// SPDX-License-Identifier: GPL-2.0-only /* * Generic helpers for smp ipi calls * * (C) Jens Axboe <jens.axboe@oracle.com> 2008 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/irq_work.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/idle.h> #include <linux/hypervisor.h> #include <linux/sched/clock.h> #include <linux/nmi.h> #include <linux/sched/debug.h> #include <linux/jump_label.h> #include "smpboot.h" #include "sched/smp.h" #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG union cfd_seq_cnt { u64 val; struct { u64 src:16; u64 dst:16; #define CFD_SEQ_NOCPU 0xffff u64 type:4; #define CFD_SEQ_QUEUE 0 #define CFD_SEQ_IPI 1 #define CFD_SEQ_NOIPI 2 #define CFD_SEQ_PING 3 #define CFD_SEQ_PINGED 4 #define CFD_SEQ_HANDLE 5 #define CFD_SEQ_DEQUEUE 6 #define CFD_SEQ_IDLE 7 #define CFD_SEQ_GOTIPI 8 #define CFD_SEQ_HDLEND 9 u64 cnt:28; } u; }; static char *seq_type[] = { [CFD_SEQ_QUEUE] = "queue", [CFD_SEQ_IPI] = "ipi", [CFD_SEQ_NOIPI] = "noipi", [CFD_SEQ_PING] = "ping", [CFD_SEQ_PINGED] = "pinged", [CFD_SEQ_HANDLE] = "handle", [CFD_SEQ_DEQUEUE] = "dequeue (src CPU 0 == empty)", [CFD_SEQ_IDLE] = "idle", [CFD_SEQ_GOTIPI] = "gotipi", [CFD_SEQ_HDLEND] = "hdlend (src CPU 0 == early)", }; struct cfd_seq_local { u64 ping; u64 pinged; u64 handle; u64 dequeue; u64 idle; u64 gotipi; u64 hdlend; }; #endif struct cfd_percpu { call_single_data_t csd; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG u64 seq_queue; u64 seq_ipi; u64 seq_noipi; #endif }; struct call_function_data { struct cfd_percpu __percpu *pcpu; cpumask_var_t cpumask; cpumask_var_t cpumask_ipi; }; static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); static void __flush_smp_call_function_queue(bool warn_cpu_offline); int smpcfd_prepare_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, cpu_to_node(cpu))) return -ENOMEM; if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, cpu_to_node(cpu))) { free_cpumask_var(cfd->cpumask); return -ENOMEM; } cfd->pcpu = alloc_percpu(struct cfd_percpu); if (!cfd->pcpu) { free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); return -ENOMEM; } return 0; } int smpcfd_dead_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); free_percpu(cfd->pcpu); return 0; } int smpcfd_dying_cpu(unsigned int cpu) { /* * The IPIs for the smp-call-function callbacks queued by other * CPUs might arrive late, either due to hardware latencies or * because this CPU disabled interrupts (inside stop-machine) * before the IPIs were sent. So flush out any pending callbacks * explicitly (without waiting for the IPIs to arrive), to * ensure that the outgoing CPU doesn't go offline with work * still pending. */ __flush_smp_call_function_queue(false); irq_work_run(); return 0; } void __init call_function_init(void) { int i; for_each_possible_cpu(i) init_llist_head(&per_cpu(call_single_queue, i)); smpcfd_prepare_cpu(smp_processor_id()); } #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled); static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended); static int __init csdlock_debug(char *str) { unsigned int val = 0; if (str && !strcmp(str, "ext")) { val = 1; static_branch_enable(&csdlock_debug_extended); } else get_option(&str, &val); if (val) static_branch_enable(&csdlock_debug_enabled); return 0; } early_param("csdlock_debug", csdlock_debug); static DEFINE_PER_CPU(call_single_data_t *, cur_csd); static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); static DEFINE_PER_CPU(void *, cur_csd_info); static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local); static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ module_param(csd_lock_timeout, ulong, 0444); static atomic_t csd_bug_count = ATOMIC_INIT(0); static u64 cfd_seq; #define CFD_SEQ(s, d, t, c) \ (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c } static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type) { union cfd_seq_cnt new, old; new = CFD_SEQ(src, dst, type, 0); do { old.val = READ_ONCE(cfd_seq); new.u.cnt = old.u.cnt + 1; } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val); return old.val; } #define cfd_seq_store(var, src, dst, type) \ do { \ if (static_branch_unlikely(&csdlock_debug_extended)) \ var = cfd_seq_inc(src, dst, type); \ } while (0) /* Record current CSD work for current CPU, NULL to erase. */ static void __csd_lock_record(struct __call_single_data *csd) { if (!csd) { smp_mb(); /* NULL cur_csd after unlock. */ __this_cpu_write(cur_csd, NULL); return; } __this_cpu_write(cur_csd_func, csd->func); __this_cpu_write(cur_csd_info, csd->info); smp_wmb(); /* func and info before csd. */ __this_cpu_write(cur_csd, csd); smp_mb(); /* Update cur_csd before function call. */ /* Or before unlock, as the case may be. */ } static __always_inline void csd_lock_record(struct __call_single_data *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) __csd_lock_record(csd); } static int csd_lock_wait_getcpu(struct __call_single_data *csd) { unsigned int csd_type; csd_type = CSD_TYPE(csd); if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ return -1; } static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst, unsigned int type, union cfd_seq_cnt *data, unsigned int *n_data, unsigned int now) { union cfd_seq_cnt new[2]; unsigned int i, j, k; new[0].val = val; new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1); for (i = 0; i < 2; i++) { if (new[i].u.cnt <= now) new[i].u.cnt |= 0x80000000U; for (j = 0; j < *n_data; j++) { if (new[i].u.cnt == data[j].u.cnt) { /* Direct read value trumps generated one. */ if (i == 0) data[j].val = new[i].val; break; } if (new[i].u.cnt < data[j].u.cnt) { for (k = *n_data; k > j; k--) data[k].val = data[k - 1].val; data[j].val = new[i].val; (*n_data)++; break; } } if (j == *n_data) { data[j].val = new[i].val; (*n_data)++; } } } static const char *csd_lock_get_type(unsigned int type) { return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type]; } static void csd_lock_print_extended(struct __call_single_data *csd, int cpu) { struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu); unsigned int srccpu = csd->node.src; struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu); struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); unsigned int now; union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)]; unsigned int n_data = 0, i; data[0].val = READ_ONCE(cfd_seq); now = data[0].u.cnt; cfd_seq_data_add(pcpu->seq_queue, srccpu, cpu, CFD_SEQ_QUEUE, data, &n_data, now); cfd_seq_data_add(pcpu->seq_ipi, srccpu, cpu, CFD_SEQ_IPI, data, &n_data, now); cfd_seq_data_add(pcpu->seq_noipi, srccpu, cpu, CFD_SEQ_NOIPI, data, &n_data, now); cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING, data, &n_data, now); cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now); cfd_seq_data_add(seq->idle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE, data, &n_data, now); cfd_seq_data_add(seq->gotipi, CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI, data, &n_data, now); cfd_seq_data_add(seq->handle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE, data, &n_data, now); cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now); cfd_seq_data_add(seq->hdlend, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND, data, &n_data, now); for (i = 0; i < n_data; i++) { pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n", data[i].u.cnt & ~0x80000000U, data[i].u.src, data[i].u.dst, csd_lock_get_type(data[i].u.type)); } pr_alert("\tcsd: cnt now: %07x\n", now); } /* * Complain if too much time spent waiting. Note that only * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, * so waiting on other types gets much less information. */ static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id) { int cpu = -1; int cpux; bool firsttime; u64 ts2, ts_delta; call_single_data_t *cpu_cur_csd; unsigned int flags = READ_ONCE(csd->node.u_flags); unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; if (!(flags & CSD_FLAG_LOCK)) { if (!unlikely(*bug_id)) return true; cpu = csd_lock_wait_getcpu(csd); pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", *bug_id, raw_smp_processor_id(), cpu); return true; } ts2 = sched_clock(); ts_delta = ts2 - *ts1; if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0)) return false; firsttime = !