int bpf_fill_alu32_add_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_ADD); } static int bpf_fill_alu32_sub_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_SUB); } static int bpf_fill_alu32_mul_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_MUL); } static int bpf_fill_alu32_div_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_DIV); } static int bpf_fill_alu32_mod_imm(struct bpf_test *self) { return __bpf_fill_alu32_imm(self, BPF_MOD); } /* ALU64 register operations */ static int bpf_fill_alu64_mov_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_MOV); } static int bpf_fill_alu64_and_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_AND); } static int bpf_fill_alu64_or_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_OR); } static int bpf_fill_alu64_xor_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_XOR); } static int bpf_fill_alu64_add_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_ADD); } static int bpf_fill_alu64_sub_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_SUB); } static int bpf_fill_alu64_mul_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_MUL); } static int bpf_fill_alu64_div_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_DIV); } static int bpf_fill_alu64_mod_reg(struct bpf_test *self) { return __bpf_fill_alu64_reg(self, BPF_MOD); } /* ALU32 register operations */ static int bpf_fill_alu32_mov_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_MOV); } static int bpf_fill_alu32_and_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_AND); } static int bpf_fill_alu32_or_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_OR); } static int bpf_fill_alu32_xor_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_XOR); } static int bpf_fill_alu32_add_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_ADD); } static int bpf_fill_alu32_sub_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_SUB); } static int bpf_fill_alu32_mul_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_MUL); } static int bpf_fill_alu32_div_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_DIV); } static int bpf_fill_alu32_mod_reg(struct bpf_test *self) { return __bpf_fill_alu32_reg(self, BPF_MOD); } /* * Test JITs that implement complex ALU operations as function * calls, and must re-arrange operands for argument passing. */ static int __bpf_fill_alu_imm_regs(struct bpf_test *self, u8 op, bool alu32) { int len = 2 + 10 * 10; struct bpf_insn *insns; u64 dst, res; int i = 0; u32 imm; int rd; insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL); if (!insns) return -ENOMEM; /* Operand and result values according to operation */ if (alu32) dst = 0x76543210U; else dst = 0x7edcba9876543210ULL; imm = 0x01234567U; if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH) imm &= 31; __bpf_alu_result(&res, dst, imm, op); if (alu32) res = (u32)res; /* Check all operand registers */ for (rd = R0; rd <= R9; rd++) { i += __bpf_ld_imm64(&insns[i], rd, dst); if (alu32) insns[i++] = BPF_ALU32_IMM(op, rd, imm); else insns[i++] = BPF_ALU64_IMM(op, rd, imm); insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32); insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res >> 32, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); } insns[i++] = BPF_MOV64_IMM(R0, 1); insns[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insns; self->u.ptr.len = len; BUG_ON(i != len); return 0; } /* ALU64 K registers */ static int bpf_fill_alu64_mov_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MOV, false); } static int bpf_fill_alu64_and_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_AND, false); } static int bpf_fill_alu64_or_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_OR, false); } static int bpf_fill_alu64_xor_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_XOR, false); } static int bpf_fill_alu64_lsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_LSH, false); } static int bpf_fill_alu64_rsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_RSH, false); } static int bpf_fill_alu64_arsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_ARSH, false); } static int bpf_fill_alu64_add_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_ADD, false); } static int bpf_fill_alu64_sub_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_SUB, false); } static int bpf_fill_alu64_mul_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MUL, false); } static int bpf_fill_alu64_div_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_DIV, false); } static int bpf_fill_alu64_mod_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MOD, false); } /* ALU32 K registers */ static int bpf_fill_alu32_mov_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MOV, true); } static int bpf_fill_alu32_and_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_AND, true); } static int bpf_fill_alu32_or_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_OR, true); } static int bpf_fill_alu32_xor_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_XOR, true); } static int bpf_fill_alu32_lsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_LSH, true); } static int bpf_fill_alu32_rsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_RSH, true); } static int bpf_fill_alu32_arsh_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_ARSH, true); } static int bpf_fill_alu32_add_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_ADD, true); } static int bpf_fill_alu32_sub_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_SUB, true); } static int bpf_fill_alu32_mul_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MUL, true); } static int bpf_fill_alu32_div_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_DIV, true); } static int bpf_fill_alu32_mod_imm_regs(struct bpf_test *self) { return __bpf_fill_alu_imm_regs(self, BPF_MOD, true); } /* * Test JITs that implement complex ALU operations as function * calls, and must re-arrange operands for argument passing. */ static int __bpf_fill_alu_reg_pairs(struct bpf_test *self, u8 op, bool alu32) { int len = 2 + 10 * 10 * 12; u64 dst, src, res, same; struct bpf_insn *insns; int rd, rs; int i = 0; insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL); if (!insns) return -ENOMEM; /* Operand and result values according to operation */ if (alu32) { dst = 0x76543210U; src = 0x01234567U; } else { dst = 0x7edcba9876543210ULL; src = 0x0123456789abcdefULL; } if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH) src &= 31; __bpf_alu_result(&res, dst, src, op); __bpf_alu_result(&same, src, src, op); if (alu32) { res = (u32)res; same = (u32)same; } /* Check all combinations of operand registers */ for (rd = R0; rd <= R9; rd++) { for (rs = R0; rs <= R9; rs++) { u64 val = rd == rs ? same : res; i += __bpf_ld_imm64(&insns[i], rd, dst); i += __bpf_ld_imm64(&insns[i], rs, src); if (alu32) insns[i++] = BPF_ALU32_REG(op, rd, rs); else insns[i++] = BPF_ALU64_REG(op, rd, rs); insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32); insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val >> 32, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); } } insns[i++] = BPF_MOV64_IMM(R0, 1); insns[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insns; self->u.ptr.len = len; BUG_ON(i != len); return 0; } /* ALU64 X register combinations */ static int bpf_fill_alu64_mov_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MOV, false); } static int bpf_fill_alu64_and_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_AND, false); } static int bpf_fill_alu64_or_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_OR, false); } static int bpf_fill_alu64_xor_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_XOR, false); } static int bpf_fill_alu64_lsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_LSH, false); } static int bpf_fill_alu64_rsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_RSH, false); } static int bpf_fill_alu64_arsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, false); } static int bpf_fill_alu64_add_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_ADD, false); } static int bpf_fill_alu64_sub_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_SUB, false); } static int bpf_fill_alu64_mul_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MUL, false); } static int bpf_fill_alu64_div_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_DIV, false); } static int bpf_fill_alu64_mod_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MOD, false); } /* ALU32 X register combinations */ static int bpf_fill_alu32_mov_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MOV, true); } static int bpf_fill_alu32_and_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_AND, true); } static int bpf_fill_alu32_or_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_OR, true); } static int bpf_fill_alu32_xor_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_XOR, true); } static int bpf_fill_alu32_lsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_LSH, true); } static int bpf_fill_alu32_rsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_RSH, true); } static int bpf_fill_alu32_arsh_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, true); } static int bpf_fill_alu32_add_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_ADD, true); } static int bpf_fill_alu32_sub_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_SUB, true); } static int bpf_fill_alu32_mul_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MUL, true); } static int bpf_fill_alu32_div_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_DIV, true); } static int bpf_fill_alu32_mod_reg_pairs(struct bpf_test *self) { return __bpf_fill_alu_reg_pairs(self, BPF_MOD, true); } /* * Exhaustive tests of atomic operations for all power-of-two operand * magnitudes, both for positive and negative values. */ static int __bpf_emit_atomic64(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; u64 keep, fetch, res; int i = 0; if (!insns) return 21; switch (op) { case BPF_XCHG: res = src; break; default: __bpf_alu_result(&res, dst, src, BPF_OP(op)); } keep = 0x0123456789abcdefULL; if (op & BPF_FETCH) fetch = dst; else fetch = src; i += __bpf_ld_imm64(&insns[i], R0, keep); i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); i += __bpf_ld_imm64(&insns[i], R3, res); i += __bpf_ld_imm64(&insns[i], R4, fetch); i += __bpf_ld_imm64(&insns[i], R5, keep); insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8); insns[i++] = BPF_ATOMIC_OP(BPF_DW, op, R10, R2, -8); insns[i++] = BPF_LDX_MEM(BPF_DW, R1, R10, -8); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1); insns[i++] = BPF_EXIT_INSN(); return i; } static int __bpf_emit_atomic32(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; u64 keep, fetch, res; int i = 0; if (!insns) return 21; switch (op) { case BPF_XCHG: res = src; break; default: __bpf_alu_result(&res, (u32)dst, (u32)src, BPF_OP(op)); } keep = 0x0123456789abcdefULL; if (op & BPF_FETCH) fetch = (u32)dst; else fetch = src; i += __bpf_ld_imm64(&insns[i], R0, keep); i += __bpf_ld_imm64(&insns[i], R1, (u32)dst); i += __bpf_ld_imm64(&insns[i], R2, src); i += __bpf_ld_imm64(&insns[i], R3, (u32)res); i += __bpf_ld_imm64(&insns[i], R4, fetch); i += __bpf_ld_imm64(&insns[i], R5, keep); insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4); insns[i++] = BPF_ATOMIC_OP(BPF_W, op, R10, R2, -4); insns[i++] = BPF_LDX_MEM(BPF_W, R1, R10, -4); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1); insns[i++] = BPF_EXIT_INSN(); return i; } static int __bpf_emit_cmpxchg64(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int i = 0; if (!insns) return 23; i += __bpf_ld_imm64(&insns[i], R0, ~dst); i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); /* Result unsuccessful */ insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8); insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8); insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8); insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); /* Result successful */ insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8); insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8); insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R3, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2); insns[i++] = BPF_MOV64_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); return i; } static int __bpf_emit_cmpxchg32(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int i = 0; if (!insns) return 27; i += __bpf_ld_imm64(&insns[i], R0, ~dst); i += __bpf_ld_imm64(&insns[i], R1, (u32)dst); i += __bpf_ld_imm64(&insns[i], R2, src); /* Result unsuccessful */ insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4); insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4); insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */ insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4); insns[i++] = BPF_JMP32_REG(BPF_JEQ, R1, R3, 2); insns[i++] = BPF_MOV32_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2); insns[i++] = BPF_MOV32_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); /* Result successful */ i += __bpf_ld_imm64(&insns[i], R0, dst); insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4); insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */ insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4); insns[i++] = BPF_JMP32_REG(BPF_JEQ, R2, R3, 2); insns[i++] = BPF_MOV32_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2); insns[i++] = BPF_MOV32_IMM(R0, __LINE__); insns[i++] = BPF_EXIT_INSN(); return i; } static int __bpf_fill_atomic64(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, 0, PATTERN_BLOCK2, &__bpf_emit_atomic64); } static int __bpf_fill_atomic32(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, 0, PATTERN_BLOCK2, &__bpf_emit_atomic32); } /* 64-bit atomic operations */ static int bpf_fill_atomic64_add(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_ADD); } static int bpf_fill_atomic64_and(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_AND); } static int bpf_fill_atomic64_or(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_OR); } static int bpf_fill_atomic64_xor(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_XOR); } static int bpf_fill_atomic64_add_fetch(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_ADD | BPF_FETCH); } static int bpf_fill_atomic64_and_fetch(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_AND | BPF_FETCH); } static int bpf_fill_atomic64_or_fetch(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_OR | BPF_FETCH); } static int bpf_fill_atomic64_xor_fetch(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_XOR | BPF_FETCH); } static int bpf_fill_atomic64_xchg(struct bpf_test *self) { return __bpf_fill_atomic64(self, BPF_XCHG); } static int bpf_fill_cmpxchg64(struct bpf_test *self) { return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2, &__bpf_emit_cmpxchg64); } /* 32-bit atomic operations */ static int bpf_fill_atomic32_add(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_ADD); } static int bpf_fill_atomic32_and(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_AND); } static int bpf_fill_atomic32_or(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_OR); } static int bpf_fill_atomic32_xor(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_XOR); } static int bpf_fill_atomic32_add_fetch(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_ADD | BPF_FETCH); } static int bpf_fill_atomic32_and_fetch(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_AND | BPF_FETCH); } static int bpf_fill_atomic32_or_fetch(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_OR | BPF_FETCH); } static int bpf_fill_atomic32_xor_fetch(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_XOR | BPF_FETCH); } static int bpf_fill_atomic32_xchg(struct bpf_test *self) { return __bpf_fill_atomic32(self, BPF_XCHG); } static int bpf_fill_cmpxchg32(struct bpf_test *self) { return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2, &__bpf_emit_cmpxchg32); } /* * Test JITs that implement ATOMIC operations as function calls or * other primitives, and must re-arrange operands for argument passing. */ static int __bpf_fill_atomic_reg_pairs(struct bpf_test *self, u8 width, u8 op) { struct bpf_insn *insn; int len = 2 + 34 * 10 * 10; u64 mem, upd, res; int rd, rs, i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; /* Operand and memory values */ if (width == BPF_DW) { mem = 0x0123456789abcdefULL; upd = 0xfedcba9876543210ULL; } else { /* BPF_W */ mem = 0x01234567U; upd = 0x76543210U; } /* Memory updated according to operation */ switch (op) { case BPF_XCHG: res = upd; break; case BPF_CMPXCHG: res = mem; break; default: __bpf_alu_result(&res, mem, upd, BPF_OP(op)); } /* Test all operand registers */ for (rd = R0; rd <= R9; rd++) { for (rs = R0; rs <= R9; rs++) { u64 cmp, src; /* Initialize value in memory */ i += __bpf_ld_imm64(&insn[i], R0, mem); insn[i++] = BPF_STX_MEM(width, R10, R0, -8); /* Initialize registers in order */ i += __bpf_ld_imm64(&insn[i], R0, ~mem); i += __bpf_ld_imm64(&insn[i], rs, upd); insn[i++] = BPF_MOV64_REG(rd, R10); /* Perform atomic operation */ insn[i++] = BPF_ATOMIC_OP(width, op, rd, rs, -8); if (op == BPF_CMPXCHG && width == BPF_W) insn[i++] = BPF_ZEXT_REG(R0); /* Check R0 register value */ if (op == BPF_CMPXCHG) cmp = mem; /* Expect value from memory */ else if (R0 == rd || R0 == rs) cmp = 0; /* Aliased, checked below */ else cmp = ~mem; /* Expect value to be preserved */ if (cmp) { insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0, (u32)cmp, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); insn[i++] = BPF_ALU64_IMM(BPF_RSH, R0, 32); insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0, cmp >> 32, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); } /* Check source register value */ if (rs == R0 && op == BPF_CMPXCHG) src = 0; /* Aliased with R0, checked above */ else if (rs == rd && (op == BPF_CMPXCHG || !(op & BPF_FETCH))) src = 0; /* Aliased with rd, checked below */ else if (op == BPF_CMPXCHG) src = upd; /* Expect value to be preserved */ else if (op & BPF_FETCH) src = mem; /* Expect fetched value from mem */ else /* no fetch */ src = upd; /* Expect value to be preserved */ if (src) { insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs, (u32)src, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); insn[i++] = BPF_ALU64_IMM(BPF_RSH, rs, 32); insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs, src >> 32, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); } /* Check destination register value */ if (!(rd == R0 && op == BPF_CMPXCHG) && !(rd == rs && (op & BPF_FETCH))) { insn[i++] = BPF_JMP_REG(BPF_JEQ, rd, R10, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); } /* Check value in memory */ if (rs != rd) { /* No aliasing */ i += __bpf_ld_imm64(&insn[i], R1, res); } else if (op == BPF_XCHG) { /* Aliased, XCHG */ insn[i++] = BPF_MOV64_REG(R1, R10); } else if (op == BPF_CMPXCHG) { /* Aliased, CMPXCHG */ i += __bpf_ld_imm64(&insn[i], R1, mem); } else { /* Aliased, ALU oper */ i += __bpf_ld_imm64(&insn[i], R1, mem); insn[i++] = BPF_ALU64_REG(BPF_OP(op), R1, R10); } insn[i++] = BPF_LDX_MEM(width, R0, R10, -8); if (width == BPF_DW) insn[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2); else /* width == BPF_W */ insn[i++] = BPF_JMP32_REG(BPF_JEQ, R0, R1, 2); insn[i++] = BPF_MOV32_IMM(R0, __LINE__); insn[i++] = BPF_EXIT_INSN(); } } insn[i++] = BPF_MOV64_IMM(R0, 1); insn[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = i; BUG_ON(i > len); return 0; } /* 64-bit atomic register tests */ static int bpf_fill_atomic64_add_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD); } static int bpf_fill_atomic64_and_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND); } static int bpf_fill_atomic64_or_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR); } static int bpf_fill_atomic64_xor_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR); } static int bpf_fill_atomic64_add_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD | BPF_FETCH); } static int bpf_fill_atomic64_and_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND | BPF_FETCH); } static int bpf_fill_atomic64_or_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR | BPF_FETCH); } static int bpf_fill_atomic64_xor_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR | BPF_FETCH); } static int bpf_fill_atomic64_xchg_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XCHG); } static int bpf_fill_atomic64_cmpxchg_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_CMPXCHG); } /* 32-bit atomic register tests */ static int bpf_fill_atomic32_add_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD); } static int bpf_fill_atomic32_and_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND); } static int bpf_fill_atomic32_or_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR); } static int bpf_fill_atomic32_xor_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR); } static int bpf_fill_atomic32_add_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD | BPF_FETCH); } static int bpf_fill_atomic32_and_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND | BPF_FETCH); } static int bpf_fill_atomic32_or_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR | BPF_FETCH); } static int bpf_fill_atomic32_xor_fetch_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR | BPF_FETCH); } static int bpf_fill_atomic32_xchg_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XCHG); } static int bpf_fill_atomic32_cmpxchg_reg_pairs(struct bpf_test *self) { return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_CMPXCHG); } /* * Test the two-instruction 64-bit immediate load operation for all * power-of-two magnitudes of the immediate operand. For each MSB, a block * of immediate values centered around the power-of-two MSB are tested, * both for positive and negative values. The test is designed to verify * the operation for JITs that emit different code depending on the magnitude * of the immediate value. This is often the case if the native instruction * immediate field width is narrower than 32 bits. */ static int bpf_fill_ld_imm64_magn(struct bpf_test *self) { int block = 64; /* Increase for more tests per MSB position */ int len = 3 + 8 * 63 * block * 2; struct bpf_insn *insn; int bit, adj, sign; int i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0); for (bit = 0; bit <= 62; bit++) { for (adj = -block / 2; adj < block / 2; adj++) { for (sign = -1; sign <= 1; sign += 2) { s64 imm = sign * ((1LL << bit) + adj); /* Perform operation */ i += __bpf_ld_imm64(&insn[i], R1, imm); /* Load reference */ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm); insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3, (u32)(imm >> 32)); insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32); insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3); /* Check result */ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1); insn[i++] = BPF_EXIT_INSN(); } } } insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insn[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; BUG_ON(i != len); return 0; } /* * Test the two-instruction 64-bit immediate load operation for different * combinations of bytes. Each byte in the 64-bit word is constructed as * (base & mask) | (rand() & ~mask), where rand() is a deterministic LCG. * All patterns (base1, mask1) and (base2, mask2) bytes are tested. */ static int __bpf_fill_ld_imm64_bytes(struct bpf_test *self, u8 base1, u8 mask1, u8 base2, u8 mask2) { struct bpf_insn *insn; int len = 3 + 8 * BIT(8); int pattern, index; u32 rand = 1; int i = 0; insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL); if (!insn) return -ENOMEM; insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0); for (pattern = 0; pattern < BIT(8); pattern++) { u64 imm = 0; for (index = 0; index < 8; index++) { int byte; if (pattern & BIT(index)) byte = (base1 & mask1) | (rand & ~mask1); else byte = (base2 & mask2) | (rand & ~mask2); imm = (imm << 8) | byte; } /* Update our LCG */ rand = rand * 1664525 + 1013904223; /* Perform operation */ i += __bpf_ld_imm64(&insn[i], R1, imm); /* Load reference */ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm); insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3, (u32)(imm >> 32)); insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32); insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3); /* Check result */ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1); insn[i++] = BPF_EXIT_INSN(); } insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1); insn[i++] = BPF_EXIT_INSN(); self->u.ptr.insns = insn; self->u.ptr.len = len; BUG_ON(i != len); return 0; } static int bpf_fill_ld_imm64_checker(struct bpf_test *self) { return __bpf_fill_ld_imm64_bytes(self, 0, 0xff, 0xff, 0xff); } static int bpf_fill_ld_imm64_pos_neg(struct bpf_test *self) { return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0x80, 0x80); } static int bpf_fill_ld_imm64_pos_zero(struct bpf_test *self) { return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0, 0xff); } static int bpf_fill_ld_imm64_neg_zero(struct bpf_test *self) { return __bpf_fill_ld_imm64_bytes(self, 0x80, 0x80, 0, 0xff); } /* * Exhaustive tests of JMP operations for all combinations of power-of-two * magnitudes of the operands, both for positive and negative values. The * test is designed to verify e.g. the JMP and JMP32 operations for JITs that * emit different code depending on the magnitude of the immediate value. */ static bool __bpf_match_jmp_cond(s64 v1, s64 v2, u8 op) { switch (op) { case BPF_JSET: return !!(v1 & v2); case BPF_JEQ: return v1 == v2; case BPF_JNE: return v1 != v2; case BPF_JGT: return (u64)v1 > (u64)v2; case BPF_JGE: return (u64)v1 >= (u64)v2; case BPF_JLT: return (u64)v1 < (u64)v2; case BPF_JLE: return (u64)v1 <= (u64)v2; case BPF_JSGT: return v1 > v2; case BPF_JSGE: return v1 >= v2; case BPF_JSLT: return v1 < v2; case BPF_JSLE: return v1 <= v2; } return false; } static int __bpf_emit_jmp_imm(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 imm) { int op = *(int *)arg; if (insns) { bool match = __bpf_match_jmp_cond(dst, (s32)imm, op); int i = 0; insns[i++] = BPF_ALU32_IMM(BPF_MOV, R0, match); i += __bpf_ld_imm64(&insns[i], R1, dst); insns[i++] = BPF_JMP_IMM(op, R1, imm, 1); if (!match) insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1); insns[i++] = BPF_EXIT_INSN(); return i; } return 5 + 1; } static int __bpf_emit_jmp32_imm(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 imm) { int op = *(int *)arg; if (insns) { bool match = __bpf_match_jmp_cond((s32)dst, (s32)imm, op); int i = 0; i += __bpf_ld_imm64(&insns[i], R1, dst); insns[i++] = BPF_JMP32_IMM(op, R1, imm, 1); if (!match) insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1); insns[i++] = BPF_EXIT_INSN(); return i; } return 5; } static int __bpf_emit_jmp_reg(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; if (insns) { bool match = __bpf_match_jmp_cond(dst, src, op); int i = 0; i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); insns[i++] = BPF_JMP_REG(op, R1, R2, 1); if (!match) insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1); insns[i++] = BPF_EXIT_INSN(); return i; } return 7; } static int __bpf_emit_jmp32_reg(struct bpf_test *self, void *arg, struct bpf_insn *insns, s64 dst, s64 src) { int op = *(int *)arg; if (insns) { bool match = __bpf_match_jmp_cond((s32)dst, (s32)src, op); int i = 0; i += __bpf_ld_imm64(&insns[i], R1, dst); i += __bpf_ld_imm64(&insns[i], R2, src); insns[i++] = BPF_JMP32_REG(op, R1, R2, 1); if (!match) insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1); insns[i++] = BPF_EXIT_INSN(); return i; } return 7; } static int __bpf_fill_jmp_imm(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 32, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_jmp_imm); } static int __bpf_fill_jmp32_imm(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 32, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_jmp32_imm); } static int __bpf_fill_jmp_reg(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_jmp_reg); } static int __bpf_fill_jmp32_reg(struct bpf_test *self, int op) { return __bpf_fill_pattern(self, &op, 64, 64, PATTERN_BLOCK1, PATTERN_BLOCK2, &__bpf_emit_jmp32_reg); } /* JMP immediate tests */ static int bpf_fill_jmp_jset_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JSET); } static int bpf_fill_jmp_jeq_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JEQ); } static int bpf_fill_jmp_jne_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JNE); } static int bpf_fill_jmp_jgt_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JGT); } static int bpf_fill_jmp_jge_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JGE); } static int bpf_fill_jmp_jlt_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JLT); } static int bpf_fill_jmp_jle_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JLE); } static int bpf_fill_jmp_jsgt_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JSGT); } static int bpf_fill_jmp_jsge_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JSGE); } static int bpf_fill_jmp_jslt_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JSLT); } static int bpf_fill_jmp_jsle_imm(struct bpf_test *self) { return __bpf_fill_jmp_imm(self, BPF_JSLE); } /* JMP32 immediate tests */ static int bpf_fill_jmp32_jset_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JSET); } static int bpf_fill_jmp32_jeq_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JEQ); } static int bpf_fill_jmp32_jne_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JNE); } static int bpf_fill_jmp32_jgt_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JGT); } static int bpf_fill_jmp32_jge_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JGE); } static int bpf_fill_jmp32_jlt_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JLT); } static int bpf_fill_jmp32_jle_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JLE); } static int bpf_fill_jmp32_jsgt_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JSGT); } static int bpf_fill_jmp32_jsge_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JSGE); } static int bpf_fill_jmp32_jslt_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JSLT); } static int bpf_fill_jmp32_jsle_imm(struct bpf_test *self) { return __bpf_fill_jmp32_imm(self, BPF_JSLE); } /* JMP register tests */ static int bpf_fill_jmp_jset_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JSET); } static int bpf_fill_jmp_jeq_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JEQ); } static int bpf_fill_jmp_jne_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JNE); } static int bpf_fill_jmp_jgt_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JGT); } static int bpf_fill_jmp_jge_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JGE); } static int bpf_fill_jmp_jlt_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JLT); } static int bpf_fill_jmp_jle_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JLE); } static int bpf_fill_jmp_jsgt_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JSGT); } static int bpf_fill_jmp_jsge_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JSGE); } static int bpf_fill_jmp_jslt_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JSLT); } static int bpf_fill_jmp_jsle_reg(struct bpf_test *self) { return __bpf_fill_jmp_reg(self, BPF_JSLE); } /* JMP32 register tests */ static int bpf_fill_jmp32_jset_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JSET); } static int bpf_fill_jmp32_jeq_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JEQ); } static int bpf_fill_jmp32_jne_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JNE); } static int bpf_fill_jmp32_jgt_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JGT); } static int bpf_fill_jmp32_jge_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JGE); } static int bpf_fill_jmp32_jlt_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JLT); } static int bpf_fill_jmp32_jle_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JLE); } static int bpf_fill_jmp32_jsgt_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JSGT); } static int bpf_fill_jmp32_jsge_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JSGE); } static int bpf_fill_jmp32_jslt_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JSLT); } static int bpf_fill_jmp32_jsle_reg(struct bpf_test *self) { return __bpf_fill_jmp32_reg(self, BPF_JSLE); } /* * Set up a sequence of staggered jumps, forwards and backwards with * increasing offset. This tests the conversion of relative jumps to * JITed native jumps. On some architectures, for example MIPS, a large * PC-relative jump offset may overflow the immediate field of the native * conditional branch instruction, triggering a conversion to use an * absolute jump instead. Since this changes the jump offsets, another * offset computation pass is necessary, and that may in turn trigger * another branch conversion. This jump sequence is particularly nasty * in that regard. * * The sequence generation is parameterized by size and jump type. * The size must be even, and the expected result is always size + 1. * Below is an example with size=8 and result=9. * * ________________________Start * R0 = 0 * R1 = r1 * R2 = r2 * ,------- JMP +4 * 3______________Preamble: 4 insns * ,----------|-ind 0- if R0 != 7 JMP 8 * 3 + 1 <--------------------. * | | R0 = 8 | * | | JMP +7 * 3 ------------------------. * | ,--------|-----1- if R0 != 5 JMP 7 * 3 + 1 <--------------. | | * | | | R0 = 6 | | | * | | | JMP +5 * 3 ------------------. | | * | | ,------|-----2- if R0 != 3 JMP 6 * 3 + 1 <--------. | | | | * | | | | R0 = 4 | | | | | * | | | | JMP +3 * 3 ------------. | | | | * | | | ,----|-----3- if R0 != 1 JMP 5 * 3 + 1 <--. | | | | | | * | | | | | R0 = 2 | | | | | | | * | | | | | JMP +1 * 3 ------. | | | | | | * | | | | ,--t=====4> if R0 != 0 JMP 4 * 3 + 1 1 2 3 4 5 6 7 8 loc * | | | | | R0 = 1 -1 +2 -3 +4 -5 +6 -7 +8 off * | | | | | JMP -2 * 3 ---' | | | | | | | * | | | | | ,------5- if R0 != 2 JMP 3 * 3 + 1 <-----' | | | | | | * | | | | | | R0 = 3 | | | | | | * | | | | | | JMP -4 * 3 ---------' | | | | | * | | | | | | ,----6- if R0 != 4 JMP 2 * 3 + 1 <-----------' | | | | * | | | | | | | R0 = 5 | | | | * | | | | | | | JMP -6 * 3 ---------------' | | | * | | | | | | | ,--7- if R0 != 6 JMP 1 * 3 + 1 <-----------------' | | * | | | | | | | | R0 = 7 | | * | | Error | | | JMP -8 * 3 ---------------------' | * | | paths | | | ,8- if R0 != 8 JMP 0 * 3 + 1 <-----------------------' * | | | | | | | | | R0 = 9__________________Sequence: 3 * size - 1 insns * `-+-+-+-+-+-+-+-+-> EXIT____________________Return: 1 insn * */ /* The maximum size parameter */ #define MAX_STAGGERED_JMP_SIZE ((0x7fff / 3) & ~1) /* We use a reduced number of iterations to get a reasonable execution time */ #define NR_STAGGERED_JMP_RUNS 10 static int __bpf_fill_staggered_jumps(struct bpf_test *self, const struct bpf_insn *jmp, u64 r1, u64 r2) { int size = self->test[0].result - 1; int len = 4 + 3 * (size + 1); struct bpf_insn *insns; int off, ind; insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL); if (!insns) return -ENOMEM; /* Preamble */ insns[0] = BPF_ALU64_IMM(BPF_MOV, R0, 0); insns[1] = BPF_ALU64_IMM(BPF_MOV, R1, r1); insns[2] = BPF_ALU64_IMM(BPF_MOV, R2, r2); insns[3] = BPF_JMP_IMM(BPF_JA, 0, 0, 3 * size / 2); /* Sequence */ for (ind = 0, off = size; ind <= size; ind++, off -= 2) { struct bpf_insn *ins = &insns[4 + 3 * ind]; int loc; if (off == 0) off--; loc = abs(off); ins[0] = BPF_JMP_IMM(BPF_JNE, R0, loc - 1, 3 * (size - ind) + 1); ins[1] = BPF_ALU64_IMM(BPF_MOV, R0, loc); ins[2] = *jmp; ins[2].off = 3 * (off - 1); } /* Return */ insns[len - 1] = BPF_EXIT_INSN(); self->u.ptr.insns = insns; self->u.ptr.len = len; return 0; } /* 64-bit unconditional jump */ static int bpf_fill_staggered_ja(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JA, 0, 0, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0, 0); } /* 64-bit immediate jumps */ static int bpf_fill_staggered_jeq_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JEQ, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jne_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JNE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0); } static int bpf_fill_staggered_jset_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSET, R1, 0x82, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0); } static int bpf_fill_staggered_jgt_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGT, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0); } static int bpf_fill_staggered_jge_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jlt_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLT, R1, 0x80000000, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jle_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jsgt_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGT, R1, -2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, 0); } static int bpf_fill_staggered_jsge_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGE, R1, -2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, 0); } static int bpf_fill_staggered_jslt_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLT, R1, -1, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, 0); } static int bpf_fill_staggered_jsle_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLE, R1, -1, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, 0); } /* 64-bit register jumps */ static int bpf_fill_staggered_jeq_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JEQ, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jne_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JNE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234); } static int bpf_fill_staggered_jset_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JSET, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82); } static int bpf_fill_staggered_jgt_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JGT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234); } static int bpf_fill_staggered_jge_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JGE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jlt_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JLT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000); } static int bpf_fill_staggered_jle_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JLE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jsgt_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, -2); } static int bpf_fill_staggered_jsge_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, -2); } static int bpf_fill_staggered_jslt_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, -1); } static int bpf_fill_staggered_jsle_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, -1); } /* 32-bit immediate jumps */ static int bpf_fill_staggered_jeq32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JEQ, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jne32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JNE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0); } static int bpf_fill_staggered_jset32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSET, R1, 0x82, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0); } static int bpf_fill_staggered_jgt32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGT, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0); } static int bpf_fill_staggered_jge32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jlt32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLT, R1, 0x80000000, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jle32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLE, R1, 1234, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0); } static int bpf_fill_staggered_jsgt32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGT, R1, -2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, 0); } static int bpf_fill_staggered_jsge32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGE, R1, -2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, 0); } static int bpf_fill_staggered_jslt32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLT, R1, -1, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, 0); } static int bpf_fill_staggered_jsle32_imm(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLE, R1, -1, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, 0); } /* 32-bit register jumps */ static int bpf_fill_staggered_jeq32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JEQ, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jne32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JNE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234); } static int bpf_fill_staggered_jset32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSET, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82); } static int bpf_fill_staggered_jgt32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234); } static int bpf_fill_staggered_jge32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jlt32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000); } static int bpf_fill_staggered_jle32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234); } static int bpf_fill_staggered_jsgt32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, -2); } static int bpf_fill_staggered_jsge32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, -2); } static int bpf_fill_staggered_jslt32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLT, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -2, -1); } static int bpf_fill_staggered_jsle32_reg(struct bpf_test *self) { struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLE, R1, R2, 0); return __bpf_fill_staggered_jumps(self, &jmp, -1, -1); } static struct bpf_test tests[] = { { "TAX", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_ALU | BPF_NEG, 0), /* A == -3 */ BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_LEN, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_MISC | BPF_TAX, 0), /* X == len - 3 */ BPF_STMT(BPF_LD | BPF_B | BPF_IND, 1), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 10, 20, 30, 40, 50 }, { { 2, 10 }, { 3, 20 }, { 4, 30 } }, }, { "TXA", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) /* A == len * 2 */ }, CLASSIC, { 10, 20, 30, 40, 50 }, { { 1, 2 }, { 3, 6 }, { 4, 8 } }, }, { "ADD_SUB_MUL_K", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 1), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 2), BPF_STMT(BPF_LDX | BPF_IMM, 3), BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0xffffffff), BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 3), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xfffffffd } } }, { "DIV_MOD_KX", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 8), BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 2), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff), BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff), BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x70000000), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff), BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff), BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x70000000), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0x20000000 } } }, { "AND_OR_LSH_K", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xff), BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0), BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 27), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xf), BPF_STMT(BPF_ALU | BPF_OR | BPF_K, 0xf0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0x800000ff }, { 1, 0x800000ff } }, }, { "LD_IMM_0", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0), /* ld #0 */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0, 1, 0), BPF_STMT(BPF_RET | BPF_K, 0), BPF_STMT(BPF_RET | BPF_K, 1), }, CLASSIC, { }, { { 1, 1 } }, }, { "LD_IND", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_H | BPF_IND, MAX_K), BPF_STMT(BPF_RET | BPF_K, 1) }, CLASSIC, { }, { { 1, 0 }, { 10, 0 }, { 60, 0 } }, }, { "LD_ABS", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 1000), BPF_STMT(BPF_RET | BPF_K, 1) }, CLASSIC, { }, { { 1, 0 }, { 10, 0 }, { 60, 0 } }, }, { "LD_ABS_LL", .u.insns = { BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF + 1), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 1, 2, 3 }, { { 1, 0 }, { 2, 3 } }, }, { "LD_IND_LL", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, SKF_LL_OFF - 1), BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 1, 2, 3, 0xff }, { { 1, 1 }, { 3, 3 }, { 4, 0xff } }, }, { "LD_ABS_NET", .u.insns = { BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF + 1), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 }, { { 15, 0 }, { 16, 3 } }, }, { "LD_IND_NET", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, SKF_NET_OFF - 15), BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 }, { { 14, 0 }, { 15, 1 }, { 17, 3 } }, }, { "LD_PKTTYPE", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PKTTYPE), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PKTTYPE), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PKTTYPE), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, 3 }, { 10, 3 } }, }, { "LD_MARK", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_MARK), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_MARK}, { 10, SKB_MARK} }, }, { "LD_RXHASH", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_RXHASH), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_HASH}, { 10, SKB_HASH} }, }, { "LD_QUEUE", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_QUEUE), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_QUEUE_MAP }, { 10, SKB_QUEUE_MAP } }, }, { "LD_PROTOCOL", .u.insns = { BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 1), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 20, 1, 0), BPF_STMT(BPF_RET | BPF_K, 0), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PROTOCOL), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 30, 1, 0), BPF_STMT(BPF_RET | BPF_K, 0), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { 10, 20, 30 }, { { 10, ETH_P_IP }, { 100, ETH_P_IP } }, }, { "LD_VLAN_TAG", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_VLAN_TAG), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_VLAN_TCI }, { 10, SKB_VLAN_TCI } }, }, { "LD_VLAN_TAG_PRESENT", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_VLAN_PRESENT }, { 10, SKB_VLAN_PRESENT } }, }, { "LD_IFINDEX", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_IFINDEX), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_DEV_IFINDEX }, { 10, SKB_DEV_IFINDEX } }, }, { "LD_HATYPE", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_HATYPE), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, SKB_DEV_TYPE }, { 10, SKB_DEV_TYPE } }, }, { "LD_CPU", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_CPU), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_CPU), BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, 0 }, { 10, 0 } }, }, { "LD_NLATTR", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 2), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_LDX | BPF_IMM, 3), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, #ifdef __BIG_ENDIAN { 0xff, 0xff, 0, 4, 0, 2, 0, 4, 0, 3 }, #else { 0xff, 0xff, 4, 0, 2, 0, 4, 0, 3, 0 }, #endif { { 4, 0 }, { 20, 6 } }, }, { "LD_NLATTR_NEST", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LDX | BPF_IMM, 3), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_NLATTR_NEST), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, #ifdef __BIG_ENDIAN { 0xff, 0xff, 0, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3 }, #else { 0xff, 0xff, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3, 0 }, #endif { { 4, 0 }, { 20, 10 } }, }, { "LD_PAYLOAD_OFF", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PAY_OFFSET), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PAY_OFFSET), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PAY_OFFSET), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PAY_OFFSET), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_PAY_OFFSET), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, /* 00:00:00:00:00:00 > 00:00:00:00:00:00, ethtype IPv4 (0x0800), * length 98: 127.0.0.1 > 127.0.0.1: ICMP echo request, * id 9737, seq 1, length 64 */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x45, 0x00, 0x00, 0x54, 0xac, 0x8b, 0x40, 0x00, 0x40, 0x01, 0x90, 0x1b, 0x7f, 0x00, 0x00, 0x01 }, { { 30, 0 }, { 100, 42 } }, }, { "LD_ANC_XOR", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 10), BPF_STMT(BPF_LDX | BPF_IMM, 300), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_ALU_XOR_X), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 4, 0xA ^ 300 }, { 20, 0xA ^ 300 } }, }, { "SPILL_FILL", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_IMM, 2), BPF_STMT(BPF_ALU | BPF_RSH, 1), BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0), BPF_STMT(BPF_ST, 1), /* M1 = 1 ^ len */ BPF_STMT(BPF_ALU | BPF_XOR | BPF_K, 0x80000000), BPF_STMT(BPF_ST, 2), /* M2 = 1 ^ len ^ 0x80000000 */ BPF_STMT(BPF_STX, 15), /* M3 = len */ BPF_STMT(BPF_LDX | BPF_MEM, 1), BPF_STMT(BPF_LD | BPF_MEM, 2), BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 15), BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { { 1, 0x80000001 }, { 2, 0x80000002 }, { 60, 0x80000000 ^ 60 } } }, { "JEQ", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 3, 3, 3, 3, 3 }, { { 1, 0 }, { 3, 1 }, { 4, MAX_K } }, }, { "JGT", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2), BPF_JUMP(BPF_JMP | BPF_JGT | BPF_X, 0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 4, 4, 4, 3, 3 }, { { 2, 0 }, { 3, 1 }, { 4, MAX_K } }, }, { "JGE (jt 0), test 1", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 4, 4, 4, 3, 3 }, { { 2, 0 }, { 3, 1 }, { 4, 1 } }, }, { "JGE (jt 0), test 2", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 4, 4, 5, 3, 3 }, { { 4, 1 }, { 5, 1 }, { 6, MAX_K } }, }, { "JGE", .u.insns = { BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_LD | BPF_B | BPF_IND, MAX_K), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 1, 1, 0), BPF_STMT(BPF_RET | BPF_K, 10), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 2, 1, 0), BPF_STMT(BPF_RET | BPF_K, 20), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 3, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 4, 1, 0), BPF_STMT(BPF_RET | BPF_K, 40), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 1, 2, 3, 4, 5 }, { { 1, 20 }, { 3, 40 }, { 5, MAX_K } }, }, { "JSET", .u.insns = { BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0), BPF_JUMP(BPF_JMP | BPF_JA, 1, 1, 1), BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0), BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0), BPF_STMT(BPF_LDX | BPF_LEN, 0), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, 4), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_W | BPF_IND, 0), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 1, 0, 1), BPF_STMT(BPF_RET | BPF_K, 10), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x80000000, 0, 1), BPF_STMT(BPF_RET | BPF_K, 20), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0), BPF_STMT(BPF_RET | BPF_K, 30), BPF_STMT(BPF_RET | BPF_K, MAX_K) }, CLASSIC, { 0, 0xAA, 0x55, 1 }, { { 4, 10 }, { 5, 20 }, { 6, MAX_K } }, }, { "tcpdump port 22", .u.insns = { BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 0, 8), /* IPv6 */ BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 20), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 17), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 54), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 14, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 56), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 12, 13), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0800, 0, 12), /* IPv4 */ BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 8), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 6, 0), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14), BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0), BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 1), BPF_STMT(BPF_RET | BPF_K, 0xffff), BPF_STMT(BPF_RET | BPF_K, 0), }, CLASSIC, /* 3c:07:54:43:e5:76 > 10:bf:48:d6:43:d6, ethertype IPv4(0x0800) * length 114: 10.1.1.149.49700 > 10.1.2.10.22: Flags [P.], * seq 1305692979:1305693027, ack 3650467037, win 65535, * options [nop,nop,TS val 2502645400 ecr 3971138], length 48 */ { 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6, 0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76, 0x08, 0x00, 0x45, 0x10, 0x00, 0x64, 0x75, 0xb5, 0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */ 0x0a, 0x01, 0x01, 0x95, /* ip src */ 0x0a, 0x01, 0x02, 0x0a, /* ip dst */ 0xc2, 0x24, 0x00, 0x16 /* dst port */ }, { { 10, 0 }, { 30, 0 }, { 100, 65535 } }, }, { "tcpdump complex", .u.insns = { /* tcpdump -nei eth0 'tcp port 22 and (((ip[2:2] - * ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0) and * (len > 115 or len < 30000000000)' -d */ BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 30, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x800, 0, 29), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 0, 27), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20), BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 25, 0), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14), BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0), BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 20), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 16), BPF_STMT(BPF_ST, 1), BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 14), BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf), BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 2), BPF_STMT(BPF_MISC | BPF_TAX, 0x5), /* libpcap emits K on TAX */ BPF_STMT(BPF_LD | BPF_MEM, 1), BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0), BPF_STMT(BPF_ST, 5), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14), BPF_STMT(BPF_LD | BPF_B | BPF_IND, 26), BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0), BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 2), BPF_STMT(BPF_MISC | BPF_TAX, 0x9), /* libpcap emits K on TAX */ BPF_STMT(BPF_LD | BPF_MEM, 5), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 4, 0), BPF_STMT(BPF_LD | BPF_LEN, 0), BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, 0x73, 1, 0), BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 0xfc23ac00, 1, 0), BPF_STMT(BPF_RET | BPF_K, 0xffff), BPF_STMT(BPF_RET | BPF_K, 0), }, CLASSIC, { 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6, 0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76, 0x08, 0x00, 0x45, 0x10, 0x00, 0x64, 0x75, 0xb5, 0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */ 0x0a, 0x01, 0x01, 0x95, /* ip src */ 0x0a, 0x01, 0x02, 0x0a, /* ip dst */ 0xc2, 0x24, 0x00, 0x16 /* dst port */ }, { { 10, 0 }, { 30, 0 }, { 100, 65535 } }, }, { "RET_A", .u.insns = { /* check that uninitialized X and A contain zeros */ BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0) }, CLASSIC, { }, { {1, 0}, {2, 0} }, }, { "INT: ADD trivial", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_ADD, R1, 2), BPF_ALU64_IMM(BPF_MOV, R2, 3), BPF_ALU64_REG(BPF_SUB, R1, R2), BPF_ALU64_IMM(BPF_ADD, R1, -1), BPF_ALU64_IMM(BPF_MUL, R1, 3), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffd } } }, { "INT: MUL_X", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_ALU64_IMM(BPF_MOV, R1, -1), BPF_ALU64_IMM(BPF_MOV, R2, 3), BPF_ALU64_REG(BPF_MUL, R1, R2), BPF_JMP_IMM(BPF_JEQ, R1, 0xfffffffd, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "INT: MUL_X2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -1), BPF_ALU32_IMM(BPF_MOV, R1, -1), BPF_ALU32_IMM(BPF_MOV, R2, 3), BPF_ALU64_REG(BPF_MUL, R1, R2), BPF_ALU64_IMM(BPF_RSH, R1, 8), BPF_JMP_IMM(BPF_JEQ, R1, 0x2ffffff, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "INT: MUL32_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -1), BPF_ALU64_IMM(BPF_MOV, R1, -1), BPF_ALU32_IMM(BPF_MOV, R2, 3), BPF_ALU32_REG(BPF_MUL, R1, R2), BPF_ALU64_IMM(BPF_RSH, R1, 8), BPF_JMP_IMM(BPF_JEQ, R1, 0xffffff, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { /* Have to test all register combinations, since * JITing of different registers will produce * different asm code. */ "INT: ADD 64-bit", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_MOV, R2, 2), BPF_ALU64_IMM(BPF_MOV, R3, 3), BPF_ALU64_IMM(BPF_MOV, R4, 4), BPF_ALU64_IMM(BPF_MOV, R5, 5), BPF_ALU64_IMM(BPF_MOV, R6, 6), BPF_ALU64_IMM(BPF_MOV, R7, 7), BPF_ALU64_IMM(BPF_MOV, R8, 8), BPF_ALU64_IMM(BPF_MOV, R9, 9), BPF_ALU64_IMM(BPF_ADD, R0, 20), BPF_ALU64_IMM(BPF_ADD, R1, 20), BPF_ALU64_IMM(BPF_ADD, R2, 20), BPF_ALU64_IMM(BPF_ADD, R3, 20), BPF_ALU64_IMM(BPF_ADD, R4, 20), BPF_ALU64_IMM(BPF_ADD, R5, 20), BPF_ALU64_IMM(BPF_ADD, R6, 20), BPF_ALU64_IMM(BPF_ADD, R7, 20), BPF_ALU64_IMM(BPF_ADD, R8, 20), BPF_ALU64_IMM(BPF_ADD, R9, 20), BPF_ALU64_IMM(BPF_SUB, R0, 10), BPF_ALU64_IMM(BPF_SUB, R1, 10), BPF_ALU64_IMM(BPF_SUB, R2, 10), BPF_ALU64_IMM(BPF_SUB, R3, 10), BPF_ALU64_IMM(BPF_SUB, R4, 10), BPF_ALU64_IMM(BPF_SUB, R5, 10), BPF_ALU64_IMM(BPF_SUB, R6, 10), BPF_ALU64_IMM(BPF_SUB, R7, 10), BPF_ALU64_IMM(BPF_SUB, R8, 10), BPF_ALU64_IMM(BPF_SUB, R9, 10), BPF_ALU64_REG(BPF_ADD, R0, R0), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_ALU64_REG(BPF_ADD, R0, R2), BPF_ALU64_REG(BPF_ADD, R0, R3), BPF_ALU64_REG(BPF_ADD, R0, R4), BPF_ALU64_REG(BPF_ADD, R0, R5), BPF_ALU64_REG(BPF_ADD, R0, R6), BPF_ALU64_REG(BPF_ADD, R0, R7), BPF_ALU64_REG(BPF_ADD, R0, R8), BPF_ALU64_REG(BPF_ADD, R0, R9), /* R0 == 155 */ BPF_JMP_IMM(BPF_JEQ, R0, 155, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R1, R0), BPF_ALU64_REG(BPF_ADD, R1, R1), BPF_ALU64_REG(BPF_ADD, R1, R2), BPF_ALU64_REG(BPF_ADD, R1, R3), BPF_ALU64_REG(BPF_ADD, R1, R4), BPF_ALU64_REG(BPF_ADD, R1, R5), BPF_ALU64_REG(BPF_ADD, R1, R6), BPF_ALU64_REG(BPF_ADD, R1, R7), BPF_ALU64_REG(BPF_ADD, R1, R8), BPF_ALU64_REG(BPF_ADD, R1, R9), /* R1 == 456 */ BPF_JMP_IMM(BPF_JEQ, R1, 456, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R2, R0), BPF_ALU64_REG(BPF_ADD, R2, R1), BPF_ALU64_REG(BPF_ADD, R2, R2), BPF_ALU64_REG(BPF_ADD, R2, R3), BPF_ALU64_REG(BPF_ADD, R2, R4), BPF_ALU64_REG(BPF_ADD, R2, R5), BPF_ALU64_REG(BPF_ADD, R2, R6), BPF_ALU64_REG(BPF_ADD, R2, R7), BPF_ALU64_REG(BPF_ADD, R2, R8), BPF_ALU64_REG(BPF_ADD, R2, R9), /* R2 == 1358 */ BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R3, R0), BPF_ALU64_REG(BPF_ADD, R3, R1), BPF_ALU64_REG(BPF_ADD, R3, R2), BPF_ALU64_REG(BPF_ADD, R3, R3), BPF_ALU64_REG(BPF_ADD, R3, R4), BPF_ALU64_REG(BPF_ADD, R3, R5), BPF_ALU64_REG(BPF_ADD, R3, R6), BPF_ALU64_REG(BPF_ADD, R3, R7), BPF_ALU64_REG(BPF_ADD, R3, R8), BPF_ALU64_REG(BPF_ADD, R3, R9), /* R3 == 4063 */ BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R4, R0), BPF_ALU64_REG(BPF_ADD, R4, R1), BPF_ALU64_REG(BPF_ADD, R4, R2), BPF_ALU64_REG(BPF_ADD, R4, R3), BPF_ALU64_REG(BPF_ADD, R4, R4), BPF_ALU64_REG(BPF_ADD, R4, R5), BPF_ALU64_REG(BPF_ADD, R4, R6), BPF_ALU64_REG(BPF_ADD, R4, R7), BPF_ALU64_REG(BPF_ADD, R4, R8), BPF_ALU64_REG(BPF_ADD, R4, R9), /* R4 == 12177 */ BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R5, R0), BPF_ALU64_REG(BPF_ADD, R5, R1), BPF_ALU64_REG(BPF_ADD, R5, R2), BPF_ALU64_REG(BPF_ADD, R5, R3), BPF_ALU64_REG(BPF_ADD, R5, R4), BPF_ALU64_REG(BPF_ADD, R5, R5), BPF_ALU64_REG(BPF_ADD, R5, R6), BPF_ALU64_REG(BPF_ADD, R5, R7), BPF_ALU64_REG(BPF_ADD, R5, R8), BPF_ALU64_REG(BPF_ADD, R5, R9), /* R5 == 36518 */ BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R6, R0), BPF_ALU64_REG(BPF_ADD, R6, R1), BPF_ALU64_REG(BPF_ADD, R6, R2), BPF_ALU64_REG(BPF_ADD, R6, R3), BPF_ALU64_REG(BPF_ADD, R6, R4), BPF_ALU64_REG(BPF_ADD, R6, R5), BPF_ALU64_REG(BPF_ADD, R6, R6), BPF_ALU64_REG(BPF_ADD, R6, R7), BPF_ALU64_REG(BPF_ADD, R6, R8), BPF_ALU64_REG(BPF_ADD, R6, R9), /* R6 == 109540 */ BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R7, R0), BPF_ALU64_REG(BPF_ADD, R7, R1), BPF_ALU64_REG(BPF_ADD, R7, R2), BPF_ALU64_REG(BPF_ADD, R7, R3), BPF_ALU64_REG(BPF_ADD, R7, R4), BPF_ALU64_REG(BPF_ADD, R7, R5), BPF_ALU64_REG(BPF_ADD, R7, R6), BPF_ALU64_REG(BPF_ADD, R7, R7), BPF_ALU64_REG(BPF_ADD, R7, R8), BPF_ALU64_REG(BPF_ADD, R7, R9), /* R7 == 328605 */ BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R8, R0), BPF_ALU64_REG(BPF_ADD, R8, R1), BPF_ALU64_REG(BPF_ADD, R8, R2), BPF_ALU64_REG(BPF_ADD, R8, R3), BPF_ALU64_REG(BPF_ADD, R8, R4), BPF_ALU64_REG(BPF_ADD, R8, R5), BPF_ALU64_REG(BPF_ADD, R8, R6), BPF_ALU64_REG(BPF_ADD, R8, R7), BPF_ALU64_REG(BPF_ADD, R8, R8), BPF_ALU64_REG(BPF_ADD, R8, R9), /* R8 == 985799 */ BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_ADD, R9, R0), BPF_ALU64_REG(BPF_ADD, R9, R1), BPF_ALU64_REG(BPF_ADD, R9, R2), BPF_ALU64_REG(BPF_ADD, R9, R3), BPF_ALU64_REG(BPF_ADD, R9, R4), BPF_ALU64_REG(BPF_ADD, R9, R5), BPF_ALU64_REG(BPF_ADD, R9, R6), BPF_ALU64_REG(BPF_ADD, R9, R7), BPF_ALU64_REG(BPF_ADD, R9, R8), BPF_ALU64_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */ BPF_ALU64_REG(BPF_MOV, R0, R9), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2957380 } } }, { "INT: ADD 32-bit", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 20), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU32_IMM(BPF_MOV, R2, 2), BPF_ALU32_IMM(BPF_MOV, R3, 3), BPF_ALU32_IMM(BPF_MOV, R4, 4), BPF_ALU32_IMM(BPF_MOV, R5, 5), BPF_ALU32_IMM(BPF_MOV, R6, 6), BPF_ALU32_IMM(BPF_MOV, R7, 7), BPF_ALU32_IMM(BPF_MOV, R8, 8), BPF_ALU32_IMM(BPF_MOV, R9, 9), BPF_ALU64_IMM(BPF_ADD, R1, 10), BPF_ALU64_IMM(BPF_ADD, R2, 10), BPF_ALU64_IMM(BPF_ADD, R3, 10), BPF_ALU64_IMM(BPF_ADD, R4, 10), BPF_ALU64_IMM(BPF_ADD, R5, 10), BPF_ALU64_IMM(BPF_ADD, R6, 10), BPF_ALU64_IMM(BPF_ADD, R7, 10), BPF_ALU64_IMM(BPF_ADD, R8, 10), BPF_ALU64_IMM(BPF_ADD, R9, 10), BPF_ALU32_REG(BPF_ADD, R0, R1), BPF_ALU32_REG(BPF_ADD, R0, R2), BPF_ALU32_REG(BPF_ADD, R0, R3), BPF_ALU32_REG(BPF_ADD, R0, R4), BPF_ALU32_REG(BPF_ADD, R0, R5), BPF_ALU32_REG(BPF_ADD, R0, R6), BPF_ALU32_REG(BPF_ADD, R0, R7), BPF_ALU32_REG(BPF_ADD, R0, R8), BPF_ALU32_REG(BPF_ADD, R0, R9), /* R0 == 155 */ BPF_JMP_IMM(BPF_JEQ, R0, 155, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R1, R0), BPF_ALU32_REG(BPF_ADD, R1, R1), BPF_ALU32_REG(BPF_ADD, R1, R2), BPF_ALU32_REG(BPF_ADD, R1, R3), BPF_ALU32_REG(BPF_ADD, R1, R4), BPF_ALU32_REG(BPF_ADD, R1, R5), BPF_ALU32_REG(BPF_ADD, R1, R6), BPF_ALU32_REG(BPF_ADD, R1, R7), BPF_ALU32_REG(BPF_ADD, R1, R8), BPF_ALU32_REG(BPF_ADD, R1, R9), /* R1 == 456 */ BPF_JMP_IMM(BPF_JEQ, R1, 456, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R2, R0), BPF_ALU32_REG(BPF_ADD, R2, R1), BPF_ALU32_REG(BPF_ADD, R2, R2), BPF_ALU32_REG(BPF_ADD, R2, R3), BPF_ALU32_REG(BPF_ADD, R2, R4), BPF_ALU32_REG(BPF_ADD, R2, R5), BPF_ALU32_REG(BPF_ADD, R2, R6), BPF_ALU32_REG(BPF_ADD, R2, R7), BPF_ALU32_REG(BPF_ADD, R2, R8), BPF_ALU32_REG(BPF_ADD, R2, R9), /* R2 == 1358 */ BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R3, R0), BPF_ALU32_REG(BPF_ADD, R3, R1), BPF_ALU32_REG(BPF_ADD, R3, R2), BPF_ALU32_REG(BPF_ADD, R3, R3), BPF_ALU32_REG(BPF_ADD, R3, R4), BPF_ALU32_REG(BPF_ADD, R3, R5), BPF_ALU32_REG(BPF_ADD, R3, R6), BPF_ALU32_REG(BPF_ADD, R3, R7), BPF_ALU32_REG(BPF_ADD, R3, R8), BPF_ALU32_REG(BPF_ADD, R3, R9), /* R3 == 4063 */ BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R4, R0), BPF_ALU32_REG(BPF_ADD, R4, R1), BPF_ALU32_REG(BPF_ADD, R4, R2), BPF_ALU32_REG(BPF_ADD, R4, R3), BPF_ALU32_REG(BPF_ADD, R4, R4), BPF_ALU32_REG(BPF_ADD, R4, R5), BPF_ALU32_REG(BPF_ADD, R4, R6), BPF_ALU32_REG(BPF_ADD, R4, R7), BPF_ALU32_REG(BPF_ADD, R4, R8), BPF_ALU32_REG(BPF_ADD, R4, R9), /* R4 == 12177 */ BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R5, R0), BPF_ALU32_REG(BPF_ADD, R5, R1), BPF_ALU32_REG(BPF_ADD, R5, R2), BPF_ALU32_REG(BPF_ADD, R5, R3), BPF_ALU32_REG(BPF_ADD, R5, R4), BPF_ALU32_REG(BPF_ADD, R5, R5), BPF_ALU32_REG(BPF_ADD, R5, R6), BPF_ALU32_REG(BPF_ADD, R5, R7), BPF_ALU32_REG(BPF_ADD, R5, R8), BPF_ALU32_REG(BPF_ADD, R5, R9), /* R5 == 36518 */ BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R6, R0), BPF_ALU32_REG(BPF_ADD, R6, R1), BPF_ALU32_REG(BPF_ADD, R6, R2), BPF_ALU32_REG(BPF_ADD, R6, R3), BPF_ALU32_REG(BPF_ADD, R6, R4), BPF_ALU32_REG(BPF_ADD, R6, R5), BPF_ALU32_REG(BPF_ADD, R6, R6), BPF_ALU32_REG(BPF_ADD, R6, R7), BPF_ALU32_REG(BPF_ADD, R6, R8), BPF_ALU32_REG(BPF_ADD, R6, R9), /* R6 == 109540 */ BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R7, R0), BPF_ALU32_REG(BPF_ADD, R7, R1), BPF_ALU32_REG(BPF_ADD, R7, R2), BPF_ALU32_REG(BPF_ADD, R7, R3), BPF_ALU32_REG(BPF_ADD, R7, R4), BPF_ALU32_REG(BPF_ADD, R7, R5), BPF_ALU32_REG(BPF_ADD, R7, R6), BPF_ALU32_REG(BPF_ADD, R7, R7), BPF_ALU32_REG(BPF_ADD, R7, R8), BPF_ALU32_REG(BPF_ADD, R7, R9), /* R7 == 328605 */ BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R8, R0), BPF_ALU32_REG(BPF_ADD, R8, R1), BPF_ALU32_REG(BPF_ADD, R8, R2), BPF_ALU32_REG(BPF_ADD, R8, R3), BPF_ALU32_REG(BPF_ADD, R8, R4), BPF_ALU32_REG(BPF_ADD, R8, R5), BPF_ALU32_REG(BPF_ADD, R8, R6), BPF_ALU32_REG(BPF_ADD, R8, R7), BPF_ALU32_REG(BPF_ADD, R8, R8), BPF_ALU32_REG(BPF_ADD, R8, R9), /* R8 == 985799 */ BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1), BPF_EXIT_INSN(), BPF_ALU32_REG(BPF_ADD, R9, R0), BPF_ALU32_REG(BPF_ADD, R9, R1), BPF_ALU32_REG(BPF_ADD, R9, R2), BPF_ALU32_REG(BPF_ADD, R9, R3), BPF_ALU32_REG(BPF_ADD, R9, R4), BPF_ALU32_REG(BPF_ADD, R9, R5), BPF_ALU32_REG(BPF_ADD, R9, R6), BPF_ALU32_REG(BPF_ADD, R9, R7), BPF_ALU32_REG(BPF_ADD, R9, R8), BPF_ALU32_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */ BPF_ALU32_REG(BPF_MOV, R0, R9), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2957380 } } }, { /* Mainly checking JIT here. */ "INT: SUB", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_MOV, R2, 2), BPF_ALU64_IMM(BPF_MOV, R3, 3), BPF_ALU64_IMM(BPF_MOV, R4, 4), BPF_ALU64_IMM(BPF_MOV, R5, 5), BPF_ALU64_IMM(BPF_MOV, R6, 6), BPF_ALU64_IMM(BPF_MOV, R7, 7), BPF_ALU64_IMM(BPF_MOV, R8, 8), BPF_ALU64_IMM(BPF_MOV, R9, 9), BPF_ALU64_REG(BPF_SUB, R0, R0), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_ALU64_REG(BPF_SUB, R0, R2), BPF_ALU64_REG(BPF_SUB, R0, R3), BPF_ALU64_REG(BPF_SUB, R0, R4), BPF_ALU64_REG(BPF_SUB, R0, R5), BPF_ALU64_REG(BPF_SUB, R0, R6), BPF_ALU64_REG(BPF_SUB, R0, R7), BPF_ALU64_REG(BPF_SUB, R0, R8), BPF_ALU64_REG(BPF_SUB, R0, R9), BPF_ALU64_IMM(BPF_SUB, R0, 10), BPF_JMP_IMM(BPF_JEQ, R0, -55, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R1, R0), BPF_ALU64_REG(BPF_SUB, R1, R2), BPF_ALU64_REG(BPF_SUB, R1, R3), BPF_ALU64_REG(BPF_SUB, R1, R4), BPF_ALU64_REG(BPF_SUB, R1, R5), BPF_ALU64_REG(BPF_SUB, R1, R6), BPF_ALU64_REG(BPF_SUB, R1, R7), BPF_ALU64_REG(BPF_SUB, R1, R8), BPF_ALU64_REG(BPF_SUB, R1, R9), BPF_ALU64_IMM(BPF_SUB, R1, 10), BPF_ALU64_REG(BPF_SUB, R2, R0), BPF_ALU64_REG(BPF_SUB, R2, R1), BPF_ALU64_REG(BPF_SUB, R2, R3), BPF_ALU64_REG(BPF_SUB, R2, R4), BPF_ALU64_REG(BPF_SUB, R2, R5), BPF_ALU64_REG(BPF_SUB, R2, R6), BPF_ALU64_REG(BPF_SUB, R2, R7), BPF_ALU64_REG(BPF_SUB, R2, R8), BPF_ALU64_REG(BPF_SUB, R2, R9), BPF_ALU64_IMM(BPF_SUB, R2, 10), BPF_ALU64_REG(BPF_SUB, R3, R0), BPF_ALU64_REG(BPF_SUB, R3, R1), BPF_ALU64_REG(BPF_SUB, R3, R2), BPF_ALU64_REG(BPF_SUB, R3, R4), BPF_ALU64_REG(BPF_SUB, R3, R5), BPF_ALU64_REG(BPF_SUB, R3, R6), BPF_ALU64_REG(BPF_SUB, R3, R7), BPF_ALU64_REG(BPF_SUB, R3, R8), BPF_ALU64_REG(BPF_SUB, R3, R9), BPF_ALU64_IMM(BPF_SUB, R3, 10), BPF_ALU64_REG(BPF_SUB, R4, R0), BPF_ALU64_REG(BPF_SUB, R4, R1), BPF_ALU64_REG(BPF_SUB, R4, R2), BPF_ALU64_REG(BPF_SUB, R4, R3), BPF_ALU64_REG(BPF_SUB, R4, R5), BPF_ALU64_REG(BPF_SUB, R4, R6), BPF_ALU64_REG(BPF_SUB, R4, R7), BPF_ALU64_REG(BPF_SUB, R4, R8), BPF_ALU64_REG(BPF_SUB, R4, R9), BPF_ALU64_IMM(BPF_SUB, R4, 10), BPF_ALU64_REG(BPF_SUB, R5, R0), BPF_ALU64_REG(BPF_SUB, R5, R1), BPF_ALU64_REG(BPF_SUB, R5, R2), BPF_ALU64_REG(BPF_SUB, R5, R3), BPF_ALU64_REG(BPF_SUB, R5, R4), BPF_ALU64_REG(BPF_SUB, R5, R6), BPF_ALU64_REG(BPF_SUB, R5, R7), BPF_ALU64_REG(BPF_SUB, R5, R8), BPF_ALU64_REG(BPF_SUB, R5, R9), BPF_ALU64_IMM(BPF_SUB, R5, 10), BPF_ALU64_REG(BPF_SUB, R6, R0), BPF_ALU64_REG(BPF_SUB, R6, R1), BPF_ALU64_REG(BPF_SUB, R6, R2), BPF_ALU64_REG(BPF_SUB, R6, R3), BPF_ALU64_REG(BPF_SUB, R6, R4), BPF_ALU64_REG(BPF_SUB, R6, R5), BPF_ALU64_REG(BPF_SUB, R6, R7), BPF_ALU64_REG(BPF_SUB, R6, R8), BPF_ALU64_REG(BPF_SUB, R6, R9), BPF_ALU64_IMM(BPF_SUB, R6, 10), BPF_ALU64_REG(BPF_SUB, R7, R0), BPF_ALU64_REG(BPF_SUB, R7, R1), BPF_ALU64_REG(BPF_SUB, R7, R2), BPF_ALU64_REG(BPF_SUB, R7, R3), BPF_ALU64_REG(BPF_SUB, R7, R4), BPF_ALU64_REG(BPF_SUB, R7, R5), BPF_ALU64_REG(BPF_SUB, R7, R6), BPF_ALU64_REG(BPF_SUB, R7, R8), BPF_ALU64_REG(BPF_SUB, R7, R9), BPF_ALU64_IMM(BPF_SUB, R7, 10), BPF_ALU64_REG(BPF_SUB, R8, R0), BPF_ALU64_REG(BPF_SUB, R8, R1), BPF_ALU64_REG(BPF_SUB, R8, R2), BPF_ALU64_REG(BPF_SUB, R8, R3), BPF_ALU64_REG(BPF_SUB, R8, R4), BPF_ALU64_REG(BPF_SUB, R8, R5), BPF_ALU64_REG(BPF_SUB, R8, R6), BPF_ALU64_REG(BPF_SUB, R8, R7), BPF_ALU64_REG(BPF_SUB, R8, R9), BPF_ALU64_IMM(BPF_SUB, R8, 10), BPF_ALU64_REG(BPF_SUB, R9, R0), BPF_ALU64_REG(BPF_SUB, R9, R1), BPF_ALU64_REG(BPF_SUB, R9, R2), BPF_ALU64_REG(BPF_SUB, R9, R3), BPF_ALU64_REG(BPF_SUB, R9, R4), BPF_ALU64_REG(BPF_SUB, R9, R5), BPF_ALU64_REG(BPF_SUB, R9, R6), BPF_ALU64_REG(BPF_SUB, R9, R7), BPF_ALU64_REG(BPF_SUB, R9, R8), BPF_ALU64_IMM(BPF_SUB, R9, 10), BPF_ALU64_IMM(BPF_SUB, R0, 10), BPF_ALU64_IMM(BPF_NEG, R0, 0), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_ALU64_REG(BPF_SUB, R0, R2), BPF_ALU64_REG(BPF_SUB, R0, R3), BPF_ALU64_REG(BPF_SUB, R0, R4), BPF_ALU64_REG(BPF_SUB, R0, R5), BPF_ALU64_REG(BPF_SUB, R0, R6), BPF_ALU64_REG(BPF_SUB, R0, R7), BPF_ALU64_REG(BPF_SUB, R0, R8), BPF_ALU64_REG(BPF_SUB, R0, R9), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 11 } } }, { /* Mainly checking JIT here. */ "INT: XOR", .u.insns_int = { BPF_ALU64_REG(BPF_SUB, R0, R0), BPF_ALU64_REG(BPF_XOR, R1, R1), BPF_JMP_REG(BPF_JEQ, R0, R1, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOV, R0, 10), BPF_ALU64_IMM(BPF_MOV, R1, -1), BPF_ALU64_REG(BPF_SUB, R1, R1), BPF_ALU64_REG(BPF_XOR, R2, R2), BPF_JMP_REG(BPF_JEQ, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R2, R2), BPF_ALU64_REG(BPF_XOR, R3, R3), BPF_ALU64_IMM(BPF_MOV, R0, 10), BPF_ALU64_IMM(BPF_MOV, R1, -1), BPF_JMP_REG(BPF_JEQ, R2, R3, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R3, R3), BPF_ALU64_REG(BPF_XOR, R4, R4), BPF_ALU64_IMM(BPF_MOV, R2, 1), BPF_ALU64_IMM(BPF_MOV, R5, -1), BPF_JMP_REG(BPF_JEQ, R3, R4, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R4, R4), BPF_ALU64_REG(BPF_XOR, R5, R5), BPF_ALU64_IMM(BPF_MOV, R3, 1), BPF_ALU64_IMM(BPF_MOV, R7, -1), BPF_JMP_REG(BPF_JEQ, R5, R4, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOV, R5, 1), BPF_ALU64_REG(BPF_SUB, R5, R5), BPF_ALU64_REG(BPF_XOR, R6, R6), BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_MOV, R8, -1), BPF_JMP_REG(BPF_JEQ, R5, R6, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R6, R6), BPF_ALU64_REG(BPF_XOR, R7, R7), BPF_JMP_REG(BPF_JEQ, R7, R6, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R7, R7), BPF_ALU64_REG(BPF_XOR, R8, R8), BPF_JMP_REG(BPF_JEQ, R7, R8, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R8, R8), BPF_ALU64_REG(BPF_XOR, R9, R9), BPF_JMP_REG(BPF_JEQ, R9, R8, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R9, R9), BPF_ALU64_REG(BPF_XOR, R0, R0), BPF_JMP_REG(BPF_JEQ, R9, R0, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_SUB, R1, R1), BPF_ALU64_REG(BPF_XOR, R0, R0), BPF_JMP_REG(BPF_JEQ, R9, R0, 2), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { /* Mainly checking JIT here. */ "INT: MUL", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 11), BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_MOV, R2, 2), BPF_ALU64_IMM(BPF_MOV, R3, 3), BPF_ALU64_IMM(BPF_MOV, R4, 4), BPF_ALU64_IMM(BPF_MOV, R5, 5), BPF_ALU64_IMM(BPF_MOV, R6, 6), BPF_ALU64_IMM(BPF_MOV, R7, 7), BPF_ALU64_IMM(BPF_MOV, R8, 8), BPF_ALU64_IMM(BPF_MOV, R9, 9), BPF_ALU64_REG(BPF_MUL, R0, R0), BPF_ALU64_REG(BPF_MUL, R0, R1), BPF_ALU64_REG(BPF_MUL, R0, R2), BPF_ALU64_REG(BPF_MUL, R0, R3), BPF_ALU64_REG(BPF_MUL, R0, R4), BPF_ALU64_REG(BPF_MUL, R0, R5), BPF_ALU64_REG(BPF_MUL, R0, R6), BPF_ALU64_REG(BPF_MUL, R0, R7), BPF_ALU64_REG(BPF_MUL, R0, R8), BPF_ALU64_REG(BPF_MUL, R0, R9), BPF_ALU64_IMM(BPF_MUL, R0, 10), BPF_JMP_IMM(BPF_JEQ, R0, 439084800, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_MUL, R1, R0), BPF_ALU64_REG(BPF_MUL, R1, R2), BPF_ALU64_REG(BPF_MUL, R1, R3), BPF_ALU64_REG(BPF_MUL, R1, R4), BPF_ALU64_REG(BPF_MUL, R1, R5), BPF_ALU64_REG(BPF_MUL, R1, R6), BPF_ALU64_REG(BPF_MUL, R1, R7), BPF_ALU64_REG(BPF_MUL, R1, R8), BPF_ALU64_REG(BPF_MUL, R1, R9), BPF_ALU64_IMM(BPF_MUL, R1, 10), BPF_ALU64_REG(BPF_MOV, R2, R1), BPF_ALU64_IMM(BPF_RSH, R2, 32), BPF_JMP_IMM(BPF_JEQ, R2, 0x5a924, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_LSH, R1, 32), BPF_ALU64_IMM(BPF_ARSH, R1, 32), BPF_JMP_IMM(BPF_JEQ, R1, 0xebb90000, 1), BPF_EXIT_INSN(), BPF_ALU64_REG(BPF_MUL, R2, R0), BPF_ALU64_REG(BPF_MUL, R2, R1), BPF_ALU64_REG(BPF_MUL, R2, R3), BPF_ALU64_REG(BPF_MUL, R2, R4), BPF_ALU64_REG(BPF_MUL, R2, R5), BPF_ALU64_REG(BPF_MUL, R2, R6), BPF_ALU64_REG(BPF_MUL, R2, R7), BPF_ALU64_REG(BPF_MUL, R2, R8), BPF_ALU64_REG(BPF_MUL, R2, R9), BPF_ALU64_IMM(BPF_MUL, R2, 10), BPF_ALU64_IMM(BPF_RSH, R2, 32), BPF_ALU64_REG(BPF_MOV, R0, R2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x35d97ef2 } } }, { /* Mainly checking JIT here. */ "MOV REG64", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffffffffffffLL), BPF_MOV64_REG(R1, R0), BPF_MOV64_REG(R2, R1), BPF_MOV64_REG(R3, R2), BPF_MOV64_REG(R4, R3), BPF_MOV64_REG(R5, R4), BPF_MOV64_REG(R6, R5), BPF_MOV64_REG(R7, R6), BPF_MOV64_REG(R8, R7), BPF_MOV64_REG(R9, R8), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_ALU64_IMM(BPF_MOV, R1, 0), BPF_ALU64_IMM(BPF_MOV, R2, 0), BPF_ALU64_IMM(BPF_MOV, R3, 0), BPF_ALU64_IMM(BPF_MOV, R4, 0), BPF_ALU64_IMM(BPF_MOV, R5, 0), BPF_ALU64_IMM(BPF_MOV, R6, 0), BPF_ALU64_IMM(BPF_MOV, R7, 0), BPF_ALU64_IMM(BPF_MOV, R8, 0), BPF_ALU64_IMM(BPF_MOV, R9, 0), BPF_ALU64_REG(BPF_ADD, R0, R0), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_ALU64_REG(BPF_ADD, R0, R2), BPF_ALU64_REG(BPF_ADD, R0, R3), BPF_ALU64_REG(BPF_ADD, R0, R4), BPF_ALU64_REG(BPF_ADD, R0, R5), BPF_ALU64_REG(BPF_ADD, R0, R6), BPF_ALU64_REG(BPF_ADD, R0, R7), BPF_ALU64_REG(BPF_ADD, R0, R8), BPF_ALU64_REG(BPF_ADD, R0, R9), BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfefe } } }, { /* Mainly checking JIT here. */ "MOV REG32", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffffffffffffLL), BPF_MOV64_REG(R1, R0), BPF_MOV64_REG(R2, R1), BPF_MOV64_REG(R3, R2), BPF_MOV64_REG(R4, R3), BPF_MOV64_REG(R5, R4), BPF_MOV64_REG(R6, R5), BPF_MOV64_REG(R7, R6), BPF_MOV64_REG(R8, R7), BPF_MOV64_REG(R9, R8), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU32_IMM(BPF_MOV, R2, 0), BPF_ALU32_IMM(BPF_MOV, R3, 0), BPF_ALU32_IMM(BPF_MOV, R4, 0), BPF_ALU32_IMM(BPF_MOV, R5, 0), BPF_ALU32_IMM(BPF_MOV, R6, 0), BPF_ALU32_IMM(BPF_MOV, R7, 0), BPF_ALU32_IMM(BPF_MOV, R8, 0), BPF_ALU32_IMM(BPF_MOV, R9, 0), BPF_ALU64_REG(BPF_ADD, R0, R0), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_ALU64_REG(BPF_ADD, R0, R2), BPF_ALU64_REG(BPF_ADD, R0, R3), BPF_ALU64_REG(BPF_ADD, R0, R4), BPF_ALU64_REG(BPF_ADD, R0, R5), BPF_ALU64_REG(BPF_ADD, R0, R6), BPF_ALU64_REG(BPF_ADD, R0, R7), BPF_ALU64_REG(BPF_ADD, R0, R8), BPF_ALU64_REG(BPF_ADD, R0, R9), BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfefe } } }, { /* Mainly checking JIT here. */ "LD IMM64", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffffffffffffLL), BPF_MOV64_REG(R1, R0), BPF_MOV64_REG(R2, R1), BPF_MOV64_REG(R3, R2), BPF_MOV64_REG(R4, R3), BPF_MOV64_REG(R5, R4), BPF_MOV64_REG(R6, R5), BPF_MOV64_REG(R7, R6), BPF_MOV64_REG(R8, R7), BPF_MOV64_REG(R9, R8), BPF_LD_IMM64(R0, 0x0LL), BPF_LD_IMM64(R1, 0x0LL), BPF_LD_IMM64(R2, 0x0LL), BPF_LD_IMM64(R3, 0x0LL), BPF_LD_IMM64(R4, 0x0LL), BPF_LD_IMM64(R5, 0x0LL), BPF_LD_IMM64(R6, 0x0LL), BPF_LD_IMM64(R7, 0x0LL), BPF_LD_IMM64(R8, 0x0LL), BPF_LD_IMM64(R9, 0x0LL), BPF_ALU64_REG(BPF_ADD, R0, R0), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_ALU64_REG(BPF_ADD, R0, R2), BPF_ALU64_REG(BPF_ADD, R0, R3), BPF_ALU64_REG(BPF_ADD, R0, R4), BPF_ALU64_REG(BPF_ADD, R0, R5), BPF_ALU64_REG(BPF_ADD, R0, R6), BPF_ALU64_REG(BPF_ADD, R0, R7), BPF_ALU64_REG(BPF_ADD, R0, R8), BPF_ALU64_REG(BPF_ADD, R0, R9), BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfefe } } }, { "INT: ALU MIX", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 11), BPF_ALU64_IMM(BPF_ADD, R0, -1), BPF_ALU64_IMM(BPF_MOV, R2, 2), BPF_ALU64_IMM(BPF_XOR, R2, 3), BPF_ALU64_REG(BPF_DIV, R0, R2), BPF_JMP_IMM(BPF_JEQ, R0, 10, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOD, R0, 3), BPF_JMP_IMM(BPF_JEQ, R0, 1, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, { "INT: shifts by register", .u.insns_int = { BPF_MOV64_IMM(R0, -1234), BPF_MOV64_IMM(R1, 1), BPF_ALU32_REG(BPF_RSH, R0, R1), BPF_JMP_IMM(BPF_JEQ, R0, 0x7ffffd97, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(R2, 1), BPF_ALU64_REG(BPF_LSH, R0, R2), BPF_MOV32_IMM(R4, -1234), BPF_JMP_REG(BPF_JEQ, R0, R4, 1), BPF_EXIT_INSN(), BPF_ALU64_IMM(BPF_AND, R4, 63), BPF_ALU64_REG(BPF_LSH, R0, R4), /* R0 <= 46 */ BPF_MOV64_IMM(R3, 47), BPF_ALU64_REG(BPF_ARSH, R0, R3), BPF_JMP_IMM(BPF_JEQ, R0, -617, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(R2, 1), BPF_ALU64_REG(BPF_LSH, R4, R2), /* R4 = 46 << 1 */ BPF_JMP_IMM(BPF_JEQ, R4, 92, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(R4, 4), BPF_ALU64_REG(BPF_LSH, R4, R4), /* R4 = 4 << 4 */ BPF_JMP_IMM(BPF_JEQ, R4, 64, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(R4, 5), BPF_ALU32_REG(BPF_LSH, R4, R4), /* R4 = 5 << 5 */ BPF_JMP_IMM(BPF_JEQ, R4, 160, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(R0, -1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, #ifdef CONFIG_32BIT { "INT: 32-bit context pointer word order and zero-extension", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_JMP32_IMM(BPF_JEQ, R1, 0, 3), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_JMP32_IMM(BPF_JNE, R1, 0, 1), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, #endif { "check: missing ret", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 1), }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { "check: div_k_0", .u.insns = { BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0), BPF_STMT(BPF_RET | BPF_K, 0) }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { "check: unknown insn", .u.insns = { /* seccomp insn, rejected in socket filter */ BPF_STMT(BPF_LDX | BPF_W | BPF_ABS, 0), BPF_STMT(BPF_RET | BPF_K, 0) }, CLASSIC | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { "check: out of range spill/fill", .u.insns = { BPF_STMT(BPF_STX, 16), BPF_STMT(BPF_RET | BPF_K, 0) }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { "JUMPS + HOLES", .u.insns = { BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 15), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 3, 4), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 1, 2), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15), BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 2, 3), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 1, 2), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15), BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 2, 3), BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 1, 2), BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0), BPF_STMT(BPF_RET | BPF_A, 0), BPF_STMT(BPF_RET | BPF_A, 0), }, CLASSIC, { 0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8, 0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4, 0x08, 0x00, 0x45, 0x00, 0x00, 0x28, 0x00, 0x00, 0x20, 0x00, 0x40, 0x11, 0x00, 0x00, /* IP header */ 0xc0, 0xa8, 0x33, 0x01, 0xc0, 0xa8, 0x33, 0x02, 0xbb, 0xb6, 0xa9, 0xfa, 0x00, 0x14, 0x00, 0x00, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc }, { { 88, 0x001b } } }, { "check: RET X", .u.insns = { BPF_STMT(BPF_RET | BPF_X, 0), }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { "check: LDX + RET X", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 42), BPF_STMT(BPF_RET | BPF_X, 0), }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { /* Mainly checking JIT here. */ "M[]: alt STX + LDX", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 100), BPF_STMT(BPF_STX, 0), BPF_STMT(BPF_LDX | BPF_MEM, 0), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 1), BPF_STMT(BPF_LDX | BPF_MEM, 1), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 2), BPF_STMT(BPF_LDX | BPF_MEM, 2), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 3), BPF_STMT(BPF_LDX | BPF_MEM, 3), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 4), BPF_STMT(BPF_LDX | BPF_MEM, 4), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 5), BPF_STMT(BPF_LDX | BPF_MEM, 5), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 6), BPF_STMT(BPF_LDX | BPF_MEM, 6), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 7), BPF_STMT(BPF_LDX | BPF_MEM, 7), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 8), BPF_STMT(BPF_LDX | BPF_MEM, 8), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 9), BPF_STMT(BPF_LDX | BPF_MEM, 9), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 10), BPF_STMT(BPF_LDX | BPF_MEM, 10), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 11), BPF_STMT(BPF_LDX | BPF_MEM, 11), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 12), BPF_STMT(BPF_LDX | BPF_MEM, 12), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 13), BPF_STMT(BPF_LDX | BPF_MEM, 13), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 14), BPF_STMT(BPF_LDX | BPF_MEM, 14), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_STX, 15), BPF_STMT(BPF_LDX | BPF_MEM, 15), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_RET | BPF_A, 0), }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 116 } }, }, { /* Mainly checking JIT here. */ "M[]: full STX + full LDX", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0xbadfeedb), BPF_STMT(BPF_STX, 0), BPF_STMT(BPF_LDX | BPF_IMM, 0xecabedae), BPF_STMT(BPF_STX, 1), BPF_STMT(BPF_LDX | BPF_IMM, 0xafccfeaf), BPF_STMT(BPF_STX, 2), BPF_STMT(BPF_LDX | BPF_IMM, 0xbffdcedc), BPF_STMT(BPF_STX, 3), BPF_STMT(BPF_LDX | BPF_IMM, 0xfbbbdccb), BPF_STMT(BPF_STX, 4), BPF_STMT(BPF_LDX | BPF_IMM, 0xfbabcbda), BPF_STMT(BPF_STX, 5), BPF_STMT(BPF_LDX | BPF_IMM, 0xaedecbdb), BPF_STMT(BPF_STX, 6), BPF_STMT(BPF_LDX | BPF_IMM, 0xadebbade), BPF_STMT(BPF_STX, 7), BPF_STMT(BPF_LDX | BPF_IMM, 0xfcfcfaec), BPF_STMT(BPF_STX, 8), BPF_STMT(BPF_LDX | BPF_IMM, 0xbcdddbdc), BPF_STMT(BPF_STX, 9), BPF_STMT(BPF_LDX | BPF_IMM, 0xfeefdfac), BPF_STMT(BPF_STX, 10), BPF_STMT(BPF_LDX | BPF_IMM, 0xcddcdeea), BPF_STMT(BPF_STX, 11), BPF_STMT(BPF_LDX | BPF_IMM, 0xaccfaebb), BPF_STMT(BPF_STX, 12), BPF_STMT(BPF_LDX | BPF_IMM, 0xbdcccdcf), BPF_STMT(BPF_STX, 13), BPF_STMT(BPF_LDX | BPF_IMM, 0xaaedecde), BPF_STMT(BPF_STX, 14), BPF_STMT(BPF_LDX | BPF_IMM, 0xfaeacdad), BPF_STMT(BPF_STX, 15), BPF_STMT(BPF_LDX | BPF_MEM, 0), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_LDX | BPF_MEM, 1), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 2), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 3), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 4), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 5), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 6), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 7), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 8), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 9), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 10), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 11), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 12), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 13), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 14), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_LDX | BPF_MEM, 15), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0), }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0x2a5a5e5 } }, }, { "check: SKF_AD_MAX", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF + SKF_AD_MAX), BPF_STMT(BPF_RET | BPF_A, 0), }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = NULL, .expected_errcode = -EINVAL, }, { /* Passes checker but fails during runtime. */ "LD [SKF_AD_OFF-1]", .u.insns = { BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF - 1), BPF_STMT(BPF_RET | BPF_K, 1), }, CLASSIC, { }, { { 1, 0 } }, }, { "load 64-bit immediate", .u.insns_int = { BPF_LD_IMM64(R1, 0x567800001234LL), BPF_MOV64_REG(R2, R1), BPF_MOV64_REG(R3, R2), BPF_ALU64_IMM(BPF_RSH, R2, 32), BPF_ALU64_IMM(BPF_LSH, R3, 32), BPF_ALU64_IMM(BPF_RSH, R3, 32), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R2, 0x5678, 1), BPF_EXIT_INSN(), BPF_JMP_IMM(BPF_JEQ, R3, 0x1234, 1), BPF_EXIT_INSN(), BPF_LD_IMM64(R0, 0x1ffffffffLL), BPF_ALU64_IMM(BPF_RSH, R0, 32), /* R0 = 1 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, /* BPF_ALU | BPF_MOV | BPF_X */ { "ALU_MOV_X: dst = 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_MOV_X: dst = 4294967295", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U), BPF_ALU32_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, { "ALU64_MOV_X: dst = 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_MOV_X: dst = 4294967295", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, /* BPF_ALU | BPF_MOV | BPF_K */ { "ALU_MOV_K: dst = 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_MOV_K: dst = 4294967295", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 4294967295U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, { "ALU_MOV_K: 0x0000ffffffff0000 = 0x00000000ffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x00000000ffffffffLL), BPF_ALU32_IMM(BPF_MOV, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_MOV_K: small negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "ALU_MOV_K: small negative zero extension", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU_MOV_K: large negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123456789), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123456789 } } }, { "ALU_MOV_K: large negative zero extension", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123456789), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_MOV_K: dst = 2", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_MOV_K: dst = 2147483647", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2147483647 } }, }, { "ALU64_OR_K: dst = 0x0", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x0), BPF_ALU64_IMM(BPF_MOV, R2, 0x0), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MOV_K: dst = -1", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_MOV, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MOV_K: small negative", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, -123), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "ALU64_MOV_K: small negative sign extension", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, -123), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } } }, { "ALU64_MOV_K: large negative", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, -123456789), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123456789 } } }, { "ALU64_MOV_K: large negative sign extension", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, -123456789), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } } }, /* MOVSX32 */ { "ALU_MOVSX | BPF_B", .u.insns_int = { BPF_LD_IMM64(R2, 0x00000000ffffffefLL), BPF_LD_IMM64(R3, 0xdeadbeefdeadbeefLL), BPF_MOVSX32_REG(R1, R3, 8), BPF_JMP_REG(BPF_JEQ, R2, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_MOVSX | BPF_H", .u.insns_int = { BPF_LD_IMM64(R2, 0x00000000ffffbeefLL), BPF_LD_IMM64(R3, 0xdeadbeefdeadbeefLL), BPF_MOVSX32_REG(R1, R3, 16), BPF_JMP_REG(BPF_JEQ, R2, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, /* MOVSX64 REG */ { "ALU64_MOVSX | BPF_B", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffffefLL), BPF_LD_IMM64(R3, 0xdeadbeefdeadbeefLL), BPF_MOVSX64_REG(R1, R3, 8), BPF_JMP_REG(BPF_JEQ, R2, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MOVSX | BPF_H", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffbeefLL), BPF_LD_IMM64(R3, 0xdeadbeefdeadbeefLL), BPF_MOVSX64_REG(R1, R3, 16), BPF_JMP_REG(BPF_JEQ, R2, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MOVSX | BPF_W", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffdeadbeefLL), BPF_LD_IMM64(R3, 0xdeadbeefdeadbeefLL), BPF_MOVSX64_REG(R1, R3, 32), BPF_JMP_REG(BPF_JEQ, R2, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, /* BPF_ALU | BPF_ADD | BPF_X */ { "ALU_ADD_X: 1 + 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_ADD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_ADD_X: 1 + 4294967294 = 4294967295", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U), BPF_ALU32_REG(BPF_ADD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, { "ALU_ADD_X: 2 + 4294967294 = 0", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_LD_IMM64(R1, 4294967294U), BPF_ALU32_REG(BPF_ADD, R0, R1), BPF_JMP_IMM(BPF_JEQ, R0, 0, 2), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_ADD_X: 1 + 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_ADD_X: 1 + 4294967294 = 4294967295", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, { "ALU64_ADD_X: 2 + 4294967294 = 4294967296", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_LD_IMM64(R1, 4294967294U), BPF_LD_IMM64(R2, 4294967296ULL), BPF_ALU64_REG(BPF_ADD, R0, R1), BPF_JMP_REG(BPF_JEQ, R0, R2, 2), BPF_MOV32_IMM(R0, 0), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_ALU | BPF_ADD | BPF_K */ { "ALU_ADD_K: 1 + 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_ADD_K: 3 + 0 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_ADD, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_ADD_K: 1 + 4294967294 = 4294967295", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 4294967294U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4294967295U } }, }, { "ALU_ADD_K: 4294967294 + 2 = 0", .u.insns_int = { BPF_LD_IMM64(R0, 4294967294U), BPF_ALU32_IMM(BPF_ADD, R0, 2), BPF_JMP_IMM(BPF_JEQ, R0, 0, 2), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_ADD_K: 0 + (-1) = 0x00000000ffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0x00000000ffffffff), BPF_ALU32_IMM(BPF_ADD, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_ADD_K: 0 + 0xffff = 0xffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0xffff), BPF_ALU32_IMM(BPF_ADD, R2, 0xffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_ADD_K: 0 + 0x7fffffff = 0x7fffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0x7fffffff), BPF_ALU32_IMM(BPF_ADD, R2, 0x7fffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_ADD_K: 0 + 0x80000000 = 0x80000000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0x80000000), BPF_ALU32_IMM(BPF_ADD, R2, 0x80000000), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_ADD_K: 0 + 0x80008000 = 0x80008000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0x80008000), BPF_ALU32_IMM(BPF_ADD, R2, 0x80008000), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_ADD_K: 1 + 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_ADD, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_ADD_K: 3 + 0 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_ADD, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_ADD_K: 1 + 2147483646 = 2147483647", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_ADD, R0, 2147483646), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2147483647 } }, }, { "ALU64_ADD_K: 4294967294 + 2 = 4294967296", .u.insns_int = { BPF_LD_IMM64(R0, 4294967294U), BPF_LD_IMM64(R1, 4294967296ULL), BPF_ALU64_IMM(BPF_ADD, R0, 2), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_ADD_K: 2147483646 + -2147483647 = -1", .u.insns_int = { BPF_LD_IMM64(R0, 2147483646), BPF_ALU64_IMM(BPF_ADD, R0, -2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, { "ALU64_ADD_K: 