*bug_id; if (firsttime) *bug_id = atomic_inc_return(&csd_bug_count); cpu = csd_lock_wait_getcpu(csd); if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) cpux = 0; else cpux = cpu; cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0, cpu, csd->func, csd->info); if (cpu_cur_csd && csd != cpu_cur_csd) { pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), READ_ONCE(per_cpu(cur_csd_info, cpux))); } else { pr_alert("\tcsd: CSD lock (#%d) %s.\n", *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); } if (cpu >= 0) { if (static_branch_unlikely(&csdlock_debug_extended)) csd_lock_print_extended(csd, cpu); if (!trigger_single_cpu_backtrace(cpu)) dump_cpu_task(cpu); if (!cpu_cur_csd) { pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); arch_send_call_function_single_ipi(cpu); } } dump_stack(); *ts1 = ts2; return false; } /* * csd_lock/csd_unlock used to serialize access to per-cpu csd resources * * For non-synchronous ipi calls the csd can still be in use by the * previous function call. For multi-cpu calls its even more interesting * as we'll have to ensure no other cpu is observing our csd. */ static void __csd_lock_wait(struct __call_single_data *csd) { int bug_id = 0; u64 ts0, ts1; ts1 = ts0 = sched_clock(); for (;;) { if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) break; cpu_relax(); } smp_acquire__after_ctrl_dep(); } static __always_inline void csd_lock_wait(struct __call_single_data *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) { __csd_lock_wait(csd); return; } smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } static void __smp_call_single_queue_debug(int cpu, struct llist_node *node) { unsigned int this_cpu = smp_processor_id(); struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local); struct call_function_data *cfd = this_cpu_ptr(&cfd_data); struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); if (llist_add(node, &per_cpu(call_single_queue, cpu))) { cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING); send_call_function_single_ipi(cpu); cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED); } else { cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); } } #else #define cfd_seq_store(var, src, dst, type) static void csd_lock_record(struct __call_single_data *csd) { } static __always_inline void csd_lock_wait(struct __call_single_data *csd) { smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #endif static __always_inline void csd_lock(struct __call_single_data *csd) { csd_lock_wait(csd); csd->node.u_flags |= CSD_FLAG_LOCK; /* * prevent CPU from reordering the above assignment * to ->flags with any subsequent assignments to other * fields of the specified call_single_data_t structure: */ smp_wmb(); } static __always_inline void csd_unlock(struct __call_single_data *csd) { WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); /* * ensure we're all done before releasing data: */ smp_store_release(&csd->node.u_flags, 0); } static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); void __smp_call_single_queue(int cpu, struct llist_node *node) { #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG if (static_branch_unlikely(&csdlock_debug_extended)) { unsigned int type; type = CSD_TYPE(container_of(node, call_single_data_t, node.llist)); if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) { __smp_call_single_queue_debug(cpu, node); return; } } #endif /* * The list addition should be visible before sending the IPI * handler locks the list to pull the entry off it because of * normal cache coherency rules implied by spinlocks. * * If IPIs can go out of order to the cache coherency protocol * in an architecture, sufficient synchronisation should be added * to arch code to make it appear to obey cache coherency WRT * locking and barrier primitives. Generic code isn't really * equipped to do the right thing... */ if (llist_add(node, &per_cpu(call_single_queue, cpu))) send_call_function_single_ipi(cpu); } /* * Insert a previously allocated call_single_data_t element * for execution on the given CPU. data must already have * ->func, ->info, and ->flags set. */ static int generic_exec_single(int cpu, struct __call_single_data *csd) { if (cpu == smp_processor_id()) { smp_call_func_t func = csd->func; void *info = csd->info; unsigned long flags; /* * We can unlock early even for the synchronous on-stack case, * since we're doing this from the same CPU.. */ csd_lock_record(csd); csd_unlock(csd); local_irq_save(flags); func(info); csd_lock_record(NULL); local_irq_restore(flags); return 0; } if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { csd_unlock(csd); return -ENXIO; } __smp_call_single_queue(cpu, &csd->node.llist); return 0; } /** * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks * * Invoked by arch to handle an IPI for call function single. * Must be called with interrupts disabled. */ void generic_smp_call_function_single_interrupt(void) { cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_GOTIPI); __flush_smp_call_function_queue(true); } /** * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks * * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an * offline CPU. Skip this check if set to 'false'. * * Flush any pending smp-call-function callbacks queued on this CPU. This is * invoked by the generic IPI handler, as well as by a CPU about to go offline, * to ensure that all pending IPI callbacks are run before it goes completely * offline. * * Loop through the call_single_queue and run all the queued callbacks. * Must be called with interrupts disabled. */ static void __flush_smp_call_function_queue(bool warn_cpu_offline) { call_single_data_t *csd, *csd_next; struct llist_node *entry, *prev; struct llist_head *head; static bool warned; lockdep_assert_irqs_disabled(); head = this_cpu_ptr(&call_single_queue); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_HANDLE); entry = llist_del_all(head); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue, /* Special meaning of source cpu: 0 == queue empty */ entry ? CFD_SEQ_NOCPU : 0, smp_processor_id(), CFD_SEQ_DEQUEUE); entry = llist_reverse_order(entry); /* There shouldn't be any pending callbacks on an offline CPU. */ if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && !warned && entry != NULL)) { warned = true; WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); /* * We don't have to use the _safe() variant here * because we are not invoking the IPI handlers yet. */ llist_for_each_entry(csd, entry, node.llist) { switch (CSD_TYPE(csd)) { case CSD_TYPE_ASYNC: case CSD_TYPE_SYNC: case CSD_TYPE_IRQ_WORK: pr_warn("IPI callback %pS sent to offline CPU\n", csd->func); break; case CSD_TYPE_TTWU: pr_warn("IPI task-wakeup sent to offline CPU\n"); break; default: pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", CSD_TYPE(csd)); break; } } } /* * First; run all SYNC callbacks, people are waiting for us. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { /* Do we wait until *after* callback? */ if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { smp_call_func_t func = csd->func; void *info = csd->info; if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } csd_lock_record(csd); func(info); csd_unlock(csd); csd_lock_record(NULL); } else { prev = &csd->node.llist; } } if (!entry) { cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, 0, smp_processor_id(), CFD_SEQ_HDLEND); return; } /* * Second; run all !SYNC callbacks. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { int type = CSD_TYPE(csd); if (type != CSD_TYPE_TTWU) { if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } if (type == CSD_TYPE_ASYNC) { smp_call_func_t func = csd->func; void *info = csd->info; csd_lock_record(csd); csd_unlock(csd); func(info); csd_lock_record(NULL); } else if (type == CSD_TYPE_IRQ_WORK) { irq_work_single(csd); } } else { prev = &csd->node.llist; } } /* * Third; only CSD_TYPE_TTWU is left, issue those. */ if (entry) sched_ttwu_pending(entry); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_HDLEND); } /** * flush_smp_call_function_queue - Flush pending smp-call-function callbacks * from task context (idle, migration thread) * * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to * handle queued SMP function calls before scheduling. * * The migration thread has to ensure that an eventually pending wakeup has * been handled before it migrates a task. */ void flush_smp_call_function_queue(void) { unsigned int was_pending; unsigned long flags; if (llist_empty(this_cpu_ptr(&call_single_queue))) return; cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_IDLE); local_irq_save(flags); /* Get the already pending soft interrupts for RT enabled kernels */ was_pending = local_softirq_pending(); __flush_smp_call_function_queue(true); if (local_softirq_pending()) do_softirq_post_smp_call_flush(was_pending); local_irq_restore(flags); } /* * smp_call_function_single - Run a function on a specific CPU * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed on other CPUs. * * Returns 0 on success, else a negative status code. */ int smp_call_function_single(int cpu, smp_call_func_t func, void *info, int wait) { call_single_data_t *csd; call_single_data_t csd_stack = { .