1 + 0 = 1", .u.insns_int = { BPF_LD_IMM64(R2, 0x1), BPF_LD_IMM64(R3, 0x1), BPF_ALU64_IMM(BPF_ADD, R2, 0x0), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_ADD_K: 0 + (-1) = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_ADD, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_ADD_K: 0 + 0xffff = 0xffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0xffff), BPF_ALU64_IMM(BPF_ADD, R2, 0xffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_ADD_K: 0 + 0x7fffffff = 0x7fffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0x7fffffff), BPF_ALU64_IMM(BPF_ADD, R2, 0x7fffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_ADD_K: 0 + 0x80000000 = 0xffffffff80000000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0xffffffff80000000LL), BPF_ALU64_IMM(BPF_ADD, R2, 0x80000000), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU_ADD_K: 0 + 0x80008000 = 0xffffffff80008000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0), BPF_LD_IMM64(R3, 0xffffffff80008000LL), BPF_ALU64_IMM(BPF_ADD, R2, 0x80008000), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, /* BPF_ALU | BPF_SUB | BPF_X */ { "ALU_SUB_X: 3 - 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU32_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_SUB_X: 4294967295 - 4294967294 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U), BPF_ALU32_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_SUB_X: 3 - 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_SUB_X: 4294967295 - 4294967294 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_ALU | BPF_SUB | BPF_K */ { "ALU_SUB_K: 3 - 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_SUB, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_SUB_K: 3 - 0 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_SUB, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_SUB_K: 4294967295 - 4294967294 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_SUB, R0, 4294967294U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_SUB_K: 3 - 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_SUB, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_SUB_K: 3 - 0 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_SUB, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_SUB_K: 4294967294 - 4294967295 = -1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967294U), BPF_ALU64_IMM(BPF_SUB, R0, 4294967295U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, { "ALU64_ADD_K: 2147483646 - 2147483647 = -1", .u.insns_int = { BPF_LD_IMM64(R0, 2147483646), BPF_ALU64_IMM(BPF_SUB, R0, 2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, /* BPF_ALU | BPF_MUL | BPF_X */ { "ALU_MUL_X: 2 * 3 = 6", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MOV, R1, 3), BPF_ALU32_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 6 } }, }, { "ALU_MUL_X: 2 * 0x7FFFFFF8 = 0xFFFFFFF0", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MOV, R1, 0x7FFFFFF8), BPF_ALU32_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xFFFFFFF0 } }, }, { "ALU_MUL_X: -1 * -1 = 1", .u.insns_int = { BPF_LD_IMM64(R0, -1), BPF_ALU32_IMM(BPF_MOV, R1, -1), BPF_ALU32_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_MUL_X: 2 * 3 = 6", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MOV, R1, 3), BPF_ALU64_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 6 } }, }, { "ALU64_MUL_X: 1 * 2147483647 = 2147483647", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 2147483647), BPF_ALU64_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2147483647 } }, }, { "ALU64_MUL_X: 64x64 multiply, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0fedcba987654321LL), BPF_LD_IMM64(R1, 0x123456789abcdef0LL), BPF_ALU64_REG(BPF_MUL, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xe5618cf0 } } }, { "ALU64_MUL_X: 64x64 multiply, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0fedcba987654321LL), BPF_LD_IMM64(R1, 0x123456789abcdef0LL), BPF_ALU64_REG(BPF_MUL, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x2236d88f } } }, /* BPF_ALU | BPF_MUL | BPF_K */ { "ALU_MUL_K: 2 * 3 = 6", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MUL, R0, 3), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 6 } }, }, { "ALU_MUL_K: 3 * 1 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MUL, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_MUL_K: 2 * 0x7FFFFFF8 = 0xFFFFFFF0", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MUL, R0, 0x7FFFFFF8), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xFFFFFFF0 } }, }, { "ALU_MUL_K: 1 * (-1) = 0x00000000ffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x1), BPF_LD_IMM64(R3, 0x00000000ffffffff), BPF_ALU32_IMM(BPF_MUL, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MUL_K: 2 * 3 = 6", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU64_IMM(BPF_MUL, R0, 3), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 6 } }, }, { "ALU64_MUL_K: 3 * 1 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_MUL, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_MUL_K: 1 * 2147483647 = 2147483647", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_MUL, R0, 2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2147483647 } }, }, { "ALU64_MUL_K: 1 * -2147483647 = -2147483647", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_MUL, R0, -2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -2147483647 } }, }, { "ALU64_MUL_K: 1 * (-1) = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x1), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_MUL, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_MUL_K: 64x32 multiply, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_MUL, R0, 0x12345678), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xe242d208 } } }, { "ALU64_MUL_K: 64x32 multiply, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_MUL, R0, 0x12345678), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xc28f5c28 } } }, /* BPF_ALU | BPF_DIV | BPF_X */ { "ALU_DIV_X: 6 / 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 6), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_DIV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_DIV_X: 4294967295 / 4294967295 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U), BPF_ALU32_REG(BPF_DIV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_DIV_X: 6 / 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 6), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_DIV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_DIV_X: 2147483647 / 2147483647 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2147483647), BPF_ALU32_IMM(BPF_MOV, R1, 2147483647), BPF_ALU64_REG(BPF_DIV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_DIV_X: 0xffffffffffffffff / (-1) = 0x0000000000000001", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffffffLL), BPF_LD_IMM64(R4, 0xffffffffffffffffLL), BPF_LD_IMM64(R3, 0x0000000000000001LL), BPF_ALU64_REG(BPF_DIV, R2, R4), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, /* BPF_ALU | BPF_DIV | BPF_K */ { "ALU_DIV_K: 6 / 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 6), BPF_ALU32_IMM(BPF_DIV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_DIV_K: 3 / 1 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_DIV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_DIV_K: 4294967295 / 4294967295 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_DIV, R0, 4294967295U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_DIV_K: 0xffffffffffffffff / (-1) = 0x1", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffffffLL), BPF_LD_IMM64(R3, 0x1UL), BPF_ALU32_IMM(BPF_DIV, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_DIV_K: 6 / 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 6), BPF_ALU64_IMM(BPF_DIV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_DIV_K: 3 / 1 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_DIV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_DIV_K: 2147483647 / 2147483647 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2147483647), BPF_ALU64_IMM(BPF_DIV, R0, 2147483647), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_DIV_K: 0xffffffffffffffff / (-1) = 0x0000000000000001", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffffffLL), BPF_LD_IMM64(R3, 0x0000000000000001LL), BPF_ALU64_IMM(BPF_DIV, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, /* BPF_ALU | BPF_MOD | BPF_X */ { "ALU_MOD_X: 3 % 2 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_MOD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_MOD_X: 4294967295 % 4294967293 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_MOV, R1, 4294967293U), BPF_ALU32_REG(BPF_MOD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_MOD_X: 3 % 2 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_MOD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_MOD_X: 2147483647 % 2147483645 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 2147483647), BPF_ALU32_IMM(BPF_MOV, R1, 2147483645), BPF_ALU64_REG(BPF_MOD, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, /* BPF_ALU | BPF_MOD | BPF_K */ { "ALU_MOD_K: 3 % 2 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOD, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_MOD_K: 3 % 1 = 0", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOD, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, }, { "ALU_MOD_K: 4294967295 % 4294967293 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 4294967295U), BPF_ALU32_IMM(BPF_MOD, R0, 4294967293U), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_MOD_K: 3 % 2 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_MOD, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_MOD_K: 3 % 1 = 0", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_MOD, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, }, { "ALU64_MOD_K: 2147483647 % 2147483645 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 2147483647), BPF_ALU64_IMM(BPF_MOD, R0, 2147483645), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, /* BPF_ALU | BPF_DIV | BPF_X off=1 (SDIV) */ { "ALU_SDIV_X: -6 / 2 = -3", .u.insns_int = { BPF_LD_IMM64(R0, -6), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG_OFF(BPF_DIV, R0, R1, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, /* BPF_ALU | BPF_DIV | BPF_K off=1 (SDIV) */ { "ALU_SDIV_K: -6 / 2 = -3", .u.insns_int = { BPF_LD_IMM64(R0, -6), BPF_ALU32_IMM_OFF(BPF_DIV, R0, 2, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, /* BPF_ALU64 | BPF_DIV | BPF_X off=1 (SDIV64) */ { "ALU64_SDIV_X: -6 / 2 = -3", .u.insns_int = { BPF_LD_IMM64(R0, -6), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG_OFF(BPF_DIV, R0, R1, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, /* BPF_ALU64 | BPF_DIV | BPF_K off=1 (SDIV64) */ { "ALU64_SDIV_K: -6 / 2 = -3", .u.insns_int = { BPF_LD_IMM64(R0, -6), BPF_ALU64_IMM_OFF(BPF_DIV, R0, 2, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, /* BPF_ALU | BPF_MOD | BPF_X off=1 (SMOD) */ { "ALU_SMOD_X: -7 % 2 = -1", .u.insns_int = { BPF_LD_IMM64(R0, -7), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG_OFF(BPF_MOD, R0, R1, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, /* BPF_ALU | BPF_MOD | BPF_K off=1 (SMOD) */ { "ALU_SMOD_K: -7 % 2 = -1", .u.insns_int = { BPF_LD_IMM64(R0, -7), BPF_ALU32_IMM_OFF(BPF_MOD, R0, 2, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, /* BPF_ALU64 | BPF_MOD | BPF_X off=1 (SMOD64) */ { "ALU64_SMOD_X: -7 % 2 = -1", .u.insns_int = { BPF_LD_IMM64(R0, -7), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG_OFF(BPF_MOD, R0, R1, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, /* BPF_ALU64 | BPF_MOD | BPF_K off=1 (SMOD64) */ { "ALU64_SMOD_K: -7 % 2 = -1", .u.insns_int = { BPF_LD_IMM64(R0, -7), BPF_ALU64_IMM_OFF(BPF_MOD, R0, 2, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } }, }, /* BPF_ALU | BPF_AND | BPF_X */ { "ALU_AND_X: 3 & 2 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_AND, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_AND_X: 0xffffffff & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffff), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU32_REG(BPF_AND, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU64_AND_X: 3 & 2 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_AND, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_AND_X: 0xffffffff & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffff), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU64_REG(BPF_AND, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, /* BPF_ALU | BPF_AND | BPF_K */ { "ALU_AND_K: 3 & 2 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU32_IMM(BPF_AND, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_AND_K: 0xffffffff & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffff), BPF_ALU32_IMM(BPF_AND, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU_AND_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304), BPF_ALU32_IMM(BPF_AND, R0, 15), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 4 } } }, { "ALU_AND_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xf1f2f3f4), BPF_ALU32_IMM(BPF_AND, R0, 0xafbfcfdf), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xa1b2c3d4 } } }, { "ALU_AND_K: Zero extension", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x0000000080a0c0e0LL), BPF_ALU32_IMM(BPF_AND, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_AND_K: 3 & 2 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_AND, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_AND_K: 0xffffffff & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0xffffffff), BPF_ALU64_IMM(BPF_AND, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU64_AND_K: 0x0000ffffffff0000 & 0x0 = 0x0000000000000000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x0000000000000000LL), BPF_ALU64_IMM(BPF_AND, R2, 0x0), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_AND_K: 0x0000ffffffff0000 & -1 = 0x0000ffffffff0000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x0000ffffffff0000LL), BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_AND_K: 0xffffffffffffffff & -1 = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0xffffffffffffffffLL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_AND_K: Sign extension 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x00000000090b0d0fLL), BPF_ALU64_IMM(BPF_AND, R0, 0x0f0f0f0f), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_AND_K: Sign extension 2", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x0123456780a0c0e0LL), BPF_ALU64_IMM(BPF_AND, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, /* BPF_ALU | BPF_OR | BPF_X */ { "ALU_OR_X: 1 | 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU32_REG(BPF_OR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_OR_X: 0x0 | 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU32_REG(BPF_OR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU64_OR_X: 1 | 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 2), BPF_ALU64_REG(BPF_OR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_OR_X: 0 | 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU64_REG(BPF_OR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, /* BPF_ALU | BPF_OR | BPF_K */ { "ALU_OR_K: 1 | 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_OR, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_OR_K: 0 & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_ALU32_IMM(BPF_OR, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU_OR_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304), BPF_ALU32_IMM(BPF_OR, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x01020305 } } }, { "ALU_OR_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304), BPF_ALU32_IMM(BPF_OR, R0, 0xa0b0c0d0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xa1b2c3d4 } } }, { "ALU_OR_K: Zero extension", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x00000000f9fbfdffLL), BPF_ALU32_IMM(BPF_OR, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_OR_K: 1 | 2 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_OR, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_OR_K: 0 & 0xffffffff = 0xffffffff", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_ALU64_IMM(BPF_OR, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, }, { "ALU64_OR_K: 0x0000ffffffff0000 | 0x0 = 0x0000ffffffff0000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x0000ffffffff0000LL), BPF_ALU64_IMM(BPF_OR, R2, 0x0), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_OR_K: 0x0000ffffffff0000 | -1 = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_OR_K: 0x000000000000000 | -1 = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000000000000000LL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_OR_K: Sign extension 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x012345678fafcfefLL), BPF_ALU64_IMM(BPF_OR, R0, 0x0f0f0f0f), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_OR_K: Sign extension 2", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0xfffffffff9fbfdffLL), BPF_ALU64_IMM(BPF_OR, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, /* BPF_ALU | BPF_XOR | BPF_X */ { "ALU_XOR_X: 5 ^ 6 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 5), BPF_ALU32_IMM(BPF_MOV, R1, 6), BPF_ALU32_REG(BPF_XOR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_XOR_X: 0x1 ^ 0xffffffff = 0xfffffffe", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU32_REG(BPF_XOR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } }, }, { "ALU64_XOR_X: 5 ^ 6 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 5), BPF_ALU32_IMM(BPF_MOV, R1, 6), BPF_ALU64_REG(BPF_XOR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_XOR_X: 1 ^ 0xffffffff = 0xfffffffe", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_ALU64_REG(BPF_XOR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } }, }, /* BPF_ALU | BPF_XOR | BPF_K */ { "ALU_XOR_K: 5 ^ 6 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 5), BPF_ALU32_IMM(BPF_XOR, R0, 6), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU_XOR_K: 1 ^ 0xffffffff = 0xfffffffe", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_XOR, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } }, }, { "ALU_XOR_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x01020304), BPF_ALU32_IMM(BPF_XOR, R0, 15), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x0102030b } } }, { "ALU_XOR_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xf1f2f3f4), BPF_ALU32_IMM(BPF_XOR, R0, 0xafbfcfdf), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x5e4d3c2b } } }, { "ALU_XOR_K: Zero extension", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x00000000795b3d1fLL), BPF_ALU32_IMM(BPF_XOR, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_XOR_K: 5 ^ 6 = 3", .u.insns_int = { BPF_LD_IMM64(R0, 5), BPF_ALU64_IMM(BPF_XOR, R0, 6), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_XOR_K: 1 ^ 0xffffffff = 0xfffffffe", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_XOR, R0, 0xffffffff), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } }, }, { "ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0x0000ffffffff0000LL), BPF_ALU64_IMM(BPF_XOR, R2, 0x0), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_XOR_K: 0x0000ffffffff0000 ^ -1 = 0xffff00000000ffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000ffffffff0000LL), BPF_LD_IMM64(R3, 0xffff00000000ffffLL), BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_XOR_K: 0x000000000000000 ^ -1 = 0xffffffffffffffff", .u.insns_int = { BPF_LD_IMM64(R2, 0x0000000000000000LL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, }, { "ALU64_XOR_K: Sign extension 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0x0123456786a4c2e0LL), BPF_ALU64_IMM(BPF_XOR, R0, 0x0f0f0f0f), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "ALU64_XOR_K: Sign extension 2", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_LD_IMM64(R1, 0xfedcba98795b3d1fLL), BPF_ALU64_IMM(BPF_XOR, R0, 0xf0f0f0f0), BPF_JMP_REG(BPF_JEQ, R0, R1, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, /* BPF_ALU | BPF_LSH | BPF_X */ { "ALU_LSH_X: 1 << 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU32_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_LSH_X: 1 << 31 = 0x80000000", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 31), BPF_ALU32_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x80000000 } }, }, { "ALU_LSH_X: 0x12345678 << 12 = 0x45678000", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU32_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x45678000 } } }, { "ALU64_LSH_X: 1 << 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_LSH_X: 1 << 31 = 0x80000000", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_MOV, R1, 31), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x80000000 } }, }, { "ALU64_LSH_X: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xbcdef000 } } }, { "ALU64_LSH_X: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x3456789a } } }, { "ALU64_LSH_X: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_LSH_X: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x9abcdef0 } } }, { "ALU64_LSH_X: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_LSH_X: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, { "ALU64_LSH_X: Zero shift, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, { "ALU64_LSH_X: Zero shift, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_LSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x01234567 } } }, /* BPF_ALU | BPF_LSH | BPF_K */ { "ALU_LSH_K: 1 << 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_LSH, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU_LSH_K: 1 << 31 = 0x80000000", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU32_IMM(BPF_LSH, R0, 31), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x80000000 } }, }, { "ALU_LSH_K: 0x12345678 << 12 = 0x45678000", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_LSH, R0, 12), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x45678000 } } }, { "ALU_LSH_K: 0x12345678 << 0 = 0x12345678", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_LSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x12345678 } } }, { "ALU64_LSH_K: 1 << 1 = 2", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_LSH, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "ALU64_LSH_K: 1 << 31 = 0x80000000", .u.insns_int = { BPF_LD_IMM64(R0, 1), BPF_ALU64_IMM(BPF_LSH, R0, 31), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x80000000 } }, }, { "ALU64_LSH_K: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 12), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xbcdef000 } } }, { "ALU64_LSH_K: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 12), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x3456789a } } }, { "ALU64_LSH_K: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 36), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_LSH_K: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 36), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x9abcdef0 } } }, { "ALU64_LSH_K: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_LSH_K: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 32), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, { "ALU64_LSH_K: Zero shift", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_LSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, /* BPF_ALU | BPF_RSH | BPF_X */ { "ALU_RSH_X: 2 >> 1 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU32_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_RSH_X: 0x80000000 >> 31 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x80000000), BPF_ALU32_IMM(BPF_MOV, R1, 31), BPF_ALU32_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_RSH_X: 0x12345678 >> 20 = 0x123", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_MOV, R1, 20), BPF_ALU32_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x123 } } }, { "ALU64_RSH_X: 2 >> 1 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_MOV, R1, 1), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_RSH_X: 0x80000000 >> 31 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x80000000), BPF_ALU32_IMM(BPF_MOV, R1, 31), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_RSH_X: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x56789abc } } }, { "ALU64_RSH_X: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x00081234 } } }, { "ALU64_RSH_X: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x08123456 } } }, { "ALU64_RSH_X: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_RSH_X: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, { "ALU64_RSH_X: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_RSH_X: Zero shift, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, { "ALU64_RSH_X: Zero shift, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_RSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, /* BPF_ALU | BPF_RSH | BPF_K */ { "ALU_RSH_K: 2 >> 1 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU32_IMM(BPF_RSH, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_RSH_K: 0x80000000 >> 31 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x80000000), BPF_ALU32_IMM(BPF_RSH, R0, 31), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU_RSH_K: 0x12345678 >> 20 = 0x123", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_RSH, R0, 20), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x123 } } }, { "ALU_RSH_K: 0x12345678 >> 0 = 0x12345678", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x12345678), BPF_ALU32_IMM(BPF_RSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x12345678 } } }, { "ALU64_RSH_K: 2 >> 1 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 2), BPF_ALU64_IMM(BPF_RSH, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_RSH_K: 0x80000000 >> 31 = 1", .u.insns_int = { BPF_LD_IMM64(R0, 0x80000000), BPF_ALU64_IMM(BPF_RSH, R0, 31), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "ALU64_RSH_K: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 12), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x56789abc } } }, { "ALU64_RSH_K: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 12), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x00081234 } } }, { "ALU64_RSH_K: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 36), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x08123456 } } }, { "ALU64_RSH_K: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 36), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_RSH_K: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, { "ALU64_RSH_K: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } } }, { "ALU64_RSH_K: Zero shift", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, /* BPF_ALU | BPF_ARSH | BPF_X */ { "ALU32_ARSH_X: -1234 >> 7 = -10", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -1234), BPF_ALU32_IMM(BPF_MOV, R1, 7), BPF_ALU32_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -10 } } }, { "ALU64_ARSH_X: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff", .u.insns_int = { BPF_LD_IMM64(R0, 0xff00ff0000000000LL), BPF_ALU32_IMM(BPF_MOV, R1, 40), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffff00ff } }, }, { "ALU64_ARSH_X: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x56789abc } } }, { "ALU64_ARSH_X: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 12), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfff81234 } } }, { "ALU64_ARSH_X: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xf8123456 } } }, { "ALU64_ARSH_X: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 36), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, { "ALU64_ARSH_X: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, { "ALU64_ARSH_X: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 32), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, { "ALU64_ARSH_X: Zero shift, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, { "ALU64_ARSH_X: Zero shift, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU32_IMM(BPF_MOV, R1, 0), BPF_ALU64_REG(BPF_ARSH, R0, R1), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, /* BPF_ALU | BPF_ARSH | BPF_K */ { "ALU32_ARSH_K: -1234 >> 7 = -10", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -1234), BPF_ALU32_IMM(BPF_ARSH, R0, 7), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -10 } } }, { "ALU32_ARSH_K: -1234 >> 0 = -1234", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -1234), BPF_ALU32_IMM(BPF_ARSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1234 } } }, { "ALU64_ARSH_K: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff", .u.insns_int = { BPF_LD_IMM64(R0, 0xff00ff0000000000LL), BPF_ALU64_IMM(BPF_ARSH, R0, 40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffff00ff } }, }, { "ALU64_ARSH_K: Shift < 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_RSH, R0, 12), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x56789abc } } }, { "ALU64_ARSH_K: Shift < 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 12), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfff81234 } } }, { "ALU64_ARSH_K: Shift > 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 36), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xf8123456 } } }, { "ALU64_ARSH_K: Shift > 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0xf123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 36), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, { "ALU64_ARSH_K: Shift == 32, low word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x81234567 } } }, { "ALU64_ARSH_K: Shift == 32, high word", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 32), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -1 } } }, { "ALU64_ARSH_K: Zero shift", .u.insns_int = { BPF_LD_IMM64(R0, 0x8123456789abcdefLL), BPF_ALU64_IMM(BPF_ARSH, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } } }, /* BPF_ALU | BPF_NEG */ { "ALU_NEG: -(3) = -3", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 3), BPF_ALU32_IMM(BPF_NEG, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, { "ALU_NEG: -(-3) = 3", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -3), BPF_ALU32_IMM(BPF_NEG, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, { "ALU64_NEG: -(3) = -3", .u.insns_int = { BPF_LD_IMM64(R0, 3), BPF_ALU64_IMM(BPF_NEG, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -3 } }, }, { "ALU64_NEG: -(-3) = 3", .u.insns_int = { BPF_LD_IMM64(R0, -3), BPF_ALU64_IMM(BPF_NEG, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 3 } }, }, /* BPF_ALU | BPF_END | BPF_FROM_BE */ { "ALU_END_FROM_BE 16: 0x0123456789abcdef -> 0xcdef", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_BE, R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_be16(0xcdef) } }, }, { "ALU_END_FROM_BE 32: 0x0123456789abcdef -> 