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, }; int this_cpu; int err; /* * prevent preemption and reschedule on another processor, * as well as CPU removal */ this_cpu = get_cpu(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() && !oops_in_progress); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); csd = &csd_stack; if (!wait) { csd = this_cpu_ptr(&csd_data); csd_lock(csd); } csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif err = generic_exec_single(cpu, csd); if (wait) csd_lock_wait(csd); put_cpu(); return err; } EXPORT_SYMBOL(smp_call_function_single); /** * smp_call_function_single_async() - Run an asynchronous function on a * specific CPU. * @cpu: The CPU to run on. * @csd: Pre-allocated and setup data structure * * Like smp_call_function_single(), but the call is asynchonous and * can thus be done from contexts with disabled interrupts. * * The caller passes his own pre-allocated data structure * (ie: embedded in an object) and is responsible for synchronizing it * such that the IPIs performed on the @csd are strictly serialized. * * If the function is called with one csd which has not yet been * processed by previous call to smp_call_function_single_async(), the * function will return immediately with -EBUSY showing that the csd * object is still in progress. * * NOTE: Be careful, there is unfortunately no current debugging facility to * validate the correctness of this serialization. * * Return: %0 on success or negative errno value on error */ int smp_call_function_single_async(int cpu, struct __call_single_data *csd) { int err = 0; preempt_disable(); if (csd->node.u_flags & CSD_FLAG_LOCK) { err = -EBUSY; goto out; } csd->node.u_flags = CSD_FLAG_LOCK; smp_wmb(); err = generic_exec_single(cpu, csd); out: preempt_enable(); return err; } EXPORT_SYMBOL_GPL(smp_call_function_single_async); /* * smp_call_function_any - Run a function on any of the given cpus * @mask: The mask of cpus it can run on. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed. * * Returns 0 on success, else a negative status code (if no cpus were online). * * Selection preference: * 1) current cpu if in @mask * 2) any cpu of current node if in @mask * 3) any other online cpu in @mask */ int smp_call_function_any(const struct cpumask *mask, smp_call_func_t func, void *info, int wait) { unsigned int cpu; const struct cpumask *nodemask; int ret; /* Try for same CPU (cheapest) */ cpu = get_cpu(); if (cpumask_test_cpu(cpu, mask)) goto call; /* Try for same node. */ nodemask = cpumask_of_node(cpu_to_node(cpu)); for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; cpu = cpumask_next_and(cpu, nodemask, mask)) { if (cpu_online(cpu)) goto call; } /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ cpu = cpumask_any_and(mask, cpu_online_mask); call: ret = smp_call_function_single(cpu, func, info, wait); put_cpu(); return ret; } EXPORT_SYMBOL_GPL(smp_call_function_any); /* * Flags to be used as scf_flags argument of smp_call_function_many_cond(). * * %SCF_WAIT: Wait until function execution is completed * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask */ #define SCF_WAIT (1U << 0) #define SCF_RUN_LOCAL (1U << 1) static void smp_call_function_many_cond(const struct cpumask *mask, smp_call_func_t func, void *info, unsigned int scf_flags, smp_cond_func_t cond_func) { int cpu, last_cpu, this_cpu = smp_processor_id(); struct call_function_data *cfd; bool wait = scf_flags & SCF_WAIT; bool run_remote = false; bool run_local = false; int nr_cpus = 0; lockdep_assert_preemption_disabled(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ if (cpu_online(this_cpu) && !oops_in_progress && !early_boot_irqs_disabled) lockdep_assert_irqs_enabled(); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); /* Check if we need local execution. */ if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) run_local = true; /* Check if we need remote execution, i.e., any CPU excluding this one. */ cpu = cpumask_first_and(mask, cpu_online_mask); if (cpu == this_cpu) cpu = cpumask_next_and(cpu, mask, cpu_online_mask); if (cpu < nr_cpu_ids) run_remote = true; if (run_remote) { cfd = this_cpu_ptr(&cfd_data); cpumask_and(cfd->cpumask, mask, cpu_online_mask); __cpumask_clear_cpu(this_cpu, cfd->cpumask); cpumask_clear(cfd->cpumask_ipi); for_each_cpu(cpu, cfd->cpumask) { struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); call_single_data_t *csd = &pcpu->csd; if (cond_func && !cond_func(cpu, info)) continue; csd_lock(csd); if (wait) csd->node.u_flags |= CSD_TYPE_SYNC; csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { __cpumask_set_cpu(cpu, cfd->cpumask_ipi); nr_cpus++; last_cpu = cpu; cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); } else { cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); } } cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING); /* * Choose the most efficient way to send an IPI. Note that the * number of CPUs might be zero due to concurrent changes to the * provided mask. */ if (nr_cpus == 1) send_call_function_single_ipi(last_cpu); else if (likely(nr_cpus > 1)) arch_send_call_function_ipi_mask(cfd->cpumask_ipi); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED); } if (run_local && (!cond_func || cond_func(this_cpu, info))) { unsigned long flags; local_irq_save(flags); func(info); local_irq_restore(flags); } if (run_remote && wait) { for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd; csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd; csd_lock_wait(csd); } } } /** * smp_call_function_many(): Run a function on a set of CPUs. * @mask: The set of cpus to run on (only runs on online subset). * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait * (atomically) until function has completed on other CPUs. If * %SCF_RUN_LOCAL is set, the function will also be run locally * if the local CPU is set in the @cpumask. * * If @wait is true, then returns once @func has returned. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. Preemption * must be disabled when calling this function. */ void smp_call_function_many(const struct cpumask *mask, smp_call_func_t func, void *info, bool wait) { smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); } EXPORT_SYMBOL(smp_call_function_many); /** * smp_call_function(): Run a function on all other CPUs. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait (atomically) until function has completed * on other CPUs. * * Returns 0. * * If @wait is true, then returns once @func has returned; otherwise * it returns just before the target cpu calls @func. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ void smp_call_function(smp_call_func_t func, void *info, int wait) { preempt_disable(); smp_call_function_many(cpu_online_mask, func, info, wait); preempt_enable(); } EXPORT_SYMBOL(smp_call_function); /* Setup configured maximum number of CPUs to activate */ unsigned int setup_max_cpus = NR_CPUS; EXPORT_SYMBOL(setup_max_cpus); /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ void __weak arch_disable_smp_support(void) { } static int __init nosmp(char *str) { setup_max_cpus = 0; arch_disable_smp_support(); return 0; } early_param("nosmp", nosmp); /* this is hard limit */ static int __init nrcpus(char *str) { int nr_cpus; if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) nr_cpu_ids = nr_cpus; return 0; } early_param("nr_cpus", nrcpus); static int __init maxcpus(char *str) { get_option(&str, &setup_max_cpus); if (setup_max_cpus == 0) arch_disable_smp_support(); return 0; } early_param("maxcpus", maxcpus); /* Setup number of possible processor ids */ unsigned int nr_cpu_ids __read_mostly = NR_CPUS; EXPORT_SYMBOL(nr_cpu_ids); /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ void __init setup_nr_cpu_ids(void) { nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1; } /* Called by boot processor to activate the rest. */ void __init smp_init(void) { int num_nodes, num_cpus; idle_threads_init(); cpuhp_threads_init(); pr_info("Bringing up secondary CPUs ...\n"); bringup_nonboot_cpus(setup_max_cpus); num_nodes = num_online_nodes(); num_cpus = num_online_cpus(); pr_info("Brought up %d node%s, %d CPU%s\n", num_nodes, (num_nodes > 1 ? "s" : ""), num_cpus, (num_cpus > 1 ? "s" : "")); /* Any cleanup work */ smp_cpus_done(setup_max_cpus); } /* * on_each_cpu_cond(): Call a function on each processor for which * the supplied function cond_func returns true, optionally waiting * for all the required CPUs to finish. This may include the local * processor. * @cond_func: A callback function that is passed a cpu id and * the info parameter. The function is called * with preemption disabled. The function should * return a blooean value indicating whether to IPI * the specified CPU. * @func: The function to run on all applicable CPUs. * This must be fast and non-blocking. * @info: An arbitrary pointer to pass to both functions. * @wait: If true, wait (atomically) until function has * completed on other CPUs. * * Preemption is disabled to protect against CPUs going offline but not online. * CPUs going online during the call will not be seen or sent an IPI. * * You must not call this function with disabled interrupts or * from a hardware interrupt handler or from a bottom half handler. */ void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, void *info, bool wait, const struct cpumask *mask) { unsigned int scf_flags = SCF_RUN_LOCAL; if (wait) scf_flags |= SCF_WAIT; preempt_disable(); smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); preempt_enable(); } EXPORT_SYMBOL(on_each_cpu_cond_mask); static void do_nothing(void *unused) { } /** * kick_all_cpus_sync - Force all cpus out of idle * * Used to synchronize the update of pm_idle function pointer. It's * called after the pointer is updated and returns after the dummy * callback function has been executed on all cpus. The execution of * the function can only happen on the remote cpus after they have * left the idle function which had been called via pm_idle function * pointer. So it's guaranteed that nothing uses the previous pointer * anymore. */ void kick_all_cpus_sync(void) { /* Make sure the change is visible before we kick the cpus */ smp_mb(); smp_call_function(do_nothing, NULL, 1); } EXPORT_SYMBOL_GPL(kick_all_cpus_sync); /** * wake_up_all_idle_cpus - break all cpus out of idle * wake_up_all_idle_cpus try to break all cpus which is in idle state even * including idle polling cpus, for non-idle cpus, we will do nothing * for them. */ void wake_up_all_idle_cpus(void) { int cpu; for_each_possible_cpu(cpu) { preempt_disable(); if (cpu != smp_processor_id() && cpu_online(cpu)) wake_up_if_idle(cpu); preempt_enable(); } } EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); /** * struct smp_call_on_cpu_struct - Call a function on a specific CPU * @work: &work_struct * @done: &completion to signal * @func: function to call * @data: function's data argument * @ret: return value from @func * @cpu: target CPU (%-1 for any CPU) * * Used to call a function on a specific cpu and wait for it to return. * Optionally make sure the call is done on a specified physical cpu via vcpu * pinning in order to support virtualized environments. */ struct smp_call_on_cpu_struct { struct work_struct work; struct completion done; int (*func)(void *); void *data; int ret; int cpu; }; static void smp_call_on_cpu_callback(struct work_struct *work) { struct smp_call_on_cpu_struct *sscs; sscs = container_of(work, struct smp_call_on_cpu_struct, work); if (sscs->cpu >= 0) hypervisor_pin_vcpu(sscs->cpu); sscs->ret = sscs->func(sscs->data); if (sscs->cpu >= 0) hypervisor_pin_vcpu(-1); complete(&sscs->done); } int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) { struct smp_call_on_cpu_struct sscs = { .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), .func = func, .data = par, .cpu = phys ? cpu : -1, }; INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); if (cpu >= nr_cpu_ids || !cpu_online(cpu)) return -ENXIO; queue_work_on(cpu, system_wq, &sscs.work); wait_for_completion(&sscs.done); return sscs.ret; } EXPORT_SYMBOL_GPL(smp_call_on_cpu);