0x89abcdef", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_BE, R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_be32(0x89abcdef) } }, }, { "ALU_END_FROM_BE 64: 0x0123456789abcdef -> 0x89abcdef", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_BE, R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) cpu_to_be64(0x0123456789abcdefLL) } }, }, { "ALU_END_FROM_BE 64: 0x0123456789abcdef >> 32 -> 0x01234567", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_BE, R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) (cpu_to_be64(0x0123456789abcdefLL) >> 32) } }, }, /* BPF_ALU | BPF_END | BPF_FROM_BE, reversed */ { "ALU_END_FROM_BE 16: 0xfedcba9876543210 -> 0x3210", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_BE, R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_be16(0x3210) } }, }, { "ALU_END_FROM_BE 32: 0xfedcba9876543210 -> 0x76543210", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_BE, R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_be32(0x76543210) } }, }, { "ALU_END_FROM_BE 64: 0xfedcba9876543210 -> 0x76543210", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_BE, R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) cpu_to_be64(0xfedcba9876543210ULL) } }, }, { "ALU_END_FROM_BE 64: 0xfedcba9876543210 >> 32 -> 0xfedcba98", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_BE, R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) (cpu_to_be64(0xfedcba9876543210ULL) >> 32) } }, }, /* BPF_ALU | BPF_END | BPF_FROM_LE */ { "ALU_END_FROM_LE 16: 0x0123456789abcdef -> 0xefcd", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_LE, R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_le16(0xcdef) } }, }, { "ALU_END_FROM_LE 32: 0x0123456789abcdef -> 0xefcdab89", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_LE, R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_le32(0x89abcdef) } }, }, { "ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_LE, R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) cpu_to_le64(0x0123456789abcdefLL) } }, }, { "ALU_END_FROM_LE 64: 0x0123456789abcdef >> 32 -> 0xefcdab89", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_ENDIAN(BPF_FROM_LE, R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) (cpu_to_le64(0x0123456789abcdefLL) >> 32) } }, }, /* BPF_ALU | BPF_END | BPF_FROM_LE, reversed */ { "ALU_END_FROM_LE 16: 0xfedcba9876543210 -> 0x1032", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_LE, R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_le16(0x3210) } }, }, { "ALU_END_FROM_LE 32: 0xfedcba9876543210 -> 0x10325476", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_LE, R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, cpu_to_le32(0x76543210) } }, }, { "ALU_END_FROM_LE 64: 0xfedcba9876543210 -> 0x10325476", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_LE, R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) cpu_to_le64(0xfedcba9876543210ULL) } }, }, { "ALU_END_FROM_LE 64: 0xfedcba9876543210 >> 32 -> 0x98badcfe", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_ENDIAN(BPF_FROM_LE, R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, (u32) (cpu_to_le64(0xfedcba9876543210ULL) >> 32) } }, }, /* BSWAP */ { "BSWAP 16: 0x0123456789abcdef -> 0xefcd", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_BSWAP(R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xefcd } }, }, { "BSWAP 32: 0x0123456789abcdef -> 0xefcdab89", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_BSWAP(R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xefcdab89 } }, }, { "BSWAP 64: 0x0123456789abcdef -> 0x67452301", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_BSWAP(R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x67452301 } }, }, { "BSWAP 64: 0x0123456789abcdef >> 32 -> 0xefcdab89", .u.insns_int = { BPF_LD_IMM64(R0, 0x0123456789abcdefLL), BPF_BSWAP(R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xefcdab89 } }, }, /* BSWAP, reversed */ { "BSWAP 16: 0xfedcba9876543210 -> 0x1032", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_BSWAP(R0, 16), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1032 } }, }, { "BSWAP 32: 0xfedcba9876543210 -> 0x10325476", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_BSWAP(R0, 32), BPF_ALU64_REG(BPF_MOV, R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x10325476 } }, }, { "BSWAP 64: 0xfedcba9876543210 -> 0x98badcfe", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_BSWAP(R0, 64), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x98badcfe } }, }, { "BSWAP 64: 0xfedcba9876543210 >> 32 -> 0x10325476", .u.insns_int = { BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_BSWAP(R0, 64), BPF_ALU64_IMM(BPF_RSH, R0, 32), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x10325476 } }, }, /* BPF_LDX_MEM B/H/W/DW */ { "BPF_LDX_MEM | BPF_B, base", .u.insns_int = { BPF_LD_IMM64(R1, 0x0102030405060708ULL), BPF_LD_IMM64(R2, 0x0000000000000008ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_B, R0, R10, -1), #else BPF_LDX_MEM(BPF_B, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_B, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8182838485868788ULL), BPF_LD_IMM64(R2, 0x0000000000000088ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_B, R0, R10, -1), #else BPF_LDX_MEM(BPF_B, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_B, negative offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000000088ULL), BPF_ALU64_IMM(BPF_ADD, R1, 512), BPF_STX_MEM(BPF_B, R1, R2, -256), BPF_LDX_MEM(BPF_B, R0, R1, -256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_B, small positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000000088ULL), BPF_STX_MEM(BPF_B, R1, R2, 256), BPF_LDX_MEM(BPF_B, R0, R1, 256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_B, large positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000000088ULL), BPF_STX_MEM(BPF_B, R1, R2, 4096), BPF_LDX_MEM(BPF_B, R0, R1, 4096), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 4096 + 16, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_H, base", .u.insns_int = { BPF_LD_IMM64(R1, 0x0102030405060708ULL), BPF_LD_IMM64(R2, 0x0000000000000708ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_H, R0, R10, -2), #else BPF_LDX_MEM(BPF_H, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_H, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8182838485868788ULL), BPF_LD_IMM64(R2, 0x0000000000008788ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_H, R0, R10, -2), #else BPF_LDX_MEM(BPF_H, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_H, negative offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000008788ULL), BPF_ALU64_IMM(BPF_ADD, R1, 512), BPF_STX_MEM(BPF_H, R1, R2, -256), BPF_LDX_MEM(BPF_H, R0, R1, -256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_H, small positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000008788ULL), BPF_STX_MEM(BPF_H, R1, R2, 256), BPF_LDX_MEM(BPF_H, R0, R1, 256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_H, large positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000008788ULL), BPF_STX_MEM(BPF_H, R1, R2, 8192), BPF_LDX_MEM(BPF_H, R0, R1, 8192), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 8192 + 16, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_H, unaligned positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000000008788ULL), BPF_STX_MEM(BPF_H, R1, R2, 13), BPF_LDX_MEM(BPF_H, R0, R1, 13), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 32, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_W, base", .u.insns_int = { BPF_LD_IMM64(R1, 0x0102030405060708ULL), BPF_LD_IMM64(R2, 0x0000000005060708ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_W, R0, R10, -4), #else BPF_LDX_MEM(BPF_W, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_W, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8182838485868788ULL), BPF_LD_IMM64(R2, 0x0000000085868788ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEM(BPF_W, R0, R10, -4), #else BPF_LDX_MEM(BPF_W, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_W, negative offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000085868788ULL), BPF_ALU64_IMM(BPF_ADD, R1, 512), BPF_STX_MEM(BPF_W, R1, R2, -256), BPF_LDX_MEM(BPF_W, R0, R1, -256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_W, small positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000085868788ULL), BPF_STX_MEM(BPF_W, R1, R2, 256), BPF_LDX_MEM(BPF_W, R0, R1, 256), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_W, large positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000085868788ULL), BPF_STX_MEM(BPF_W, R1, R2, 16384), BPF_LDX_MEM(BPF_W, R0, R1, 16384), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 16384 + 16, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_W, unaligned positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x0000000085868788ULL), BPF_STX_MEM(BPF_W, R1, R2, 13), BPF_LDX_MEM(BPF_W, R0, R1, 13), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 32, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_DW, base", .u.insns_int = { BPF_LD_IMM64(R1, 0x0102030405060708ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_DW, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8182838485868788ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_DW, negative offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_ALU64_IMM(BPF_ADD, R1, 512), BPF_STX_MEM(BPF_DW, R1, R2, -256), BPF_LDX_MEM(BPF_DW, R0, R1, -256), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_DW, small positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_STX_MEM(BPF_DW, R1, R2, 256), BPF_LDX_MEM(BPF_DW, R0, R1, 256), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 512, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEM | BPF_DW, large positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_STX_MEM(BPF_DW, R1, R2, 32760), BPF_LDX_MEM(BPF_DW, R0, R1, 32760), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 32768, 0 } }, .stack_depth = 0, }, { "BPF_LDX_MEM | BPF_DW, unaligned positive offset", .u.insns_int = { BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_STX_MEM(BPF_DW, R1, R2, 13), BPF_LDX_MEM(BPF_DW, R0, R1, 13), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_LARGE_MEM, { }, { { 32, 0 } }, .stack_depth = 0, }, /* BPF_LDX_MEMSX B/H/W */ { "BPF_LDX_MEMSX | BPF_B", .u.insns_int = { BPF_LD_IMM64(R1, 0xdead0000000000f0ULL), BPF_LD_IMM64(R2, 0xfffffffffffffff0ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEMSX(BPF_B, R0, R10, -1), #else BPF_LDX_MEMSX(BPF_B, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEMSX | BPF_H", .u.insns_int = { BPF_LD_IMM64(R1, 0xdead00000000f123ULL), BPF_LD_IMM64(R2, 0xfffffffffffff123ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEMSX(BPF_H, R0, R10, -2), #else BPF_LDX_MEMSX(BPF_H, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_LDX_MEMSX | BPF_W", .u.insns_int = { BPF_LD_IMM64(R1, 0x00000000deadbeefULL), BPF_LD_IMM64(R2, 0xffffffffdeadbeefULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_LDX_MEMSX(BPF_W, R0, R10, -4), #else BPF_LDX_MEMSX(BPF_W, R0, R10, -8), #endif BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, /* BPF_STX_MEM B/H/W/DW */ { "BPF_STX_MEM | BPF_B", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x0102030405060708ULL), BPF_LD_IMM64(R3, 0x8090a0b0c0d0e008ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_B, R10, R2, -1), #else BPF_STX_MEM(BPF_B, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_STX_MEM | BPF_B, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x8090a0b0c0d0e088ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_B, R10, R2, -1), #else BPF_STX_MEM(BPF_B, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_STX_MEM | BPF_H", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x0102030405060708ULL), BPF_LD_IMM64(R3, 0x8090a0b0c0d00708ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_H, R10, R2, -2), #else BPF_STX_MEM(BPF_H, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_STX_MEM | BPF_H, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x8090a0b0c0d08788ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_H, R10, R2, -2), #else BPF_STX_MEM(BPF_H, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_STX_MEM | BPF_W", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x0102030405060708ULL), BPF_LD_IMM64(R3, 0x8090a0b005060708ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_W, R10, R2, -4), #else BPF_STX_MEM(BPF_W, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, { "BPF_STX_MEM | BPF_W, MSB set", .u.insns_int = { BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL), BPF_LD_IMM64(R2, 0x8182838485868788ULL), BPF_LD_IMM64(R3, 0x8090a0b085868788ULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), #ifdef __BIG_ENDIAN BPF_STX_MEM(BPF_W, R10, R2, -4), #else BPF_STX_MEM(BPF_W, R10, R2, -8), #endif BPF_LDX_MEM(BPF_DW, R0, R10, -8), BPF_JMP_REG(BPF_JNE, R0, R3, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, /* BPF_ST(X) | BPF_MEM | BPF_B/H/W/DW */ { "ST_MEM_B: Store/Load byte: max negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_B, R10, -40, 0xff), BPF_LDX_MEM(BPF_B, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xff } }, .stack_depth = 40, }, { "ST_MEM_B: Store/Load byte: max positive", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_H, R10, -40, 0x7f), BPF_LDX_MEM(BPF_H, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x7f } }, .stack_depth = 40, }, { "STX_MEM_B: Store/Load byte: max negative", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0xffLL), BPF_STX_MEM(BPF_B, R10, R1, -40), BPF_LDX_MEM(BPF_B, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xff } }, .stack_depth = 40, }, { "ST_MEM_H: Store/Load half word: max negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_H, R10, -40, 0xffff), BPF_LDX_MEM(BPF_H, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffff } }, .stack_depth = 40, }, { "ST_MEM_H: Store/Load half word: max positive", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_H, R10, -40, 0x7fff), BPF_LDX_MEM(BPF_H, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x7fff } }, .stack_depth = 40, }, { "STX_MEM_H: Store/Load half word: max negative", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0xffffLL), BPF_STX_MEM(BPF_H, R10, R1, -40), BPF_LDX_MEM(BPF_H, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffff } }, .stack_depth = 40, }, { "ST_MEM_W: Store/Load word: max negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_W, R10, -40, 0xffffffff), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, .stack_depth = 40, }, { "ST_MEM_W: Store/Load word: max positive", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_W, R10, -40, 0x7fffffff), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x7fffffff } }, .stack_depth = 40, }, { "STX_MEM_W: Store/Load word: max negative", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0xffffffffLL), BPF_STX_MEM(BPF_W, R10, R1, -40), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, .stack_depth = 40, }, { "ST_MEM_DW: Store/Load double word: max negative", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff), BPF_LDX_MEM(BPF_DW, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, .stack_depth = 40, }, { "ST_MEM_DW: Store/Load double word: max negative 2", .u.insns_int = { BPF_LD_IMM64(R2, 0xffff00000000ffffLL), BPF_LD_IMM64(R3, 0xffffffffffffffffLL), BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff), BPF_LDX_MEM(BPF_DW, R2, R10, -40), BPF_JMP_REG(BPF_JEQ, R2, R3, 2), BPF_MOV32_IMM(R0, 2), BPF_EXIT_INSN(), BPF_MOV32_IMM(R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x1 } }, .stack_depth = 40, }, { "ST_MEM_DW: Store/Load double word: max positive", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_ST_MEM(BPF_DW, R10, -40, 0x7fffffff), BPF_LDX_MEM(BPF_DW, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x7fffffff } }, .stack_depth = 40, }, { "STX_MEM_DW: Store/Load double word: max negative", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_LDX_MEM(BPF_DW, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffff } }, .stack_depth = 40, }, { "STX_MEM_DW: Store double word: first word in memory", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0x0123456789abcdefLL), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, #ifdef __BIG_ENDIAN { { 0, 0x01234567 } }, #else { { 0, 0x89abcdef } }, #endif .stack_depth = 40, }, { "STX_MEM_DW: Store double word: second word in memory", .u.insns_int = { BPF_LD_IMM64(R0, 0), BPF_LD_IMM64(R1, 0x0123456789abcdefLL), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_LDX_MEM(BPF_W, R0, R10, -36), BPF_EXIT_INSN(), }, INTERNAL, { }, #ifdef __BIG_ENDIAN { { 0, 0x89abcdef } }, #else { { 0, 0x01234567 } }, #endif .stack_depth = 40, }, /* BPF_STX | BPF_ATOMIC | BPF_W/DW */ { "STX_XADD_W: X + 1 + 1 + 1 + ...", { }, INTERNAL, { }, { { 0, 4134 } }, .fill_helper = bpf_fill_stxw, }, { "STX_XADD_DW: X + 1 + 1 + 1 + ...", { }, INTERNAL, { }, { { 0, 4134 } }, .fill_helper = bpf_fill_stxdw, }, /* * Exhaustive tests of atomic operation variants. * Individual tests are expanded from template macros for all * combinations of ALU operation, word size and fetching. */ #define BPF_ATOMIC_POISON(width) ((width) == BPF_W ? (0xbaadf00dULL << 32) : 0) #define BPF_ATOMIC_OP_TEST1(width, op, logic, old, update, result) \ { \ "BPF_ATOMIC | " #width ", " #op ": Test: " \ #old " " #logic " " #update " = " #result, \ .u.insns_int = { \ BPF_LD_IMM64(R5, (update) | BPF_ATOMIC_POISON(width)), \ BPF_ST_MEM(width, R10, -40, old), \ BPF_ATOMIC_OP(width, op, R10, R5, -40), \ BPF_LDX_MEM(width, R0, R10, -40), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, result } }, \ .stack_depth = 40, \ } #define BPF_ATOMIC_OP_TEST2(width, op, logic, old, update, result) \ { \ "BPF_ATOMIC | " #width ", " #op ": Test side effects, r10: " \ #old " " #logic " " #update " = " #result, \ .u.insns_int = { \ BPF_ALU64_REG(BPF_MOV, R1, R10), \ BPF_LD_IMM64(R0, (update) | BPF_ATOMIC_POISON(width)), \ BPF_ST_MEM(BPF_W, R10, -40, old), \ BPF_ATOMIC_OP(width, op, R10, R0, -40), \ BPF_ALU64_REG(BPF_MOV, R0, R10), \ BPF_ALU64_REG(BPF_SUB, R0, R1), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ .stack_depth = 40, \ } #define BPF_ATOMIC_OP_TEST3(width, op, logic, old, update, result) \ { \ "BPF_ATOMIC | " #width ", " #op ": Test side effects, r0: " \ #old " " #logic " " #update " = " #result, \ .u.insns_int = { \ BPF_ALU64_REG(BPF_MOV, R0, R10), \ BPF_LD_IMM64(R1, (update) | BPF_ATOMIC_POISON(width)), \ BPF_ST_MEM(width, R10, -40, old), \ BPF_ATOMIC_OP(width, op, R10, R1, -40), \ BPF_ALU64_REG(BPF_SUB, R0, R10), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ .stack_depth = 40, \ } #define BPF_ATOMIC_OP_TEST4(width, op, logic, old, update, result) \ { \ "BPF_ATOMIC | " #width ", " #op ": Test fetch: " \ #old " " #logic " " #update " = " #result, \ .u.insns_int = { \ BPF_LD_IMM64(R3, (update) | BPF_ATOMIC_POISON(width)), \ BPF_ST_MEM(width, R10, -40, old), \ BPF_ATOMIC_OP(width, op, R10, R3, -40), \ BPF_ALU32_REG(BPF_MOV, R0, R3), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, (op) & BPF_FETCH ? old : update } }, \ .stack_depth = 40, \ } /* BPF_ATOMIC | BPF_W: BPF_ADD */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_ADD, +, 0x12, 0xab, 0xbd), /* BPF_ATOMIC | BPF_W: BPF_ADD | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), /* BPF_ATOMIC | BPF_DW: BPF_ADD */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_ADD, +, 0x12, 0xab, 0xbd), /* BPF_ATOMIC | BPF_DW: BPF_ADD | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_ADD | BPF_FETCH, +, 0x12, 0xab, 0xbd), /* BPF_ATOMIC | BPF_W: BPF_AND */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_AND, &, 0x12, 0xab, 0x02), /* BPF_ATOMIC | BPF_W: BPF_AND | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), /* BPF_ATOMIC | BPF_DW: BPF_AND */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_AND, &, 0x12, 0xab, 0x02), /* BPF_ATOMIC | BPF_DW: BPF_AND | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_AND | BPF_FETCH, &, 0x12, 0xab, 0x02), /* BPF_ATOMIC | BPF_W: BPF_OR */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_OR, |, 0x12, 0xab, 0xbb), /* BPF_ATOMIC | BPF_W: BPF_OR | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), /* BPF_ATOMIC | BPF_DW: BPF_OR */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_OR, |, 0x12, 0xab, 0xbb), /* BPF_ATOMIC | BPF_DW: BPF_OR | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_OR | BPF_FETCH, |, 0x12, 0xab, 0xbb), /* BPF_ATOMIC | BPF_W: BPF_XOR */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XOR, ^, 0x12, 0xab, 0xb9), /* BPF_ATOMIC | BPF_W: BPF_XOR | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), /* BPF_ATOMIC | BPF_DW: BPF_XOR */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XOR, ^, 0x12, 0xab, 0xb9), /* BPF_ATOMIC | BPF_DW: BPF_XOR | BPF_FETCH */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XOR | BPF_FETCH, ^, 0x12, 0xab, 0xb9), /* BPF_ATOMIC | BPF_W: BPF_XCHG */ BPF_ATOMIC_OP_TEST1(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST2(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST3(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST4(BPF_W, BPF_XCHG, xchg, 0x12, 0xab, 0xab), /* BPF_ATOMIC | BPF_DW: BPF_XCHG */ BPF_ATOMIC_OP_TEST1(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab), BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab), #undef BPF_ATOMIC_POISON #undef BPF_ATOMIC_OP_TEST1 #undef BPF_ATOMIC_OP_TEST2 #undef BPF_ATOMIC_OP_TEST3 #undef BPF_ATOMIC_OP_TEST4 /* BPF_ATOMIC | BPF_W, BPF_CMPXCHG */ { "BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test successful return", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -40, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x01234567 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test successful store", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -40, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test failure return", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -40, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R0, 0x76543210), BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x01234567 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test failure store", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -40, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R0, 0x76543210), BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_LDX_MEM(BPF_W, R0, R10, -40), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x01234567 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_W, BPF_CMPXCHG: Test side effects", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -40, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R0, 0x01234567), BPF_ALU32_IMM(BPF_MOV, R3, 0x89abcdef), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R3, -40), BPF_ALU32_REG(BPF_MOV, R0, R3), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x89abcdef } }, .stack_depth = 40, }, /* BPF_ATOMIC | BPF_DW, BPF_CMPXCHG */ { "BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful return", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789abcdefULL), BPF_LD_IMM64(R2, 0xfedcba9876543210ULL), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40), BPF_JMP_REG(BPF_JNE, R0, R1, 1), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful store", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789abcdefULL), BPF_LD_IMM64(R2, 0xfedcba9876543210ULL), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_STX_MEM(BPF_DW, R10, R0, -40), BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40), BPF_LDX_MEM(BPF_DW, R0, R10, -40), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_REG(BPF_SUB, R0, R2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure return", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789abcdefULL), BPF_LD_IMM64(R2, 0xfedcba9876543210ULL), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_ALU64_IMM(BPF_ADD, R0, 1), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40), BPF_JMP_REG(BPF_JNE, R0, R1, 1), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure store", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789abcdefULL), BPF_LD_IMM64(R2, 0xfedcba9876543210ULL), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_ALU64_IMM(BPF_ADD, R0, 1), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40), BPF_LDX_MEM(BPF_DW, R0, R10, -40), BPF_JMP_REG(BPF_JNE, R0, R1, 1), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 40, }, { "BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test side effects", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789abcdefULL), BPF_LD_IMM64(R2, 0xfedcba9876543210ULL), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_STX_MEM(BPF_DW, R10, R1, -40), BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40), BPF_LD_IMM64(R0, 0xfedcba9876543210ULL), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_REG(BPF_SUB, R0, R2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 40, }, /* BPF_JMP32 | BPF_JEQ | BPF_K */ { "JMP32_JEQ_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JEQ, R0, 321, 1), BPF_JMP32_IMM(BPF_JEQ, R0, 123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JEQ_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 12345678), BPF_JMP32_IMM(BPF_JEQ, R0, 12345678 & 0xffff, 1), BPF_JMP32_IMM(BPF_JEQ, R0, 12345678, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 12345678 } } }, { "JMP32_JEQ_K: negative immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JEQ, R0, 123, 1), BPF_JMP32_IMM(BPF_JEQ, R0, -123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, /* BPF_JMP32 | BPF_JEQ | BPF_X */ { "JMP32_JEQ_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1234), BPF_ALU32_IMM(BPF_MOV, R1, 4321), BPF_JMP32_REG(BPF_JEQ, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 1234), BPF_JMP32_REG(BPF_JEQ, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1234 } } }, /* BPF_JMP32 | BPF_JNE | BPF_K */ { "JMP32_JNE_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JNE, R0, 123, 1), BPF_JMP32_IMM(BPF_JNE, R0, 321, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JNE_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 12345678), BPF_JMP32_IMM(BPF_JNE, R0, 12345678, 1), BPF_JMP32_IMM(BPF_JNE, R0, 12345678 & 0xffff, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 12345678 } } }, { "JMP32_JNE_K: negative immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JNE, R0, -123, 1), BPF_JMP32_IMM(BPF_JNE, R0, 123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, /* BPF_JMP32 | BPF_JNE | BPF_X */ { "JMP32_JNE_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1234), BPF_ALU32_IMM(BPF_MOV, R1, 1234), BPF_JMP32_REG(BPF_JNE, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 4321), BPF_JMP32_REG(BPF_JNE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1234 } } }, /* BPF_JMP32 | BPF_JSET | BPF_K */ { "JMP32_JSET_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP32_IMM(BPF_JSET, R0, 2, 1), BPF_JMP32_IMM(BPF_JSET, R0, 3, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } } }, { "JMP32_JSET_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x40000000), BPF_JMP32_IMM(BPF_JSET, R0, 0x3fffffff, 1), BPF_JMP32_IMM(BPF_JSET, R0, 0x60000000, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0x40000000 } } }, { "JMP32_JSET_K: negative immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JSET, R0, -1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, /* BPF_JMP32 | BPF_JSET | BPF_X */ { "JMP32_JSET_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 8), BPF_ALU32_IMM(BPF_MOV, R1, 7), BPF_JMP32_REG(BPF_JSET, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 8 | 2), BPF_JMP32_REG(BPF_JNE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 8 } } }, /* BPF_JMP32 | BPF_JGT | BPF_K */ { "JMP32_JGT_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JGT, R0, 123, 1), BPF_JMP32_IMM(BPF_JGT, R0, 122, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JGT_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_JMP32_IMM(BPF_JGT, R0, 0xffffffff, 1), BPF_JMP32_IMM(BPF_JGT, R0, 0xfffffffd, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JGT | BPF_X */ { "JMP32_JGT_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_JMP32_REG(BPF_JGT, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd), BPF_JMP32_REG(BPF_JGT, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JGE | BPF_K */ { "JMP32_JGE_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JGE, R0, 124, 1), BPF_JMP32_IMM(BPF_JGE, R0, 123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JGE_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_JMP32_IMM(BPF_JGE, R0, 0xffffffff, 1), BPF_JMP32_IMM(BPF_JGE, R0, 0xfffffffe, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JGE | BPF_X */ { "JMP32_JGE_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_JMP32_REG(BPF_JGE, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffe), BPF_JMP32_REG(BPF_JGE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JLT | BPF_K */ { "JMP32_JLT_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JLT, R0, 123, 1), BPF_JMP32_IMM(BPF_JLT, R0, 124, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JLT_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_JMP32_IMM(BPF_JLT, R0, 0xfffffffd, 1), BPF_JMP32_IMM(BPF_JLT, R0, 0xffffffff, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JLT | BPF_X */ { "JMP32_JLT_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd), BPF_JMP32_REG(BPF_JLT, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff), BPF_JMP32_REG(BPF_JLT, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JLE | BPF_K */ { "JMP32_JLE_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 123), BPF_JMP32_IMM(BPF_JLE, R0, 122, 1), BPF_JMP32_IMM(BPF_JLE, R0, 123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } } }, { "JMP32_JLE_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_JMP32_IMM(BPF_JLE, R0, 0xfffffffd, 1), BPF_JMP32_IMM(BPF_JLE, R0, 0xfffffffe, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JLE | BPF_X */ { "JMP32_JLE_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0xfffffffe), BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffd), BPF_JMP32_REG(BPF_JLE, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, 0xfffffffe), BPF_JMP32_REG(BPF_JLE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xfffffffe } } }, /* BPF_JMP32 | BPF_JSGT | BPF_K */ { "JMP32_JSGT_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JSGT, R0, -123, 1), BPF_JMP32_IMM(BPF_JSGT, R0, -124, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "JMP32_JSGT_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_JMP32_IMM(BPF_JSGT, R0, -12345678, 1), BPF_JMP32_IMM(BPF_JSGT, R0, -12345679, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSGT | BPF_X */ { "JMP32_JSGT_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_ALU32_IMM(BPF_MOV, R1, -12345678), BPF_JMP32_REG(BPF_JSGT, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, -12345679), BPF_JMP32_REG(BPF_JSGT, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSGE | BPF_K */ { "JMP32_JSGE_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JSGE, R0, -122, 1), BPF_JMP32_IMM(BPF_JSGE, R0, -123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "JMP32_JSGE_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_JMP32_IMM(BPF_JSGE, R0, -12345677, 1), BPF_JMP32_IMM(BPF_JSGE, R0, -12345678, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSGE | BPF_X */ { "JMP32_JSGE_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_ALU32_IMM(BPF_MOV, R1, -12345677), BPF_JMP32_REG(BPF_JSGE, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, -12345678), BPF_JMP32_REG(BPF_JSGE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSLT | BPF_K */ { "JMP32_JSLT_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JSLT, R0, -123, 1), BPF_JMP32_IMM(BPF_JSLT, R0, -122, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "JMP32_JSLT_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_JMP32_IMM(BPF_JSLT, R0, -12345678, 1), BPF_JMP32_IMM(BPF_JSLT, R0, -12345677, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSLT | BPF_X */ { "JMP32_JSLT_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_ALU32_IMM(BPF_MOV, R1, -12345678), BPF_JMP32_REG(BPF_JSLT, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, -12345677), BPF_JMP32_REG(BPF_JSLT, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSLE | BPF_K */ { "JMP32_JSLE_K: Small immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -123), BPF_JMP32_IMM(BPF_JSLE, R0, -124, 1), BPF_JMP32_IMM(BPF_JSLE, R0, -123, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -123 } } }, { "JMP32_JSLE_K: Large immediate", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_JMP32_IMM(BPF_JSLE, R0, -12345679, 1), BPF_JMP32_IMM(BPF_JSLE, R0, -12345678, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP32 | BPF_JSLE | BPF_K */ { "JMP32_JSLE_X", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, -12345678), BPF_ALU32_IMM(BPF_MOV, R1, -12345679), BPF_JMP32_REG(BPF_JSLE, R0, R1, 2), BPF_ALU32_IMM(BPF_MOV, R1, -12345678), BPF_JMP32_REG(BPF_JSLE, R0, R1, 1), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, -12345678 } } }, /* BPF_JMP | BPF_EXIT */ { "JMP_EXIT", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0x4711), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0x4712), }, INTERNAL, { }, { { 0, 0x4711 } }, }, /* BPF_JMP | BPF_JA */ { "JMP_JA: Unconditional jump: if (true) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP32 | BPF_JA */ { "JMP32_JA: Unconditional jump: if (true) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_JMP32_IMM(BPF_JA, 0, 1, 0), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSLT | BPF_K */ { "JMP_JSLT_K: Signed jump: if (-2 < -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xfffffffffffffffeLL), BPF_JMP_IMM(BPF_JSLT, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLT_K: Signed jump: if (-1 < -1) return 0", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSLT, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSGT | BPF_K */ { "JMP_JSGT_K: Signed jump: if (-1 > -2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSGT, R1, -2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGT_K: Signed jump: if (-1 > -1) return 0", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSGT, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSLE | BPF_K */ { "JMP_JSLE_K: Signed jump: if (-2 <= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xfffffffffffffffeLL), BPF_JMP_IMM(BPF_JSLE, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLE_K: Signed jump: if (-1 <= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSLE, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLE_K: Signed jump: value walk 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JSLE, R1, 0, 6), BPF_ALU64_IMM(BPF_SUB, R1, 1), BPF_JMP_IMM(BPF_JSLE, R1, 0, 4), BPF_ALU64_IMM(BPF_SUB, R1, 1), BPF_JMP_IMM(BPF_JSLE, R1, 0, 2), BPF_ALU64_IMM(BPF_SUB, R1, 1), BPF_JMP_IMM(BPF_JSLE, R1, 0, 1), BPF_EXIT_INSN(), /* bad exit */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLE_K: Signed jump: value walk 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JSLE, R1, 0, 4), BPF_ALU64_IMM(BPF_SUB, R1, 2), BPF_JMP_IMM(BPF_JSLE, R1, 0, 2), BPF_ALU64_IMM(BPF_SUB, R1, 2), BPF_JMP_IMM(BPF_JSLE, R1, 0, 1), BPF_EXIT_INSN(), /* bad exit */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSGE | BPF_K */ { "JMP_JSGE_K: Signed jump: if (-1 >= -2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSGE, R1, -2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGE_K: Signed jump: if (-1 >= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 0xffffffffffffffffLL), BPF_JMP_IMM(BPF_JSGE, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGE_K: Signed jump: value walk 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -3), BPF_JMP_IMM(BPF_JSGE, R1, 0, 6), BPF_ALU64_IMM(BPF_ADD, R1, 1), BPF_JMP_IMM(BPF_JSGE, R1, 0, 4), BPF_ALU64_IMM(BPF_ADD, R1, 1), BPF_JMP_IMM(BPF_JSGE, R1, 0, 2), BPF_ALU64_IMM(BPF_ADD, R1, 1), BPF_JMP_IMM(BPF_JSGE, R1, 0, 1), BPF_EXIT_INSN(), /* bad exit */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGE_K: Signed jump: value walk 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -3), BPF_JMP_IMM(BPF_JSGE, R1, 0, 4), BPF_ALU64_IMM(BPF_ADD, R1, 2), BPF_JMP_IMM(BPF_JSGE, R1, 0, 2), BPF_ALU64_IMM(BPF_ADD, R1, 2), BPF_JMP_IMM(BPF_JSGE, R1, 0, 1), BPF_EXIT_INSN(), /* bad exit */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JGT | BPF_K */ { "JMP_JGT_K: if (3 > 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JGT, R1, 2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JGT_K: Unsigned jump: if (-1 > 1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_JMP_IMM(BPF_JGT, R1, 1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JLT | BPF_K */ { "JMP_JLT_K: if (2 < 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 2), BPF_JMP_IMM(BPF_JLT, R1, 3, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JGT_K: Unsigned jump: if (1 < -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 1), BPF_JMP_IMM(BPF_JLT, R1, -1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JGE | BPF_K */ { "JMP_JGE_K: if (3 >= 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JGE, R1, 2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JLE | BPF_K */ { "JMP_JLE_K: if (2 <= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 2), BPF_JMP_IMM(BPF_JLE, R1, 3, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JGT | BPF_K jump backwards */ { "JMP_JGT_K: if (3 > 2) return 1 (jump backwards)", .u.insns_int = { BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */ BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */ BPF_LD_IMM64(R1, 3), /* note: this takes 2 insns */ BPF_JMP_IMM(BPF_JGT, R1, 2, -6), /* goto out */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JGE_K: if (3 >= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JGE, R1, 3, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JLT | BPF_K jump backwards */ { "JMP_JGT_K: if (2 < 3) return 1 (jump backwards)", .u.insns_int = { BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */ BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */ BPF_LD_IMM64(R1, 2), /* note: this takes 2 insns */ BPF_JMP_IMM(BPF_JLT, R1, 3, -6), /* goto out */ BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JLE_K: if (3 <= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JLE, R1, 3, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JNE | BPF_K */ { "JMP_JNE_K: if (3 != 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JNE, R1, 2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JEQ | BPF_K */ { "JMP_JEQ_K: if (3 == 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JEQ, R1, 3, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSET | BPF_K */ { "JMP_JSET_K: if (0x3 & 0x2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JSET, R1, 2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSET_K: if (0x3 & 0xffffffff) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_JMP_IMM(BPF_JSET, R1, 0xffffffff, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSGT | BPF_X */ { "JMP_JSGT_X: Signed jump: if (-1 > -2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -2), BPF_JMP_REG(BPF_JSGT, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGT_X: Signed jump: if (-1 > -1) return 0", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -1), BPF_JMP_REG(BPF_JSGT, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSLT | BPF_X */ { "JMP_JSLT_X: Signed jump: if (-2 < -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -2), BPF_JMP_REG(BPF_JSLT, R2, R1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLT_X: Signed jump: if (-1 < -1) return 0", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -1), BPF_JMP_REG(BPF_JSLT, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSGE | BPF_X */ { "JMP_JSGE_X: Signed jump: if (-1 >= -2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -2), BPF_JMP_REG(BPF_JSGE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSGE_X: Signed jump: if (-1 >= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -1), BPF_JMP_REG(BPF_JSGE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSLE | BPF_X */ { "JMP_JSLE_X: Signed jump: if (-2 <= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -2), BPF_JMP_REG(BPF_JSLE, R2, R1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSLE_X: Signed jump: if (-1 <= -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, -1), BPF_JMP_REG(BPF_JSLE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JGT | BPF_X */ { "JMP_JGT_X: if (3 > 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JGT, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JGT_X: Unsigned jump: if (-1 > 1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, 1), BPF_JMP_REG(BPF_JGT, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JLT | BPF_X */ { "JMP_JLT_X: if (2 < 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JLT, R2, R1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JLT_X: Unsigned jump: if (1 < -1) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, -1), BPF_LD_IMM64(R2, 1), BPF_JMP_REG(BPF_JLT, R2, R1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JGE | BPF_X */ { "JMP_JGE_X: if (3 >= 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JGE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JGE_X: if (3 >= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 3), BPF_JMP_REG(BPF_JGE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JLE | BPF_X */ { "JMP_JLE_X: if (2 <= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JLE, R2, R1, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JLE_X: if (3 <= 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 3), BPF_JMP_REG(BPF_JLE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { /* Mainly testing JIT + imm64 here. */ "JMP_JGE_X: ldimm64 test 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JGE, R1, R2, 2), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xeeeeeeeeU } }, }, { "JMP_JGE_X: ldimm64 test 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JGE, R1, R2, 0), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffffU } }, }, { "JMP_JGE_X: ldimm64 test 3", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JGE, R1, R2, 4), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JLE_X: ldimm64 test 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JLE, R2, R1, 2), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xeeeeeeeeU } }, }, { "JMP_JLE_X: ldimm64 test 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JLE, R2, R1, 0), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0xffffffffU } }, }, { "JMP_JLE_X: ldimm64 test 3", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JLE, R2, R1, 4), BPF_LD_IMM64(R0, 0xffffffffffffffffULL), BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JNE | BPF_X */ { "JMP_JNE_X: if (3 != 2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JNE, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JEQ | BPF_X */ { "JMP_JEQ_X: if (3 == 3) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 3), BPF_JMP_REG(BPF_JEQ, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, /* BPF_JMP | BPF_JSET | BPF_X */ { "JMP_JSET_X: if (0x3 & 0x2) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 2), BPF_JMP_REG(BPF_JSET, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JSET_X: if (0x3 & 0xffffffff) return 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R0, 0), BPF_LD_IMM64(R1, 3), BPF_LD_IMM64(R2, 0xffffffff), BPF_JMP_REG(BPF_JSET, R1, R2, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JMP_JA: Jump, gap, jump, ...", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xababcbac } }, .fill_helper = bpf_fill_ja, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Maximum possible literals", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xffffffff } }, .fill_helper = bpf_fill_maxinsns1, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Single literal", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xfefefefe } }, .fill_helper = bpf_fill_maxinsns2, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Run/add until end", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0x947bf368 } }, .fill_helper = bpf_fill_maxinsns3, }, { "BPF_MAXINSNS: Too many instructions", { }, CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL, { }, { }, .fill_helper = bpf_fill_maxinsns4, .expected_errcode = -EINVAL, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Very long jump", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xabababab } }, .fill_helper = bpf_fill_maxinsns5, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Ctx heavy transformations", { }, CLASSIC, { }, { { 1, SKB_VLAN_PRESENT }, { 10, SKB_VLAN_PRESENT } }, .fill_helper = bpf_fill_maxinsns6, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Call heavy transformations", { }, CLASSIC | FLAG_NO_DATA, { }, { { 1, 0 }, { 10, 0 } }, .fill_helper = bpf_fill_maxinsns7, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Jump heavy test", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xffffffff } }, .fill_helper = bpf_fill_maxinsns8, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Very long jump backwards", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0xcbababab } }, .fill_helper = bpf_fill_maxinsns9, }, { /* Mainly checking JIT here. */ "BPF_MAXINSNS: Edge hopping nuthouse", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0xabababac } }, .fill_helper = bpf_fill_maxinsns10, }, { "BPF_MAXINSNS: Jump, gap, jump, ...", { }, CLASSIC | FLAG_NO_DATA, { }, { { 0, 0xababcbac } }, .fill_helper = bpf_fill_maxinsns11, }, { "BPF_MAXINSNS: jump over MSH", { }, CLASSIC | FLAG_EXPECTED_FAIL, { 0xfa, 0xfb, 0xfc, 0xfd, }, { { 4, 0xabababab } }, .fill_helper = bpf_fill_maxinsns12, .expected_errcode = -EINVAL, }, { "BPF_MAXINSNS: exec all MSH", { }, CLASSIC, { 0xfa, 0xfb, 0xfc, 0xfd, }, { { 4, 0xababab83 } }, .fill_helper = bpf_fill_maxinsns13, }, { "BPF_MAXINSNS: ld_abs+get_processor_id", { }, CLASSIC, { }, { { 1, 0xbee } }, .fill_helper = bpf_fill_ld_abs_get_processor_id, }, /* * LD_IND / LD_ABS on fragmented SKBs */ { "LD_IND byte frag", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x40), BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x42} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_IND halfword frag", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x40), BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x4), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x4344} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_IND word frag", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x40), BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x8), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x21071983} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_IND halfword mixed head/frag", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x40), BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { [0x3e] = 0x25, [0x3f] = 0x05, }, { {0x40, 0x0519} }, .frag_data = { 0x19, 0x82 }, }, { "LD_IND word mixed head/frag", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x40), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { [0x3e] = 0x25, [0x3f] = 0x05, }, { {0x40, 0x25051982} }, .frag_data = { 0x19, 0x82 }, }, { "LD_ABS byte frag", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x40), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x42} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_ABS halfword frag", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x44), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x4344} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_ABS word frag", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x48), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { }, { {0x40, 0x21071983} }, .frag_data = { 0x42, 0x00, 0x00, 0x00, 0x43, 0x44, 0x00, 0x00, 0x21, 0x07, 0x19, 0x83, }, }, { "LD_ABS halfword mixed head/frag", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { [0x3e] = 0x25, [0x3f] = 0x05, }, { {0x40, 0x0519} }, .frag_data = { 0x19, 0x82 }, }, { "LD_ABS word mixed head/frag", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3e), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_SKB_FRAG, { [0x3e] = 0x25, [0x3f] = 0x05, }, { {0x40, 0x25051982} }, .frag_data = { 0x19, 0x82 }, }, /* * LD_IND / LD_ABS on non fragmented SKBs */ { /* * this tests that the JIT/interpreter correctly resets X * before using it in an LD_IND instruction. */ "LD_IND byte default X", .u.insns = { BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1] = 0x42 }, { {0x40, 0x42 } }, }, { "LD_IND byte positive offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x82 } }, }, { "LD_IND byte negative offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x05 } }, }, { "LD_IND byte positive offset, all ff", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xff } }, }, { "LD_IND byte positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_IND byte negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 } }, }, { "LD_IND byte negative offset, multiple calls", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3b), BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 1), BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 2), BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 3), BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 4), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x82 }, }, }, { "LD_IND halfword positive offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x2), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, }, { {0x40, 0xdd88 } }, }, { "LD_IND halfword negative offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x2), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, }, { {0x40, 0xbb66 } }, }, { "LD_IND halfword unaligned", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, }, { {0x40, 0x66cc } }, }, { "LD_IND halfword positive offset, all ff", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3d), BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xffff } }, }, { "LD_IND halfword positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_IND halfword negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 } }, }, { "LD_IND word positive offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x4), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xee99ffaa } }, }, { "LD_IND word negative offset", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x4), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xaa55bb66 } }, }, { "LD_IND word unaligned (addr & 3 == 2)", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xbb66cc77 } }, }, { "LD_IND word unaligned (addr & 3 == 1)", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0x55bb66cc } }, }, { "LD_IND word unaligned (addr & 3 == 3)", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x20), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0x66cc77dd } }, }, { "LD_IND word positive offset, all ff", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3b), BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xffffffff } }, }, { "LD_IND word positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_IND word negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LDX | BPF_IMM, 0x3e), BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 } }, }, { "LD_ABS byte", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x20), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xcc } }, }, { "LD_ABS byte positive offset, all ff", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xff } }, }, { "LD_ABS byte positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_ABS byte negative offset, out of bounds load", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, -1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_EXPECTED_FAIL, .expected_errcode = -EINVAL, }, { "LD_ABS byte negative offset, in bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x82 }, }, }, { "LD_ABS byte negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_ABS byte negative offset, multiple calls", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3c), BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3d), BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3e), BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x82 }, }, }, { "LD_ABS halfword", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x22), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xdd88 } }, }, { "LD_ABS halfword unaligned", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x25), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0x99ff } }, }, { "LD_ABS halfword positive offset, all ff", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3e), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xffff } }, }, { "LD_ABS halfword positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_ABS halfword negative offset, out of bounds load", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, -1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_EXPECTED_FAIL, .expected_errcode = -EINVAL, }, { "LD_ABS halfword negative offset, in bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x1982 }, }, }, { "LD_ABS halfword negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_ABS word", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x1c), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xaa55bb66 } }, }, { "LD_ABS word unaligned (addr & 3 == 2)", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x22), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0xdd88ee99 } }, }, { "LD_ABS word unaligned (addr & 3 == 1)", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x21), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0x77dd88ee } }, }, { "LD_ABS word unaligned (addr & 3 == 3)", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x23), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x1c] = 0xaa, [0x1d] = 0x55, [0x1e] = 0xbb, [0x1f] = 0x66, [0x20] = 0xcc, [0x21] = 0x77, [0x22] = 0xdd, [0x23] = 0x88, [0x24] = 0xee, [0x25] = 0x99, [0x26] = 0xff, [0x27] = 0xaa, }, { {0x40, 0x88ee99ff } }, }, { "LD_ABS word positive offset, all ff", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3c), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff }, { {0x40, 0xffffffff } }, }, { "LD_ABS word positive offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LD_ABS word negative offset, out of bounds load", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, -1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_EXPECTED_FAIL, .expected_errcode = -EINVAL, }, { "LD_ABS word negative offset, in bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x25051982 }, }, }, { "LD_ABS word negative offset, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x3f, 0 }, }, }, { "LDX_MSH standalone, preserved A", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0xffeebbaa }, }, }, { "LDX_MSH standalone, preserved A 2", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0x175e9d63), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3d), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3f), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x175e9d63 }, }, }, { "LDX_MSH standalone, test result 1", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x14 }, }, }, { "LDX_MSH standalone, test result 2", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x24 }, }, }, { "LDX_MSH standalone, negative offset", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, -1), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0 }, }, }, { "LDX_MSH standalone, negative offset 2", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, SKF_LL_OFF + 0x3e), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0x24 }, }, }, { "LDX_MSH standalone, out of bounds", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa), BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x40), BPF_STMT(BPF_MISC | BPF_TXA, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC, { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 }, { {0x40, 0 }, }, }, /* * verify that the interpreter or JIT correctly sets A and X * to 0. */ { "ADD default X", .u.insns = { /* * A = 0x42 * A = A + X * ret A */ BPF_STMT(BPF_LD | BPF_IMM, 0x42), BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x42 } }, }, { "ADD default A", .u.insns = { /* * A = A + 0x42 * ret A */ BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0x42), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x42 } }, }, { "SUB default X", .u.insns = { /* * A = 0x66 * A = A - X * ret A */ BPF_STMT(BPF_LD | BPF_IMM, 0x66), BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x66 } }, }, { "SUB default A", .u.insns = { /* * A = A - -0x66 * ret A */ BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, -0x66), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x66 } }, }, { "MUL default X", .u.insns = { /* * A = 0x42 * A = A * X * ret A */ BPF_STMT(BPF_LD | BPF_IMM, 0x42), BPF_STMT(BPF_ALU | BPF_MUL | BPF_X, 0), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "MUL default A", .u.insns = { /* * A = A * 0x66 * ret A */ BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 0x66), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "DIV default X", .u.insns = { /* * A = 0x42 * A = A / X ; this halt the filter execution if X is 0 * ret 0x42 */ BPF_STMT(BPF_LD | BPF_IMM, 0x42), BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0), BPF_STMT(BPF_RET | BPF_K, 0x42), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "DIV default A", .u.insns = { /* * A = A / 1 * ret A */ BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "MOD default X", .u.insns = { /* * A = 0x42 * A = A mod X ; this halt the filter execution if X is 0 * ret 0x42 */ BPF_STMT(BPF_LD | BPF_IMM, 0x42), BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0), BPF_STMT(BPF_RET | BPF_K, 0x42), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "MOD default A", .u.insns = { /* * A = A mod 1 * ret A */ BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x1), BPF_STMT(BPF_RET | BPF_A, 0x0), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x0 } }, }, { "JMP EQ default A", .u.insns = { /* * cmp A, 0x0, 0, 1 * ret 0x42 * ret 0x66 */ BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 0x42), BPF_STMT(BPF_RET | BPF_K, 0x66), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x42 } }, }, { "JMP EQ default X", .u.insns = { /* * A = 0x0 * cmp A, X, 0, 1 * ret 0x42 * ret 0x66 */ BPF_STMT(BPF_LD | BPF_IMM, 0x0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0x0, 0, 1), BPF_STMT(BPF_RET | BPF_K, 0x42), BPF_STMT(BPF_RET | BPF_K, 0x66), }, CLASSIC | FLAG_NO_DATA, {}, { {0x1, 0x42 } }, }, /* Checking interpreter vs JIT wrt signed extended imms. */ { "JNE signed compare, test 1", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12), BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000), BPF_MOV64_REG(R2, R1), BPF_ALU64_REG(BPF_AND, R2, R3), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JNE, R2, -17104896, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JNE signed compare, test 2", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12), BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000), BPF_MOV64_REG(R2, R1), BPF_ALU64_REG(BPF_AND, R2, R3), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JNE, R2, 0xfefb0000, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JNE signed compare, test 3", .u.insns_int = { BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12), BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000), BPF_ALU32_IMM(BPF_MOV, R4, 0xfefb0000), BPF_MOV64_REG(R2, R1), BPF_ALU64_REG(BPF_AND, R2, R3), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JNE, R2, R4, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "JNE signed compare, test 4", .u.insns_int = { BPF_LD_IMM64(R1, -17104896), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JNE, R1, -17104896, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "JNE signed compare, test 5", .u.insns_int = { BPF_LD_IMM64(R1, 0xfefb0000), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JNE, R1, 0xfefb0000, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 1 } }, }, { "JNE signed compare, test 6", .u.insns_int = { BPF_LD_IMM64(R1, 0x7efb0000), BPF_ALU32_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JNE, R1, 0x7efb0000, 1), BPF_ALU32_IMM(BPF_MOV, R0, 2), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 2 } }, }, { "JNE signed compare, test 7", .u.insns = { BPF_STMT(BPF_LD | BPF_IMM, 0xffff0000), BPF_STMT(BPF_MISC | BPF_TAX, 0), BPF_STMT(BPF_LD | BPF_IMM, 0xfefbbc12), BPF_STMT(BPF_ALU | BPF_AND | BPF_X, 0), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0xfefb0000, 1, 0), BPF_STMT(BPF_RET | BPF_K, 1), BPF_STMT(BPF_RET | BPF_K, 2), }, CLASSIC | FLAG_NO_DATA, {}, { { 0, 2 } }, }, /* BPF_LDX_MEM with operand aliasing */ { "LDX_MEM_B: operand register aliasing", .u.insns_int = { BPF_ST_MEM(BPF_B, R10, -8, 123), BPF_MOV64_REG(R0, R10), BPF_LDX_MEM(BPF_B, R0, R0, -8), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123 } }, .stack_depth = 8, }, { "LDX_MEM_H: operand register aliasing", .u.insns_int = { BPF_ST_MEM(BPF_H, R10, -8, 12345), BPF_MOV64_REG(R0, R10), BPF_LDX_MEM(BPF_H, R0, R0, -8), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 12345 } }, .stack_depth = 8, }, { "LDX_MEM_W: operand register aliasing", .u.insns_int = { BPF_ST_MEM(BPF_W, R10, -8, 123456789), BPF_MOV64_REG(R0, R10), BPF_LDX_MEM(BPF_W, R0, R0, -8), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 123456789 } }, .stack_depth = 8, }, { "LDX_MEM_DW: operand register aliasing", .u.insns_int = { BPF_LD_IMM64(R1, 0x123456789abcdefULL), BPF_STX_MEM(BPF_DW, R10, R1, -8), BPF_MOV64_REG(R0, R10), BPF_LDX_MEM(BPF_DW, R0, R0, -8), BPF_ALU64_REG(BPF_SUB, R0, R1), BPF_MOV64_REG(R1, R0), BPF_ALU64_IMM(BPF_RSH, R1, 32), BPF_ALU64_REG(BPF_OR, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, /* * Register (non-)clobbering tests for the case where a JIT implements * complex ALU or ATOMIC operations via function calls. If so, the * function call must be transparent to the eBPF registers. The JIT * must therefore save and restore relevant registers across the call. * The following tests check that the eBPF registers retain their * values after such an operation. Mainly intended for complex ALU * and atomic operation, but we run it for all. You never know... * * Note that each operations should be tested twice with different * destinations, to check preservation for all registers. */ #define BPF_TEST_CLOBBER_ALU(alu, op, dst, src) \ { \ #alu "_" #op " to " #dst ": no clobbering", \ .u.insns_int = { \ BPF_ALU64_IMM(BPF_MOV, R0, R0), \ BPF_ALU64_IMM(BPF_MOV, R1, R1), \ BPF_ALU64_IMM(BPF_MOV, R2, R2), \ BPF_ALU64_IMM(BPF_MOV, R3, R3), \ BPF_ALU64_IMM(BPF_MOV, R4, R4), \ BPF_ALU64_IMM(BPF_MOV, R5, R5), \ BPF_ALU64_IMM(BPF_MOV, R6, R6), \ BPF_ALU64_IMM(BPF_MOV, R7, R7), \ BPF_ALU64_IMM(BPF_MOV, R8, R8), \ BPF_ALU64_IMM(BPF_MOV, R9, R9), \ BPF_##alu(BPF_ ##op, dst, src), \ BPF_ALU32_IMM(BPF_MOV, dst, dst), \ BPF_JMP_IMM(BPF_JNE, R0, R0, 10), \ BPF_JMP_IMM(BPF_JNE, R1, R1, 9), \ BPF_JMP_IMM(BPF_JNE, R2, R2, 8), \ BPF_JMP_IMM(BPF_JNE, R3, R3, 7), \ BPF_JMP_IMM(BPF_JNE, R4, R4, 6), \ BPF_JMP_IMM(BPF_JNE, R5, R5, 5), \ BPF_JMP_IMM(BPF_JNE, R6, R6, 4), \ BPF_JMP_IMM(BPF_JNE, R7, R7, 3), \ BPF_JMP_IMM(BPF_JNE, R8, R8, 2), \ BPF_JMP_IMM(BPF_JNE, R9, R9, 1), \ BPF_ALU64_IMM(BPF_MOV, R0, 1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 1 } } \ } /* ALU64 operations, register clobbering */ BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R9, 123456789), /* ALU32 immediate operations, register clobbering */ BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R8, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R9, 12), BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R9, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R8, 123456789), BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R9, 123456789), /* ALU64 register operations, register clobbering */ BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R9, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R8, R1), BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R9, R1), /* ALU32 register operations, register clobbering */ BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R9, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R8, R1), BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R9, R1), #undef BPF_TEST_CLOBBER_ALU #define BPF_TEST_CLOBBER_ATOMIC(width, op) \ { \ "Atomic_" #width " " #op ": no clobbering", \ .u.insns_int = { \ BPF_ALU64_IMM(BPF_MOV, R0, 0), \ BPF_ALU64_IMM(BPF_MOV, R1, 1), \ BPF_ALU64_IMM(BPF_MOV, R2, 2), \ BPF_ALU64_IMM(BPF_MOV, R3, 3), \ BPF_ALU64_IMM(BPF_MOV, R4, 4), \ BPF_ALU64_IMM(BPF_MOV, R5, 5), \ BPF_ALU64_IMM(BPF_MOV, R6, 6), \ BPF_ALU64_IMM(BPF_MOV, R7, 7), \ BPF_ALU64_IMM(BPF_MOV, R8, 8), \ BPF_ALU64_IMM(BPF_MOV, R9, 9), \ BPF_ST_MEM(width, R10, -8, \ (op) == BPF_CMPXCHG ? 0 : \ (op) & BPF_FETCH ? 1 : 0), \ BPF_ATOMIC_OP(width, op, R10, R1, -8), \ BPF_JMP_IMM(BPF_JNE, R0, 0, 10), \ BPF_JMP_IMM(BPF_JNE, R1, 1, 9), \ BPF_JMP_IMM(BPF_JNE, R2, 2, 8), \ BPF_JMP_IMM(BPF_JNE, R3, 3, 7), \ BPF_JMP_IMM(BPF_JNE, R4, 4, 6), \ BPF_JMP_IMM(BPF_JNE, R5, 5, 5), \ BPF_JMP_IMM(BPF_JNE, R6, 6, 4), \ BPF_JMP_IMM(BPF_JNE, R7, 7, 3), \ BPF_JMP_IMM(BPF_JNE, R8, 8, 2), \ BPF_JMP_IMM(BPF_JNE, R9, 9, 1), \ BPF_ALU64_IMM(BPF_MOV, R0, 1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 1 } }, \ .stack_depth = 8, \ } /* 64-bit atomic operations, register clobbering */ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XCHG), BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_CMPXCHG), /* 32-bit atomic operations, register clobbering */ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR | BPF_FETCH), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XCHG), BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_CMPXCHG), #undef BPF_TEST_CLOBBER_ATOMIC /* Checking that ALU32 src is not zero extended in place */ #define BPF_ALU32_SRC_ZEXT(op) \ { \ "ALU32_" #op "_X: src preserved in zext", \ .u.insns_int = { \ BPF_LD_IMM64(R1, 0x0123456789acbdefULL),\ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),\ BPF_ALU64_REG(BPF_MOV, R0, R1), \ BPF_ALU32_REG(BPF_##op, R2, R1), \ BPF_ALU64_REG(BPF_SUB, R0, R1), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ } BPF_ALU32_SRC_ZEXT(MOV), BPF_ALU32_SRC_ZEXT(AND), BPF_ALU32_SRC_ZEXT(OR), BPF_ALU32_SRC_ZEXT(XOR), BPF_ALU32_SRC_ZEXT(ADD), BPF_ALU32_SRC_ZEXT(SUB), BPF_ALU32_SRC_ZEXT(MUL), BPF_ALU32_SRC_ZEXT(DIV), BPF_ALU32_SRC_ZEXT(MOD), #undef BPF_ALU32_SRC_ZEXT /* Checking that ATOMIC32 src is not zero extended in place */ #define BPF_ATOMIC32_SRC_ZEXT(op) \ { \ "ATOMIC_W_" #op ": src preserved in zext", \ .u.insns_int = { \ BPF_LD_IMM64(R0, 0x0123456789acbdefULL), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ST_MEM(BPF_W, R10, -4, 0), \ BPF_ATOMIC_OP(BPF_W, BPF_##op, R10, R1, -4), \ BPF_ALU64_REG(BPF_SUB, R0, R1), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ .stack_depth = 8, \ } BPF_ATOMIC32_SRC_ZEXT(ADD), BPF_ATOMIC32_SRC_ZEXT(AND), BPF_ATOMIC32_SRC_ZEXT(OR), BPF_ATOMIC32_SRC_ZEXT(XOR), #undef BPF_ATOMIC32_SRC_ZEXT /* Checking that CMPXCHG32 src is not zero extended in place */ { "ATOMIC_W_CMPXCHG: src preserved in zext", .u.insns_int = { BPF_LD_IMM64(R1, 0x0123456789acbdefULL), BPF_ALU64_REG(BPF_MOV, R2, R1), BPF_ALU64_REG(BPF_MOV, R0, 0), BPF_ST_MEM(BPF_W, R10, -4, 0), BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R1, -4), BPF_ALU64_REG(BPF_SUB, R1, R2), BPF_ALU64_REG(BPF_MOV, R2, R1), BPF_ALU64_IMM(BPF_RSH, R2, 32), BPF_ALU64_REG(BPF_OR, R1, R2), BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_EXIT_INSN(), }, INTERNAL, { }, { { 0, 0 } }, .stack_depth = 8, }, /* Checking that JMP32 immediate src is not zero extended in place */ #define BPF_JMP32_IMM_ZEXT(op) \ { \ "JMP32_" #op "_K: operand preserved in zext", \ .u.insns_int = { \ BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_JMP32_IMM(BPF_##op, R0, 1234, 1), \ BPF_JMP_A(0), /* Nop */ \ BPF_ALU64_REG(BPF_SUB, R0, R1), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ } BPF_JMP32_IMM_ZEXT(JEQ), BPF_JMP32_IMM_ZEXT(JNE), BPF_JMP32_IMM_ZEXT(JSET), BPF_JMP32_IMM_ZEXT(JGT), BPF_JMP32_IMM_ZEXT(JGE), BPF_JMP32_IMM_ZEXT(JLT), BPF_JMP32_IMM_ZEXT(JLE), BPF_JMP32_IMM_ZEXT(JSGT), BPF_JMP32_IMM_ZEXT(JSGE), BPF_JMP32_IMM_ZEXT(JSLT), BPF_JMP32_IMM_ZEXT(JSLE), #undef BPF_JMP2_IMM_ZEXT /* Checking that JMP32 dst & src are not zero extended in place */ #define BPF_JMP32_REG_ZEXT(op) \ { \ "JMP32_" #op "_X: operands preserved in zext", \ .u.insns_int = { \ BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\ BPF_LD_IMM64(R1, 0xfedcba9876543210ULL),\ BPF_ALU64_REG(BPF_MOV, R2, R0), \ BPF_ALU64_REG(BPF_MOV, R3, R1), \ BPF_JMP32_IMM(BPF_##op, R0, R1, 1), \ BPF_JMP_A(0), /* Nop */ \ BPF_ALU64_REG(BPF_SUB, R0, R2), \ BPF_ALU64_REG(BPF_SUB, R1, R3), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_ALU64_REG(BPF_MOV, R1, R0), \ BPF_ALU64_IMM(BPF_RSH, R1, 32), \ BPF_ALU64_REG(BPF_OR, R0, R1), \ BPF_EXIT_INSN(), \ }, \ INTERNAL, \ { }, \ { { 0, 0 } }, \ } BPF_JMP32_REG_ZEXT(JEQ), BPF_JMP32_REG_ZEXT(JNE), BPF_JMP32_REG_ZEXT(JSET), BPF_JMP32_REG_ZEXT(JGT), BPF_JMP32_REG_ZEXT(JGE), BPF_JMP32_REG_ZEXT(JLT), BPF_JMP32_REG_ZEXT(JLE), BPF_JMP32_REG_ZEXT(JSGT), BPF_JMP32_REG_ZEXT(JSGE), BPF_JMP32_REG_ZEXT(JSLT), BPF_JMP32_REG_ZEXT(JSLE), #undef BPF_JMP2_REG_ZEXT /* ALU64 K register combinations */ { "ALU64_MOV_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mov_imm_regs, }, { "ALU64_AND_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_and_imm_regs, }, { "ALU64_OR_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_or_imm_regs, }, { "ALU64_XOR_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_xor_imm_regs, }, { "ALU64_LSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_lsh_imm_regs, }, { "ALU64_RSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_rsh_imm_regs, }, { "ALU64_ARSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_arsh_imm_regs, }, { "ALU64_ADD_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_add_imm_regs, }, { "ALU64_SUB_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_sub_imm_regs, }, { "ALU64_MUL_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mul_imm_regs, }, { "ALU64_DIV_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_div_imm_regs, }, { "ALU64_MOD_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mod_imm_regs, }, /* ALU32 K registers */ { "ALU32_MOV_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mov_imm_regs, }, { "ALU32_AND_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_and_imm_regs, }, { "ALU32_OR_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_or_imm_regs, }, { "ALU32_XOR_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_xor_imm_regs, }, { "ALU32_LSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_lsh_imm_regs, }, { "ALU32_RSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_rsh_imm_regs, }, { "ALU32_ARSH_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_arsh_imm_regs, }, { "ALU32_ADD_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_add_imm_regs, }, { "ALU32_SUB_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_sub_imm_regs, }, { "ALU32_MUL_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mul_imm_regs, }, { "ALU32_DIV_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_div_imm_regs, }, { "ALU32_MOD_K: registers", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mod_imm_regs, }, /* ALU64 X register combinations */ { "ALU64_MOV_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mov_reg_pairs, }, { "ALU64_AND_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_and_reg_pairs, }, { "ALU64_OR_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_or_reg_pairs, }, { "ALU64_XOR_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_xor_reg_pairs, }, { "ALU64_LSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_lsh_reg_pairs, }, { "ALU64_RSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_rsh_reg_pairs, }, { "ALU64_ARSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_arsh_reg_pairs, }, { "ALU64_ADD_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_add_reg_pairs, }, { "ALU64_SUB_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_sub_reg_pairs, }, { "ALU64_MUL_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mul_reg_pairs, }, { "ALU64_DIV_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_div_reg_pairs, }, { "ALU64_MOD_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mod_reg_pairs, }, /* ALU32 X register combinations */ { "ALU32_MOV_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mov_reg_pairs, }, { "ALU32_AND_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_and_reg_pairs, }, { "ALU32_OR_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_or_reg_pairs, }, { "ALU32_XOR_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_xor_reg_pairs, }, { "ALU32_LSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_lsh_reg_pairs, }, { "ALU32_RSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_rsh_reg_pairs, }, { "ALU32_ARSH_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_arsh_reg_pairs, }, { "ALU32_ADD_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_add_reg_pairs, }, { "ALU32_SUB_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_sub_reg_pairs, }, { "ALU32_MUL_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mul_reg_pairs, }, { "ALU32_DIV_X: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_div_reg_pairs, }, { "ALU32_MOD_X register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mod_reg_pairs, }, /* Exhaustive test of ALU64 shift operations */ { "ALU64_LSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_lsh_imm, }, { "ALU64_RSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_rsh_imm, }, { "ALU64_ARSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_arsh_imm, }, { "ALU64_LSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_lsh_reg, }, { "ALU64_RSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_rsh_reg, }, { "ALU64_ARSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_arsh_reg, }, /* Exhaustive test of ALU32 shift operations */ { "ALU32_LSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_lsh_imm, }, { "ALU32_RSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_rsh_imm, }, { "ALU32_ARSH_K: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_arsh_imm, }, { "ALU32_LSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_lsh_reg, }, { "ALU32_RSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_rsh_reg, }, { "ALU32_ARSH_X: all shift values", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_arsh_reg, }, /* * Exhaustive test of ALU64 shift operations when * source and destination register are the same. */ { "ALU64_LSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_lsh_same_reg, }, { "ALU64_RSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_rsh_same_reg, }, { "ALU64_ARSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_arsh_same_reg, }, /* * Exhaustive test of ALU32 shift operations when * source and destination register are the same. */ { "ALU32_LSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_lsh_same_reg, }, { "ALU32_RSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_rsh_same_reg, }, { "ALU32_ARSH_X: all shift values with the same register", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_arsh_same_reg, }, /* ALU64 immediate magnitudes */ { "ALU64_MOV_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mov_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_AND_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_and_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_OR_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_or_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_XOR_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_xor_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_ADD_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_add_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_SUB_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_sub_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_MUL_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mul_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_DIV_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_div_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_MOD_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mod_imm, .nr_testruns = NR_PATTERN_RUNS, }, /* ALU32 immediate magnitudes */ { "ALU32_MOV_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mov_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_AND_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_and_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_OR_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_or_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_XOR_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_xor_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_ADD_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_add_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_SUB_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_sub_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_MUL_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mul_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_DIV_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_div_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_MOD_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mod_imm, .nr_testruns = NR_PATTERN_RUNS, }, /* ALU64 register magnitudes */ { "ALU64_MOV_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mov_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_AND_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_and_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_OR_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_or_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_XOR_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_xor_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_ADD_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_add_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_SUB_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_sub_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_MUL_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mul_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_DIV_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_div_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU64_MOD_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu64_mod_reg, .nr_testruns = NR_PATTERN_RUNS, }, /* ALU32 register magnitudes */ { "ALU32_MOV_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mov_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_AND_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_and_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_OR_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_or_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_XOR_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_xor_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_ADD_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_add_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_SUB_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_sub_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_MUL_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mul_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_DIV_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_div_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "ALU32_MOD_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_alu32_mod_reg, .nr_testruns = NR_PATTERN_RUNS, }, /* LD_IMM64 immediate magnitudes and byte patterns */ { "LD_IMM64: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_ld_imm64_magn, }, { "LD_IMM64: checker byte patterns", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_ld_imm64_checker, }, { "LD_IMM64: random positive and zero byte patterns", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_ld_imm64_pos_zero, }, { "LD_IMM64: random negative and zero byte patterns", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_ld_imm64_neg_zero, }, { "LD_IMM64: random positive and negative byte patterns", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_ld_imm64_pos_neg, }, /* 64-bit ATOMIC register combinations */ { "ATOMIC_DW_ADD: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_add_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_AND: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_and_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_OR: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_or_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_XOR: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xor_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_ADD_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_add_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_AND_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_and_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_OR_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_or_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_XOR_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xor_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_XCHG: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xchg_reg_pairs, .stack_depth = 8, }, { "ATOMIC_DW_CMPXCHG: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_cmpxchg_reg_pairs, .stack_depth = 8, }, /* 32-bit ATOMIC register combinations */ { "ATOMIC_W_ADD: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_add_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_AND: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_and_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_OR: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_or_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_XOR: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xor_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_ADD_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_add_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_AND_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_and_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_OR_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_or_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_XOR_FETCH: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xor_fetch_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_XCHG: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xchg_reg_pairs, .stack_depth = 8, }, { "ATOMIC_W_CMPXCHG: register combinations", { }, INTERNAL, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_cmpxchg_reg_pairs, .stack_depth = 8, }, /* 64-bit ATOMIC magnitudes */ { "ATOMIC_DW_ADD: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_add, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_AND: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_and, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_OR: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_or, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_XOR: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xor, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_ADD_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_add_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_AND_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_and_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_OR_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_or_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_XOR_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xor_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_XCHG: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic64_xchg, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_DW_CMPXCHG: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_cmpxchg64, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, /* 32-bit atomic magnitudes */ { "ATOMIC_W_ADD: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_add, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_AND: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_and, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_OR: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_or, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_XOR: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xor, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_ADD_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_add_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_AND_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_and_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_OR_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_or_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_XOR_FETCH: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xor_fetch, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_XCHG: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_atomic32_xchg, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, { "ATOMIC_W_CMPXCHG: all operand magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_cmpxchg32, .stack_depth = 8, .nr_testruns = NR_PATTERN_RUNS, }, /* JMP immediate magnitudes */ { "JMP_JSET_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jset_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JEQ_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jeq_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JNE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jne_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JGT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jgt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JGE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jge_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JLT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jlt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JLE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jle_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSGT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsgt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSGE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsge_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSLT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jslt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSLE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsle_imm, .nr_testruns = NR_PATTERN_RUNS, }, /* JMP register magnitudes */ { "JMP_JSET_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jset_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JEQ_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jeq_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JNE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jne_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JGT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jgt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JGE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jge_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JLT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jlt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JLE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jle_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSGT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsgt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSGE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsge_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSLT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jslt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP_JSLE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp_jsle_reg, .nr_testruns = NR_PATTERN_RUNS, }, /* JMP32 immediate magnitudes */ { "JMP32_JSET_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jset_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JEQ_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jeq_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JNE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jne_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JGT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jgt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JGE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jge_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JLT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jlt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JLE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jle_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSGT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsgt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSGE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsge_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSLT_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jslt_imm, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSLE_K: all immediate value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsle_imm, .nr_testruns = NR_PATTERN_RUNS, }, /* JMP32 register magnitudes */ { "JMP32_JSET_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jset_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JEQ_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jeq_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JNE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jne_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JGT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jgt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JGE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jge_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JLT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jlt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JLE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jle_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSGT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsgt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSGE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsge_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSLT_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jslt_reg, .nr_testruns = NR_PATTERN_RUNS, }, { "JMP32_JSLE_X: all register value magnitudes", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_jmp32_jsle_reg, .nr_testruns = NR_PATTERN_RUNS, }, /* Conditional jumps with constant decision */ { "JMP_JSET_K: imm = 0 -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JSET, R1, 0, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JLT_K: imm = 0 -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JLT, R1, 0, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JGE_K: imm = 0 -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JGE, R1, 0, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JGT_K: imm = 0xffffffff -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JGT, R1, U32_MAX, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JLE_K: imm = 0xffffffff -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_IMM(BPF_JLE, R1, U32_MAX, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP32_JSGT_K: imm = 0x7fffffff -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP32_IMM(BPF_JSGT, R1, S32_MAX, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP32_JSGE_K: imm = -0x80000000 -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP32_IMM(BPF_JSGE, R1, S32_MIN, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP32_JSLT_K: imm = -0x80000000 -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP32_IMM(BPF_JSLT, R1, S32_MIN, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP32_JSLE_K: imm = 0x7fffffff -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP32_IMM(BPF_JSLE, R1, S32_MAX, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JEQ_X: dst = src -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JEQ, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JGE_X: dst = src -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JGE, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JLE_X: dst = src -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JLE, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JSGE_X: dst = src -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JSGE, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JSLE_X: dst = src -> always taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JSLE, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, }, { "JMP_JNE_X: dst = src -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JNE, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JGT_X: dst = src -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JGT, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JLT_X: dst = src -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JLT, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JSGT_X: dst = src -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JSGT, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, { "JMP_JSLT_X: dst = src -> never taken", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 1), BPF_JMP_REG(BPF_JSLT, R1, R1, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 0 } }, }, /* Short relative jumps */ { "Short relative jump: offset=0", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R0, 0, 0), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, -1), }, INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT, { }, { { 0, 0 } }, }, { "Short relative jump: offset=1", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R0, 0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, -1), }, INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT, { }, { { 0, 0 } }, }, { "Short relative jump: offset=2", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R0, 0, 2), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, -1), }, INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT, { }, { { 0, 0 } }, }, { "Short relative jump: offset=3", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R0, 0, 3), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, -1), }, INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT, { }, { { 0, 0 } }, }, { "Short relative jump: offset=4", .u.insns_int = { BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_JMP_IMM(BPF_JEQ, R0, 0, 4), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_ALU32_IMM(BPF_ADD, R0, 1), BPF_EXIT_INSN(), BPF_ALU32_IMM(BPF_MOV, R0, -1), }, INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT, { }, { { 0, 0 } }, }, /* Conditional branch conversions */ { "Long conditional jump: taken at runtime", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_max_jmp_taken, }, { "Long conditional jump: not taken at runtime", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 2 } }, .fill_helper = bpf_fill_max_jmp_not_taken, }, { "Long conditional jump: always taken, known at JIT time", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 1 } }, .fill_helper = bpf_fill_max_jmp_always_taken, }, { "Long conditional jump: never taken, known at JIT time", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, 2 } }, .fill_helper = bpf_fill_max_jmp_never_taken, }, /* Staggered jump sequences, immediate */ { "Staggered jumps: JMP_JA", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_ja, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JEQ_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jeq_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JNE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jne_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSET_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jset_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JGT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jgt_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JGE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jge_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JLT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jlt_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JLE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jle_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSGT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsgt_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSGE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsge_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSLT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jslt_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSLE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsle_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, /* Staggered jump sequences, register */ { "Staggered jumps: JMP_JEQ_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jeq_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JNE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jne_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSET_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jset_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JGT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jgt_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JGE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jge_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JLT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jlt_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JLE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jle_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSGT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsgt_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSGE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsge_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSLT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jslt_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP_JSLE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsle_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, /* Staggered jump sequences, JMP32 immediate */ { "Staggered jumps: JMP32_JEQ_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jeq32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JNE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jne32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSET_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jset32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JGT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jgt32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JGE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jge32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JLT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jlt32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JLE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jle32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSGT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsgt32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSGE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsge32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSLT_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jslt32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSLE_K", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsle32_imm, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, /* Staggered jump sequences, JMP32 register */ { "Staggered jumps: JMP32_JEQ_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jeq32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JNE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jne32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSET_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jset32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JGT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jgt32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JGE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jge32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JLT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jlt32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JLE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jle32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSGT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsgt32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSGE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsge32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSLT_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jslt32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, { "Staggered jumps: JMP32_JSLE_X", { }, INTERNAL | FLAG_NO_DATA, { }, { { 0, MAX_STAGGERED_JMP_SIZE + 1 } }, .fill_helper = bpf_fill_staggered_jsle32_reg, .nr_testruns = NR_STAGGERED_JMP_RUNS, }, }; static struct net_device dev; static struct sk_buff *populate_skb(char *buf, int size) { struct sk_buff *skb; if (size >= MAX_DATA) return NULL; skb = alloc_skb(MAX_DATA, GFP_KERNEL); if (!skb) return NULL; __skb_put_data(skb, buf, size); /* Initialize a fake skb with test pattern. */ skb_reset_mac_header(skb); skb->protocol = htons(ETH_P_IP); skb->pkt_type = SKB_TYPE; skb->mark = SKB_MARK; skb->hash = SKB_HASH; skb->queue_mapping = SKB_QUEUE_MAP; skb->vlan_tci = SKB_VLAN_TCI; skb->vlan_proto = htons(ETH_P_IP); dev_net_set(&dev, &init_net); skb->dev = &dev; skb->dev->ifindex = SKB_DEV_IFINDEX; skb->dev->type = SKB_DEV_TYPE; skb_set_network_header(skb, min(size, ETH_HLEN)); return skb; } static void *generate_test_data(struct bpf_test *test, int sub) { struct sk_buff *skb; struct page *page; if (test->aux & FLAG_NO_DATA) return NULL; if (test->aux & FLAG_LARGE_MEM) return kmalloc(test->test[sub].data_size, GFP_KERNEL); /* Test case expects an skb, so populate one. Various * subtests generate skbs of different sizes based on * the same data. */ skb = populate_skb(test->data, test->test[sub].data_size); if (!skb) return NULL; if (test->aux & FLAG_SKB_FRAG) { /* * when the test requires a fragmented skb, add a * single fragment to the skb, filled with * test->frag_data. */ page = alloc_page(GFP_KERNEL); if (!page) goto err_kfree_skb; memcpy(page_address(page), test->frag_data, MAX_DATA); skb_add_rx_frag(skb, 0, page, 0, MAX_DATA, MAX_DATA); } return skb; err_kfree_skb: kfree_skb(skb); return NULL; } static void release_test_data(const struct bpf_test *test, void *data) { if (test->aux & FLAG_NO_DATA) return; if (test->aux & FLAG_LARGE_MEM) kfree(data); else kfree_skb(data); } static int filter_length(int which) { struct sock_filter *fp; int len; if (tests[which].fill_helper) return tests[which].u.ptr.len; fp = tests[which].u.insns; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].k != 0) break; return len + 1; } static void *filter_pointer(int which) { if (tests[which].fill_helper) return tests[which].u.ptr.insns; else return tests[which].u.insns; } static struct bpf_prog *generate_filter(int which, int *err) { __u8 test_type = tests[which].aux & TEST_TYPE_MASK; unsigned int flen = filter_length(which); void *fptr = filter_pointer(which); struct sock_fprog_kern fprog; struct bpf_prog *fp; switch (test_type) { case CLASSIC: fprog.filter = fptr; fprog.len = flen; *err = bpf_prog_create(&fp, &fprog); if (tests[which].aux & FLAG_EXPECTED_FAIL) { if (*err == tests[which].expected_errcode) { pr_cont("PASS\n"); /* Verifier rejected filter as expected. */ *err = 0; return NULL; } else { pr_cont("UNEXPECTED_PASS\n"); /* Verifier didn't reject the test that's * bad enough, just return! */ *err = -EINVAL; return NULL; } } if (*err) { pr_cont("FAIL to prog_create err=%d len=%d\n", *err, fprog.len); return NULL; } break; case INTERNAL: fp = bpf_prog_alloc(bpf_prog_size(flen), 0); if (fp == NULL) { pr_cont("UNEXPECTED_FAIL no memory left\n"); *err = -ENOMEM; return NULL; } fp->len = flen; /* Type doesn't really matter here as long as it's not unspec. */ fp->type = BPF_PROG_TYPE_SOCKET_FILTER; memcpy(fp->insnsi, fptr, fp->len * sizeof(struct bpf_insn)); fp->aux->stack_depth = tests[which].stack_depth; fp->aux->verifier_zext = !!(tests[which].aux & FLAG_VERIFIER_ZEXT); /* We cannot error here as we don't need type compatibility * checks. */ fp = bpf_prog_select_runtime(fp, err); if (*err) { pr_cont("FAIL to select_runtime err=%d\n", *err); return NULL; } break; } *err = 0; return fp; } static void release_filter(struct bpf_prog *fp, int which) { __u8 test_type = tests[which].aux & TEST_TYPE_MASK; switch (test_type) { case CLASSIC: bpf_prog_destroy(fp); break; case INTERNAL: bpf_prog_free(fp); break; } } static int __run_one(const struct bpf_prog *fp, const void *data, int runs, u64 *duration) { u64 start, finish; int ret = 0, i; migrate_disable(); start = ktime_get_ns(); for (i = 0; i < runs; i++) ret = bpf_prog_run(fp, data); finish = ktime_get_ns(); migrate_enable(); *duration = finish - start; do_div(*duration, runs); return ret; } static int run_one(const struct bpf_prog *fp, struct bpf_test *test) { int err_cnt = 0, i, runs = MAX_TESTRUNS; if (test->nr_testruns) runs = min(test->nr_testruns, MAX_TESTRUNS); for (i = 0; i < MAX_SUBTESTS; i++) { void *data; u64 duration; u32 ret; /* * NOTE: Several sub-tests may be present, in which case * a zero {data_size, result} tuple indicates the end of * the sub-test array. The first test is always run, * even if both data_size and result happen to be zero. */ if (i > 0 && test->test[i].data_size == 0 && test->test[i].result == 0) break; data = generate_test_data(test, i); if (!data && !(test->aux & FLAG_NO_DATA)) { pr_cont("data generation failed "); err_cnt++; break; } ret = __run_one(fp, data, runs, &duration); release_test_data(test, data); if (ret == test->test[i].result) { pr_cont("%lld ", duration); } else { s32 res = test->test[i].result; pr_cont("ret %d != %d (%#x != %#x)", ret, res, ret, res); err_cnt++; } } return err_cnt; } static char test_name[64]; module_param_string(test_name, test_name, sizeof(test_name), 0); static int test_id = -1; module_param(test_id, int, 0); static int test_range[2] = { 0, INT_MAX }; module_param_array(test_range, int, NULL, 0); static bool exclude_test(int test_id) { return test_id < test_range[0] || test_id > test_range[1]; } static __init struct sk_buff *build_test_skb(void) { u32 headroom = NET_SKB_PAD + NET_IP_ALIGN + ETH_HLEN; struct sk_buff *skb[2]; struct page *page[2]; int i, data_size = 8; for (i = 0; i < 2; i++) { page[i] = alloc_page(GFP_KERNEL); if (!page[i]) { if (i == 0) goto err_page0; else goto err_page1; } /* this will set skb[i]->head_frag */ skb[i] = dev_alloc_skb(headroom + data_size); if (!skb[i]) { if (i == 0) goto err_skb0; else goto err_skb1; } skb_reserve(skb[i], headroom); skb_put(skb[i], data_size); skb[i]->protocol = htons(ETH_P_IP); skb_reset_network_header(skb[i]); skb_set_mac_header(skb[i], -ETH_HLEN); skb_add_rx_frag(skb[i], 0, page[i], 0, 64, 64); // skb_headlen(skb[i]): 8, skb[i]->head_frag = 1 } /* setup shinfo */ skb_shinfo(skb[0])->gso_size = 1448; skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV4; skb_shinfo(skb[0])->gso_type |= SKB_GSO_DODGY; skb_shinfo(skb[0])->gso_segs = 0; skb_shinfo(skb[0])->frag_list = skb[1]; skb_shinfo(skb[0])->hwtstamps.hwtstamp = 1000; /* adjust skb[0]'s len */ skb[0]->len += skb[1]->len; skb[0]->data_len += skb[1]->data_len; skb[0]->truesize += skb[1]->truesize; return skb[0]; err_skb1: __free_page(page[1]); err_page1: kfree_skb(skb[0]); err_skb0: __free_page(page[0]); err_page0: return NULL; } static __init struct sk_buff *build_test_skb_linear_no_head_frag(void) { unsigned int alloc_size = 2000; unsigned int headroom = 102, doffset = 72, data_size = 1308; struct sk_buff *skb[2]; int i; /* skbs linked in a frag_list, both with linear data, with head_frag=0 * (data allocated by kmalloc), both have tcp data of 1308 bytes * (total payload is 2616 bytes). * Data offset is 72 bytes (40 ipv6 hdr, 32 tcp hdr). Some headroom. */ for (i = 0; i < 2; i++) { skb[i] = alloc_skb(alloc_size, GFP_KERNEL); if (!skb[i]) { if (i == 0) goto err_skb0; else goto err_skb1; } skb[i]->protocol = htons(ETH_P_IPV6); skb_reserve(skb[i], headroom); skb_put(skb[i], doffset + data_size); skb_reset_network_header(skb[i]); if (i == 0) skb_reset_mac_header(skb[i]); else skb_set_mac_header(skb[i], -ETH_HLEN); __skb_pull(skb[i], doffset); } /* setup shinfo. * mimic bpf_skb_proto_4_to_6, which resets gso_segs and assigns a * reduced gso_size. */ skb_shinfo(skb[0])->gso_size = 1288; skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV6 | SKB_GSO_DODGY; skb_shinfo(skb[0])->gso_segs = 0; skb_shinfo(skb[0])->frag_list = skb[1]; /* adjust skb[0]'s len */ skb[0]->len += skb[1]->len; skb[0]->data_len += skb[1]->len; skb[0]->truesize += skb[1]->truesize; return skb[0]; err_skb1: kfree_skb(skb[0]); err_skb0: return NULL; } struct skb_segment_test { const char *descr; struct sk_buff *(*build_skb)(void); netdev_features_t features; }; static struct skb_segment_test skb_segment_tests[] __initconst = { { .descr = "gso_with_rx_frags", .build_skb = build_test_skb, .features = NETIF_F_SG | NETIF_F_GSO_PARTIAL | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM }, { .descr = "gso_linear_no_head_frag", .build_skb = build_test_skb_linear_no_head_frag, .features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_GSO | NETIF_F_LLTX | NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_STAG_TX } }; static __init int test_skb_segment_single(const struct skb_segment_test *test) { struct sk_buff *skb, *segs; int ret = -1; skb = test->build_skb(); if (!skb) { pr_info("%s: failed to build_test_skb", __func__); goto done; } segs = skb_segment(skb, test->features); if (!IS_ERR(segs)) { kfree_skb_list(segs); ret = 0; } kfree_skb(skb); done: return ret; } static __init int test_skb_segment(void) { int i, err_cnt = 0, pass_cnt = 0; for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) { const struct skb_segment_test *test = &skb_segment_tests[i]; cond_resched(); if (exclude_test(i)) continue; pr_info("#%d %s ", i, test->descr); if (test_skb_segment_single(test)) { pr_cont("FAIL\n"); err_cnt++; } else { pr_cont("PASS\n"); pass_cnt++; } } pr_info("%s: Summary: %d PASSED, %d FAILED\n", __func__, pass_cnt, err_cnt); return err_cnt ? -EINVAL : 0; } static __init int test_bpf(void) { int i, err_cnt = 0, pass_cnt = 0; int jit_cnt = 0, run_cnt = 0; for (i = 0; i < ARRAY_SIZE(tests); i++) { struct bpf_prog *fp; int err; cond_resched(); if (exclude_test(i)) continue; pr_info("#%d %s ", i, tests[i].descr); if (tests[i].fill_helper && tests[i].fill_helper(&tests[i]) < 0) { pr_cont("FAIL to prog_fill\n"); continue; } fp = generate_filter(i, &err); if (tests[i].fill_helper) { kfree(tests[i].u.ptr.insns); tests[i].u.ptr.insns = NULL; } if (fp == NULL) { if (err == 0) { pass_cnt++; continue; } err_cnt++; continue; } pr_cont("jited:%u ", fp->jited); run_cnt++; if (fp->jited) jit_cnt++; err = run_one(fp, &tests[i]); release_filter(fp, i); if (err) { pr_cont("FAIL (%d times)\n", err); err_cnt++; } else { pr_cont("PASS\n"); pass_cnt++; } } pr_info("Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n", pass_cnt, err_cnt, jit_cnt, run_cnt); return err_cnt ? -EINVAL : 0; } struct tail_call_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; int flags; int result; int stack_depth; }; /* Flags that can be passed to tail call test cases */ #define FLAG_NEED_STATE BIT(0) #define FLAG_RESULT_IN_STATE BIT(1) /* * Magic marker used in test snippets for tail calls below. * BPF_LD/MOV to R2 and R2 with this immediate value is replaced * with the proper values by the test runner. */ #define TAIL_CALL_MARKER 0x7a11ca11 /* Special offset to indicate a NULL call target */ #define TAIL_CALL_NULL 0x7fff /* Special offset to indicate an out-of-range index */ #define TAIL_CALL_INVALID 0x7ffe #define TAIL_CALL(offset) \ BPF_LD_IMM64(R2, TAIL_CALL_MARKER), \ BPF_RAW_INSN(BPF_ALU | BPF_MOV | BPF_K, R3, 0, \ offset, TAIL_CALL_MARKER), \ BPF_JMP_IMM(BPF_TAIL_CALL, 0, 0, 0) /* * A test function to be called from a BPF program, clobbering a lot of * CPU registers in the process. A JITed BPF program calling this function * must save and restore any caller-saved registers it uses for internal * state, for example the current tail call count. */ BPF_CALL_1(bpf_test_func, u64, arg) { char buf[64]; long a = 0; long b = 1; long c = 2; long d = 3; long e = 4; long f = 5; long g = 6; long h = 7; return snprintf(buf, sizeof(buf), "%ld %lu %lx %ld %lu %lx %ld %lu %x", a, b, c, d, e, f, g, h, (int)arg); } #define BPF_FUNC_test_func __BPF_FUNC_MAX_ID /* * Tail call tests. Each test case may call any other test in the table, * including itself, specified as a relative index offset from the calling * test. The index TAIL_CALL_NULL can be used to specify a NULL target * function to test the JIT error path. Similarly, the index TAIL_CALL_INVALID * results in a target index that is out of range. */ static struct tail_call_test tail_call_tests[] = { { "Tail call leaf", .insns = { BPF_ALU64_REG(BPF_MOV, R0, R1), BPF_ALU64_IMM(BPF_ADD, R0, 1), BPF_EXIT_INSN(), }, .result = 1, }, { "Tail call 2", .insns = { BPF_ALU64_IMM(BPF_ADD, R1, 2), TAIL_CALL(-1), BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_EXIT_INSN(), }, .result = 3, }, { "Tail call 3", .insns = { BPF_ALU64_IMM(BPF_ADD, R1, 3), TAIL_CALL(-1), BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_EXIT_INSN(), }, .result = 6, }, { "Tail call 4", .insns = { BPF_ALU64_IMM(BPF_ADD, R1, 4), TAIL_CALL(-1), BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_EXIT_INSN(), }, .result = 10, }, { "Tail call load/store leaf", .insns = { BPF_ALU64_IMM(BPF_MOV, R1, 1), BPF_ALU64_IMM(BPF_MOV, R2, 2), BPF_ALU64_REG(BPF_MOV, R3, BPF_REG_FP), BPF_STX_MEM(BPF_DW, R3, R1, -8), BPF_STX_MEM(BPF_DW, R3, R2, -16), BPF_LDX_MEM(BPF_DW, R0, BPF_REG_FP, -8), BPF_JMP_REG(BPF_JNE, R0, R1, 3), BPF_LDX_MEM(BPF_DW, R0, BPF_REG_FP, -16), BPF_JMP_REG(BPF_JNE, R0, R2, 1), BPF_ALU64_IMM(BPF_MOV, R0, 0), BPF_EXIT_INSN(), }, .result = 0, .stack_depth = 32, }, { "Tail call load/store", .insns = { BPF_ALU64_IMM(BPF_MOV, R0, 3), BPF_STX_MEM(BPF_DW, BPF_REG_FP, R0, -8), TAIL_CALL(-1), BPF_ALU64_IMM(BPF_MOV, R0, -1), BPF_EXIT_INSN(), }, .result = 0, .stack_depth = 16, }, { "Tail call error path, max count reached", .insns = { BPF_LDX_MEM(BPF_W, R2, R1, 0), BPF_ALU64_IMM(BPF_ADD, R2, 1), BPF_STX_MEM(BPF_W, R1, R2, 0), TAIL_CALL(0), BPF_EXIT_INSN(), }, .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE, .result = (MAX_TAIL_CALL_CNT + 1) * MAX_TESTRUNS, }, { "Tail call count preserved across function calls", .insns = { BPF_LDX_MEM(BPF_W, R2, R1, 0), BPF_ALU64_IMM(BPF_ADD, R2, 1), BPF_STX_MEM(BPF_W, R1, R2, 0), BPF_STX_MEM(BPF_DW, R10, R1, -8), BPF_CALL_REL(BPF_FUNC_get_numa_node_id), BPF_CALL_REL(BPF_FUNC_ktime_get_ns), BPF_CALL_REL(BPF_FUNC_ktime_get_boot_ns), BPF_CALL_REL(BPF_FUNC_ktime_get_coarse_ns), BPF_CALL_REL(BPF_FUNC_jiffies64), BPF_CALL_REL(BPF_FUNC_test_func), BPF_LDX_MEM(BPF_DW, R1, R10, -8), BPF_ALU32_REG(BPF_MOV, R0, R1), TAIL_CALL(0), BPF_EXIT_INSN(), }, .stack_depth = 8, .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE, .result = (MAX_TAIL_CALL_CNT + 1) * MAX_TESTRUNS, }, { "Tail call error path, NULL target", .insns = { BPF_LDX_MEM(BPF_W, R2, R1, 0), BPF_ALU64_IMM(BPF_ADD, R2, 1), BPF_STX_MEM(BPF_W, R1, R2, 0), TAIL_CALL(TAIL_CALL_NULL), BPF_EXIT_INSN(), }, .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE, .result = MAX_TESTRUNS, }, { "Tail call error path, index out of range", .insns = { BPF_LDX_MEM(BPF_W, R2, R1, 0), BPF_ALU64_IMM(BPF_ADD, R2, 1), BPF_STX_MEM(BPF_W, R1, R2, 0), TAIL_CALL(TAIL_CALL_INVALID), BPF_EXIT_INSN(), }, .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE, .result = MAX_TESTRUNS, }, }; static void __init destroy_tail_call_tests(struct bpf_array *progs) { int i; for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) if (progs->ptrs[i]) bpf_prog_free(progs->ptrs[i]); kfree(progs); } static __init int prepare_tail_call_tests(struct bpf_array **pprogs) { int ntests = ARRAY_SIZE(tail_call_tests); struct bpf_array *progs; int which, err; /* Allocate the table of programs to be used for tail calls */ progs = kzalloc(struct_size(progs, ptrs, ntests + 1), GFP_KERNEL); if (!progs) goto out_nomem; /* Create all eBPF programs and populate the table */ for (which = 0; which < ntests; which++) { struct tail_call_test *test = &tail_call_tests[which]; struct bpf_prog *fp; int len, i; /* Compute the number of program instructions */ for (len = 0; len < MAX_INSNS; len++) { struct bpf_insn *insn = &test->insns[len]; if (len < MAX_INSNS - 1 && insn->code == (BPF_LD | BPF_DW | BPF_IMM)) len++; if (insn->code == 0) break; } /* Allocate and initialize the program */ fp = bpf_prog_alloc(bpf_prog_size(len), 0); if (!fp) goto out_nomem; fp->len = len; fp->type = BPF_PROG_TYPE_SOCKET_FILTER; fp->aux->stack_depth = test->stack_depth; memcpy(fp->insnsi, test->insns, len * sizeof(struct bpf_insn)); /* Relocate runtime tail call offsets and addresses */ for (i = 0; i < len; i++) { struct bpf_insn *insn = &fp->insnsi[i]; long addr = 0; switch (insn->code) { case BPF_LD | BPF_DW | BPF_IMM: if (insn->imm != TAIL_CALL_MARKER) break; insn[0].imm = (u32)(long)progs; insn[1].imm = ((u64)(long)progs) >> 32; break; case BPF_ALU | BPF_MOV | BPF_K: if (insn->imm != TAIL_CALL_MARKER) break; if (insn->off == TAIL_CALL_NULL) insn->imm = ntests; else if (insn->off == TAIL_CALL_INVALID) insn->imm = ntests + 1; else insn->imm = which + insn->off; insn->off = 0; break; case BPF_JMP | BPF_CALL: if (insn->src_reg != BPF_PSEUDO_CALL) break; switch (insn->imm) { case BPF_FUNC_get_numa_node_id: addr = (long)&numa_node_id; break; case BPF_FUNC_ktime_get_ns: addr = (long)&ktime_get_ns; break; case BPF_FUNC_ktime_get_boot_ns: addr = (long)&ktime_get_boot_fast_ns; break; case BPF_FUNC_ktime_get_coarse_ns: addr = (long)&ktime_get_coarse_ns; break; case BPF_FUNC_jiffies64: addr = (long)&get_jiffies_64; break; case BPF_FUNC_test_func: addr = (long)&bpf_test_func; break; default: err = -EFAULT; goto out_err; } *insn = BPF_EMIT_CALL(addr); if ((long)__bpf_call_base + insn->imm != addr) *insn = BPF_JMP_A(0); /* Skip: NOP */ break; } } fp = bpf_prog_select_runtime(fp, &err); if (err) goto out_err; progs->ptrs[which] = fp; } /* The last entry contains a NULL program pointer */ progs->map.max_entries = ntests + 1; *pprogs = progs; return 0; out_nomem: err = -ENOMEM; out_err: if (progs) destroy_tail_call_tests(progs); return err; } static __init int test_tail_calls(struct bpf_array *progs) { int i, err_cnt = 0, pass_cnt = 0; int jit_cnt = 0, run_cnt = 0; for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) { struct tail_call_test *test = &tail_call_tests[i]; struct bpf_prog *fp = progs->ptrs[i]; int *data = NULL; int state = 0; u64 duration; int ret; cond_resched(); if (exclude_test(i)) continue; pr_info("#%d %s ", i, test->descr); if (!fp) { err_cnt++; continue; } pr_cont("jited:%u ", fp->jited); run_cnt++; if (fp->jited) jit_cnt++; if (test->flags & FLAG_NEED_STATE) data = &state; ret = __run_one(fp, data, MAX_TESTRUNS, &duration); if (test->flags & FLAG_RESULT_IN_STATE) ret = state; if (ret == test->result) { pr_cont("%lld PASS", duration); pass_cnt++; } else { pr_cont("ret %d != %d FAIL", ret, test->result); err_cnt++; } } pr_info("%s: Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n", __func__, pass_cnt, err_cnt, jit_cnt, run_cnt); return err_cnt ? -EINVAL : 0; } static char test_suite[32]; module_param_string(test_suite, test_suite, sizeof(test_suite), 0); static __init int find_test_index(const char *test_name) { int i; if (!strcmp(test_suite, "test_bpf")) { for (i = 0; i < ARRAY_SIZE(tests); i++) { if (!strcmp(tests[i].descr, test_name)) return i; } } if (!strcmp(test_suite, "test_tail_calls")) { for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) { if (!strcmp(tail_call_tests[i].descr, test_name)) return i; } } if (!strcmp(test_suite, "test_skb_segment")) { for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) { if (!strcmp(skb_segment_tests[i].descr, test_name)) return i; } } return -1; } static __init int prepare_test_range(void) { int valid_range; if (!strcmp(test_suite, "test_bpf")) valid_range = ARRAY_SIZE(tests); else if (!strcmp(test_suite, "test_tail_calls")) valid_range = ARRAY_SIZE(tail_call_tests); else if (!strcmp(test_suite, "test_skb_segment")) valid_range = ARRAY_SIZE(skb_segment_tests); else return 0; if (test_id >= 0) { /* * if a test_id was specified, use test_range to * cover only that test. */ if (test_id >= valid_range) { pr_err("test_bpf: invalid test_id specified for '%s' suite.\n", test_suite); return -EINVAL; } test_range[0] = test_id; test_range[1] = test_id; } else if (*test_name) { /* * if a test_name was specified, find it and setup * test_range to cover only that test. */ int idx = find_test_index(test_name); if (idx < 0) { pr_err("test_bpf: no test named '%s' found for '%s' suite.\n", test_name, test_suite); return -EINVAL; } test_range[0] = idx; test_range[1] = idx; } else if (test_range[0] != 0 || test_range[1] != INT_MAX) { /* * check that the supplied test_range is valid. */ if (test_range[0] < 0 || test_range[1] >= valid_range) { pr_err("test_bpf: test_range is out of bound for '%s' suite.\n", test_suite); return -EINVAL; } if (test_range[1] < test_range[0]) { pr_err("test_bpf: test_range is ending before it starts.\n"); return -EINVAL; } } return 0; } static int __init test_bpf_init(void) { struct bpf_array *progs = NULL; int ret; if (strlen(test_suite) && strcmp(test_suite, "test_bpf") && strcmp(test_suite, "test_tail_calls") && strcmp(test_suite, "test_skb_segment")) { pr_err("test_bpf: invalid test_suite '%s' specified.\n", test_suite); return -EINVAL; } /* * if test_suite is not specified, but test_id, test_name or test_range * is specified, set 'test_bpf' as the default test suite. */ if (!strlen(test_suite) && (test_id != -1 || strlen(test_name) || (test_range[0] != 0 || test_range[1] != INT_MAX))) { pr_info("test_bpf: set 'test_bpf' as the default test_suite.\n"); strscpy(test_suite, "test_bpf", sizeof(test_suite)); } ret = prepare_test_range(); if (ret < 0) return ret; if (!strlen(test_suite) || !strcmp(test_suite, "test_bpf")) { ret = test_bpf(); if (ret) return ret; } if (!strlen(test_suite) || !strcmp(test_suite, "test_tail_calls")) { ret = prepare_tail_call_tests(&progs); if (ret) return ret; ret = test_tail_calls(progs); destroy_tail_call_tests(progs); if (ret) return ret; } if (!strlen(test_suite) || !strcmp(test_suite, "test_skb_segment")) return test_skb_segment(); return 0; } static void __exit test_bpf_exit(void) { } module_init(test_bpf_init); module_exit(test_bpf_exit); MODULE_DESCRIPTION("Testsuite for BPF interpreter and BPF JIT compiler"); MODULE_LICENSE("GPL");